Technical Field
[0001] The present invention relates to a method as in claim 1 and network element as in
claim 7 for inferring component parameters for components in a network, which components
may comprise network nodes or network links. The present invention also relates to
a computer program product as in claim 6, configured, when run on a computer, to carry
out a method for inferring component parameters for components in a network.
Background
[0002] Performance evaluation and diagnosis is an important aspect of network management
for all kinds of network. It is desirable to be able to monitor and asses parameters
indicative of network performance for all components of a network in order to evaluate
overall network performance, identify potential for performance improvement and diagnose
problems. Particularly in the case of large scale communication networks, which may
be substantially unregulated and highly heterogeneous, a single network operator or
provider may not have control over all segments of a network that impact upon relevant
performance data for that operator or provider. Certain segments of the network may
therefore be unobservable, as the cooperation of network elements within those segments
cannot be obtained.
[0003] Network Tomography has emerged as a promising technique enabling unobservable network
performance parameters to be inferred without requiring cooperation of internal network
components. Unobservable parameters are inferred solely on the basis of end-to-end
(E2E) measurements conducted using edge nodes. Referring to the network 2 illustrated
in Figure 1, a series of probing paths is defined through the network, the probing
paths originating and terminating with edge nodes 4 and traversing internal nodes
6. E2E measurements on data packets transmitted on the probing paths may be conducted
with the cooperation of edge nodes 4. With an appropriately chosen set of probing
paths, these E2E measurements may be used to infer node parameters for the internal
network nodes 6. The task of finding the probing paths required to enable inferring
of parameters for internal network nodes is referred to as the identifiability problem.
The solution to this problem is a set of probing paths that provide full monitoring
coverage of the network, that is that enable performance parameters for all internal
network nodes to be inferred.
[0004] In practice, a majority of real networks are unidentifiable; structural limitations
of their network topologies mean the identifiability problem cannot be solved. In
such cases it is not possible to define a complete set of independent probing paths
in the network which provides full monitoring coverage of the network, allowing a
unique set of values for the parameters of interest to be inferred. Network Tomography
techniques are therefore inapplicable to a majority of real networks. Considering
an example network, identification methods can define a set of independent paths which
is given by the cyclomatic complexity of the network graph:

where nPaths represents the number of independent paths, Edges and Nodes represent
the number of edges (links) and nodes of the network graph, and p_components represents
the number of monitoring points, that is the edge nodes at which probing paths may
originate or terminate. The unknown parameter values are equal in number to the Edges.
In order to achieve full monitoring coverage of the network, the number of monitoring
points must therefore be equal to Nodes - 1. Such a large number of monitoring points
is clearly impractical, as monitoring probes would be required on practically every
node, whereas the purpose of Network Tomography is to obtain a picture of internal
network functioning from the network periphery, i.e. having access to only a subset
of nodes at the edge of the network.
[0005] In order to address the identifiability problem for complex real networks, additional
constraints may be manually identified and applied to a network, so enabling full
monitoring coverage with a reduced set of probing paths. However, a suitable set of
additional constraints can be only achieved in certain specific cases, for example
where the parameters to be inferred represent on/off processes such as loss measurements,
where a packet can be lost or not lost. In all other cases, a unique solution cannot
be found for the internal parameters. In a further complication for situations where
additional constraints can be applied to a network, such additional constraints can
only be defined according to the available monitoring points and so, depending on
the network topology, they may not be sufficient to achieve full monitoring coverage
of the network. Document
US 2007299638 A1, published on 17-02-2009 discloses a method for network parameter estimation using
a Serial Parallel Queueing Network (SPQN) model.
Summary
[0006] It is an aim of the present invention to provide a method, apparatus and computer
readable medium which at least partially address one or more of the challenges discussed
above.
[0007] According to a first aspect of the present invention, there is provided a method
for inferring component parameters for components in a network, wherein the components
comprise at least one of network nodes or network links. The method comprises identifying
a plurality of paths through the network, measuring values of a path parameter for
identified paths, generating a set of constraints by expressing individual measured
path parameter values as a function of component parameters of the components in the
path associated with the measured path parameter value, and generating an estimate
of the component parameters by solving an optimisation problem defined by the generated
constraints. The method further comprises, for individual components in the identified
paths, matching the generated estimates of the component parameter value to a statistical
distribution describing a behaviour of the component parameter, identifying a ratio
of central moments of the statistical distribution that demonstrates a sensitivity
to noise below a threshold value, and calculating an inferred value of the component
parameter from the identified ratio of central moments.
[0008] According to some examples of the invention, measuring values of a path parameter
for identified paths, generating a set of constraints and generating an estimate of
the component parameter values may comprise a trial iteration; and the method may
further comprise repeating the trial iteration until an exit condition is satisfied
before conducting subsequent method steps. According to some examples, the exit criterion
may comprise a number of trial iterations corresponding to a predetermined minimum
estimation accuracy. In one example, a variance of the inferred value from the identified
ratio of central moments may be calculated as a function of the number of iterations
conducted. A maximum variance may then be selected, representing a minimum level of
accuracy in the inferred value. A number of trial iterations corresponding to the
selected maximum variance may be then be identified. According to some examples of
the invention, identifying a plurality of paths through the network may comprise running
a network tomography identifiability problem solving function. According to further
examples, measuring values of a path parameter may comprise receiving a measurement
conducted on a probing packet transmitted over the path.
[0009] According to some examples, expressing a measured path parameter value as a function
of component parameter values of the components in the path associated with the measured
path parameter value may comprise expressing the measured path parameter value as
a function of the summation of component parameter values of the components in the
path associated with the measured path parameter value. The component parameter to
be inferred may thus comprise an additive parameter.
[0010] According to some examples, the component parameter may comprise a measure of component
congestion. In some examples, the components may comprise network nodes and the component
parameter may comprise node queuing time. According to some examples, the path parameter
may comprise inter-arrival time.
[0011] According to some examples, solving an optimisation problem defined by the generated
constraints may comprise minimising a cost function according to the generated constraints.
In some examples, initial values for the node parameters in the optimisation problem
may be selected randomly. In some examples, the optimisation problem may comprise
a least squares minimisation.
[0012] According to some examples, calculating an inferred value of the component parameter
may comprise calculating a mean of the matched statistical distribution from the identified
ratio of central moments.
[0013] According to some examples, the statistical distribution may comprise an inverse
Gaussian distribution, and identifying a ratio of central moments of the statistical
distribution that demonstrates a sensitivity to noise below a threshold value may
comprises identifying a ratio of variance over skewness or variance over kurtosis.
[0014] According to some examples, the method may further comprise estimating an error in
the inferred values of the component parameter and adjusting the inferred values on
the basis of the estimated error.
[0015] According to some examples, the error may be a function of at least one of network
topology, paths identified, and/or component parameter interaction.
[0016] According to some examples, estimating an error in the inferred values of the component
parameter may comprise training a function approximator using simulated inferred values
of the component parameter, and adjusting the inferred values on the basis of the
estimated error may comprise applying the trained function approximator to the inferred
values.
[0017] According to some examples, training a function approximator using simulated inferred
values of the component parameter may comprise selecting training values for the component
parameter for components in the network, simulating measured path parameter values
on the basis of the selected training values, inferring values for the component parameter
for components in the network on the basis of the simulated measured path parameter
values, and inputting the inferred values and the training values to a learning phase
of a function approximator. In some examples, the function approximator may be a fuzzy
universal approximator or a neural network.
[0018] According to some examples, inferring values for the component parameter may comprise
repeating the steps of the method according to the first aspect of the present invention
using the simulated measured path parameter values in place of measured path parameter
values.
[0019] According to some examples, estimating an error may further comprise repeating the
steps of training a function approximator until the estimated error converges to within
a threshold margin.
[0020] According to some examples, estimating an error may further comprise, once the error
has converged to within a threshold margin, checking that the error is below a threshold
level and, if the converged error is not below the threshold level, identifying a
new plurality of paths through the network and repeating the steps of training a function
approximator on the basis of the new identified plurality of paths.
