

Europäisches
Patentamt
European
Patent Office
Office européen
des brevets

(11)

EP 3 219 789 A1

(12)

EUROPEAN PATENT APPLICATION

(43) Date of publication:
20.09.2017 Bulletin 2017/38

(51) Int Cl.:
C12N 1/21 (2006.01)
C12P 19/26 (2006.01)

C12N 15/52 (2006.01)

(21) Application number: 17168260.2

(22) Date of filing: 23.03.2010

(84) Designated Contracting States:
**AT BE BG CH CY CZ DE DK EE ES FI FR GB GR
HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL
PT RO SE SI SK SM TR**

(30) Priority: 01.04.2009 KR 20090028145

(62) Document number(s) of the earlier application(s) in accordance with Art. 76 EPC:
10758970.7 / 2 415 861

(71) Applicant: **CJ Cheiljedang Corporation**
Jung-gu
Seoul 100-400 (KR)

(72) Inventors:

- **KIM, Jeong Hwan**
135-842 Seoul (KR)
- **KWON, Jung Gun**
158-096 Seoul (KR)

- **ahn, Tae Min**
429-901 Gyeonggi-Do (KR)
- **HWANG, Soo Youn**
448-759 Gyeonggi-Do (KR)
- **BAEK, Min Ji**
151-764 Seoul (KR)
- **KWON, Na Ra**
120-180 Seoul (KR)
- **YOON, Nan Young**
151-050 Seoul (KR)
- **KIM, Ju Jeong**
443-709 Gyeonggi-Do (KR)

(74) Representative: **Cabinet Plasseraud**
66, rue de la Chaussée d'Antin
75440 Paris Cedex 09 (FR)

Remarks:

This application was filed on 26-04-2017 as a divisional application to the application mentioned under INID code 62.

(54) **MICROORGANISMS OF CORYNEBACTERIUM WITH IMPROVED 5'-INOSINIC ACID PRODUCTIVITY, AND METHOD FOR PRODUCING NUCLEIC ACIDS USING SAME**

(57) The present invention relates to a microorganisms of the genus *Corynebacterium* producing 5'-inosinic acid, in which the expression of genes encoding purine biosynthesis related enzymes is increased higher than

the intrinsic expression, and to a method for producing 5'-inosinic acid, comprising culturing the microorganisms of the genus *Corynebacterium* with improved 5'-inosinic acid productivity.

Description**BACKGROUND OF THE INVENTION**5 **1. Field of the Invention**

[0001] The present invention relates to a microorganism belonging to the genus *Corynebacterium* producing 5'-inosinic acid, in which the expression of genes encoding purine biosynthesis related enzymes is increased higher than the intrinsic expression, and a method for producing 5'-inosinic acid, comprising culturing the microorganism of the genus *Corynebacterium* with improved 5'-inosinic acid productivity.

10 **2. Description of the Related Art**

[0002] One of the nucleotide compounds, 5'-inosinic acid is an intermediate material of the metabolic system of nucleotide biosynthesis, which is used in a variety of fields such as foods, medicines, and other various medical areas and functions to play an important role in animal and plant physiology. In particular, 5'-inosinic acid is a nucleotide seasoning, which has drawn much attention as a savory seasoning, because it has synergistic effects when used with monosodium glutamate (MSG).

[0003] So far well known processes for producing 5'-inosinic acid include a process of enzymatically decomposing ribonucleic acid extracted from yeast cells (Japanese Published Examined Patent Application No. 1614/1957, etc), a process of chemically phosphorylating inosine produced by fermentation (Agric. Biol. Chem., 36, 1511(1972), etc) and a process of culturing a microorganism capable of producing 5'-inosinic acid and recovering inosine monophosphate (IMP) accumulated in the medium. Currently, the processes of producing 5'-inosinic acid using microorganisms are mostly used. The strains of the genus *Corynebacterium* are widely used as a microorganism for the production of 5'-inosinic acid, and for example, a method for producing 5'-inosinic acid by culturing *Corynebacterium ammoniagenes* is disclosed (Korean Patent Publication No. 2003-0042972).

[0004] To improve a production yield of 5'-inosinic acid by a microorganism, studies have been made to develop strains by increasing or decreasing activity or expression of the enzymes involved in the biosynthetic or degradative pathway of 5'-inosinic acid. Korean Patent No. 785248 discloses a microorganism in which a *purC* gene encoding phosphoribosylaminoimidazole succinocarboxamide synthetase is overexpressed in the purine biosynthetic pathway and a method for producing 5'-inosinic acid using the same. In addition, Korean Patent No. 857379 discloses a *Corynebacterium ammoniagenes* strain in which the *purKE* - encoded phosphoribosylaminoimidazole carboxylase is overexpressed and a method for producing high concentration of IMP in a high yield using the same.

[0005] However, there is still a need to develop a strain capable of producing 5'-inosinic acid in a higher yield and a method for producing 5'-inosinic acid using the same.

[0006] Therefore, the present inventors have conducted studies to develop a strain capable of producing 5'-inosinic acid with high productivity. As a result, they found that the productivity of 5'-inosinic acid can be improved by simultaneously increasing activities of the major enzymes involved in the purine biosynthesis pathway higher than the intrinsic activity, thereby completing the present invention.

SUMMARY OF THE INVENTION

[0007] An object of the present invention is to provide a microorganism of the genus *Corynebacterium* having improved 5'-inosinic acid productivity.

[0008] Another object of the present invention is to provide a method for producing 5'-inosinic acid using the microorganism of the genus *Corynebacterium* having improved 5'-inosinic acid productivity.

BRIEF DESCRIPTION OF THE DRAWINGS50 **[0009]**

FIG. 1 shows a pDZ vector for chromosomal insertion into the microorganism of the genus *Corynebacterium*;
 FIG. 2 shows a pDZ-2purFM vector for chromosomal insertion into the microorganism of the genus *Corynebacterium*;
 FIG. 3 shows a pDZ-2purNH vector for chromosomal insertion into the microorganism of the genus *Corynebacterium*;
 FIG. 4 shows a pDZ-2purSL vector for chromosomal insertion into the microorganism of the genus *Corynebacterium*;
 FIG. 5 shows a pDZ-2purKE vector for chromosomal insertion into the microorganism of the genus *Corynebacterium*;
 FIG. 6 shows a pDZ-2purC vector for chromosomal insertion into the microorganism of the genus *Corynebacterium*;
 and

FIG. 7 shows a pDZ-2prs vector for chromosomal insertion into the microorganism of the genus *Corynebacterium*.

DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS

5 [0010] In order to achieve the above objects, the present invention provides a microorganism belonging to the genus *Corynebacterium* producing 5'-inosinic acid, in which the expression of genes encoding purine biosynthesis related enzymes is increased higher than the intrinsic expression.

10 [0011] The microorganism of the genus *Corynebacterium* of the present invention has more improved 5'-inosinic acid productivity than a parental strain, because the expression of genes encoding purine biosynthesis related enzymes is increased higher than the intrinsic expression.

15 [0012] As used herein, the term "purine biosynthesis related enzyme" means an enzyme that catalyzes the reaction involved in the purine biosynthesis pathway producing a purine base as a final product, and includes phosphoribosylpyrophosphate amidotransferase, phosphoribosylglycinamide formyltransferase, phosphoribosylformylglycinamidin synthetase, phosphoribosylformylglycinamidin synthetase II, phosphoribosylaminoimidazole synthetase, phosphoribosylaminoimidazole carboxylase, phosphoribosyl aminoimidazole succinocarboxamide synthetase, inosinic acid cyclohydrolase, ribosephosphate pyrophosphokinase or the like.

20 [0013] In a specific embodiment of the present invention, the purine biosynthesis related enzymes may be a combination of one or more enzymes selected from the group consisting of phosphoribosylpyrophosphate amidotransferase, phosphoribosylglycinamide formyltransferase, phosphoribosylformylglycinamidin synthetase, phosphoribosylformylglycina-
midin synthetase II, phosphoribosylaminoimidazole synthetase, phosphoribosylaminoimidazole carboxylase, phosphoribosyl aminoimidazole succinocarboxamide synthetase and inosinic acid cyclohydrolase, and ribosephosphate pyrophosphokinase.

25 [0014] In a specific embodiment of the present invention, the gene encoding purine biosynthesis related enzymes, of which expression is increased higher than the intrinsic expression, are a combination of a purN gene of SEQ ID NO. 36, which codes for phosphoribosylglycinamide formyltransferase, a purS gene of SEQ ID NO. 37, which codes for phosphoribosylformylglycinamidin synthetase, a purL gene of SEQ ID NO. 38, which codes for phosphoribosylformylglycina-
midin synthetase II, a purKE gene of SEQ ID NO. 40, which codes for phosphoribosylaminoimidazole carboxylase, a purC of SEQ ID NO. 41, which codes for phosphoribosyl aminoimidazole succinocarboxamide synthetase, a purH gene of SEQ ID NO. 42, which codes for inosinic acid cyclohydrolase, and a prs gene of SEQ ID NO. 43, which codes for ribosephosphate pyrophosphokinase.

30 [0015] In a specific embodiment of the present invention, the gene encoding purine biosynthesis related enzymes, of which expression is increased higher than the intrinsic expression, are a combination of a purF gene of SEQ ID NO. 35, which codes for phosphoribosylpyrophosphate amidotransferase, a purN gene of SEQ ID NO. 36, which codes for phosphoribosylglycinamide formyltransferase, a purS gene of SEQ ID NO. 37, which codes for phosphoribosylformylglycina-
midin synthetase, a purL gene of SEQ ID NO. 38, which codes for phosphoribosylformylglycinamidin synthetase II, a purM gene of SEQ ID NO. 39, which codes for phosphoribosylaminoimidazole synthetase, a purKE gene of SEQ ID NO. 40, which codes for phosphoribosylaminoimidazole carboxylase, a purC of SEQ ID NO. 41, which codes for phosphoribosyl aminoimidazole succinocarboxamide synthetase, a purH gene of SEQ ID NO. 42, which codes for inosinic acid cyclohydrolase, and a prs gene of SEQ ID NO. 43, which codes for ribosephosphate pyrophosphokinase.

35 [0016] As used herein, the term "increased higher than the intrinsic expression" means that the gene expression level is higher than that in naturally expressed in a microorganism or higher than that expressed in a parental strain, and includes an increase in the number (copy number) of the genes encoding corresponding enzyme and the expression level increased thereby or an increase in the expression level by mutation or an increase in the expression level by both of them.

40 [0017] In a specific embodiment of the present invention, the increase in the expression level of the gene encoding purine biosynthesis related enzyme includes the increase in the copy number of the gene by additionally introducing the corresponding foreign gene into a strain or by amplifying the intrinsic gene, or the increase in transcription efficiency or translation efficiency by mutation in the transcription or translation regulatory sequence, but is not limited thereto. The amplification of the intrinsic gene may be easily performed by a method known in the art, for example, by cultivation under a suitable selection pressure.

45 [0018] In a specific embodiment of the present invention, the expression level of the gene encoding purine biosynthesis related enzyme may be increased by additionally introducing the gene encoding purine biosynthesis related enzyme into a cell or by amplifying the intrinsic gene encoding the purine biosynthesis related enzyme.

50 [0019] In a specific embodiment of the present invention, the gene encoding purine biosynthesis related enzyme, of which the expression level is increased higher than the intrinsic expression, may exist as two or more copies in the microorganism of the genus *Corynebacterium* having improved 5'-inosinic acid productivity by introducing one or more copies into a cell, in addition to the corresponding intrinsic gene.

55 [0020] In a specific embodiment of the present invention, the gene encoding purine biosynthesis related enzyme is

introduced into the microorganism of the genus *Corynebacterium* having improved 5'-inosinic acid productivity by transformation using a recombinant vector containing two copies of the corresponding gene that are consecutively arranged.

[0021] In a specific embodiment of the present invention, the recombinant vector used for preparation of the microorganism of the genus *Corynebacterium* having improved 5'-inosinic acid productivity may be selected from the group consisting of pDZ-2purFM, pDZ-2purNH, pDZ-2purSL, pDZ-2purKE, pDZ-2purC, and pDZ-2prs recombinant vectors, which have the cleavage maps of FIGs. 2 to 7 respectively, depending on the genes introduced.

