BACKGROUND OF THE INVENTION
[0001] The subject matter disclosed herein relates to a system for controlling a multilevel
flying capacitor soft switching resonant power converter and optionally also to a
system utilizing multiple modulation strategies to provide improved performance of
the power converter over a broad range of operating conditions.
[0002] As is known to those skilled in the art power converters allow for a controlled output
voltage and/or current to be supplied from an input power source. The input power
source is a Direct Current (DC) supply which may have a fixed or variable amplitude.
The controlled output voltage is an AC voltage and may have a variable amplitude and
frequency (AC voltage). Numerous configurations of one or more active or passive switching
devices along with inductive or capacitive devices are arranged to provide the controlled
output voltage.
[0003] A common method for controlling the power converter utilizes "hard" switching. Hard
switching requires turning an actively controlled switching device on or off at a
desired time without consideration of the current or voltage being conducted by the
switch. As a result, spikes in voltage and/or current result during the transitions
between on and off. These spikes generate wide band electromagnetic noise as a function
of the switching frequency. In addition, the switching devices incur switching losses
due to the voltages and/or currents present during reverse recovery of the switching
device.
[0004] Recent developments in power converters attempt to mitigate the switching losses
and noise generated from "hard" switching by implementing "soft" switching. In soft
switching, the switching devices are controlled to turn on and off when either the
current or the voltage across the switching device is at or near zero. In super resonant
inverter topology, the switching device is typically turned off when zero voltage,
but some current, is present. A snubber capacitor is connected in parallel across
each switching device which quickly removes the remaining current across the switching
device after it has been turned off. As a result, a soft switching converter reduces
the switching losses and noise generated when compared to a hard switching converter.
[0005] As is known, performance of resonant power converters may typically be optimized
at one operating point. However, performance diminishes over a wide range of input
voltages, load variations, or a combination thereof.
[0006] Thus, it would be desirable to provide a resonant converter exhibiting desired performance
over a wide range of operating conditions.
[0009] WO02097960 relates to an apparatus for converting alternating voltage into direct voltage and
conversely included in a SVC (Stacic Var Compensator) with a direct voltage side formed
by one or more capacitors hanging freely comprises a series connection of all current
valves and a flying capacitor connected in parallel with the two inner current valves,
and an arrangement for controlling the current valves to generate a train of pulses
with determined amplitudes according to a pulse width modulation pattern on a phase
output of the apparatus.
BRIEF DESCRIPTION OF THE INVENTION
[0010] The subject matter disclosed herein describes an improved system and method of controlling
a multilevel, soft switching converter. The multilevel converter is configured to
provide five different voltage levels to a load. Snubber capacitors are provided across
each of the switches to provide soft switching operation. The multilevel, soft switching
converter is configured to be operated across a wide range of loading conditions.
Consequently, the multilevel, soft switching converter includes three different operating
modes. Each operating mode is optimized to provide an output voltage at a different
portion of the overall operating range of the multilevel, soft switching converter.
A first operating mode controls operation of the multilevel, soft switching converter
up to rated power and, generally, at high power operation. A second operating mode
controls operation of the converter over a medium power range of operation, and a
third operating mode controls operation of the converter at a low power range of operation.
[0011] In one embodiment of the invention, a multilevel soft switching power converter is
disclosed which includes a DC bus, a pair of switching arms, and a controller. The
DC bus includes a positive rail and a negative rail operable to have a voltage potential
present across the DC bus. Each switching arm is connected between the positive rail
and the negative rail, and each switching arm further includes four soft switches
in series. The first soft switch is connected between the positive rail and a first
intermediate connection and is controlled by a first gating signal. The second soft
switch is connected between the first intermediate connection and a second intermediate
connection and is controlled by a second gating signal. The third soft switch is connected
between the second intermediate connection and a third intermediate connection and
is controlled by a third gating signal. The fourth soft switch is connected between
the third intermediate connection and the negative rail and is controlled by a fourth
gating signal. Each switching arm also includes a flying capacitor connected between
the first intermediate connection and the third intermediate connection and an output
terminal connected at the second intermediate connection. The controller is operable
to generate each of the first, second, third, and fourth gating signals utilizing
at least three control methods.