[0021] According to another aspect of the present invention, there is provided a computer
program product configured, when run on a computer, to carry out a method according
to the first aspect of the present invention.
[0022] According to another aspect of the present invention, there is provided a network
element for inferring component parameters for components in a network wherein the
components comprise at least one of network nodes or network links, the network element
comprising a processor and a memory. The memory contains instructions executable by
the processor such that the processor is operable to identify a plurality of paths
through the network, measure values of a path parameter for identified paths, generate
a set of constraints by expressing individual measured path parameter values as a
function of component parameter values of the components in the path associated with
the measured path parameter value, and generate an estimate of the component parameter
values by solving an optimisation problem defined by the generated constraints. The
processor is further operable, for individual components in the identified paths,
to match the generated estimates of the component parameter value to a statistical
distribution describing a behaviour of the component parameter, identify a ratio of
central moments of the statistical distribution that demonstrates a sensitivity to
noise below a threshold value, and calculate an inferred value of the component parameter
from the identified ratio of central moments.
[0023] According to some examples of the invention, measuring values of a path parameter
for identified paths, generating a set of constraints and generating an estimate of
the component parameter values may comprise a trial iteration; and the network element
may be further operable to repeat the trial iteration until an exit condition is satisfied
before conducting subsequent steps. According to some examples, the exit criterion
may comprise a number of trial iterations corresponding to a predetermined minimum
estimation accuracy. In one example, a variance of the inferred value from the identified
ratio of central moments may be calculated as a function of the number of iterations
conducted. A maximum variance may then be selected, representing a minimum level of
accuracy in the inferred value. A number of trial iterations corresponding to the
selected maximum variance may be then be identified.
[0024] According to some examples, the network element may be further operative to identify
a plurality of paths through the network by running a network tomography identifiability
problem solving function.
[0025] According to some examples, the network element may be further operative to measure
values of a path parameter value by receiving a measurement conducted on a probing
packet transmitted over the path.
[0026] According to some examples, the network element may be further operative to express
a measured path parameter value as a function of component parameter values of the
components in the path associated with the measured path parameter value by expressing
the measured path parameter value as a function of the summation of component parameter
values of the components in the path associated with the measured path parameter value.
[0027] According to some examples, the component parameter may comprise a measure of component
congestion.
[0028] According to some examples, the components may comprise network nodes and the component
parameter may comprise node queuing time.
[0029] According to some examples, the path parameter may comprise inter-arrival time.
[0030] According to some examples, the network element may be further operative to solve
an optimisation problem defined by the generated constraints by minimising a cost
function according to the generated constraints.
[0031] According to some examples, the optimisation problem may comprise a least squares
minimisation.
[0032] According to some examples, the network element may be further operative to calculate
an inferred value of the component parameter by calculating a mean of the matched
statistical distribution from the identified ratio of central moments.
[0033] According to some examples, the statistical distribution may comprise an inverse
Gaussian distribution, and the network element may be further operative to identify
a ratio of central moments of the statistical distribution that demonstrates a sensitivity
to noise below a threshold value by identifying a ratio of variance over skewness
or variance over kurtosis.
[0034] According to some examples, the network element may be further operative to estimate
an error in the inferred values of the component parameter and adjust the inferred
values on the basis of the estimated error.
[0035] According to some examples, the error may be a function of at least one of network
topology, paths identified and/or component parameter interaction.
[0036] According to some examples, the network element may be further operative to estimate
an error in the inferred values of the component parameter by training a function
approximator using simulated inferred values of the component parameter, and the network
element may be further operative to adjust the inferred values on the basis of the
estimated error by applying the trained function approximator to the inferred values.
[0037] According to some examples, the network element may be further operative to train
a function approximator using simulated inferred values of the component parameter
by selecting training values for the component parameter for components in the network,
simulating measured path parameter values on the basis of the selected training values,
inferring values for the component parameter for components in the network on the
basis of the simulated measured path parameter values, and inputting the inferred
values and the training values to a learning phase of a function approximator.
[0038] According to some examples, the network element may be further operative to infer
values for the component parameter by repeating the steps of the first aspect of the
present invention using the simulated measured path parameter values in place of measured
path parameter values.
[0039] According to some examples, the network element may be further operative to estimate
an error by repeating the steps of training a function approximator until the estimated
error converges to within a threshold margin.
[0040] According to some examples, the network element may be further operative to estimate
an error by checking that the error is below a threshold level once the error has
converged to within a threshold margin, and, if the converged error is not below the
threshold level, identifying a new plurality of paths through the network and repeating
the steps of training a function approximator on the basis of the new identified plurality
of paths.
[0041] According to another aspect of the present invention, there is provided a network
element for inferring component parameters for components in a network wherein the
components comprise at least one of network nodes or network links, the network element
comprises a network identifying unit configured to identify a plurality of paths through
the network and an estimating unit comprising a path unit configured to measure values
of a path parameter for paths identified by the network identifying unit, and an optimisation
unit configured to generate a set of constraints by expressing individual measured
path parameter values as a function of component parameter values of the components
in the path associated with the measured path parameter value, and to generate an
estimate of the component parameter values by solving an optimisation problem defined
by the generated constraints. The network element further comprises an inferring unit
configured, for individual components in the identified paths, to match the generated
estimates of the component parameter value to a statistical distribution describing
a behaviour of the component parameter, identify a ratio of central moments of the
statistical distribution that demonstrates a sensitivity to noise below a threshold
value, and calculate an inferred value of the component parameter from the identified
ratio of central moments.
[0042] According to some examples of the invention, the functions of the path unit and optimisation
unit may comprise a trial iteration, and the estimating unit may be configured to
repeat the trial iteration until an exit condition is satisfied before the inferring
unit carries out its functions. According to some examples, the exit criterion may
comprise a number of trial iterations corresponding to a predetermined minimum estimation
accuracy. In one example, a variance of the inferred value from the identified ratio
of central moments may be calculated as a function of the number of iterations conducted.
A maximum variance may then be selected, representing a minimum level of accuracy
in the inferred value. A number of trial iterations corresponding to the selected
maximum variance may be then be identified.
[0043] According to some examples, the network identifying unit may be further configured
to identify a plurality of paths through the network by running a network tomography
identifiability problem solving function.
[0044] According to some examples, the path unit may be further configured to measure values
of a path parameter by receiving a measurement conducted on a probing packet transmitted
over the path.
[0045] According to some examples, the optimisation unit may be further configured to express
a measured path parameter value as a function of component parameter values of the
components in the path associated with the measured path parameter value by expressing
the measured path parameter value as a function of the summation of component parameter
values of the components in the path associated with the measured path parameter value.
[0046] According to some examples, the component parameter may comprise a measure of node
congestion. According to some examples, the components may comprise network nodes
and the component parameter may comprise node queuing time.
[0047] According to some examples, the path parameter may comprise inter-arrival time.
[0048] According to some examples, the optimisation unit may be further configured to solve
an optimisation problem defined by the generated constraints by minimising a cost
function according to the generated constraints. According to some examples, the optimisation
problem may comprise a least squares minimisation.
[0049] According to some examples, the inferring unit may be further configured to calculate
an inferred value of the component parameter by calculating a mean of the matched
statistical distribution from the identified ratio of central moments.
[0050] According to some examples, the statistical distribution comprises an inverse Gaussian
distribution, and the inferring unit may be further configured to identify a ratio
of central moments of the statistical distribution that demonstrates a sensitivity
to noise below a threshold value by identifying a ratio of variance over skewness
or variance over kurtosis.
[0051] According to some examples, the network element may further comprise an error correction
unit, the error correction unit comprising an error estimating unit configured to
estimate an error in the inferred values of the component parameter, and an error
adjusting unit configured to adjust the inferred values on the basis of the estimated
error.
[0052] According to some examples, the error may be a function of at least one of network
topology, paths identified and/or component parameter interaction.