[0022] In a specific embodiment of the present invention, the microorganism of the genus *Corynebacterium* having improved 5'-inosinic acid productivity may be derived from *Corynebacterium* microorganisms capable of producing 5'-inosinic acid. For example, the microorganism of the genus *Corynebacterium* having improved 5'-inosinic acid productivity according to the present invention may be derived from *Corynebacterium ammoniagenes* ATCC6872, *Corynebacterium thermoaminogenes* FERM BP-1539, *Corynebacterium glutamicum* ATCC13032, *Brevibacterium flavum* ATCC14067, *Brevibacterium lactofermentum* ATCC13869, and strains prepared therefrom.

[0023] In a specific embodiment of the present invention, the microorganism of the genus *Corynebacterium* having improved 5'-inosinic acid productivity may include two or more copies of the gene encoding purine biosynthesis related enzyme.

[0024] In a specific embodiment of the present invention, the microorganism of the genus *Corynebacterium* having improved 5'-inosinic acid productivity may be *Corynebacterium ammoniagenes*, and more preferably a transformed *Corynebacterium ammoniagenes*, in which the activity of a combination of the prs gene and one or more genes selected from the group consisting of purF, purN, purS, purL, purM, purKE, purC, and purH is increased to produce high concentration of 5'-inosinic acid.

[0025] In a specific embodiment of the present invention, the microorganism of the genus *Corynebacterium* having improved 5'-inosinic acid productivity may be a strain, in which the 5'-inosinic acid-producing *Corynebacterium ammoniagenes* CJIP2401 (KCCM-10610) strain is introduced with each of the pDZ-2purFM, pDZ-2purNH, pDZ-2purSL, pDZ-2purKE, pDZ-2purC, and pDZ-2prs recombinant vectors having the cleavage maps of FIGs. 2, 3, 4, 5, 6, and 7 in order or in combination, and one of two copies of the introduced purF, purN, purS, purL, purM, purKE, purC, purH and prs genes are substituted for the corresponding intrinsic genes by homologous recombination, and thus each two copies of the purF, purN, purS, purL, purM, purKE, purC, purH, and prs genes are inserted into the strain.

[0026] In a specific embodiment of the present invention, the microorganism of the genus *Corynebacterium* having improved 5'-inosinic acid productivity may be *Corynebacterium ammoniagenes* containing two copies of the genes encoding purine biosynthesis related enzymes that are a combination of the purN gene of SEQ ID NO. 36, which codes for phosphoribosylglycinamide formyltransferase, the purS gene of SEQ ID NO. 37, which codes for phosphoribosyl-formylglycinamidin synthetase, the purL gene of SEQ ID NO. 38, which codes for phosphoribosylformylglycinamidin synthetase II, the purKE gene of SEQ ID NO. 40, which codes for phosphoribosylaminoimidazole carboxylase, the purC of SEQ ID NO. 41, which codes for phosphoribosyl aminoimidazole succinocarboxamide synthetase, the purH gene of SEQ ID NO. 42, which codes for inosinic acid cyclohydrolase, and the prs gene of SEQ ID NO. 43, which codes for ribosephosphate pyrophosphokinase, and preferably *Corynebacterium ammoniagenes* CN01-0120.

[0027] In a specific embodiment of the present invention, the microorganism of the genus *Corynebacterium* having improved 5'-inosinic acid productivity may be *Corynebacterium ammoniagenes* containing two copies of the genes encoding purine biosynthesis related enzymes that are a combination of the purF of SEQ ID NO. 35, which codes for phosphoribosylpyrophosphate amidotransferase, the purN gene of SEQ ID NO. 36, which codes for phosphoribosylglycinamide formyltransferase, the purS gene of SEQ ID NO. 37, which codes for phosphoribosylformylglycinamidin synthetase, the purL gene of SEQ ID NO. 38, which codes for phosphoribosylformylglycinamidin synthetase II, the purM of SEQ ID NO. 39, which codes for phosphoribosylaminoimidazole synthetase, the purKE gene of SEQ ID NO. 40, which codes for phosphoribosylaminoimidazole carboxylase, the purC of SEQ ID NO. 41, which codes for phosphoribosyl aminoimidazole succinocarboxamide synthetase, the purH gene of SEQ ID NO. 42, which codes for inosinic acid cyclohydrolase, and the prs gene of SEQ ID NO. 43, which codes for ribosephosphate pyrophosphokinase, and preferably *Corynebacterium ammoniagenes* CN01-0316 (KCCM 10992P).

[0028] Further, the present invention provides a method for producing 5'-inosinic acid, comprising the steps of culturing the microorganism belonging to the genus *Corynebacterium* producing 5'-inosinic acid, in which the expression of a gene encoding purine biosynthesis related enzyme is increased higher than the intrinsic expression, and recovering 5'-inosinic acid from the culture medium.

[0029] In the method for producing 5'-inosinic acid of the present invention, the medium and other culture conditions used for the cultivation of the microorganism of the genus *Corynebacterium* may be the same as those typically used in the cultivation of the microorganism of the genus *Corynebacterium*, and easily selected and adjusted by those skilled in the art. In addition, the cultivation may be performed by any cultivation method known to those skilled in the art, for example, batch, continuous, and fed-batch culture, but is not limited thereto.

[0030] In a specific embodiment of the present invention, the microorganism belonging to the genus *Corynebacterium* producing 5'-inosinic acid may be *Corynebacterium ammoniagenes*.

[0031] In a specific embodiment of the present invention, the microorganism belonging to the genus *Corynebacterium* producing 5'-inosinic acid may be *Corynebacterium ammoniagenes* CN01-0120 or *Corynebacterium ammoniagenes* CN01-0316 (KCCM 10992P).

[0032] In a specific embodiment of the present invention, culturing the microorganism of the genus *Corynebacterium* is performed by culturing the strain in a conventional medium containing suitable carbon sources, nitrogen sources, amino acids, vitamins or the like under aerobic conditions by adjusting temperature, pH or the like.

[0033] As a carbon source, carbohydrates such as glucose and fructose may be used. As a nitrogen source, various inorganic nitrogen sources such as ammonia, ammonium chloride, and ammonium sulphate may be used, and organic nitrogen sources such as peptone, NZ-amine, beef extract, yeast extract, corn steep liquor, casein hydrolysate, fish or fish meal, and defatted soybean cake or meal may be used. Examples of the inorganic compounds include potassium monohydrogen phosphate, potassium dihydrogen phosphate, magnesium sulfate, ferrous sulfate, manganese sulfate, and calcium carbonate. When needed, vitamins and auxotrophic bases may be used.

[0034] The cultivation is performed under aerobic conditions, for example, by shaking culture or stirring culture, preferably at a temperature of 28 to 36°C. During the cultivation, the pH is preferably maintained within the range of pH 6 to 8. The cultivation may be performed for 4 to 6 days.

[0035] Hereinafter, the present invention will be described in more detail with reference to Examples. However, these Examples are for illustrative purposes only, and the invention is not intended to be limited by these Examples.

Example 1. Insertion of genes encoding purine biosynthesis related enzymes using vector (pDZ) for chromosomal insertion and Development of strain producing high yield of 5'-inosinic acid thereby

[0036] In order to insert a foreign gene into the chromosome of *Corynebacterium ammoniagenes* strain, a pDZ-based recombinant vector containing two consecutive copies of the corresponding gene was used. The pDZ vector is a vector for chromosomal insertion into the microorganism of the genus *Corynebacterium*, and was prepared by the method disclosed in Korean Patent Publication No. 2008-0025355 incorporated by reference herein. FIG. 1 is a schematic diagram showing the structure of the pDZ vector.

[0037] In the following (1) to (6), recombinant vectors were prepared, in which the recombinant vectors function to insert the gene encoding purine biosynthesis related enzyme into the chromosome of the microorganism of the genus *Corynebacterium* to obtain two copies of each gene. Transformation by each recombinant vector and selection of transformants were performed as follows.

[0038] The 5'-inosinic acid-producing strain, *Corynebacterium ammoniagenes* CJIP2401 (KCCM-10610) was transformed with the pDZ recombinant vector containing the desired gene encoding purine biosynthesis related enzyme by electroporation, and then strains, in which the gene carried by the vector is inserted into their chromosome by homologous recombination, were selected on a selection medium containing 25 mg/l of kanamycin. The successful chromosomal insertion of the vector was confirmed by the color of the colonies on a solid medium (1% beef extract, 1% yeast extract, 1% peptone, 0.25% sodium chloride, 1% adenine, 1% guanine, 1.5% agarose) containing X-gal (5-bromo-4-chloro-3-indolyl-β-D-galactoside). That is, blue colonies were selected as a transformant, in which the vector was inserted into the chromosome. The strain, in which the vector was inserted into its chromosome via a first crossover, was shaking-cultured (30°C, 8 hours) in a nutrient medium (1% glucose, 1% beef extract, 1% yeast extract, 1% peptone, 0.25% sodium chloride, 1% adenine, 1% guanine). Then, the cultured strain was serially diluted from 10⁻⁴ to 10⁻¹⁰, and the diluted culture was plated on a solid medium containing X-gal. Most colonies exhibited blue color, but white colonies also existed at a low level. By selecting the white colonies, strains in which the sequence of the vector was removed from the chromosome via a second crossover were selected. The selected strain was identified as a final strain by a susceptibility test for kanamycin and a gene sequence analysis by PCR.

(1) Cloning of purFM gene and Construction of recombinant vector (pDZ-2purFM)

[0039] The purF and purM genes are located close to each other on the chromosome of the microorganism of the genus *Corynebacterium*, and thus a purFM vector containing both of the genes and the promoter region was constructed in order to express both of the genes at the same time.

[0040] The chromosome was isolated from *Corynebacterium ammoniagenes* CJIP2401 producing 5'-inosinic acid, and Polymerase Chain Reaction (PCR) was performed using the chromosome as a template in order to obtain purFM, namely, a fragment containing the consecutively arranged purF and purM. *PfuUltra*™ High-Fidelity DNA Polymerase (Stratagene) was used as a polymerase, and Polymerase Chain Reaction was performed with 30 cycles of denaturing at 96°C for 30 sec, annealing at 53°C for 30 sec, and polymerization at 72°C for 2 min. As a result, two purFM genes containing the promoter region (purFM-A, purFM-B) were obtained. The purFM-A was amplified using the primers of SEQ ID NOs. 1 and 2, and the purFM-B was amplified using the primers of SEQ ID NOs. 3 and 4. The amplification products were cloned into an *E.coli* vector pCR2.1 using a TOPO Cloning Kit (Invitrogen) so as to obtain pCR-purFM-

A and pCR-purFM-B vectors, respectively. The pCR vectors were treated with restriction enzymes contained in each end of the purFM-A and purFM-B (purFM-A: EcoRI+XbaI, purFM-B: XbaI+HindIII), and each purFM gene was separated from the pCR vectors. Thereafter, the pDZ vector treated with restriction enzymes, EcoRI and HindIII was cloned by 3-piece ligation so as to construct a pDZ-2purFM recombinant vector where two purFM genes are consecutively cloned.

5 FIG. 2 shows a pDZ-2purFM vector for chromosomal insertion into *Corynebacterium*.

[0041] The 5'-inosinic acid-producing strain, *Corynebacterium ammoniagenes* CJIP2401 was transformed with the pDZ-2purFM vector by electroporation, and one purFM gene is additionally inserted next to the intrinsic purFM gene on the chromosome via a second crossover, so as to obtain a strain having total two copies. The consecutively inserted purFM genes were identified by PCR using the primers of SEQ ID NOs. 5 and 6 which are able to amplify the regions 10 of connecting two purFM genes.

(2) Cloning of purNH gene and Construction of recombinant vector (pDZ-2purNH), preparation of purNH-inserted strain

[0042] The purN and purH genes are located close to each other on the chromosome of the microorganism of the 15 genus *Corynebacterium*, and thus a purNH vector containing the promoter region was constructed in order to express both of the genes at the same time.