[0012] According to another embodiment of the invention, a method of controlling a multilevel
soft switching power converter is disclosed. The multilevel soft switching power converter
includes a pair of switching arms, where each switching arm is connected between a
positive rail and a negative rail of a DC bus. Each switching arm comprising four
soft switches, connected in series between the positive rail and the negative rail,
and a flying capacitor. A command signal corresponding to a desired operation of the
multilevel soft switching power converter is received at a controller, where the multilevel
soft switching power converter is operable to control the soft switches in at least
a first, second, and third operating mode. At least one feedback signal corresponding
to a current and/or a voltage present at an input to the power converter is received
at the controller. Similarly, at least one feedback signal corresponding to a current
and/or a voltage present at an output of the power converter is received at the controller.
The controller generates multiple gating signals, where each gating signal corresponds
to one of the soft switches. The gating signals are generated in a first sequence
in the first operating mode, a second sequence in the second operating mode, and a
third sequence in the third operating mode.
[0013] These and other objects, advantages, and features of the invention will become apparent
to those skilled in the art from the detailed description and the accompanying drawings.
It should be understood, however, that the detailed description and accompanying drawings,
while indicating preferred embodiments of the present invention, are given by way
of illustration and not of limitation. Many changes and modifications may be made
within the scope of the present invention without departing from the spirit thereof,
and the invention includes all such modifications.
BRIEF DESCRIPTION OF THE DRAWING(S)
[0014] Various exemplary embodiments of the subject matter disclosed herein are illustrated
in the accompanying drawings in which like reference numerals represent like parts
throughout, and in which:
FIG. 1 is a schematic representation of a multilevel soft switching power converter
according to one embodiment of the invention;
FIG. 2 is a schematic representation of one of the switch modules of FIG. 1;
FIG. 3 is a block diagram representation of a controller connected to the power converter
of FIG. 1;
FIG. 4 is a graphical representation of the sequence of gating signals for controlling
the power converter of FIG. 1 in a first operating mode;
FIG. 5 is a schematic representation of the sequence of operating states for the power
converter of FIG. 1 in the first operating mode;
FIG. 6 is a graphical representation of the sequence of gating signals for controlling
the power converter of FIG. 1 in a second operating mode;
FIG. 7 is a schematic representation of the sequence of operating states for the power
converter of FIG. 1 in the second operating mode;
FIG. 8 is a graphical representation of the sequence of gating signals for controlling
the power converter of FIG. 1 in a third operating mode;
FIG. 9 is a schematic representation of the sequence of operating states for the power
converter of FIG. 1 in the third operating mode; and
FIG. 10 is a graphical representation of the output voltage delivered by the multilevel
soft switching power converter for varying switching frequencies in each of the three
modes of operation according to one embodiment of the invention.
[0015] In describing the preferred embodiments of the invention which are illustrated in
the drawings, specific terminology will be resorted to for the sake of clarity. However,
it is not intended that the invention be limited to the specific terms so selected
and it is understood that each specific term includes all technical equivalents which
operate in a similar manner to accomplish a similar purpose. For example, the word
"connected," "attached," or terms similar thereto are often used. They are not limited
to direct connection but include connection through other elements where such connection
is recognized as being equivalent by those skilled in the art.
DETAILED DESCRIPTION OF THE INVENTION
[0016] The various features and advantageous details of the subject matter disclosed herein
are explained more fully with reference to the non-limiting embodiments described
in detail in the following description.
[0017] Turning initially to FIG. 1, one embodiment of the present invention provides a multilevel
soft switching power converter 10 with flying capacitors. The power converter 10 receives
a Direct Current (DC) voltage, V
DC, from a DC bus 12 and provides an Alternating Current (AC) voltage, V
AC, at an output 18. The DC bus 12 includes a positive rail 14 and a negative rail 16.
The voltage potential on the positive rail 14 is typically greater than the voltage
potential on the negative rail 16. The voltage potential on either the positive rail
14 or the negative rail 16 may be a positive voltage potential with respect to ground,
a negative voltage potential with respect to ground, or at a ground potential, that
is, zero volts. The power converter 10 includes a first switching arm 11 and a second
switching arm 13 where each switching arm 11, 13 is connected between the positive
rail 14 and the negative rail 16.