[0053] According to some examples, the error estimating unit may be further configured to
estimate an error in the inferred values of the component parameter by training a
function approximator using simulated inferred values of the component parameter,
and the error adjusting unit may be further configured to adjust the inferred values
on the basis of the estimated error by applying the trained function approximator
to the inferred values.
[0054] According to some examples, the error estimating unit may be further configured to
train a function approximator using simulated inferred values of the component parameter
by selecting training values for the component parameter for components in the network,
simulating measured path parameter values on the basis of the selected training values,
inferring values for the component parameter for components in the network on the
basis of the simulated measured path parameter values, and inputting the inferred
values and the training values to a learning phase of a function approximator.
[0055] According to some examples, the error estimating unit may be further configured to
infer values for the component parameter by forwarding the simulated measured path
parameters to the inferring unit for use in place of measured path parameter values.
[0056] According to some examples, the error estimating unit may be further configured to
estimate an error by repeating the steps of training a function approximator until
the estimated error converges to within a threshold margin.
[0057] According to some examples, the error estimating unit may be further configured to
estimate an error by checking that the error is below a threshold level once the error
has converged to within a threshold margin, and, if the converged error is not below
the threshold level, identifying a new plurality of paths through the network and
repeating the steps of training a function approximator on the basis of the new identified
plurality of paths.
Brief description of the drawings
[0058] For a better understanding of the present invention, and to show more clearly how
it may be carried into effect, reference will now be made, by way of example, to the
following drawings in which:
Figure 1 is a schematic representation of a network;
Figure 2 is a flow chart illustrated process steps in a method for inferring component
parameters for components in a network;
Figure 3 is a flow chart illustrating a an example of a method for inferring component
parameters for components in a network;
Figure 4 is a graph illustrating the results of a Monte Carlo simulation;
Figure 5 is a functional representation of a function approximator;
Figure 6 is a flow chart illustrating a further detail of the example method of Figure
3;
Figure 7 another flow chart illustrating a further detail of the example method of
Figure 3;
Figure 8 is a block diagram illustrating functional elements in a network element;
Figure 9 is a block diagram illustrating functional elements in another example of
network element;
Figure 10 is a representation of a test network;
Figures 11 and 12 are graphs illustrating results of the example method of Figures
3, 6 and 7 applied to the test network of Figure 10.
Detailed Description
[0059] Aspects of the present invention enable the inferring of component parameter values
in unidentifiable networks, that is in networks in which the number of available probing
paths is insufficient to enable a unique solution for individual component parameter
values. The network may include multiple nodes, for each of which the component parameter
may take a different value. In the examples discussed below, the component parameter
is node queuing time, giving an indication of the congestion status of the network.
However, it will be appreciated that this is merely for the purpose of illustration,
and values of different component parameters may be inferred using processes according
to the present invention.
[0060] Figure 2 is a flow chart illustrating process steps in a method for inferring component
parameter values for components in a network. The components may be network nodes
or they may be links between the network nodes. The method may for example be conducted
in a processing unit of an apparatus for Network Tomography. The processing unit may
be in communication with an input/output unit for communication with nodes in the
network, and with a memory. Referring to Figure 2, in a first step 100, the method
comprises identifying a plurality of paths through the network. This may be accomplished
using an identifiability problem solver, such as is known in the field of Network
Tomography. In some examples, the method may then comprise a step 200 of estimating
an error in inferred values of the component parameter. This may be achieved for example
through training one or more function approximators using training values of component
parameters. The error estimated may be a function of one or more of the topology of
the network concerned, the particular paths identified in step 100 and interaction
and/or interference between individual component parameters.
[0061] The method then comprises, at step 410, measuring values of a path parameter for
paths identified in step 100. In practice, the actual measurements may be conducted
on probing packets sent along the paths by monitoring probes placed on nodes at the
ends of the paths. These measurements may be received by the processing unit on which
the method is running. The method then comprises, at step 410a, generating a set of
constraints by expressing individual measured path parameter values as a function
of component parameter values of components in the path associated with the measured
path parameter value. In the case of an additive component parameter, the measured
path parameter value may be expressed as a function of the summation of the component
parameter values. At step 420b, the method comprises generating an estimate of the
component parameter values by solving the optimisation problem defined by the constrains
generated at step 420a. This may for example involve minimising an appropriate cost
function.
[0062] Steps 420a and 420b represent a Non Linear Programming (NLP) operation in which measured
path parameter values on identified paths may be used to define an NLP optimisation,
a solution to which may be found by iterative minimisation of a cost function. The
solution found may be one of many possible solutions, meaning the estimate of component
parameters generated in step 420b is just one of many possible estimates. In some
examples of the invention, steps 410, 420a and 420b may represent an iteration which
may be repeated until an exit condition is satisfied. The exit condition may for example
be a number of iterations corresponding to a predetermined minimum accuracy level.
In such examples, a check on the number of iterations may be made at step 426. In
each iteration, new measurements may be made of path parameter values, and new estimates
of the component parameters may be generated using the NLP operation of steps 420a
and 420b.
[0063] Once steps 420a and 420b have been completed, or if iteration is conducted, once
the desired number of iterations has been completed, the method proceeds to step 430a,
in which, for a first component in the network, the generated estimates of the component
parameter value are matched to a statistical distribution that describes the behaviour
of the component parameter. This distribution may in some examples be an Inverse Gaussian,
Pareto or Weibull distribution. The distribution may be selected as that distribution
that best represents behaviour of the component parameter to be inferred. In step
430b, a ratio of central moments of the selected statistical distribution is identified
which demonstrates a sensitivity to noise below a threshold value. This threshold
value may be set to be the lowest noise sensitivity of any of ratio of central moments
of the statistical distribution. In step 430c, the method comprises calculating an
inferred value of the component parameter for the component from the identified ratio
of central moments. The inferred value may be the mean of the matched statistical
distribution as calculated from the selected ratio of central moments. At step 435
a check is made as to whether the required components have been considered, if not,
the method returns to step 430a and continues for the next component in the network.
[0064] If an estimation of error has been made in step 200, then the method may further
comprise adjusting the inferred values from step 430c on the basis of the estimated
error at step 440. This may for example comprise applying the function approximator
trained in step 200.
[0065] The method steps illustrated in Figure 2 are explained in greater detail with reference
to an example embodiment of the method, illustrated in Figures 3 to 7. In the example
embodiment, the network components are network nodes and the component parameter values
provide an indication of network congestion status. Using NLP, a solution may be found
for each node parameter value that fits an incomplete set of equations generated of
the basis of measurements conducted on probing packets sent along measurement paths.
The NLP gives a first rough estimation of the unknown node parameter values. As the
NLP converges to one of the possibly infinite solutions to the incomplete set of equations,
the estimated values are affected by an error that may range between 0% and 200%.
Repeating the measurements and evaluations several times produces a set of estimated
values for each unknown node parameter, which estimated values may be considered as
a group of determinations (samples) of a stochastic process with a specific characteristic
distribution. In a worst case scenario, it is possible to assume that each sample
represents the correct value plus a noise component with uniform distribution, which
noise component may dominate the sample value. In order to filter out the noise component,
a statistical distribution is selected that describes the behavior of the unknown
parameter. In the example embodiment, Pareto, Weibull and Inverse Gaussian may all
be appropriate. The samples obtained from the NLP process are matched to the selected
statistical distribution, and a ratio of central moments of the distribution is selected
that is relatively insensitive to noise. From this ratio of central moments, the mean
value of the node parameter for each node of interest may be calculated.
[0066] A residual estimation error remaining after calculation of the mean value of node
parameters will be a function of the topology of the individual network under consideration,
the particular monitoring paths used and any interaction and/or interference between
the individual node parameter values. This estimation error may be evaluated using
training values, for example provided using a Monte Carlo simulation. A Monte Carlo
simulation may be executed in order to provide input data to a set of adaptive function
approximators, one for each node to be evaluated. The function approximators may learn
the behavior of the estimation error on each node for which a parameter value is being
inferred. Once the function approximators have been trained using the simulation values,
the function approximators may be used to adjust the mean values for each node parameter
according to the estimated error. Thus, during operation, the function approximators
may be supplied with the calculated mean values from the NLP and matched statistical
distribution, and may provide as output the final inferred value, including estimated
error correction. In this manner, error in the final inferred values may be reduced
by approximately 60%. As discussed in further detail below with respect to verification
trials, the final estimation error in inferred values may be reduced to between 0%
and 10%.