[0043] The chromosome was isolated from *Corynebacterium ammoniagenes* CJIP2401 producing 5'-inosinic acid, and Polymerase Chain Reaction (PCR) was performed using the chromosome as a template in order to obtain purNH, 20 namely, a fragment containing the consecutively arranged purN and purH. *PfuUltra*™ High-Fidelity DNA Polymerase (Stratagene) was used as a polymerase, and Polymerase Chain Reaction was performed with 30 cycles of denaturing at 96°C for 30 sec, annealing at 53°C for 30 sec, and polymerization at 72°C for 2 min. As a result, two purNH genes containing the promoter region (purNH-A, purNH-B) were obtained. The purNH-A was amplified using the primers of SEQ ID NOs. 7 and 8, and the purNH-B was amplified using the primers of SEQ ID NOs. 8 and 9. The amplification products were cloned into an *E.coli* vector pCR2.1 using a TOPO Cloning Kit (Invitrogen) so as to obtain pCR-purNH-A and pCR-purNH-B vectors, respectively. The pCR vectors were treated with restriction enzymes contained in each 25 end of the purNH-A and purNH-B (purNH-A: BamHI+Sall, purNH-B: Sall), and each purNH gene was separated from the pCR vectors. Thereafter, the pDZ vector treated with restriction enzymes, BamHI and Sall was cloned by 3-piece ligation so as to construct a pDZ-2purNH recombinant vector where two purNH genes are consecutively cloned. FIG. 3 shows a pDZ-2purNH vector for chromosomal insertion into *Corynebacterium*.

[0044] The 5'-inosinic acid-producing strain, *Corynebacterium ammoniagenes* CJIP2401 was transformed with the pDZ-2purNH vector by electroporation, and one purNH gene is additionally inserted next to the intrinsic purNH gene on the chromosome via a second crossover, so as to obtain a strain having total two copies. The consecutively inserted purNH genes were identified by PCR using the primers of SEQ ID NOs. 10 and 11 which are able to amplify the regions 30 of connecting two purNH genes.

(3) Cloning of purSL gene and Construction of recombinant vector (pDZ-2purSL), preparation of purSL-inserted strain

[0045] The purS and purL genes are located close to each other on the chromosome of the microorganism of the 40 genus *Corynebacterium*, and thus a purSL vector containing the promoter region was constructed in order to express both of the genes at the same time.

[0046] The chromosome was isolated from *Corynebacterium ammoniagenes* CJIP2401 producing 5'-inosinic acid, and Polymerase Chain Reaction (PCR) was performed using the chromosome as a template in order to obtain purSL, 45 namely, a fragment containing the consecutively arranged purS and purL. *PfuUltra*™ High-Fidelity DNA Polymerase (Stratagene) was used as a polymerase, and Polymerase Chain Reaction was performed with 30 cycles of denaturing at 96°C for 30 sec, annealing at 53°C for 30 sec, and polymerization at 72°C for 2 min. As a result, two purSL genes containing the promoter region (purSL-A, purSL-B) were obtained. The purSL-A was amplified using the primers of SEQ ID NOs. 12 and 13, and the purSL-B was amplified using the primers of SEQ ID NOs. 14 and 15. The amplification products were cloned into an *E.coli* vector pCR2.1 using a TOPO Cloning Kit (Invitrogen) so as to obtain pCR-purSL-A and pCR-purSL-B vectors, respectively. The pCR vectors were treated with restriction enzymes contained in each 50 end of the purSL-A and purSL-B (purSL-A: BamHI+Sall, purSL-B: Sall+BamHI), and each purSL gene was separated from the pCR vectors. Thereafter, the pDZ vector treated with restriction enzyme, BamHI was cloned by 3-piece ligation so as to construct a pDZ-2purSL recombinant vector where two purSL genes are consecutively cloned. FIG. 4 shows a pDZ-2purSL vector for chromosomal insertion into *Corynebacterium*.

[0047] The 5'-inosinic acid-producing strain, *Corynebacterium ammoniagenes* CJIP2401 was transformed with the 55 pDZ-2purSL vector by electroporation, and one purSL gene is additionally inserted next to the intrinsic purSL gene on the chromosome via a second crossover, so as to obtain a strain having total two copies. The consecutively inserted purSL genes were identified by PCR using the primers of SEQ ID NOs. 16 and 17 which are able to amplify the regions of connecting two purSL genes.

(4) Cloning of purKE gene and Construction of recombinant vector (pDZ-2purKE), preparation of purKE-inserted strain

[0048] The purK and purE genes are located close to each other on the chromosome of the microorganism of the genus *Corynebacterium*, and thus a purKE vector containing the promoter region was constructed in order to express both of the genes at the same time.

[0049] The chromosome was isolated from *Corynebacterium ammoniagenes* CJIP2401 producing 5'-inosinic acid, and Polymerase Chain Reaction (PCR) was performed using the chromosome as a template in order to obtain purKE, namely, a fragment containing the consecutively arranged purK and purE. *PfuUltra™* High-Fidelity DNA Polymerase (Stratagene) was used as a polymerase, and Polymerase Chain Reaction was performed with 30 cycles of denaturing at 96°C for 30 sec, annealing at 53°C for 30 sec, and polymerization at 72°C for 2 min. As a result, two purKE genes containing the promoter region (purKE-A, purKE-B) were obtained. The purKE-A was amplified using the primers of SEQ ID NOs. 18 and 19, and the purKE-B was amplified using the primers of SEQ ID NOs. 20 and 21. The amplification products were cloned into an *E.coli* vector pCR2.1 using a TOPO Cloning Kit (Invitrogen) so as to obtain pCR-purKE-A and pCR-purKE-B vectors, respectively. The pCR vectors were treated with restriction enzymes contained in each end of the purKE-A and purKE-B (purKE-A: BamHI+KpnI, purKE-B: KpnI+XbaI), and each purKE gene was separated from the pCR vectors. Thereafter, the pDZ vector treated with restriction enzymes, BamHI and XbaI was cloned by 3-piece ligation so as to construct a pDZ-2purKE recombinant vector where two purKE genes are consecutively cloned. FIG. 5 shows a pDZ-2purKE vector for chromosomal insertion into *Corynebacterium*.

[0050] The 5'-inosinic acid-producing strain, *Corynebacterium ammoniagenes* CJIP2401 was transformed with the pDZ-2purKE vector by electroporation, and one purKE gene is additionally inserted next to the intrinsic purKE gene on the chromosome via a second crossover, so as to obtain a strain having total two copies. The consecutively inserted purKE genes were identified by PCR using the primers of SEQ ID NOs. 22 and 23 which are able to amplify the regions of connecting two purKE genes.

(5) Cloning of purC gene and Construction of recombinant vector (pDZ-2purC), preparation of purC-inserted strain

[0051] The chromosome was isolated from *Corynebacterium ammoniagenes* CJIP2401, and Polymerase Chain Reaction (PCR) was performed using the chromosome as a template in order to obtain purC. *PfuUltra™* High-Fidelity DNA Polymerase was used as a polymerase, and Polymerase Chain Reaction was performed with 30 cycles of denaturing at 96°C for 30 sec, annealing at 53°C for 30 sec, and polymerization at 72°C for 2 min. As a result, two purC genes containing the promoter region (purC-A, purC-B) were obtained. The purC-A was amplified using the primers of SEQ ID NOs. 24 and 25, and the purC-B was amplified using the primers of SEQ ID NOs. 25 and 26. The amplification products were cloned into an *E.coli* vector pCR2.1 using a TOPO Cloning Kit so as to obtain pCR-purC-A and pCR-purC-B vectors, respectively. The pCR vectors were treated with restriction enzymes contained in each end of the purC-A and purC-B (purC-A: BamHI+Sall, purC-B: Sall), and each purC gene was separated from the pCR vectors. Thereafter, the pDZ vector treated with restriction enzymes, BamHI and Sall was cloned by 3-piece ligation so as to construct a pDZ-2purC recombinant vector where two purC genes are consecutively cloned. FIG. 6 shows a pDZ-2purC vector for chromosomal insertion into *Corynebacterium*.

[0052] The 5'-inosinic acid-producing strain, *Corynebacterium ammoniagenes* CJIP2401 was transformed with the pDZ-2purC vector by electroporation, and one purC gene is additionally inserted next to the intrinsic purC gene on the chromosome via a second crossover, so as to obtain a strain having total two copies. The consecutively inserted purC genes were identified by PCR using the primers of SEQ ID NOs. 27 and 28 which are able to amplify the regions of connecting two purC genes.

(6) Cloning of prs gene and Construction of recombinant vector (pDZ-2prs), preparation of prs-inserted strain

[0053] The chromosome was isolated from *Corynebacterium ammoniagenes* CJIP2401, and Polymerase Chain Reaction (PCR) was performed using the chromosome as a template in order to obtain prs. *PfuUltra™* High-Fidelity DNA Polymerase was used as a polymerase, and Polymerase Chain Reaction was performed with 30 cycles of denaturing at 96°C for 30 sec, annealing at 53°C for 30 sec, and polymerization at 72°C for 2 min. As a result, two prs genes containing the promoter region (prs-A, prs-B) were obtained. The prs-A was amplified using the primers of SEQ ID NOs. 29 and 30, and the prs-B was amplified using the primers of SEQ ID NOs. 31 and 32. The amplification products were cloned into an *E.coli* vector pCR2.1 using a TOPO Cloning Kit so as to obtain pCR-prs-A and pCR-prs-B vectors, respectively. The pCR vectors were treated with restriction enzymes contained in each end of the prs-A and prs-B (prs-A: BamHI+Spel, prs-B: Spel+PstI), and each prs gene was separated from the pCR vectors. Thereafter, the pDZ vector treated with restriction enzymes, BamHI and PstI was cloned by 3-piece ligation so as to construct a pDZ-2prs recombinant vector where two prs genes are consecutively cloned. FIG. 7 shows a pDZ-2prs vector for chromosomal insertion into *Corynebacterium*.

[0054] The 5'-inosinic acid-producing strain, *Corynebacterium ammoniagenes* CJIP2401 was transformed with the pDZ-2prs vector by electroporation, and one prs gene is additionally inserted next to the intrinsic prs gene on the chromosome via a second crossover, so as to obtain a strain having total two copies. The consecutively inserted prs genes were identified by PCR using the primers of SEQ ID NOs. 33 and 34 which are able to amplify the regions of connecting two prs genes.

(7) Development of strain producing high yield of 5'-inosinic acid by enhancement of purine biosynthesis

[0055] Combinations of pDZ-2purFM, pDZ-2purNH, pDZ-2purSL, pDZ-2purKE, pDZ-2purC, and pDZ-2prs vectors constructed in (1) to (6) were introduced into the 5'-inosinic acid-producing *Corynebacterium ammoniagenes* CJIP2401. The introduction order of the vectors was randomly selected, and introduction method and identification are the same as the above.

[0056] The *Corynebacterium ammoniagenes* CJIP2401 was used as a parental strain, and transformed with a combination of pDZ-2purNH, pDZ-2purSL, pDZ-2purKE, pDZ-2purC, and pDZ-2prs, and a combination of pDZ-2purNH, pDZ-2purSL, pDZ-2purKE, pDZ-2purC, pDZ-2purFM and pDZ-2prs to obtain *Corynebacterium ammoniagenes* CN01-0120 (2purNH + 2purSL + 2purKE + 2purC + 2prs) and *Corynebacterium ammoniagenes* CN01-0316 (2purNH + 2purSL + 2purKE + 2purC + 2purFM + 2prs), which contain two copies of the genes encoding the major enzymes involved in the purine biosynthetic pathway.

20 Example 2. Fermentation titer test of recombinant *Corynebacterium ammoniagenes*

[0057] Each 3 ml of the seed medium with the following composition was distributed into test tubes having a diameter of 18 mm, and sterilized under pressure. Then, the parental strain *Corynebacterium ammoniagenes* CJIP2401, and the *Corynebacterium ammoniagenes* CN01-0120 and *Corynebacterium ammoniagenes* CN01-0316 prepared in Example 1 were inoculated, and shaking-cultured at 30°C for 24 hours to be used as a seed culture. Each 27 ml of the fermentation medium with the following composition was distributed into 500 ml Erlenmeyer shake flasks and sterilized under pressure at 120°C for 10 minutes, and each 3 ml of the seed culture was inoculated thereto and shaking-cultured for 5 to 6 days. The cultivation was carried out under the conditions of 200 rpm, 32°C, and pH 7.2

[0058] The seed medium and the fermentation medium have the following compositions.

Seed medium: 1% glucose, 1% peptone, 1% beef extract, 1% yeast extract, 0.25% sodium chloride, 100 mg/l adenine, 100 mg/l guanine, pH 7.2

Flask fermentation medium: 0.1% sodium glutamate, 1% ammonium chloride, 1.2% magnesium sulfate, 0.01% calcium chloride, 20 mg/l iron sulfate, 20 mg/l manganese sulfate, 20 mg/l zinc sulfate, 5 mg/l copper sulfate, 23 mg/l L-cysteine, 24 mg/l alanine, 8 mg/l nicotinic acid, 45 µg/l biotin, 5 mg/l thiamine hydrochloride, 30 mg/l adenine, 1.9% phosphoric acid (85%), 4.2% glucose, and 2.4% raw sugar

[0059] After completion of the cultivation, the productivity of 5'-inosinic acid was measured by HPLC, and the accumulation amount of 5'-inosinic acid in the culture medium is shown in the following Table.