[0018] Each switching arm 11, 13 includes four soft switches such that each switching arm
11, 13 may provide one of three voltage potentials (V
DC, V
DC/2, and 0) at an output terminal 18 in the switching arm 11, 13. The three voltage
potentials applied to each of the switching arms 11, 13 result in five possible voltage
potentials applied across the load (V
DC, V
DC/2, 0, -V
DC/2, and -V
DC)Each soft switch includes a switch module 20 and a snubber capacitor 22 connected
in parallel to the switch module 20. A first soft switch is connected between the
positive rail 14 and a first intermediate connection 30 between the positive rail
14 and the negative rail 16. A second soft switch is connected between the first intermediate
connection 30 and a second intermediate connection 32 between the positive rail 14
and the negative rail 16. A third soft switch is connected between the second intermediate
connection 32 and a third intermediate connection 34 between the positive rail 14
and the negative rail 16. A fourth soft switch is connected between the third intermediate
connection 34 and the negative rail 16. Each switching arm 11, 13 also includes a
flying capacitor 38 connected between the first intermediate connection 30 and the
third intermediate connection 34. A first capacitor voltage sensor 41 measures the
voltage across the flying capacitor 38 in the first switching arm 11 and a second
capacitor voltage sensor 43 measures the voltage across the flying capacitor 38 in
the second switching arm 13. The output terminal 18 for each switching arm 11, 13
is connected to the second intermediate connection 32.
[0019] Referring next to FIG. 2, each switch module 20 includes a solid state switching
device 24 and a freewheeling diode 26. According to the illustrated embodiment, the
switching device 24 is a MOSFET. The anode of the freewheeling diode 26 is connected
to the source of the MOSFET 24 and the cathode of the freewheeling diode 26 is connected
to the drain of the MOSFET 24. The gate of the MOSFET receives a gating signal 25.
Optionally, the switching device 24 may be any suitable transistor, thyristor, silicon-controlled
rectifier, and the like rated to handle the voltage expected across the switching
device 24. As illustrated, the switch module 20 may also include a resistance 28 connected
in parallel to the freewheeling diode 26. The resistance 28 is preferably a high resistance
such that little current is conducted through the resistance 28. Having the resistance
28 connected in parallel in each switch module 20 establishes a voltage divider circuit
between the positive rail 14 and the negative rail 16 such that the DC voltage, V
DC, present on the DC bus 12 is divided evenly across each of the switch modules 20.
[0020] Operation of the power converter 10 is controlled by a processor 48. With reference
to FIG. 3, the processor 48 is in communication with a memory device 50 which is configured
to store instructions, or a program, executable on the processor 48. It is contemplated
that the processor 48 may be a general microprocessor or a dedicated controller for
the converter. The processor 48 may be a single device or multiple devices configured
to operate in parallel. Similarly, the memory device 50 may be a single memory device
or multiple memory devices including volatile memory, non-volatile memory, or a combination
thereof. It is further contemplated that the processor 48 and the memory device 50
may be implemented on a field programmable gate array (FPGA), application specific
integrated circuit (ASIC), or other similar programmable device. The processor 48
and memory device 50 may further be implemented on separate devices or on a single
device. A first voltage sensor 40 measures the voltage on the DC bus 12 input to the
power converter 10 and a first current sensor 42 measures the current on the DC bus
12. A second voltage sensor 44 measures the voltage output from the power converter
10 and a second current sensor 46 measures the current output from the power converter
10. Feedback signals from each of the sensors 40, 42, 44, 46 are provided to the processor
48. The processor 48 also receives a command signal 52 corresponding to a desired
operation of the power converter 10. A control module executing in the processor 48
generates the gating signals 25 to control operation of the switch modules 20 in the
power converter 10 to achieve the desired operation responsive to the signals from
each of the sensors 40, 42, 44, 46.
[0021] In operation, the processor 48 receives the command signal 52 corresponding to a
desired operation of the converter 10. The command signal 52 may be, for example,
a voltage reference generated by another controller external to the processor 48.