[0067] Referring to Figure 3, the example embodiment of the method according to the present
invention may be seen to comprise two main stages. Stage one is executed offline and
may be executed once at the beginning of an investigation of a network and again in
the event that network topology changes for any reason. Stage one is used to estimate
the error that will affect parameter estimations as a result of network topology,
the set of monitoring paths used and interaction or interference between the values
associated to unknowns at each measurement phase. Stage two executes path measurements,
conducts the preliminary NLP estimation of the unknowns and the statistical estimation
of the unknowns to obtain their correct value.
[0068] Stages one and two are preceded by a network identifiability analysis 100, during
which network topology is determined and monitoring paths are identified. Any addition
or removal of links or nodes in the network modifies the network topology, meaning
the network identifiability analysis 100 should be repeated. Once the set of monitoring
paths are identified, the network topology and monitoring paths are passed to Stage
one of the process.
[0069] Stage one comprises an evaluation step 200, in which estimation error in inferred
values of node parameters is evaluated, and a check step 300, in which the size of
the evaluated estimation error is considered. If the evaluated estimation error is
judged to be too high in step 300, the process returns to network identifiability
analysis 100 to identify a new set of monitoring paths and repeat the estimation error
evaluation 200 with the newly identified paths. The evaluation step 200 comprises
evaluating the estimation error on each point of interest of the network using a simulation
such as a Monte Carlo simulation. During this simulation, training values for node
parameters are selected and a simulated measured path parameter is generated for each
monitoring path using the identified monitoring paths from step 100 and the selected
training values for node parameters of nodes in the paths. These simulated measured
path parameters are then input to the NLP and statistical matching of the method for
inferring node parameters, and the inferred values of node parameters from the method
are compared to the correct values for the node parameters (the selected training
values). Repeating this simulation, the estimation error for each node may be evaluated.
It has been found that the estimation error is a function of network topology, monitoring
paths and interaction between individual node parameter values. In an example embodiment,
the estimation error describes a surface as illustrated in Figure 4.
[0070] The estimation error surface may be described using a function approximator such
as a fuzzy universal approximator or a neural network. The Monte Carlo simulation
result may be used as input for a learning phase of a function approximator, modeling
the mean value of the node parameter after correction for estimation error. The learning
phase of a function approximator is illustrated in Figure 5. Each function approximator
10 is a multiple input-single output function, meaning an approximator is needed for
each parameter to be estimated, or at least for each parameter demonstrating significant
estimation error on the basis of a Monte Carlo simulation. The inferred values for
mean node parameter following NLP and statistical matching are input to a learning
phase module 12 of the function approximator 10 during the learning phase, together
with the correct training values, enabling the function approximator to learn the
behavior of the estimation error on each node parameter, and so output a mean value
of inferred node parameter that is corrected for the estimation error.
[0071] Once the learning phase of the function approximators is completed, and the evaluated
estimation error has converged, the error is checked at step 300 to ensure that the
converged error is not above a threshold value. If the evaluated estimation error
is too high, indicating that the error correction will not sufficiently reduce the
overall error in the final inferred values, then the process returns to network identifiability
analysis to identify a new set of monitoring paths and repeat the Monte Carlo simulation
and estimation error evaluation. If the estimation error is below the threshold value,
then the function approximators are ready to be used as the last step in inferring
node parameters, the estimated mean values of the node parameters being input to the
function approximators, and the error corrected values being output as the result
of the function approximators.
[0072] Having completed Stage one, Stage two may begin, in which online estimation of node
parameter values is conducted in step 400 until a stop condition is reached at step
500. In the present embodiment, the parameter to be inferred is node congestion status.
In order to infer node congestion, measurements of inter-arrival time for packets
transmitted along the monitoring paths can be used as measured path parameter values.
This represents a broad example of applicability of the example embodiment, with inter-arrival
time including both additive components, in which contributions from each node in
the path are summed, and non additive components.
[0073] Inter-arrival time is measured with relation to each link between nodes, and may
be expressed as:

Where:
IT is the inter-arrival time on a path;
Tp is the connection period;
Tr is the transmission time of a packet;
Tn is node processing time; and
Tq is node queuing time.
[0074] Supposing an interconnection of 1 Gbps and a packet of minimal size (64 bytes),
Tr is 672 ns.
Tn is typically around 10 us and T
q can range from 0 up to k ms. Supposing a queuing delay in the range 0 to 5 ms, T
r and T
n may be seen to be negligible for practical purposes.
IT may thus be expressed as:

[0075] The distribution for inter-arrival time is mainly caused by queuing, meaning inter-arrival
time provides a good direct indication of the congestion occurring in the network
at the different output ports of nodes.
[0076] On the basis of the previous assumptions, inter-arrival time at a measurement point
on a monitoring path can be approximated as

Where T
qi are the queuing delays of each node on the relevant path.
[0077] Whereas T
q is an additive variable, T
p is a constant term, always the same at each output port (link) of the nodes. In order
to be able to consider the unknown node parameter as an additive parameter, measurements
of
IT are decreased by the value of T
p before solving the NLP problem. The value of T
p is then added back to each estimate generated by the NLP in order to reconstruct
the
IT associated to each output port (link) before applying the statistical models. Finally,
node congestion can be inferred by subtracting T
p from the estimation in order to get the mean T
qi affecting each output port (link). It will be noted that in the event of a multiplicative
variable, the log function of the variable may be used to render the variable additive.
[0078] As discussed above, NLP is used to determine a first rough evaluation of unknowns.
Specifically, for each sample vector y of measurements at a probe point on a monitoring
path:
{subtract Tp from each component of y vector

with

Where Pj is the set of links belonging to path j
and xk the variables associated to each link.
Collect each estimated x
k+T
p in a vector V
k}
[0079] The NLP merit function includes a first term to keep the unknowns positive and a
second term representing a least squares minimization of the difference between the
measurements and the sum of the contribution to jitter by each node output on the
corresponding monitoring path. As mentioned above,
Tp is removed before optimization and added again at the end to provide a rough evaluation
of
IT.
[0080] The NLP method is repeated n times to get a set of vectors V
k sufficiently large to make statistical evaluations. Each determined vector V
k represents a group of determinations (samples) of a stochastic process related to
the k
th unknown. Specific distribution functions characterize the metric to be evaluated.
In the example embodiment considering inter-arrival time, the metric shows a behavior
that can be described using distributions including Pareto, Weibull and Inverse Gaussian.
For the purposes of illustration, the inverse Gaussian distribution is selected in
the present explanation. Considering the inverse Gaussian distribution, the ratio
between variance and squared skewness or kurtosis is found to be relatively insensitive
to uniform noise. The variance, skewness and kurtosis can be estimated from the samples
generated by the NLP operation using standard methods. In the following example, skewness
is used as providing a ratio that is least sensitive to noise.
[0081] Variance is given by:

Where µ is the mean value and λ is the distribution shape factor.
[0082] Skewness is given by:

[0083] The ratio variance over skewness squared is:

[0084] The mean value µ can thus be expressed as function of variance and skewness:

[0085] Through application of the above equation, the mean value of the parameter to be
inferred may be calculated. Each unknown mean value is calculated starting from the
relevant vector V
k which contains the set of estimates for values of the parameter of the node k generated
by NLP, the unknown mean value is then corrected using the function approximators
trained in Stage 1:
Foreach xk
{estimate µk from Vk using the statistical model
µk' =Depolarized µk
}
Foreach xk
{µak'= µk' adjusted using the related approximator
µk" =Depolarized µak'
Congestionlndexk= µk"- Tp}
[0086] The above discussion provides an overview of Stages one and two of the example embodiment,
in which estimation error is evaluated and node parameter values are inferred. Error
estimation and inferring of parameters are described in greater detail below, with
reference to Figures 6 and 7, which illustrate detailed algorithms for each of these
processes.