40 [Table 1]

Strain name	Cell OD (5 days after culture)	Productivity (g/l/hr) (5 days after culture)
Control group (CJIP2401)	31.2	0.136
CN01-0120	31.8	0.155
CN01-0316	31.3	0.149

[0060] The accumulation amount of 5'-inosinic acid in the culture medium was compared with that of the parental strain, *Corynebacterium ammoniagenes* CJIP2401. As a result, in *Corynebacterium ammoniagenes* CN01-0120 and *Corynebacterium ammoniagenes* CN01-0316, their 5'-inosinic acid productivity per hour was found to be increased to 10.9 - 11.4% under the same conditions, compared to the parental strain, *Corynebacterium ammoniagenes* CJIP2401.

[0061] *Corynebacterium ammoniagenes* CN01-0316 having improved 5'-inosinic acid productivity by increasing the activity of purine biosynthesis related enzymes was deposited in the Korean Culture Center of Microorganisms (KCCM) located at Hongje 1-dong, Seodaemun-gu, Seoul, with the Accession No. KCCM 10992P on Feb. 19, 2009 under the Budapest treaty.

Effect of the invention

[0062] The microorganism belonging to the genus *Corynebacterium* producing 5'-inosinic acid according to the present invention, in which the expression of gene encoding purine biosynthesis related enzymes is increased higher than the intrinsic expression, can be used to produce 5'-inosinic acid in a high concentration and a high yield, thereby reducing production costs.

ITEMS

10 [0063]

Item 1. A microorganism belonging to the genus *Corynebacterium* producing 5'-inosinic acid, in which the expression level of genes encoding purine biosynthesis related enzymes is increased higher than the intrinsic expression level, wherein the purine biosynthesis related enzymes are a combination of ribosephosphate pyrophosphokinase and one or more enzymes selected from the group consisting of phosphoribosylpyrophosphate amidotransferase, phosphoribosylglycinamide formyltransferase, phosphoribosylformylglycinamidin synthetase, phosphoribosylformylglycinamidin synthetase II, phosphoribosylaminoimidazole synthetase, phosphoribosylaminoimidazole carboxylase, phosphoribosyl aminoimidazole succinocarboxamide synthetase, and inosinic acid cyclohydrolase.

20 Item 2. The microorganism belonging to the genus *Corynebacterium* according to Item 1, wherein the genes encoding purine biosynthesis related enzymes are a combination of a purN gene of SEQ ID NO. 36, which codes for phosphoribosylglycinamide formyltransferase, a purS gene of SEQ ID NO. 37, which codes for phosphoribosylformylglycinamidin synthetase, a purL gene of SEQ ID NO. 38, which codes for phosphoribosylformylglycinamidin synthetase II, a purKE gene of SEQ ID NO. 40, which codes for phosphoribosylaminoimidazole carboxylase, a purC of SEQ ID NO. 41, which codes for phosphoribosyl aminoimidazole succinocarboxamide synthetase, a purH gene of SEQ ID NO. 42, which codes for inosinic acid cyclohydrolase, and a prs gene of SEQ ID NO. 43, which codes for ribosephosphate pyrophosphokinase.

30 Item 3. The microorganism belonging to the genus *Corynebacterium* according to Item 1, wherein the genes encoding purine biosynthesis related enzymes are a combination of a purF gene of SEQ ID NO. 35, which codes for phosphoribosylpyrophosphate amidotransferase, a purN gene of SEQ ID NO. 36, which codes for phosphoribosylglycinamide formyltransferase, a purS gene of SEQ ID NO. 37, which codes for phosphoribosylformylglycinamidin synthetase, a purL gene of SEQ ID NO. 38, which codes for phosphoribosylformylglycinamidin synthetase II, a purM gene of SEQ ID NO. 39, which codes for phosphoribosylaminoimidazole synthetase, a purKE gene of SEQ ID NO. 40, which codes for phosphoribosylaminoimidazole carboxylase, a purC of SEQ ID NO. 41, which codes for phosphoribosyl aminoimidazole succinocarboxamide synthetase, a purH gene of SEQ ID NO. 42, which codes for inosinic acid cyclohydrolase, and a prs gene of SEQ ID NO. 43, which codes for ribosephosphate pyrophosphokinase.

40 Item 4. The microorganism belonging to the genus *Corynebacterium* according to Item 1, wherein the expression level of the gene encoding purine biosynthesis related enzyme is increased by additionally introducing the gene encoding purine biosynthesis related enzyme into a cell or by amplifying the intrinsic gene encoding purine biosynthesis related enzyme.

45 Item 5. The microorganism belonging to the genus *Corynebacterium* according to Item 4, wherein the gene encoding purine biosynthesis related enzyme exists as two or more copies by introducing one or more copies into a cell, in addition to the corresponding intrinsic gene.

50 Item 6. The microorganism belonging to the genus *Corynebacterium* according to Item 5, wherein introduction of the gene encoding purine biosynthesis related enzyme into the cell is performed by transformation using a recombinant vector containing two copies of the corresponding gene that are consecutively arranged.

55 Item 7. The microorganism belonging to the genus *Corynebacterium* according to Item 6, wherein the recombinant vector is selected from the group consisting of pDZ-2purFM, pDZ-2purNH, pDZ-2purSL, pDZ-2purKE, pDZ-2purC, and pDZ-2prs that have the cleavage maps of FIGs. 2 to 7, respectively.

Item 8. The microorganism belonging to the genus *Corynebacterium* according to Item 1, wherein the microorganism of the genus *Corynebacterium* is *Corynebacterium ammoniagenes*.

Item 9. The microorganism belonging to the genus *Corynebacterium* according to Item 2, wherein the microorganism of the genus *Corynebacterium* is *Corynebacterium ammoniagenes* CN01-0120.

5 Item 10. The microorganism belonging to the genus *Corynebacterium* according to Item 3, wherein the microorganism of the genus *Corynebacterium* is *Corynebacterium ammoniagenes* CN01-0316 (KCCM 10992P).

Item 11. A method for producing 5'-inosinic acid, comprising culturing the microorganism belonging to the genus *Corynebacterium* according to any one of Items 1 to 10, and recovering 5'-inosinic acid from the culture medium.

10

15

20

25

30

35

40

45

50

55

<110> CJ CheilJedang Corporation
 <120> MICROORGANISMS OF CORYNEBACTERIUM WITH IMPROVED 5'-INOSINIC ACID
 5 PRODUCTIVITY, AND METHOD FOR PRODUCING NUCLEIC ACIDS USING SAME
 <130> OPA11129
 <150> 10-2009-0028145
 <151> 2009-04-01
 10 <160> 43
 <170> KopatentIn 1.71
 <210> 1
 15 <211> 30
 <212> DNA
 <213> Artificial Sequence
 <220>
 20 <223> Primer for purFM
 <400> 1
 cgacgagaat tccccgaccc gcatgagatg 30
 25 <210> 2
 <211> 30
 <212> DNA
 <213> Artificial Sequence
 30 <220>
 <223> Primer for purFM
 <400> 2
 35 gtatcgctca gagcggtagc ggtggcttcg 30
 <210> 3
 <211> 30
 <212> DNA
 40 <213> Artificial Sequence
 <220>
 <223> Primer for purFM
 <400> 3
 45 cgacgatcta gacccgaccc gcatgagatg 30
 <210> 4
 <211> 30
 50 <212> DNA
 <213> Artificial Sequence
 <220>
 <223> Primer for purFM
 55 <400> 4

gtatcgaagc ttgcggtagc ggtggcttcg

30

5 <210> 5
 <211> 18
 <212> DNA
 <213> Artificial Sequence

10 <220>
 <223> Primer for 2purFM

15 <400> 5
 gctatcgaaa cccctgaa

18

15 <210> 6
 <211> 18
 <212> DNA
 <213> Artificial Sequence

20 <220>
 <223> Primer for 2purFM

25 <400> 6
 tgattctact aagtttgc

18

30 <210> 7
 <211> 34
 <212> DNA
 <213> Artificial Sequence

35 <220>
 <223> Primer for purNH

35 <400> 7
 cgggatcccg aggcgaagac gatattgagg acag

34

40 <210> 8
 <211> 32
 <212> DNA
 <213> Artificial Sequence

45 <220>
 <223> Primer for purNH

50 <400> 8
 acgcgtcgac gtgggaaacg cagacgagaa ca

32

50 <210> 9
 <211> 35
 <212> DNA
 <213> Artificial Sequence

55 <220>
 <223> Primer for purNH

<400> 9	35
acgcgtcgac gaggcgaaga cgatattgag gacag	
5	
<210> 10	
<211> 18	
<212> DNA	
<213> Artificial Sequence	
10	
<220>	
<223> Primer for 2purNH	
15	
<400> 10	18
tcgatgcctg catcttgg	
20	
<210> 11	
<211> 18	
<212> DNA	
<213> Artificial Sequence	
25	
<220>	
<223> Primer for 2purNH	
30	
<400> 11	18
ggcgataagg cttcgagt	
35	
<210> 12	
<211> 46	
<212> DNA	
<213> Artificial Sequence	
40	
<220>	
<223> Primer for purSL	
45	
<400> 12	46
gctcggatcc gcgatactca gccccagcaa cagcagaaaa tgaagc	
50	
<210> 13	
<211> 39	
<212> DNA	
<213> Artificial Sequence	
55	
<220>	
<400> 13	39
cagcgtcgac gcagccgtcg caggcaccat cgccagcagt	
60	
<210> 14	
<211> 46	
<212> DNA	
<213> Artificial Sequence	
65	
<220>	

5	<223> Primer for purSL	
	<400> 14	
	cagcgtcgac gcgatactca gccccagcaa cagcagaaaa tgaagc	46
10	<210> 15	
	<211> 39	
	<212> DNA	
	<213> Artificial Sequence	
	<220>	
	<223> Primer for purSL	
15	<400> 15	
	gctcggatcc gcagccgtcg caggcaccat cgccagcgt	39
20	<210> 16	
	<211> 18	
	<212> DNA	
	<213> Artificial Sequence	
	<220>	
25	<223> Primer for 2purSL	
	<400> 16	
	acttgacctc cagcccta	18
30	<210> 17	
	<211> 18	
	<212> DNA	
	<213> Artificial Sequence	
35	<220>	
	<223> Primer for 2purSL	
40	<400> 17	
	aagaacaacg tcggcgtc	18
	<210> 18	
	<211> 30	
	<212> DNA	
45	<213> Artificial Sequence	
	<220>	
	<223> Primer for purKE	
50	<400> 18	
	acgtcaggat cccctatcgt gctttgctgt	30
55	<210> 19	
	<211> 30	
	<212> DNA	
	<213> Artificial Sequence	

```

<220>
<223> Primer for purKE

5 <400> 19
  ctctaaggta ccattggta tagtagccgc 30

10 <210> 20
  <211> 30
  <212> DNA
  <213> Artificial Sequence

  <220>
  <223> Primer for purKE
15

  <400> 20
  acgtcaggta cccctatcgt gctttgctgt 30

20 <210> 21
  <211> 30
  <212> DNA
  <213> Artificial Sequence

25 <220>
  <223> Primer for purKE

  <400> 21
  ctctaattcta gaattggta tagtagccgc 30

30 <210> 22
  <211> 18
  <212> DNA
  <213> Artificial Sequence

35 <220>
  <223> Primer for 2purKE

40 <400> 22
  ccagctgggg ttccggtt 18

  <210> 23
  <211> 18
  <212> DNA
  <213> Artificial Sequence

  <220>
  <223> Primer for 2purKE
50

  <400> 23
  tttcgatgcg cttcgttt 18

55 <210> 24
  <211> 37