Optionally, the command signal 52 may be, for example, a digital input or a communication
packet from a network connection providing an indication of a desired operating mode.
According to one embodiment of the invention, the converter 10 disclosed herein may
be utilized to supply a primary winding of an X-ray generator. The command may be,
therefore, a desired voltage output supplied to the primary winding or a desired operating
mode, such as low or high power operation. The processor 48 generates the gating signals
25 to provide the commanded operation.
[0022] According to the illustrated embodiment, the power converter 10 is controlled to
generate five different voltage potential differences across the output terminals
18 to the load (V
DC, V
DC/2, 0, -V
DC/2, and -V
DC). The processor 48 generates the gating signals 25 to selectively enable and disable
the switching devices 24 in each switch arm 11, 13. By enabling different combinations
of switching modules 20 the processor 48 controls the output voltage across the output
terminals 18. Further, the gating signals 25 are generated such that the voltage potential
on each arm 11, 13 is always distributed across at least two of the switch modules
20. Thus, the switch modules 20 and snubber capacitors 22 utilized need only to be
rated for one-half the total DC bus voltage expected on the DC bus 12. The gating
signals 25 are further generated such that one-half the total DC bus voltage expected
on the DC bus 12 is present across the flying capacitor 38 of each switching arm 11,
13. The processor 48 is also configured to generate the gating signals 25 according
to three different control methods, one for each operating mode, that satisfy these
voltage requirements.
[0023] With reference to FIGS. 4 and 5, the processor 48 is operable to execute a first
control method. The first control method is configured for a first operating mode
which requires high power, where high power may be operation at or above about 25%
and, more preferably, above 50% of rated power and up to rated power. The switch modules
20 are controlled to operate in a manner similar to a full bridge inverter. Pairs
of the switch modules 20 are controlled together and utilize two levels of the voltage,
namely the voltage potentials present on the positive rail 14 and on the negative
rail 16 to generate a desired output voltage. The processor 48 generates four sets
of gating signals 25, resulting in four states of operation.
[0024] In the first operating state for the first operating mode, the processor 48 sets
gating signals 25 for, or enables, the first and second switch modules 20 (S1, S2)
and the seventh and eight switch modules 20 (S7, S8). The gating signal 25 for switch
modules 20 three through six (S3-S6) remains off. As shown in FIG. 5, the current
flows from the positive rail 14 of the DC bus through the first and second switch
modules S1, S2 of the first switching arm 11 and to the second switching arm 13 via
the load across the output voltage terminals 18. The current continues to flow thorough
the seventh and eighth switch modules S7, S8 of the second switching arm 13 to the
negative rail 16. The voltage potential on each of the switch modules 20 for which
the gating signals 25 are set is zero, and the voltage potential on each of the switch
modules 20 for which the gating signals 25 are off is one-half the voltage potential
present on the DC bus 12. Consequently, the voltage potential on the DC bus 12 is
distributed across two of the switch modules 20 in each arm 11, 13 and one-half of
the voltage potential on the DC bus 12 is present across the flying capacitor 38 of
each switching arm 11, 13.
[0025] The power converter 10 remains in the first operating state for a desired conduction
time. The conduction time determines, at least in part, the amplitude of the output
voltage. In the first mode, the output voltage terminals 18 are connected either to
the positive rail 14 or the negative rail 16 via the pairs of switch modules 20. Consequently,
the instantaneous value of the output voltage is equal to the voltage potential present
on either the positive rail 14 or the negative rail 16. If, for example, the positive
rail is 750 VDC and the negative rail 16 is 0 VDC, the output voltage is alternately
connected to either the 750 VDC or the 0 VDC. By controlling the relative length of
time at which each of the positive rail 14 and the negative rail 16 are connected
to the output voltage terminals 18, an average value of voltage between 0 and 750
VDC is seen at the output voltage terminals 18.