[0087] Figure 6 illustrates process steps conducted in step 200 of the example method of
Figure 3. The process of Figure 6 thus takes place following network identifiability
analysis 100 in which network topology is established and monitoring paths are identified.
Referring to Figure 6, in a first step 202, a random value for each unknown is selected
within the range for that unknown. In some examples, a uniform distribution may be
used for the random selection of unknown values. These randomly selected values are
assembled into a vector X of the correct training values for the unknown node parameters.
In step 204, a simulated path measurement y
j is calculated for each monitoring path j by summing, for each path j, the correct
training values of the node parameters for each node in the path. These simulated
path measurements are assembled into a measurement vector Y. In step 206, the measurement
vector Y is input to the NLP and statistical matching to generate an estimate X' of
the unknown node parameters. As discussed above, this is done by minimizing:

with

Where P
j is the set of links/nodes belonging to path j and x
k the variables associated to each link/node.
[0088] The estimated values X' and correct values X are then fed into the learning phase
of the function approximators for each unknown at step 208, enabling the function
approximators to learn how to adjust X' in order to arrive at the correct X. At step
210, a check is performed to establish whether or not the complete unknowns space
has been explored. If not, the process returns to step 202, selecting a new set of
training values from within the unknown parameter range and conducting the subsequent
steps 204 to 210. If at step 210 it is determined that the unknowns space has been
completely explored, a check is then made at step 212 as to whether or not the learning
has been completed, that is whether or not the function approximators have converged
to an estimated error. If learning has not been completed, the process returns again
to step 202 to select a new set of training values and continue the learning process.
If learning has been completed, then step 200 is complete, and the check 300 of Stage
one is performed to determine whether or not the converged error is sufficiently small
to continue. The process of Figure 6 is thus repeated until the complete random field
of unknowns has been sufficiently explored, the approximators have converged and the
converged error is below a specified threshold.
[0089] Once the estimation error evaluation of Stage one has been completed, the process
continues to Stage two and the step 400 of inferring node parameters. This process
is illustrated in the flow chart of Figure 7.
[0090] Referring to Figure 7, a process is illustrated in which a number of trials are performed,
each trial comprising the measuring of inter-arrival time of probing packets transmitted
on the identified monitoring paths. In the nomenclature of the flow chart of Figure
7, "w" is the trial number, which ranges from 1 to a total of N trials. The total
number of trials N may be set according to a testing period, a level of accuracy desired
or any other factor. A process for selecting N as a function of accuracy required
is discussed more fully below, with reference to the accuracy of the process of the
present invention. The number of unknowns n is equal to the number of nodes or links
in the network being investigated, with "k" representing an unknown from 1 to n.
[0091] In a first step 411, the process of Figure 7 sets a trial counter w to equal N, the
total number of trials to be performed. Probing packets are then sent simultaneously
along all paths in step 412, and a measurements vector Y
w is assembled in step 413. Each element of the measurements vector Y
w is an
IT measurement for a path for that particular trial. The measurements vector Y
w thus has a number of elements equal to the number of identified monitoring paths.
Sending the probing packets simultaneously provides a complete picture of the network
at a given moment in time. Once the measurements vector Y
w has been collated, the trial counter w is reduced by 1 at step 414 and a check is
made at step 415 as to whether the counter has reached zero. If the counter has not
reached zero, the process returns to step 412 to re-send probing packets along all
the paths and assemble a new measurements vector for the new trial. This process is
repeated until all the set number of N trials have been completed. The N trials are
executed at the highest rate possible, in order to collect closely related information.
The probing connection rate is a function of the number of packets to be sent and
the time interval in which the network is considered stable. Typically the operation
may be executed in a time interval spanning between a few seconds and one minute.
[0092] Once the trials have been completed and the measurements are all available in a series
of measurement vectors Y
w, an offline phase begins, in which node parameters are inferred. The trial counter
w is reset to N, the total number of trials, in step 421 and in step 422, non additive
components are removed from the elements of the vector Y
w for the currently considered trial w. Referring to the earlier discussion, in the
case of
IT measurements, this involves subtracting out the
Tp component from each
IT measurement in the measurements vector Y
w. The NLP problem is then solved at step 423 by minimizing a cost function as discussed
above. This results in an unknowns vector x' containing the estimated values of the
unknown parameters on the basis of the current trial w. In step 424, each estimated
unknown parameter value is collected into an estimation vector V
k for a particular node k together with the non additive component which is added back
into the additive component. The trial counter is then decreased by one in step 425
and a check is made at step 426 as to whether the trial counter has reached zero.
If the trial counter has not reached zero, the process returns to step 422 and removes
non additive components and solves the NLP problem for the results of the next trial,
using the appropriate measurements vector Y
w for that trial. The NLP problem is thus solved a total of N times, each time using
a different measurements vector Y
w from a different trial. In each iteration, at step 424, a new element is added into
each vector V
k containing the estimated unknown parameter value from the currently considered trial,
plus the non additive component. Once the iterations are complete (when the trial
counter has reached zero), each unknown variable x
k will have a corresponding vector V
k containing a number of estimated values of x
k equal to the number of trials N.
[0093] An unknowns counter k is set to the number n of unknowns in step 431. An estimate
of the mean value µ
k for the unknown x
k is calculated at step 432 from the vector V
k. The mean value µ
k is calculated using a ratio of central moments of a matched statistical distribution
which has a sensitivity to noise below a threshold value. As discussed above, in the
case of a matched distribution that is an inverse Gaussian distribution, the ratio
of central moments may comprise variance over skewness squared. Also as discussed
above, the elements of the V
k vector, the estimates generated by the NLP operation, are affected by an error that
demonstrates a behaviour similar to uniform distribution noise. Calculating a mean
value for the node parameter using a ratio of central moments that is relatively insensitive
to noise cancels this noise contribution.
[0094] The calculated mean value µ
k may be polarized as a result of estimators so depolarization is applied at step 433
to generate a depolarized mean value µ
k'. The unknowns counter k is then decreased by one at step 434 and a check is made
at step 435 whether or not the unknowns counter has reached zero. If the unknown counter
k has not reached zero, the process returns to step 432 and calculates the mean value
for the next unknown. Once a depolarized mean value has been calculated for all unknowns,
the process proceeds to step 441, in which the unknowns counter is again set to the
number n of unknowns. In step 442, the depolarized mean value µ
k' for the unknown x
k is adjusted using the related function approximator, trained in Stage one. This adjustment
compensates for the estimation error evaluated in Stage one which is a function of
at least one of network topology, identified paths and interaction of node component
values. The resulting adjusted value µa
k is then depolarized again to produce a depolarized adjusted value µ
k". The final inferred value for the unknown x
k is then calculated by removing the non additive component
Tp from the depolarized adjusted value µ
k". In step 443, the unknowns counter is decreased by one and at step 444 a check is
performed as to whether or not the unknowns counter has arrived at zero. If the unknowns
counter k is not zero, then all of the unknown parameters have not yet been inferred,
and the process returns to step 442 to generate the final inferred value for the next
unknown. Once all of the unknowns have been inferred, the process terminates.
[0095] As discussed above, the process of the present invention, as explained with reference
to the example embodiment of Figures 3 to 7, may be conducted in a processing unit
of a network element. The process may be implemented on receipt of suitable computer
readable instructions, which may be embodied within a computer program running on
a network element. Figure 8 illustrates a first example of a network element which
may execute the process of the present invention, for example on receipt of suitable
instructions from a computer program. Referring to Figure 8, the network element 500
comprises a processor 501 and a memory 502. The memory 502 contains instructions executable
by the processor 501 such that the network element 500 is operative to conduct the
steps of the process of Figures 2, 3, 6 and/or 7. The memory may also store measurements
and processing data generated during the process. The network element 500 may also
comprise an Input/Output unit 503, for example enabling communication with a network
to be analysed, for example via the exchange of probing packets.