```

<212>	DNA	
<213>	Artificial Sequence	
<220>		
5	<223>	Primer for purC
<400>	24	
gctcggatcc cgcaagtggct gttgcgtgta acatgcg		37
10		
<210>	25	
<211>	39	
<212>	DNA	
15	<213>	Artificial Sequence
<220>		
15	<223>	Primer for purC
20	<400>	25
gcaggtcgac cacggacata tcggtttgc tcacgcggg		39
20		
<210>	26	
<211>	37	
25	<212>	DNA
	<213>	Artificial Sequence
<220>		
30	<223>	Primer for purC
<400>	26	
gcaggtcgac cgcaagtggct gttgcgtgta acatgcg		37
30		
35	<210>	27
<211>	24	
<212>	DNA	
35	<213>	Artificial Sequence
40	<220>	
40	<223>	Primer for 2purC
<400>	27	
gagcgcttgt ccggcaagcg ttcc		24
45		
<210>	28	
<211>	24	
<212>	DNA	
50	<213>	Artificial Sequence
<220>		
50	<223>	Primer for 2purC
55	<400>	28
ggtggttgcg gtaagaaccc ggcc		24

5	<210> 29		
	<211> 33		
	<212> DNA		
	<213> Artificial Sequence		
10	<220>		
	<223> Primer for prs		
15	<400> 29		
	gctcggatcc ggattcccaa gcttgcttcc ggg		33
20	<210> 30		
	<211> 36		
	<212> DNA		
	<213> Artificial Sequence		
	<220>		
	<223> Primer for prs		
25	<400> 30		
	cagcactagt ggcagctacc acctccgcgg ctgctg		36
30	<210> 31		
	<211> 33		
	<212> DNA		
	<213> Artificial Sequence		
	<220>		
	<223> Primer for prs		
35	<400> 31		
	cagcactagt ggattcccaa gcttgcttcc ggg		33
40	<210> 32		
	<211> 37		
	<212> DNA		
	<213> Artificial Sequence		
	<220>		
	<223> Primer for prs		
45	<400> 32		
	caattctgca gggcagctac cacctccgcg gctgctg		37
50	<210> 33		
	<211> 23		
	<212> DNA		
	<213> Artificial Sequence		
	<220>		
	<223> Primer for 2prs		
55	<400> 33		
	cgtacgattc atgagatctt cga		23

5	<210> 34	
	<211> 21	
	<212> DNA	
	<213> Artificial Sequence	
10	<220>	
	<223> Primer for 2prs	
15	<400> 34	
	caaagtacg ggccgtggta g	21
20	<210> 35	
	<211> 1500	
	<212> DNA	
	<213> Corynebacterium ammoniagenes	
	<220>	
	<221> gene	
	<222> (1)..(1500)	
	<223> purF	
25	<400> 35	
	gtggtaaca ctactttccc cagcgacgtg aatttagatg accaaggcga gcaagaaccc	60
	cgcgaagagt gcgggtgtt tggcgtctgg gctcctggtg aagatgttgc gacactgacc	120
	tactttggtc tgttcgcatt gcagcatcgt gggcaggaag ctgcaggtat cggcgtcggt	180
30	gatggagacc gcctcggtgt cttcaaagac atgggcttgg tctcgaatat tttcgatgag	240
	tccattttaa attccctcca tggctccgtg ggctgtgggc atacgcgcta ctcgactgcc	300
	gttggcaaaag agtggtcgaa tgtccagccg atgtttaata ccacctcaaa tggggtagac	360
35	atcgctttgt gccacaacgg caacttggtg aactaccaag aactgcgcga tgaagcagta	420
	gctctggac tttaccgaga gaatgaaaaa tccctgtcgg attccatgat catgacagct	480
40	ttgctggcgc acggagtcgg ggaaggcaac tctgtcttg acgcccctaa gcaactgctg	540
	ccaagcatca aaggcgctt ttgcttgacc tttaccgatg gcaagacatt gtacgcccgc	600
	cgtgacccgc acgggtgtacg ccccttggtc attggccgct tggcgaagg ctgggttgtt	660
45	gcttccgaaa cctgtgcgt ggatatcgtg ggccgcacagt ttatccgtga gtagagccc	720
	ggtaactta tctctgtcaa tgaggcagga atccacagcg aaaaattcgc tgagccgaag	780
	cggcagggt gcgtctttga atacgtctac ttggcacgtc cagacaccgt gatcaaaggc	840
50	cgcaacgttc acgcgacgcg cgtggatatt gtcgcgcac ttgcgaaatc tcaccctgcg	900
	ccagaagctg acatggtcat ccccgtgcc aatccggaa acccggcagc tggcttgcac	960
	ccccggaaat cgggcctgac atttgcgcac ggcttggta aaaacgccta cgtgggtcga	1020
55	accttcattc agcccaccca gaccttgcgc cagctggta ttgcctcaa gtcacccccc	1080

EP 3 219 789 A1

5	<400> 37	atggctcggt ttgttgtcaa tgtcatgccc aaggctgaaa tcctcgaccc gcagggacaa	60
	gctgttgtcc gtgcacttgg acgcctgggt gtaaacggag taagcgatgt ccgtcaggc	120	
10	aagcgcttg aaatcgaagt cgatgattca gtcaagcgctg aagatctaga caaggtcgca	180	
	gcaagcttgc tggcaaacac cgtcatcgag gactacgaag ttgttagggct ggaggtcaag	240	
	taa	243	
15	<210> 38		
	<211> 2277		
	<212> DNA		
	<213> Corynebacterium ammoniagenes		
20	<220>		
	<221> gene		
	<222> (1) .. (2277)		
	<223> purL		
25	<400> 38	atgactgttt ccaatgacac agtagataat gcaaaggcca ctcccgagct agaccagccg	60
	tgggaagaac tcggcttaaa gcaagacgaa taogacaaga ttgttaggcat cttgggccgc	120	
30	cgcggcaaccg atgctgagct gacggtttac tccgtatgtt ggtcgagca ctgtcttac	180	
	aagtcttcca agacccaccc acgctacttt ggagagacca ccactgagga aatggcgctg	240	
35	aagattcttgc cggtatcgg tgagaacgct ggtgtcggtt acatcgccga cggtgacgca	300	
	gtgaccttcc gcgtcgaatc ccacaaccac ccattcctcg tcgagcccta ccagggtgcc	360	
40	gcgaccggtg ttggcggcat cgtccgcgac atcatggcga tgggtgcacg tccaatcgca	420	
	gtgatggatc agctgagctt cggcccgact gatgccccgg ataccgcacg tggatcgccg	480	
45	ggcggttgc cggcatcgg cggatcgac aactccctcg gactgcccga catcgccggc	540	
	gagaccgtct ttgatgagtc ttatgccggc aaccactgg tcaacgcact gtgcgtgggt	600	
50	accttgcgcg tggaagaccc gaagctggct ttgtttccg gtactggcaa caaggtgatg	660	
	ctctttggct cccgcacggg cctcgacggc atcgccggcg tatccgtttt gggatcgct	720	
55	tccttcgaag aaggcgaaga ggcgaagctt cctgcagtcc aggtcgccga cccattcgcg	780	
	gaaaaagtcc tcattcaatg ctgcctggag ctctacgctg cggcgatcg tggatcgat	840	
	caggaccccttgc tggcggtgg cctcgatgt ggcacccctg agctggcagc agctggcgac	900	
	ggcgccatgg tggatcgatcc ggataatgtt ccactcgatg cagagaacat gtccgcccga	960	
	gaaatccctgg ctccgaatc ccaggagcgc atgtgtcgatg ttgtctcccc agataacgtg	1020	
	gagaagttcc gcgagatctg tgaaaagtgg gacgtaacgt gtgatcgaaat cggtgaagtt	1080	
	accgataaga aagacaccta cctcgatgtac cacaacggtg agctggtagt agacgctccg	1140	
	ccatcaacta tcgatgaagg ccctgtctac gagcgcccat acgcacgccc tcagtgccag	1200	

gatgagatcc	agcaggctcc	ggaaattgca	cgtccggaat	ccttggtaca	ggcattcaag	1260	
gacatggtgt	cctccccagc	tctgtcatcg	cgtgcattta	tcactgagca	gtatgaccgc	1320	
5	tacgtgcgcg	gtaacaccgt	caaggcgaag	cagtctgact	ccggcgttct	gcgttatcaat	1380
gaggaaaactt	ctcgcggtgt	cgcaatttct	gccgatgcct	ccggtcgcta	caccaagctg	1440	
10	gacccaaaca	tgggtgcacg	tttggcgctg	gctgaggcat	accgcaacgt	tgctgtgacc	1500
ggcgcacgac	catatgcggt	gaccaactgc	ttgaacttcg	gttctccaga	aaacaccgac	1560	
gtgatgtggc	aattccgcga	ggccgttcac	ggtctggctg	acggttctaa	ggaactgaat	1620	
15	atcccagtct	ccggcggtaa	cgtctccttc	tacaaccaga	ctggtgatga	gccaattctg	1680
ccgaccccaag	tttttggcgt	gctcggtgtc	attgatgatg	ttcacaaaggc	actggcacat	1740	
gacttggcg	gcatttgatga	gcctgaaacc	ctgattctgc	ttggtgagac	caaggaagaa	1800	
20	ttcggcggct	ccatctggca	gcaggtctcc	ggcggcggcc	tgcagggtct	gccaccacag	1860
gtggatctgg	cgaatgaggc	aaagctggcg	gacttattcg	tggcaacac	ctccgttgca	1920	
gcctcccacg	acctctctga	ggcgggtctg	gctatcgccg	cgtttgagat	ggcgaaaag	1980	
25	aacaacgtcg	gcgtcgacct	tgatttgagc	gttgtacacg	aggatgcact	gaccgcactg	2040
tttagtgagt	ccgcacatcg	tgttctgatt	tccaccgcgt	ctgaccacct	cgatgaaatc	2100	
ttgcagcgtg	cttccgagct	ggcattcca	gctgtcgtgg	taggaaccac	caatgattcc	2160	
30	ggcaacatca	ccttcgctgg	tgaagaagtt	gctaccgctg	agctgcgcga	ggcatggct	2220
gcaacccttgc	caaaccctgtt	tggccacgct	gttggcgcta	attccgtagt	cgaataa	2277	
35	<210>	39					
<211>	1056						
<212>	DNA						
<213>	Corynebacterium ammoniagenes						
40	<220>						
<221>	gene						
<222>	(1)..(1056)						
<223>	purM						
45	<400>	39					
atgtctgaaa	atacttacgc	cgcggcaggc	gtcaacattt	aagaaggcga	ccgcgcgcgtt	60	
gagcttttcg	ctccactggc	taagcgcgt	acccgtccag	aggtaatggg	tggactcggt	120	
50	ggcttcgcgg	gactgtttaa	gctcggcgaa	tacaaagagc	caatccttgc	agctggctcc	180
gacggcgtgg	gcaccaagct	cgccgttgc	caggcaatgg	ataagcacga	caccatcgcc	240	
attgacctgg	ttgcaatgtg	cgtcgatgac	ttggtcgtgt	gtggtgctga	gccactattt	300	
55	ctccaggact	acatcgcaagt	aggcaaggtt	gttccggaaa	aggttgcgcga	gattgttgcc	360
ggtattgctg	agggctgcgt	gcaggcaggc	tgtgcacttc	ttggtgccga	gaccgctgag	420	