[0026] The conduction time is determined by a control module executing in the processor
48. The control module receives the feedback signals from one or more of the voltage
and/or current sensors 40, 41, 42, 43, 44, 46 as well as the command signal 52. Utilizing,
for example, a proportional controller, integral controller, derivative controller,
or a combination thereof, the control module determines the conduction time for each
gating signal to achieve a desired output voltage. Once the gating signal 25 for the
first, second, seventh, and eighth switch modules 20 (S1, S2, S7, S8) has been on
for the desired conduction time, the processor 48 turns off the gating signal 25 for
each of those switch modules 20 and the gating signals 25 for all of the MOSFETS 24
are off. A resonant current discharges the snubber capacitors 22 for the third, fourth,
fifth, and sixth switch modules 20 (S3, S4, S5, S6) and charges the snubber capacitors
22 for the first, second, seventh, and eight switch modules 20 (S1, S2, S7, S8).
[0027] Once the snubber charge transfer is complete, the resonant current begins to flow
through the freewheeling diodes 26 of the third, fourth, fifth, and sixth switch modules
20 (S3, S4, S5, S6), transitioning to the second operating state. As shown in FIG.
5, the current flows from the negative rail 16 of the DC bus through the freewheeling
diodes 26 of the third and fourth switch modules S3, S4 in the first switching arm
11 and to the second switching arm 13 via the load across the output voltage terminals
18. The current continues to flow thorough the freewheeling diodes 26 in the fifth
and sixth switch modules S5, S6 in the second switching arm 13 and to the positive
rail 14. The voltage potential across the first, second, seventh, and eighth switch
modules 20 (S1, S2, S7, S8) is one-half the voltage potential present on the DC bus
12 and the voltage potential across the third, fourth, fifth, and sixth switch modules
20 (S3, S4, S5, S6) is zero. Consequently, the voltage potential on the DC bus 12
is again distributed across two of the switch modules 20 in each arm 11, 13 and one-half
of the voltage potential on the DC bus 12 is present across the flying capacitor 38
of each switching arm 11, 13. During the second operating state, the processor 48
sets the gating signals 25 for the third and fourth switch modules 20 (S3, S4) and
for the fifth and sixth switch modules 20 (S5, S6), transitioning to the third operating
state.
[0028] In the third operating state, the gating signal 25 for switch modules 20 one, two,
seven, and eight (S1, S2, S7, S8) remains off. As shown in FIG. 5, the current flows
from the positive rail 14 of the DC bus through the fifth and sixth switch modules
S5, S6 of the second switching arm 13 and to the first switching arm 11 via the load
across the output voltage terminals 18. The current continues to flow through the
third and fourth switch modules S3, S4 of the first switching arm 11 and to the negative
rail 16. The voltage potential on each of the switch modules 20 for which the gating
signals 25 are set is zero, and the voltage potential on each of the switch modules
20 for which the gating signals 25 are reset is one-half the voltage potential present
on the DC bus 12. Consequently, the voltage potential on the DC bus 12 is distributed
across two of the switch modules 20 in each arm 11, 13 and one-half of the voltage
potential on the DC bus 12 is present across the flying capacitor 38 of each switching
arm 11, 13.
[0029] The power converter 10 remains in the third operating state for a desired conduction
time. Once the gating signal 25 for the third, fourth, fifth, and sixth switch modules
20 (S3, S4, S5, S6) has been on for the desired conduction time, the processor 48
turns off the gating signal 25 for each of those switch modules 20 and the gating
signals 25 for all of the MOSFETS 24 are off. The resonant current discharges the
snubber capacitors 22 for the first, second, seventh, and eight switch modules 20
(S1, S2, S7, S8) and charges the snubber capacitors 22 for the third, fourth, fifth,
and sixth switch modules 20 (S3, S4, S5, S6).