[0096] Figure 9 illustrates functional units in another example of network element 600 which
may execute the process of the present invention, for example according to computer
readable instructions received from a computer program. It will be understood that
the units illustrated in Figure 9 are functional units, and may be realised in any
appropriate combination of hardware and/or software.
[0097] Referring to Figure 9, the network element comprises a network identifying unit 610,
an estimating unit 620, comprising a path unit 622 and an optimisation unit 624, and
an inferring unit 630. The network element 600 may also comprise an error correction
unit 640 comprising an error estimating unit 642 and an error adjusting unit 644.
The network identifying unit 610 is configured to determine network topology and to
identify a plurality of monitoring paths through the network, for example through
running a Network Tomography identifiability problem solving function. The path unit
622 of the estimating unit 620 is configured to measure a path parameter value for
paths identified by the network identifying unit 610. This may comprise receiving
a measured value from a probe on a network node at an end of a monitoring path. The
optimisation unit 624 of the estimation unit 620 is configured to generate a set of
constraints by expressing measured path parameter values as a function of component
parameter values of the components in the path associated with the measured path parameter
value, and to generate an estimate of the component parameter values by solving an
optimisation problem defined by the generated constraints. In some examples, the estimating
unit 620 may be configured to repeat the functions of the path unit 622 and optimisation
unit 624 until an exit condition is satisfied, for example until a predetermined number
of trials has been completed. The inferring unit 630 is configured, for individual
components in the identified paths, to match the generated estimates of the component
parameter value to a statistical distribution describing a behaviour of the component
parameter. The inferring unit 630 is also configured to identify a ratio of central
moments of the statistical distribution that demonstrates a sensitivity to noise below
a threshold value and to calculate an inferred value of the component parameter from
the identified ratio of central moments.
[0098] If present in the network device, the error estimating unit 642 of the error correction
unit 640 is configured to estimate an error in the inferred values of the component
parameter, and the error adjusting unit 644 of the error correction unit 640 is configured
to adjust the inferred values of the component parameter on the basis of the estimated
error.
[0099] The scalability, execution time and accuracy of the method of the present invention
may be evaluated using test scenarios. In a first example, the following network scenarios
may be considered, based upon information obtained from Network Management System
experts:
Network with 20K, 50K, 100K nodes (these represent projections for future network
sizes, current networks rarely comprising more than 100 to 200 nodes).
[0100] Mesh-degree: 2 (mean number of links leading toward to each node).
[0101] Network segmentation in 5 regions.
[0102] In the following example, two processors are considered: an Intel desktop i7 3900
processor operating at 3.066 GHz, and having a processing capacity according to Intel
specification of 182 GFLOPS in the boosted configuration, and a processing accelerator
for workstations based on TESLA GPU by NVIDIA, that reaches more than 4 TFLOPS.
Table 1
Network configuration |
Number of samples per probing point |
I7 computation time |
TESLA computation time |
20k nodes |
1 Million |
66 s |
3 s |
50k nodes |
165 s |
7.5 s |
100k nodes |
5.5 min |
15 s |
20k nodes |
10 Million |
11 min |
30 s |
50k nodes |
27.5 min |
75 s |
100k nodes |
55 min |
150 s |
[0103] The measurement phase (steps 411 to 415 of Figure 7) is performed in a very short
time to ensure that all samples refer to the same statistical conditions in the network.
For each trial, probing packets are sent simultaneously from each source point in
order to obtain a picture of the network at a single point in time. As discussed above,
the probing connection rate is a function of the number of packets to be sent and
the time interval in which the network status is considered stable. Typically the
operation is executed in times ranging from a few seconds up to one minute. As can
be seen from Table 1, processing of the data obtained during the measurement phase
takes about 11 minutes for a network with 20k nodes and 10M samples. During the processing
of acquired samples there are no requirements for the network to maintain its status.
[0104] Network performance monitoring is typically performed at 15 minutes intervals. Using
1 million samples this 15 minute schedule can always be maintained with any processor
and size of network up to 100k nodes. With 10 million samples an i7 processor is suitable
up to 20k nodes, but a higher performance processor is needed for larger networks.
With 10 million samples, the GPU based processing accelerator is capable of maintaining
a 15 minute performance monitoring schedule, even for 100k node networks.
[0105] Accuracy in the inferred values for component parameters depends mainly on the statistical
analysis. Simulations demonstrate that the error obtained solving the NLP problem
can be modeled as a uniform noise. Methods according to the present invention remove
this noise using a statistical approach by finding an expression of the mean value
of the unknowns as the ratio of two central moments of the distribution characterising
the unknown variable, which ratio is relatively insensitive to noise. In this manner,
the noise contribution resulting from the NLP problem solution is cancelled out. The
statistical analysis benefits from a reasonable number of samples in order to estimate
the central moments with accuracy. In practice 1 to 10 million samples represents
a suitable range for a good level of accuracy. It has been observed in test scenarios
that estimation accuracy does not improve significantly once the number of samples
exceeds 1 million. Each trial during which probing packets are sent along monitoring
paths generates a single sample for each unknown parameter value. The number of samples
may thus be dictated by the level of accuracy desired. In some examples, the variance
of the central moment estimation may be expressed as a function of the number of samples.
By selecting a maximum acceptable variance in the central moment estimation, a required
number of samples may thus be obtained. This number may be set as the number of trials
N, and completing this number of trials may thus be the exit condition for the iteration
of the steps of obtaining path parameter measurements and solving the NLP optimization
problem to obtain node parameter estimates.
[0106] Simulations demonstrate that the final error affecting the inferred parameter values
ranges between 2% and 10%. The final error may be estimated using the procedure of
stage one illustrated in Figure 6 in order to obtain in advance the expected accuracy
for each unknown parameter value. Knowing the maximum error that can affect the inferred
value, it is possible to take this maximum error into account when taking decisions
as to corrective or preventative actions to be conducted on the network in light of
the inferred parameter values.
[0108] The measured path parameter for the test network was inter-arrival time of probing
packets and the statistical model chosen was the Inverse Gaussian distribution. The
best results, obtained for link 1, are presented in Figure 11, and the worse case
results, obtained for link 5, are presented in Figure 12. In 90% of cases, it may
be seen that the best case inferred parameter was affected by an error of less than
2%, and the worse case inferred parameter was affected by an error of less than 10%,
satisfying monitoring requirements.
[0109] Embodiments of the present invention thus combine Non Linear programming with statistical
models and function approximators to allow estimation of network component parameters
in unidentifiable networks. Embodiments of the present invention thus render Network
Tomography applicable to practical situations involving IP and IP/MPLS networks, by
removing the requirement for full monitoring coverage. The process of the present
invention is applicable to heterogeneous networks and does not reply on individual
node capabilities, making it very appropriate for modern networks which may involve
multiple different network technologies and operators. The accuracy of estimation
afforded by the process of the present invention is demonstrated above, and fulfils
monitoring requirements for practical applications in existing communication networks.
[0110] Embodiments of the present invention may be applied in a wide range of communication
networks, including for example mobile, backhaul, transport and core networks. The
complexity of mobile networks in particular is increasing rapidly with the introduction
of 4G technologies and the development of 5G. The forecast massive introduction of
small and micro cells accompanying the evolution to 5G will increase substantially
the meshing degree of the access network, with consequent increases in complexity
for the monitoring and analysis of network performance and behavior. In addition,
such massive deployment of radio units increases the need for the introduction of
a fronthaul network, including switches and routers, in order to improve connectivity.
Embodiments of the present invention can help significantly in introducing a capillary
monitoring of all the devices in the fronthaul network without requiring specific
monitoring functionalities at each element or any interoperation among elements. The
monitoring and behavior analysis enabled by embodiments of the present invention is
compatible with new hardware and protocols which may be introduced in the future.