5	caccggcg taatgaatga aaaggactac gatgttccg ccaccgtgt cgccgttgtc gaagcagacg agcttctcg accagacaag gttcgacg gcatgtttt gattccatg ggctcatccg gactgcactc caatggttac tcctggcgc gccacgtctt gttagagcag gcaggattgc cgctcgatgg ctacatcgat gacctggcc gcacgctgg tgaagagctc ctggagccga cccgcatcta cgccaaggac tgccctggcgc tagttctga gtgtgacggt 10 gctactttct gccacgtcac cggcggtggc ttggcaggca acctcgagcg cgtgctacct gaaggccttgc tcgcagaggt taaccgcgc tcgtggaccc cagcagcgat ttccgcacc atcgcttctt tcggcaaggt cagcctggaa gagatggaaa agaccttcaa catggcggtt 15 ggcatgatcg ctatcgtttc ccctgaagac cgtgaccgcgc cttggcgat gctaactgcgc cgccacgttg atgcatggga gctgggctcg gttcgaccca agaaggaaga cgacaccgca 20 ggtgttgtca tgcaaggtga gcactctaacc ttctaa	480 540 600 660 720 780 840 900 960 1020 1056
25	<210> 40 <211> 1779 <212> DNA <213> Corynebacterium ammoniagenes	
30	<220> <221> gene <222> (1)..(1779) <223> purKE	
35	<400> 40 atgaaaacgcg tgagtgaaca agcagggaaac ccagacggaa accctcaagc acatgttccc ggcatgcggg ttatcgccgt tattgggtat ggccagctag ctcgcgtat gcaaaccgccc 40 gccattgagc tcggccaatc gctgcgcctt cttggcgccg cacgcgtatc ctctgcggca caagtatgcg cggatgtatg gcttggtat tacaccaact acgacgactt gctcaaagcc 45 gtcgacggtg ccaccgctgt cactttgac catgagcagc tgccataatga gcacctcacc gcgttgcgt atgcaggcta taacgtgcag ccacaacctg ctgcgtatgat taacgccc 50 gacaaattgg ttatgcgcga ggcgcgcgc gagctggcg caccctgcgc ggcgttgcgc ccgattgaat ctgcgcgcg tgcgtacgt tttggaccc tgacgtccgg gcaggctgt ctgaaggcgcc gcccgggtgg ctacgacggc aaaggcgtgt ggttccgaa taatgaatct 55 gagctgactg cttgggtctc tgaccttgcg cgcgcggcg tggcctgtat ggctgaagag aagggtgcgc tggtccgcga gcttccgtg ctggcgcgc ggactccctc gggcgagggtt gctacttggc cgctgactga gtctgtgcag cgcaacggtg tgcgcgtat agctgtcgcc ccagccccgg gagttgaccc gcagctgcag caacgcgcgt agacactggg tgaaaagatt 60 gccaccggagt tgggtgttaac tggtgtgcgc gcggttagagc ttttgcatt tgcaatgag	60 120 180 240 300 360 420 480 540 600 660 720 780 840

5	tccgggtgcgg aagatatcg c ggttaatgaa ctggcaatgc gcccgcacaa taccggccac	900
	tggaccctag atggttctgt gacctcccaa tttgagcagc acctgcgcgc ggtgatggat	960
	gagccactgg gggatacatc cacgcttgc ccagtcaccg tcatggccaa cgtcttaggc	1020
	gctgacgaag acccaaagat gccaatgggc gagcgtgccc gagaagtggc gcgcgcctc	1080
	ccgcgagcca aagtccatct ctacggcaag gggcatcgcc caggccgtaa gattggccac	1140
10	gtgaacctca ccggtgagga cgtagaggca acccgctcgat atgctcgctt ggctgcggat	1200
	ttcctcgta acgcccgtg gtctgataac tggtccgcta aatagcaaga tgtatcaaga	1260
	tatataagga aagaaatgac tgcaccgcta gttgggctca tcatgggctc tgattctgat	1320
15	tggccaaccg ttgaaccagc agctgaggtt ctgcggcata tgggtgttcc ttttgggttg	1380
	ggcgtggctct ctgcgcaccg cacgcccggaa aagatgctgg attacgcca gcaagcccac	1440
	actcgccgca tcaagggtat tggtgcttgc gccgggtgggg cagcgcaccc accaggcatg	1500
	gtggctgcag caactccttt gccagttatt ggtattccac gtgcattgaa agatttgaa	1560
	ggtctggact ctttgctgtc tatcgtgcag atgccagctg gggttccggc tgcgaccgtg	1620
25	tctatcgccg ggcctaagaa tgctggcttg ctgcggatcc gtaccctggg cgtgcagttac	1680
	tcagaattgg ttgaacgcattt ggccgattac caagaaaata tggccaaagga agttgagcaa	1740
	aaagacgcca atcttcgccc caagctcatg gggacttag	1779
30	<210> 41	
	<211> 888	
	<212> DNA	
	<213> <i>Corynebacterium ammoniagenes</i>	
35	<220>	
	<221> gene	
	<222> (1) .. (888)	
	<223> purC	
40	<400> 41	
	atgcgcac agctttctga ttatcagcac gtatcctccg gcaaagtccg cgatatctac	60
	gaagtagatg acaacacttt gctcatggtg gtcaccgacc gcatctccgc ctatgacttc	120
45	gcactagagc cagccatccc cgataaaggc cgggttctta ccccaaccac catgttcttc	180
	ttcgacgcca tcgatttccc gaaccatttg gcaggaccca tcgatgtgc gcggttccca	240
	gaagaagtat tggccgagc gatcatcgat aagaagctca acatgctgcc ctggatgtgc	300
50	gttgcccgcg gttacctcac cgggttccggc ttgaaggaat acaacgctaa cggcaccgtg	360
	tgcggcatcg agctgcccaga aggcttgggtt gagggcgtcgc gtctgcccaga gccaattttc	420
	accccagcca ccaaggcaga gcagggcgcac cacgatgaaa acgtcagctt cgagcgcgtg	480
55	gtgcaggacc ttggccaaaga gcgccgcagag cagttcgcc atgaaaccct gcgcatctac	540

5	tccggccgg ccaagattgc cgaagaaaag ggcatcatct tggctgatac gaagtttcaa	600
	ttcggccttg attccgaagg caatctggtc ttgggcgatg aagtacttac gcctgattcc	660
10	tcccggtaact ggccagcaga cacctacgca gaaggcattg tgcagccag ctggacaag	720
	cagtacgtgc gcaactggtt gacctcgag gaatccggct gggatgtgga gtcggaaacc	780
	cagccgcag tgcttccgaa tgacatcgta gcggccaccc gcctgcgcta catcgaggct	840
15	tatgagcgct tgccggcaa gcgtttcatc gacttcattt gcggttaa	888
	<210> 42	
	<211> 1551	
	<212> DNA	
	<213> <i>Corynebacterium ammoniagenes</i>	
20	<220>	
	<221> gene	
	<222> (1)..(1551)	
	<223> purH	
25	<400> 42	
	atgagtgtatg accgcaagca gatcaagcgt gcactaatta gcgttatga caagacaggg	60
	ctcgaagagc tcgctcgac gcttgacagc gcaggcgtag agattgtgtc caccggctcc	120
30	accggccgcca agattgtgtca tcttggtatt aacgtcactc cgggtgaatc tctcaccggaa	180
	ttcccagagt gcctcgaagg ccgcgttaag accttgcacc cacgcgtgca tgcgggcatt	240
	ttggctgata cccgcaagcc ggatcacctt aatcagctgg aagagcttga gattgagccaa	300
35	ttccagttgg tcgtggtaa cctgtaccca tttaaagaga ctgtagctt tggcgcagac	360
	ttcgatgttt gcgtcgagca gattgatatac ggccgtccat ccatggtcgg tgctgtgcc	420
	aagaaccacc catcggtggc ggttggta gaccgcgc gttacgcga catcgctgag	480
40	gctgtcgctc agggcggatt cgatctggcg cagcgtcgta agctggccgc gactgcgttt	540
	aagcacacgg cagattatga tggcgttt tctggctggt ttgcccagca gcttgcgcgt	600
	gactctgttgc cctctgtga gcttgaaggc gacgcgtgc gttatgtga gaaccctcac	660
45	cagcaggctt ccatcggtcg tgaaggcactg accgggtttt ctaatgcgaa gcagctgcac	720
	ggtaaggaaa ttagactaca caactaccag gacgcggatg ccgcattggcg cgccgttgg	780
	gatcatgaac gtccatgtgt agcaattatt aagcacgcta acccttgcgg tatacgctgtt	840
50	tctgatgtttt ccatcgacgc agcacacgc gcccgcacacg cctgtgaccc aatgtccgt	900
	ttcggtggcg ttattgcgtt caaccgcgaa gtcaccaagg aaatggcaac ccagggtgt	960
55	gacatcttca ccgaggcatc catcgacccg tcctacgaag atggagccgt cgagattttt	1020
	cagggcaaga agaatattcg catccttgcgtt gctgagcatg aagtaccagc agtagaggtc	1080
	aaagaaatct ctggggcccg tctgctgcag gaagcagacg tttaccaggc tgagggcgat	1140

aaggcttcga gttggacttt ggctgccccgc gaagctgcat ccgaggaaaa gctcgccggag 1200
 ctggaaattcg cttggcgccgc agtacgctcg gtaaaagtcca acgccccatctt gttggcgcat 1260
 5 gaagggtgcaa ccgttggcggt gggtatgggc caggtcaacc gcgttgcattt ggcgaagttt 1320
 gctgttgcacc gcgcgaatac tttggctgat tccgcagagc gtgctcgccg ttccgtcgca 1380
 10 gcattcgatcgatcgatccgatggctgcagg tgcttacgtatcgat tgccggcggtt 1440
 tccggcggtt tccagccccgg cggctccatc cgcgatgaag aagttattgc tgccgctgaa 1500
 gcagccggta tcaccatgtatcacttgc acccgccact tcgcccacta a 1551

15 <210> 43
 <211> 1020
 <212> DNA
 <213> **Corynebacterium ammoniagenes**

20 <400> 43
 atgaccggca agatttctga tagccgcaag aatatgatgc tgttttccgg gcgcccccac 60
 ccagagttgg gtgaggctgt tgccaaggaa ttgggcactg acttggttcc taccaccggc 120
 25 cgtgactttg cgaatggcga aatcttcatt cgcttcgaag agtccgttgc tgggtcagat 180
 tgctttgtt tgcagtccca cacccagccg ttgaacaagt ggctcatgga gcagctcatc 240
 atgattgatg cgctcaagcg tggttccgct aagcgcatca cggccatctt gccgttctac 300
 30 ccatatgctc gccaggacaa gaagcacctc ggtcgcgagc ctatttccgc tgccttagtg 360
 gctgacctgc tggctaccgc aggtgctgac cgcatgtgtt cgggtggactt gcacaccgac 420
 35 cagatccagg gtttcttcga cggccctgtc gatcacatgc acgccccatgcc gattttgacc 480
 gagtacatcc agtccaagta ctccatcgac aacattgttgc tggtctcccc agatgcaggc 540
 cgcgtcaagg ttgcagaaaa gtgggcgcgt gagcttggcg atgccccact ggcattcggt 600
 40 cacaagtctc gtcaccaacac tgaagcgaat aaaaccgtgtt ccaaccgcgt ggtcggtgtat 660
 attgaggggca aggactgcat cttgctcgat gacatgatttgc ataccggcg caccatcgct 720
 ggcgcgggtcc gcgtactgctg tgaagctggc gcacgttccg tcgttatcgat atgtacccac 780
 45 ggcgtttct ctgaccccgcc acgcgagcgt ctgtctgagt ggcgtgtgtt ggaagttatc 840
 accaccgaca cttgcctca gtccaccgag ggctgggaca acctcaccgt gctgtcgatc 900
 gcgcccgctgt tggcacgtac gattcatgag atcttcgaaa atggttcggt aaccaccctc 960
 50 ttcgagtccg cgtagaaaaa tctgagat ttttctacag gataagacca aataggaccg 1020
 1020

55

Claims

1. A microorganism belonging to the genus *Corynebacterium* producing 5'-inosinic acid, in which the expression level

5 of genes encoding purine biosynthesis consisting of a prs gene encoding ribosephosphate pyrophosphokinase, a purN gene encoding phosphoribosylglycinamide formyltransferase, a purS gene encoding phosphoribosylformylglycaminidin synthetase, a purL gene encoding phosphoribosylformylglycaminidin synthetase II, a purKE gene encoding phosphoribosylaminimidazole carboxylase, a purC gene encoding phosphoribosyl aminoimidazole succinocarboxamide synthetase, and a purH gene encoding inosinic acid cyclohydrolase is increased higher than the intrinsic expression level of said genes by an increase of the copy number of said genes or by an increase of the transcription or translation efficiency of said genes.

10 2. The microorganism according to claim 1, wherein the expression level of a purF gene encoding phosphoribosylpyrophosphate amidotransferase and a purM gene encoding phosphoribosylaminimidazole synthetase is further increased higher than the intrinsic expression level of said genes by an increase of the copy number of said genes or by an increase of the transcription or translation efficiency of said genes.