[0030] Once the snubber charge transfer is complete, the resonant current begins to flow
through the freewheeling diodes 26 of the first, second, seventh, and eight switch
modules 20 (S1, S2, S7, S8), transitioning to the fourth operating state. As shown
in FIG. 5, the current flows from the negative rail 16 of the DC bus through the freewheeling
diodes 26 of the seventh and eighth switch modules S7, S8 of the second switching
arm 13 and to the first switching arm 11 via the load across the output voltage terminals
18. The current continues to flow thorough the freewheeling diodes 26 of the first
and second switch modules S1, S2 of the first switching arm 11 to the positive rail
14. The voltage potential across the third, fourth, fifth, and sixth switch modules
20 (S3, S4, S5, S6) is one-half the voltage potential present on the DC bus 12 and
the voltage potential across the first, second, seventh, and eighth switch modules
20 (S1, S2, S7, S8) is zero. Consequently, the voltage potential on the DC bus 12
is again distributed across two of the switch modules 20 in each arm 11, 13 and one-half
of the voltage potential on the DC bus 12 is present across the flying capacitor 38
of each switching arm 11, 13. During the fourth operating state, the processor 48
sets the gating signals 25 for the first and second switch modules 20 (S1, S2) and
for the seventh and eighth switch modules 20 (S7, S8), returning to the first operating
state. The four operating states are repeated during the first operating mode to generate
a desired output voltage at the output voltage terminals 18.
[0031] With reference next to FIGS. 6 and 7, the processor 48 is operable to execute a second
control method. The second control method is configured for a second operating mode,
where the second operating mode may include operation between about 12.5% and about
50% of rated power and, more preferably, includes operation at about 25% of rated
power. The switch modules 20 are controlled to provide plus or minus one half of the
voltage potential present on the DC bus 12 (i.e., +/- VDC/2) at the output voltage
terminals 18. The processor 48 generates eight sets of gating signals 25, resulting
in eight states of operation.
[0032] In the first operating state for the second operating mode, the processor sets gating
signals 25 for, or enables, the second, fourth, seventh, and eighth switch modules
20 (S2, S4, S7, S8). The gating signals 25 for the first, third, fifth, and sixth
switch modules 20 (S1, S3, S5, S6) remain off. As shown in FIG. 7, the current flows
from the negative rail 16 of the DC bus 12 through the fourth switch module S4 to
the third intermediate connection 34 and then through the flying capacitor 38 to the
first intermediate connection 30 of the first switching arm 11. The current is then
conducted through the second switch module S2 and to the second switching arm 13 via
the load across the output voltage terminals 18. The current continues to flow thorough
the second switching arm 13 back to the negative rail 16 via the seventh and eighth
switch modules S7, S8. The voltage potential on each of the switch modules 20 for
which the gating signals 25 are set is zero, and the voltage potential on each of
the switch modules 20 for which the gating signals 25 are off is one-half the voltage
potential present on the DC bus 12. Consequently, the voltage potential on the DC
bus 12 is distributed across two of the switch modules 20 in each arm 11, 13. The
voltage potential seen across the output voltage terminals 18 is one half of the voltage
potential present on the DC bus 12.
[0033] The power converter 10 remains in the first operating state for a desired conduction
time. During this conduction time the snubber capacitors 22 for the first, third,
fifth, and sixth switch modules 20 (S1, S3, S5, S6) are charged to one half the DC
bus voltage potential. At the completion of the desired conduction time, the processor
48 turns off the gating signal 25 for the second and seventh switch modules S2, S7.
The gating signals 25 for the fourth and eighth switch modules S4, S8 remain set.
The resonant current causes the snubber capacitors 22 for the second and seventh switch
modules S2, S7, which were just turned off, to become charged and the snubber capacitors
22 for the third and sixth switch modules S3, S6 to become discharged.
[0034] Once the snubber charge transfer is complete, the resonant current begins to flow
through the freewheeling diodes 26 of the third and sixth switch modules S3, S6 and
the power converter 10 transitions to the second operating state of the second operating
mode. As shown in FIG. 7, the current flows from the negative rail 16 of the DC bus
12 through the fourth switch module S4 to the third intermediate connection 34 and
then through the freewheeling diode 26 of the third switch module S3 to the second
intermediate connection point 32. The current is then conducted to the second switching
arm 13 via the load across the output voltage terminals 18. In the second switching
arm 13, the current is conducted through the freewheeling diode 26 of the sixth switch
module S6, the flying capacitor 38 and the eighth switch module S8 back to the negative
rail 16 of the DC bus 12. The voltage potential seen across the output voltage terminals
18 is negative one half of the voltage potential present on the DC bus 12. During
the second operating state, the processor 48 sets the gating signals 25 for the third
and sixth switch modules S3, S6, transitioning to the third operating state.