[0111] Similar advantages are offered by aspects of the present invention when applied to
other network types, including backhaul, transport and core. Such networks often demonstrate
several degrees of heterogeneity, implying a lack of interoperation and control communication
among machines and network domains. Embodiments of the present invention are thus
particularly useful as they enable the inference of network component parameters without
the need for such interoperation and control communication. Additionally, embodiment
of the present invention may easily be integrated in any kind of existing or future
control and management system, increasing their capabilities in monitoring and analysis
of any kind of network.
[0112] The methods of the present invention may be implemented in hardware, or as software
modules running on one or more processors. The methods may also be carried out according
to the instructions of a computer program, and the present invention also provides
a computer readable medium having stored thereon a program for carrying out any of
the methods described herein. A computer program embodying the invention may be stored
on a computer-readable medium, or it could, for example, be in the form of a signal
such as a downloadable data signal provided from an Internet website, or it could
be in any other form.
[0113] It should be noted that the above-mentioned embodiments illustrate rather than limit
the invention, and that those skilled in the art will be able to design many alternative
embodiments without departing from the scope of the appended claims. The word "comprising"
does not exclude the presence of elements or steps other than those listed in a claim,
"a" or "an" does not exclude a plurality, and a single processor or other unit may
fulfil the functions of several units recited in the claims. Any reference signs in
the claims shall not be construed so as to limit their scope.
1. Verfahren zum Ableiten von Komponentenparameterwerten für Komponenten in einem Netz,
wobei die Komponenten zumindest eines von Netzknoten oder Netzverknüpfungen umfassen,
wobei das Verfahren Folgendes umfasst:
Identifizieren einer Vielzahl von Pfaden durch das Netz (100) ;
Messen von Werten von Pfadparametern für die identifizierten Pfade durch Überwachen
von Sonden, die an Knoten an den Enden der identifizierten Pfade platziert sind (410)
;
Generieren einer Reihe von Beschränkungen durch Ausdrücken von einzelnen gemessenen
Pfadparameterwerten als eine Funktion von Komponentenparameterwerten, die mit den
einzelnen Komponenten auf dem Pfad assoziiert sind, der mit dem gemessenen Parameterwert
assoziiert ist (420a);
Generieren einer Schätzung für jeden der Komponentenparameterwerte durch Lösung eines
Optimierungsproblems, das durch die generierten Beschränkungen definiert ist (420b);
und
für jede der einzelnen Komponenten auf den identifizierten Pfaden:
Angleichen der generierten Schätzungen des Komponentenparameterwerts, der mit deren
entsprechender einzelner Komponente assoziiert ist, an eine statistische Verteilung,
die ein Verhalten des Komponentenparameters beschreibt (430a);
Identifizieren eines Verhältnisses von zentralen Momenten der statistischen Verteilung,
das eine Empfindlichkeit für Rauschen unter einem Schwellenwert darlegt (430b); und
Berechnen eines abgeleiteten Komponentenparameterwerts aus dem identifizierten Verhältnis
von zentralen Momenten (430c).
2. Verfahren nach Anspruch 1, wobei Messen von Werten eines Pfadparameters für identifizierte
Pfade, Generieren einer Reihe von Beschränkungen und Generieren einer Schätzung der
Komponentenparameterwerte eine Versuchsiteration umfassen; und wobei das Verfahren
ferner Wiederholen der Versuchsiteration umfasst, bis eine Abbruchbedingung erfüllt
ist (426), bevor nachfolgende Verfahrensschritte durchgeführt werden.
3. Verfahren nach einem der vorstehenden Ansprüche, wobei Ausdrücken eines gemessenen
Pfadparameterwerts als eine Funktion von Komponentenparameterwerten der Komponenten
auf dem Pfad, der mit dem gemessenen Pfadparameterwert assoziiert ist (420a), Ausdrücken
des gemessenen Pfadparameterwerts als eine Funktion der Summierung der Komponentenparameterwerte
der Komponenten auf dem Pfad, der mit dem gemessenen Pfadparameterwert assoziiert
ist, umfasst.
4. Verfahren nach einem der vorstehenden Ansprüche, wobei die Komponenten Netzknoten
umfassen und der Komponentenparameter Knoten-Queuing-Zeit umfasst.
5. Verfahren nach einem der vorstehenden Ansprüche, ferner umfassend:
Schätzen eines Fehlers in den abgeleiteten Werten des Komponentenparameters (200);
und
Anpassen der abgeleiteten Werte auf der Grundlage des geschätzten Fehlers (440).
6. Computerprogrammprodukt, das dazu konfiguriert ist, ein Verfahren nach einem der vorstehenden
Ansprüche auszuführen, wenn es auf einem Computer läuft.
7. Netzelement (500) zum Ableiten von Komponentenparameterwerten für Komponenten in einem
Netz, wobei die Komponenten zumindest eines von Netzknoten oder Netzverknüpfungen
umfassen, wobei das Netzelement einen Prozessor (501) und einen Speicher (502) umfasst,
wobei der Speicher (502) Anweisungen enthält, die durch den Prozessor (501) ausführbar
sind, sodass der Prozessor (501) für Folgendes betreibbar ist:
eine Vielzahl von Pfaden durch das Netz zu identifizieren;
durch Überwachen von Sonden, die an Knoten an den Enden der identifizierten Pfade
platziert sind, Werte von Pfadparametern für die identifizierten Pfade zu messen;
eine Reihe von Beschränkungen durch Ausdrücken von einzelnen gemessenen Pfadparameterwerten
als eine Funktion von Komponentenparameterwerten zu generieren, die mit den einzelnen
Komponenten auf dem Pfad assoziiert sind, der mit dem gemessenen Parameterwert assoziiert
ist;
eine Schätzung für jeden der Komponentenparameterwerte durch Lösung eines Optimierungsproblems,
das durch die generierten Beschränkungen definiert ist, zu generieren; und für jede
der einzelnen Komponenten auf den identifizierten Pfaden:
die generierten Schätzungen des Komponentenparameterwerts, der mit deren entsprechender
einzelner Komponente assoziiert ist, an eine statistische Verteilung, die ein Verhalten
des Komponentenparameters beschreibt, anzugleichen;
ein Verhältnis von zentralen Momenten der statistischen Verteilung, das eine Empfindlichkeit
für Rauschen unter einem Schwellenwert darlegt, zu identifizieren; und
einen abgeleiteten Komponentenparameterwert aus dem identifizierten Verhältnis von
zentralen Momenten zu berechnen.
8. Netzelement nach Anspruch 7, wobei das Netzelement (500) ferner dazu betreibbar ist,
Werte von einem Pfadparameter durch Empfangen einer Messung, die auf einem Überprüfungspaket
durchgeführt wird, das über den Pfad übertragen wird, zu messen.
9. Netzelement nach einem der Ansprüche 7 bis 8, wobei das Netzelement (500) ferner dazu
betreibbar ist, einen gemessenen Pfadparameterwert als eine Funktion von Komponentenparameterwerten
der Komponenten auf dem Pfad, der mit dem gemessenen Pfadparameterwert assoziiert
ist, durch Ausdrücken des gemessenen Pfadparameterwerts als eine Funktion der Summierung
der Komponentenparameterwerte der Komponenten auf dem Pfad, der mit dem gemessenen
Pfadparameterwert assoziiert ist, auszudrücken.
10. Netzelement nach einem der Ansprüche 7 bis 9, wobei der Komponentenparameter ein Maß
von Komponentenüberlastung umfasst.
11. Netzelement nach einem der Ansprüche 7 bis 10, wobei die Komponenten Netzknoten umfassen
und der Komponentenparameter Knoten-Queuing-Zeit umfasst.
12. Netzelement nach einem der Ansprüche 7 bis 11, wobei das Netzelement (500) ferner
dazu betreibbar ist, ein Optimierungsproblem, das durch die generierten Beschränkungen
definiert ist, durch Minimieren einer Kostenfunktion gemäß den generierten Beschränkungen
zu lösen.