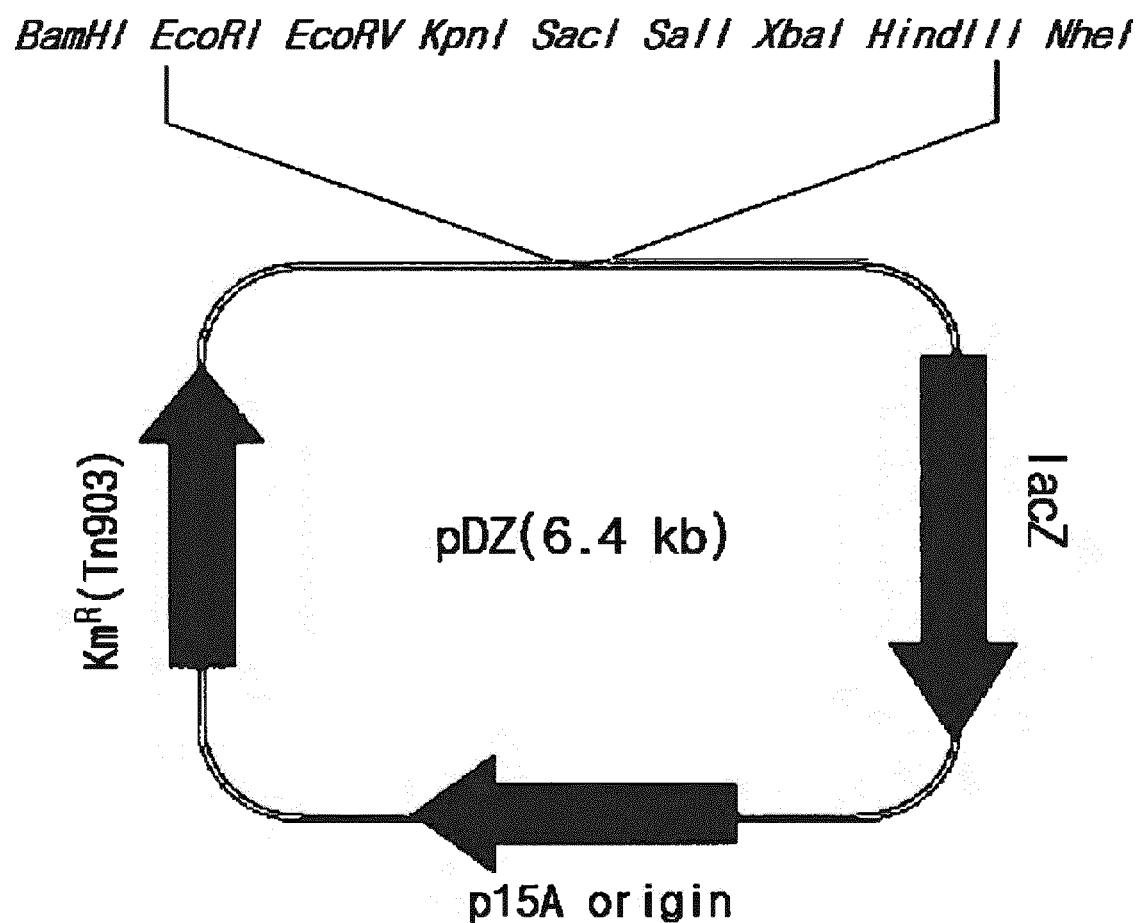
15 3. The microorganism according to claim 1 or 2, wherein the purF gene is represented by SEQ ID NO. 35, the purN gene is represented by SEQ ID NO. 36, the purS gene is represented by SEQ ID NO. 37, the purL gene is represented by SEQ ID NO. 38, the purM gene is represented by SEQ ID NO. 39, the purKE gene is represented by SEQ ID NO. 40, the purC is represented by SEQ ID NO. 41, the purH gene is represented by SEQ ID NO. 42, and the prs gene is represented by SEQ ID NO. 43.

20 4. The microorganism according to any one of claims 1 to 3, wherein the microorganism is *Corynebacterium ammoniagenes*.

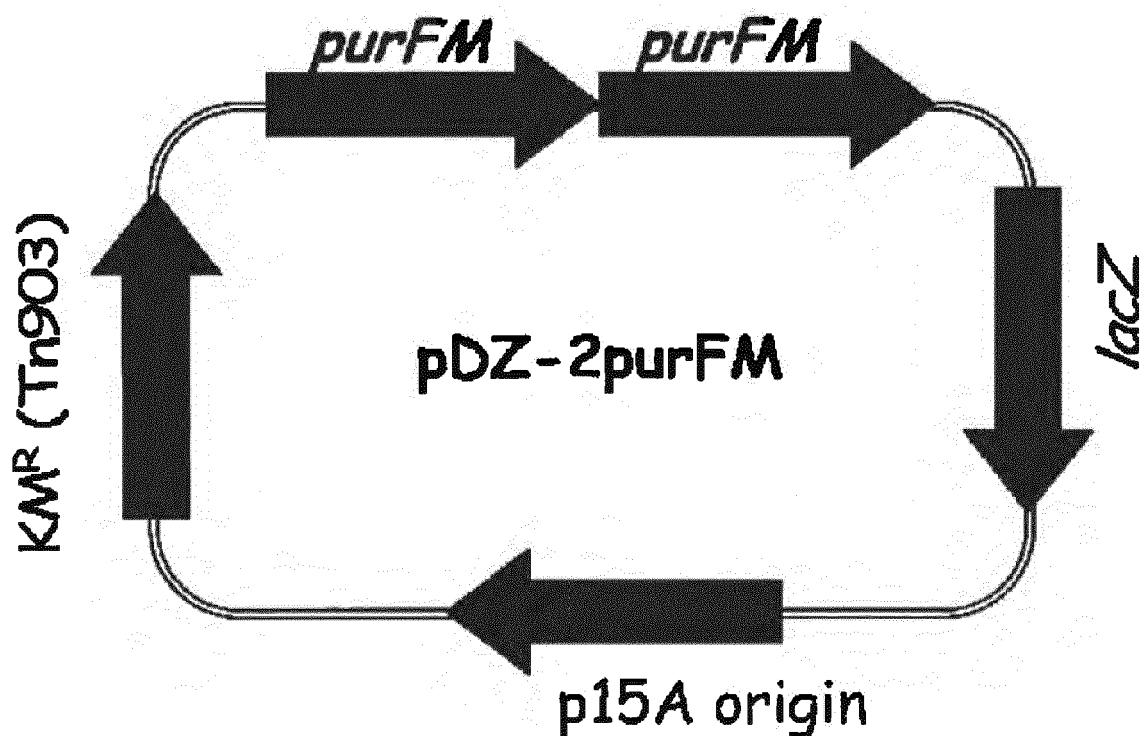
25 5. A method for producing 5'-inosinic acid, comprising culturing the microorganism of any one of claims 1 to 4 in a culture medium, and recovering 5'-inosinic acid from the culture medium.