13. Netzelement nach einem der Ansprüche 7 bis 12, wobei das Netzelement (500) ferner
dazu betreibbar ist, den abgeleiteten Wert des Komponentenparameters durch Berechnen
eines Mittelwerts der angeglichenen statistischen Verteilung aus dem identifizierten
Verhältnis von zentralen Momenten zu berechnen.
14. Netzelement nach einem der Ansprüche 7 bis 13, wobei die statistische Verteilung eine
umgekehrte Gaußsche Verteilung umfasst und wobei das Netzelement (500) ferner dazu
betreibbar ist, ein Verhältnis von zentralen Momenten der statistischen Verteilung,
das eine Empfindlichkeit für Rauschen unter einem Schwellenwert darlegt, durch Identifizieren
eines Verhältnisses von Varianz zu Schiefe oder Varianz zu Wölbung zu identifizieren,
15. Netzelement nach einem der Ansprüche 7 bis 14, wobei das Netzelement (500) ferner
für Folgendes betreibbar ist:
einen Fehler in den abgeleiteten Werten des Komponentenparameters zu schätzen; und
die abgeleiteten Werte auf der Grundlage des geschätzten Fehlers anzupassen.
1. Procédé de déduction de valeurs de paramètres de composants pour des composants dans
un réseau, dans lequel les composants comprennent au moins un parmi des noeuds de
réseau ou des liaisons de réseau, le procédé comprenant :
l'identification d'une pluralité de chemins à travers le réseau (100) ;
la mesure, par surveillance de sondes placées sur des noeuds à l'extrémité des chemins
identifiés, de valeurs d'un paramètre de chemin pour les chemins identifiés (410)
;
la génération d'un ensemble de contraintes par le fait d'exprimer des valeurs de paramètres
de chemin mesurées individuelles en tant que fonction de valeurs de paramètres de
composants associées aux composants individuels dans le chemin associé à la valeur
de paramètre de chemin mesurée (420a) ;
la génération d'une estimation pour chacune des valeurs de paramètres de composants
par résolution d'un problème d'optimisation défini par les contraintes générées (420b)
; et, pour chacun des composants individuels dans les chemins identifiés :
faire correspondre les estimations générées de la valeur de paramètre de composant,
associées à leur composant individuel correspondant, à une distribution statistique
décrivant un comportement du paramètre de composant (430a) ;
l'identification d'un rapport de moments centraux de la distribution statistique qui
montre une sensibilité au bruit en dessous d'une valeur seuil (430b) ; et
le calcul d'une valeur de paramètre de composant déduite, à partir du rapport identifié
de moments centraux (430c).
2. Procédé selon la revendication 1, dans lequel la mesure de valeurs d'un paramètre
de chemin pour des chemins identifiés, la génération d'un ensemble de contraintes
et la génération d'une estimation des valeurs de paramètres de composants comprennent
une itération d'essai ; et dans lequel le procédé comprend en outre la répétition
de l'itération d'essai jusqu'à ce qu'une condition de sortie soit satisfaite (426)
avant de réaliser des étapes de procédé subséquentes.
3. Procédé selon l'une quelconque des revendications précédentes, dans lequel le fait
d'exprimer une valeur de paramètre de chemin mesurée en tant que fonction de valeurs
de paramètres de composants pour des composants dans le chemin associé à la valeur
de paramètre de chemin mesurée (420a) comprend le fait d'exprimer la valeur de paramètre
de chemin mesurée en tant que fonction de la sommation des valeurs de paramètres de
composants pour les composants dans le chemin associé à la valeur de paramètre de
chemin mesurée.
4. Procédé selon l'une quelconque des revendications précédentes, dans lequel les composants
comprennent des noeuds de réseau et le paramètre de composant comprend un temps de
mise en file d'attente de noeuds.
5. Procédé selon l'une quelconque des revendications précédentes, comprenant en outre
:
l'estimation d'une erreur dans les valeurs déduites du paramètre de composant (200)
; et
l'ajustement des valeurs déduites sur la base de l'erreur estimée (440).
6. Produit-programme d'ordinateur configuré, lorsqu'il est exécuté sur un ordinateur,
pour effectuer un procédé selon l'une quelconque des revendications précédentes.
7. Élément de réseau (500) pour déduire des valeurs de paramètres de composants pour
des composants dans un réseau, dans lequel les composants comprennent au moins un
parmi des noeuds de réseau ou des liaisons de réseau, l'élément de réseau comprenant
un processeur (501) et une mémoire (502), la mémoire (502) contenant des instructions
exécutables par le processeur (501) de sorte que le processeur (501) est utilisable
pour :
identifier une pluralité de chemins à travers le réseau ;
mesurer, par surveillance de sondes placées sur des noeuds à l'extrémité des chemins
identifiés, des valeurs d'un paramètre de chemin pour les chemins identifiés ;
générer un ensemble de contraintes par le fait d'exprimer des valeurs individuelles
de paramètres de chemin mesurées en tant que fonction de valeurs de paramètres de
composants associées aux composants individuels dans le chemin associé à la valeur
de paramètre de chemin mesurée ;
générer une estimation pour chacune des valeurs de paramètres de composants par résolution
d'un problème d'optimisation défini par les contraintes générées ; et,
pour chacun des composants individuels dans les chemins identifiés :
faire correspondre les estimations générées de la valeur de paramètre de composant,
associées à leur composant individuel correspondant, à une distribution statistique
décrivant un comportement du paramètre de composant ;
identifier un rapport de moments centraux de la distribution statistique qui montre
une sensibilité au bruit en dessous d'une valeur seuil ; et
calculer une valeur de paramètre de composant déduite à partir du rapport identifié
de moments centraux.
8. Élément de réseau selon la revendication 7, dans lequel l'élément de réseau (500)
est en outre fonctionnel pour mesurer des valeurs d'un paramètre de chemin par réception
d'une mesure réalisée sur un paquet de sondage transmis sur le chemin.
9. Élément de réseau selon l'une quelconque des revendications 7 à 8, dans lequel l'élément
de réseau (500) est en outre fonctionnel pour exprimer une valeur de paramètre de
chemin mesurée en tant que fonction de valeurs de paramètres de composants pour des
composants dans le chemin associé à la valeur de paramètre de chemin mesurée par le
fait d'exprimer la valeur de paramètre de chemin mesurée en tant que fonction de la
sommation des valeurs de paramètres de composants pour les composants dans le chemin
associé à la valeur de paramètre de chemin mesurée.
10. Élément de réseau selon l'une quelconque des revendications 7 à 9, dans lequel le
paramètre de composant comprend une mesure d'encombrement de composants.
11. Élément de réseau selon l'une quelconque des revendications 7 à 10, dans lequel les
composants comprennent des noeuds de réseau et le paramètre de composant comprend
un temps de mise en file d'attente de noeuds.
12. Élément de réseau selon l'une quelconque des revendications 7 à 11, dans lequel l'élément
de réseau (500) est en outre fonctionnel pour résoudre un problème d'optimisation
défini par les contraintes générées en rendant minimale une fonction de coûts selon
les contraintes générées.
13. Élément de réseau selon l'une quelconque des revendications 7 à 12, dans lequel l'élément
de réseau (500) est en outre fonctionnel pour calculer la valeur déduite du paramètre
de composant par le calcul d'une moyenne de la distribution statistique correspondante
à partir du rapport identifié de moments centraux.
14. Élément de réseau selon l'une quelconque des revendications précédentes 7 à 13, dans
lequel la distribution statistique comprend une distribution de Gauss inverse, et
dans lequel l'élément de réseau (500) est en outre fonctionnel pour identifier un
rapport de moments centraux de la distribution statistique qui montre une sensibilité
au bruit en dessous d'une valeur seuil par identification d'un rapport de variance
sur asymétrie ou de variance sur aplatissement.
15. Élément de réseau selon l'une quelconque des revendications 7 à 14, dans lequel l'élément
de réseau (500) est en outre fonctionnel pour :
estimer une erreur dans les valeurs déduites du paramètre de composant ; et
ajuster les valeurs déduites sur la base de l'erreur estimée.