30

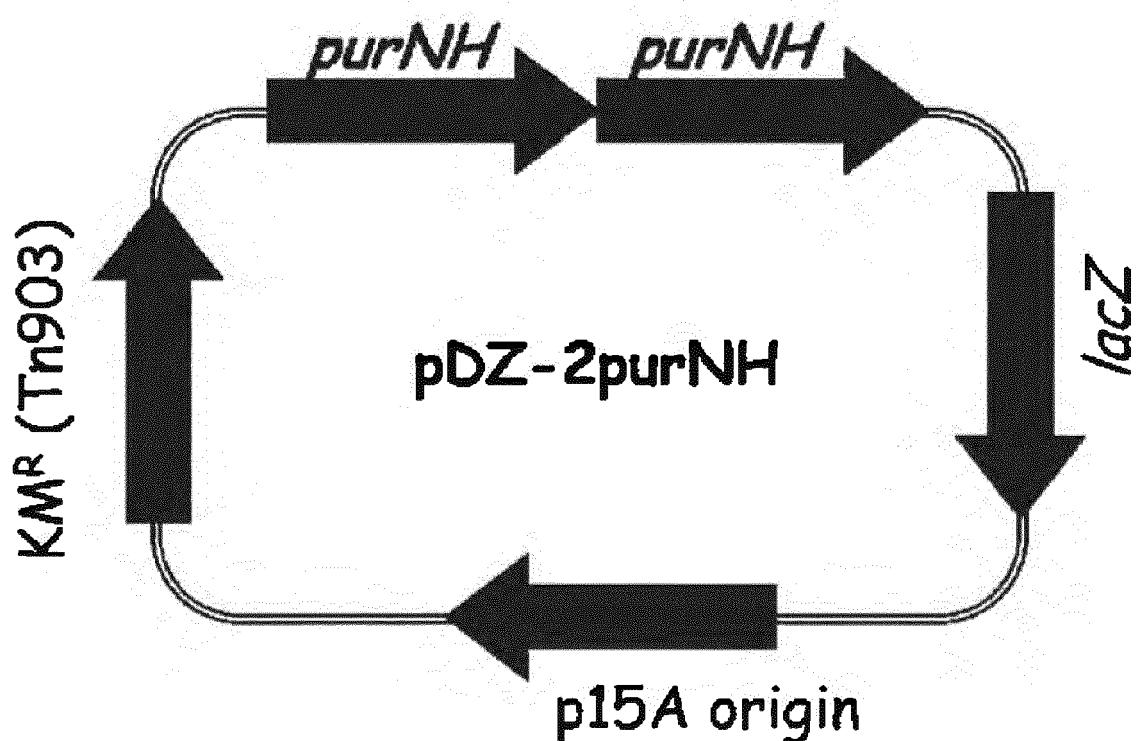
35

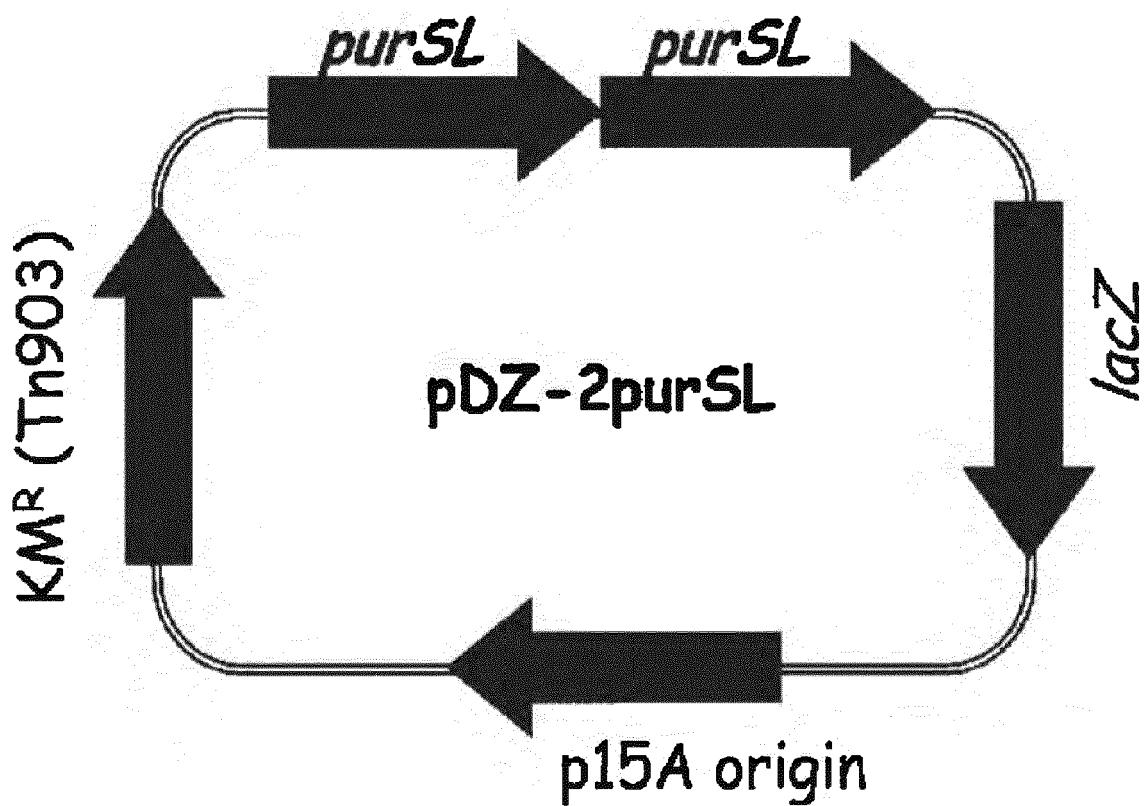

40

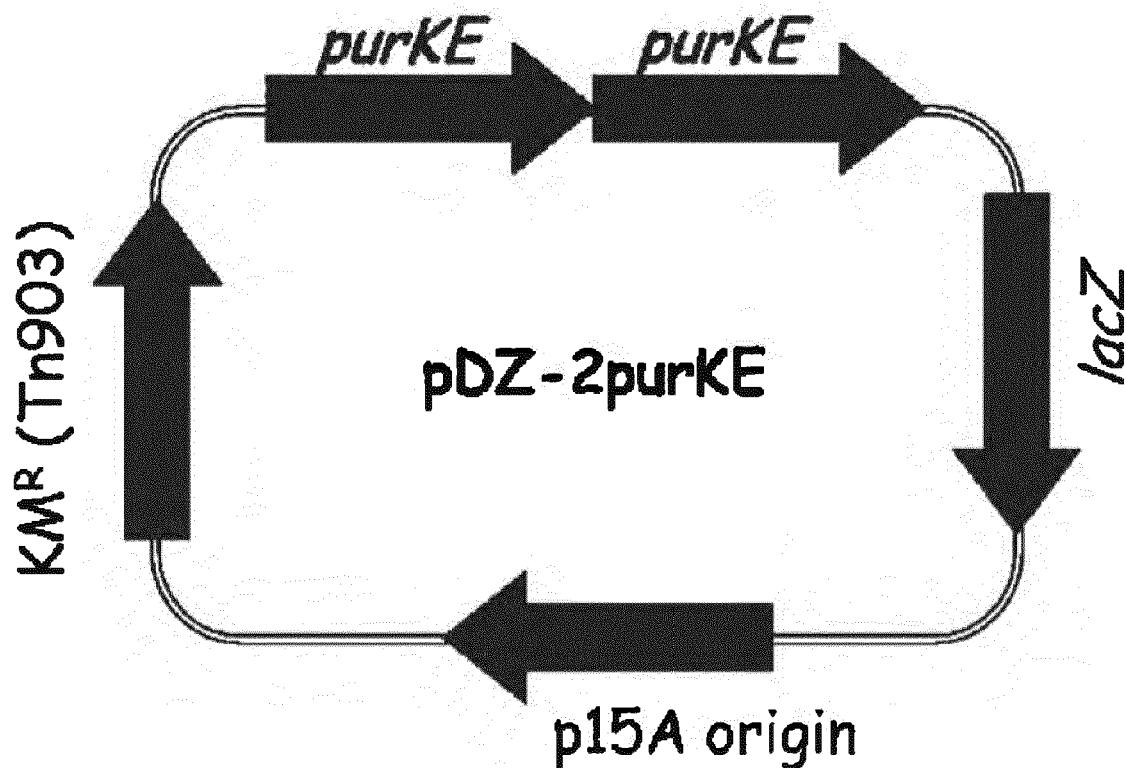
45

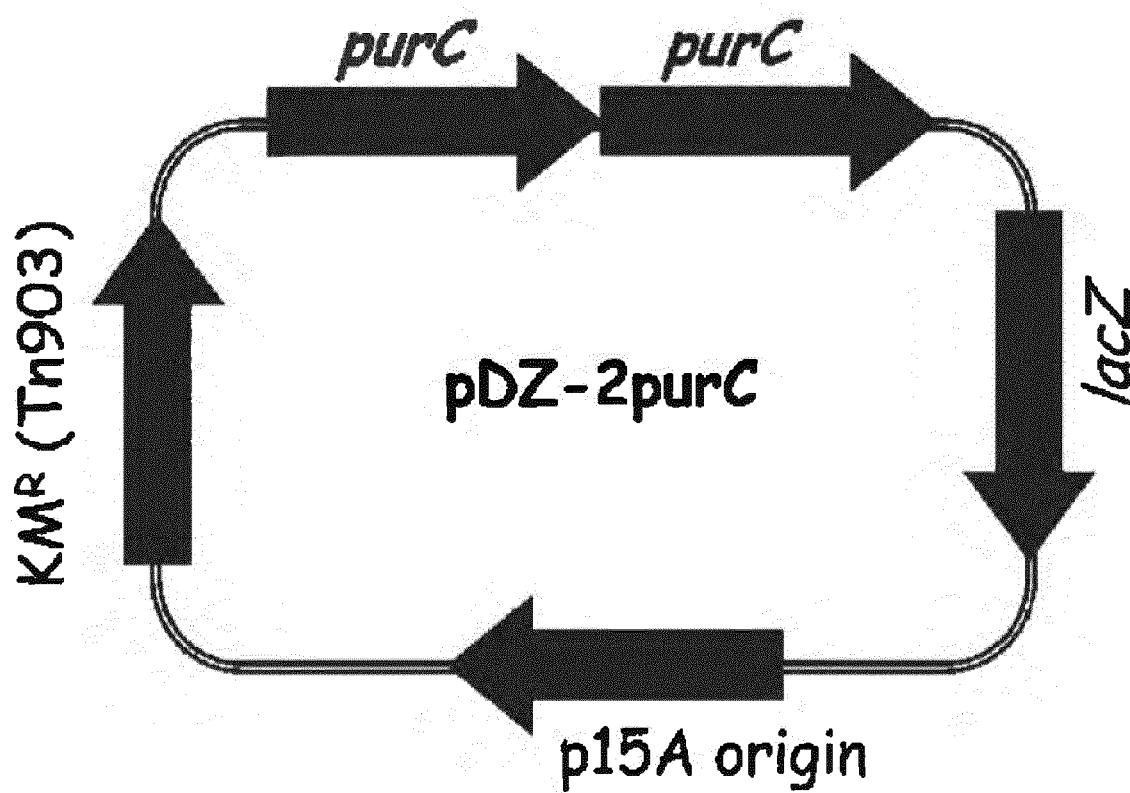

50

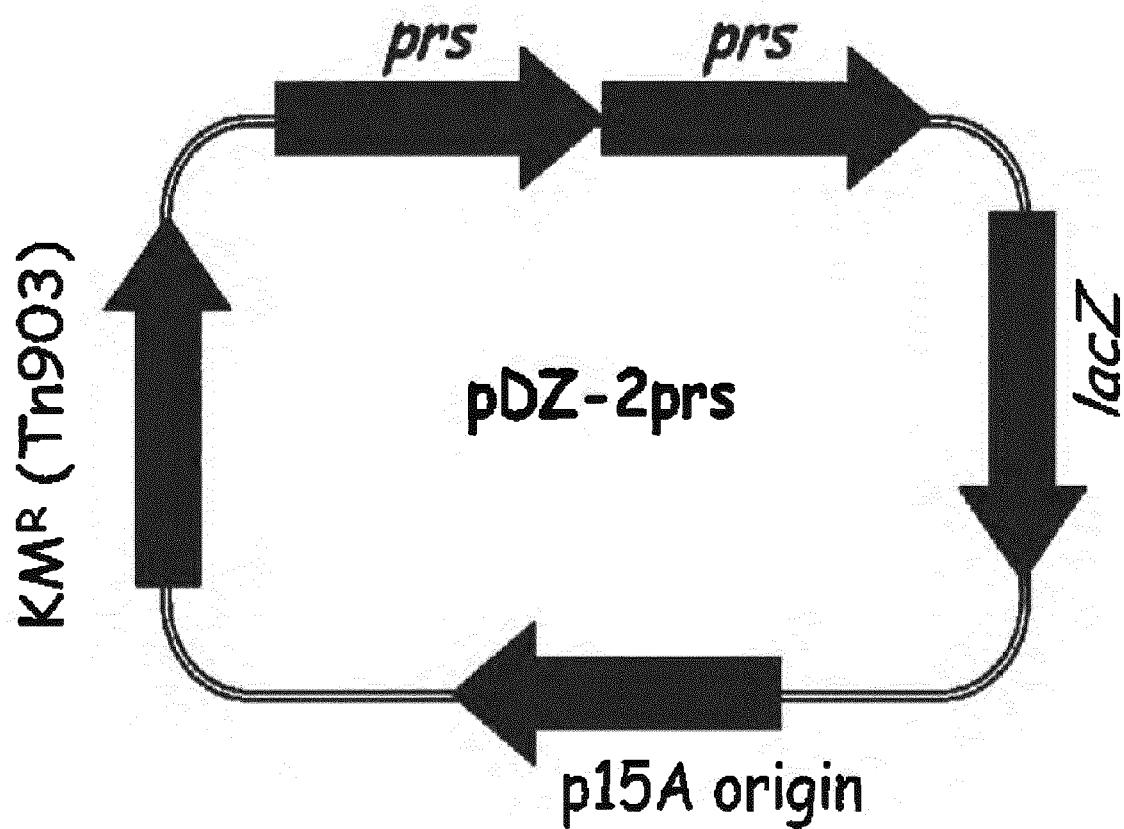
55


[FIG. 1]


[FIG. 2]


[FIG. 3]


[FIG. 4]


[FIG. 5]

[FIG. 6]

[FIG. 7]

EUROPEAN SEARCH REPORT

Application Number

EP 17 16 8260

5

DOCUMENTS CONSIDERED TO BE RELEVANT			
Category	Citation of document with indication, where appropriate, of relevant passages	Relevant to claim	CLASSIFICATION OF THE APPLICATION (IPC)
10	Y EP 1 004 663 A1 (AJINOMOTO KK [JP]) 31 May 2000 (2000-05-31) * the whole document * -----	1-5	INV. C12N1/21 C12N15/52 C12P19/26
15	Y EP 2 011 860 A1 (AJINOMOTO KK [JP]) 7 January 2009 (2009-01-07) * the whole document * -----	1-5	
20	Y TOMITA K ET AL: "STIMULATION BY L PROLINE OF 5' INOSINIC ACID PRODUCTION BY MUTANTS OF CORYNEBACTERIUM-AMMONIAGENES", AGRICULTURAL AND BIOLOGICAL CHEMISTRY, JAPAN SOC. FOR BIOSCIENCE, BIOTECHNOLOGY AND AGROCHEM, TOKYO, JP, vol. 55, no. 9, 1 January 1991 (1991-01-01), pages 2221-2226, XP002234343, ISSN: 0002-1369 * the whole document * -----	1-5	
25			
30			TECHNICAL FIELDS SEARCHED (IPC)
35			C12N C12P C12R
40			
45			
50	1 The present search report has been drawn up for all claims		
55	Place of search Munich	Date of completion of the search 30 May 2017	Examiner Roscoe, Richard
CATEGORY OF CITED DOCUMENTS			
X : particularly relevant if taken alone Y : particularly relevant if combined with another document of the same category A : technological background O : non-written disclosure P : intermediate document			
T : theory or principle underlying the invention E : earlier patent document, but published on, or after the filing date D : document cited in the application L : document cited for other reasons & : member of the same patent family, corresponding document			

ANNEX TO THE EUROPEAN SEARCH REPORT
ON EUROPEAN PATENT APPLICATION NO.

EP 17 16 8260

5 This annex lists the patent family members relating to the patent documents cited in the above-mentioned European search report. The members are as contained in the European Patent Office EDP file on The European Patent Office is in no way liable for these particulars which are merely given for the purpose of information.

30-05-2017

10	Patent document cited in search report	Publication date		Patent family member(s)	Publication date
15	EP 1004663	A1 31-05-2000	BR CN DE EP EP EP ID JP KR KR US US US US US WO	9815557 A 1270631 A 69837041 T2 1004663 A1 1577386 A2 1584679 A1 25613 A 3944916 B2 20050043978 A 20050043979 A 7435560 B1 2007161090 A1 2007166799 A1 2008038781 A1 2008044863 A1 9903988 A1	17-07-2001 18-10-2000 08-11-2007 31-05-2000 21-09-2005 12-10-2005 19-10-2000 18-07-2007 11-05-2005 11-05-2005 14-10-2008 12-07-2007 19-07-2007 14-02-2008 21-02-2008 28-01-1999
20	EP 2011860	A1 07-01-2009	BR CN EP ES JP KR KR US WO	PI0710752 A2 101432417 A 2011860 A1 2401607 T3 5104754 B2 20090005391 A 20130006529 A 2009104665 A1 2007125782 A1	14-06-2011 13-05-2009 07-01-2009 23-04-2013 19-12-2012 13-01-2009 16-01-2013 23-04-2009 08-11-2007
25					
30					
35					
40					
45					
50					
55					

REFERENCES CITED IN THE DESCRIPTION

This list of references cited by the applicant is for the reader's convenience only. It does not form part of the European patent document. Even though great care has been taken in compiling the references, errors or omissions cannot be excluded and the EPO disclaims all liability in this regard.

Patent documents cited in the description

- JP 16141957 B [0003]
- KR 20030042972 [0003]
- KR 785248 [0004]
- KR 857379 [0004]
- KR 20080025355 [0036]

Non-patent literature cited in the description

- *Agric. Biol. Chem.*, 1972, vol. 36, 1511 [0003]