[0035] In the third operating state for the second operating mode, the gating signals 25
for the third, fourth, sixth, and eighth switch modules 20 (S3, S4, S6, S8) are set.
The gating signals 25 for the first, second, fifth, and seventh switch modules 20
(S1, S2, S5, S7) remain off. As shown in FIG. 7, the current flows from the negative
rail 16 of the DC bus through the eighth switch module S8 to the third intermediate
connection 34 and then through the flying capacitor 38 to the first intermediate connection
30 of the second switching arm 13. The current is then conducted through the sixth
switch module S2 and to the first switching arm 11 via the load across the output
voltage terminals 18. The current continues to flow thorough the first switching arm
11 back to the negative rail 16 via the third and fourth switch modules S3, S4. The
voltage potential on each of the switch modules 20 for which the gating signals 25
are set is zero, and the voltage potential on each of the switch modules 20 for which
the gating signals 25 are off is one-half the voltage potential present on the DC
bus 12. Consequently, the voltage potential on the DC bus 12 is distributed across
two of the switch modules 20 in each arm 11, 13. The voltage potential seen across
the output voltage terminals 18 is negative one half of the voltage potential present
on the DC bus 12.
[0036] The power converter 10 remains in the third operating state for a desired conduction
time. During this conduction time the snubber capacitors 22 for the first, second,
fifth, and seventh switch modules 20 (S1, S2, S5, S7) are charged to one half the
DC bus voltage potential. At the completion of the desired conduction time, the processor
48 turns off the gating signal 25 for the third and fourth switch modules S3, S4.
The gating signals 25 for the sixth and eighth switch modules S6, S8 remain set. The
resonant current causes the snubber capacitors 22 for the third and fourth switch
modules S3, S4, which were just turned off, to become charged and the snubber capacitors
22 for the first and second switch modules S1, S2 to become discharged.
[0037] Once the snubber charge transfer is complete, the resonant current begins to flow
through the freewheeling diodes 26 of the first and second switch modules S1, S2 and
the power converter 10 transitions to the fourth operating state of the second operating
mode. As shown in FIG. 7, the current flows from the negative rail 16 of the DC bus
12 through the eighth switch module S8 to the third intermediate connection 34 and
then through the flying capacitor 38 of the second switching arm 13 to the first intermediate
connection point 30. The current is then conducted through the sixth switch module
S6 and to the first switching arm 11 via the load across the output voltage terminals
18. The current continues to flow thorough the first switching arm 11 to the positive
rail 14 via the freewheeling diodes 26 of the first and second switch modules S1,
S2. The voltage potential seen across the output voltage terminals 18 is one half
of the voltage potential present on the DC bus 12. During the fourth operating state,
the processor 48 sets the gating signals 25 for the first and second switch modules
S1, S2, transitioning to the fifth operating state.
[0038] In the fifth operating state for the second operating mode, the gating signals 25
for the first, second, sixth, and eighth switch modules 20 (S1, S2, S6, S8) are set.
The gating signals 25 for the third, fourth, fifth, and seventh switch modules 20
(S3, S4, S5, S7) remain off. As shown in FIG. 7, the current flows from the positive
rail 14 of the DC bus 12 through the first and second switch modules S1, S2 to the
second intermediate connection 32 in the first switching arm 11 and then to the second
switching arm 13 via the load across the output voltage terminals 18. The current
continues to flow thorough the second switching arm 13 back to the negative rail 16
via the sixth switch module S6, the flying capacitor 38 to the third intermediate
connection 34, and the eighth switch module S8. The voltage potential on each of the
switch modules 20 for which the gating signals 25 are set is zero, and the voltage
potential on each of the switch modules 20 for which the gating signals 25 are off
is one-half the voltage potential present on the DC bus 12. Consequently, the voltage
potential on the DC bus 12 is distributed across two of the switch modules 20 in each
arm 11, 13. The voltage potential seen across the output voltage terminals 18 is one
half of the voltage potential present on the DC bus 12.
[0039] The power converter 10 remains in the fifth operating state for a desired conduction
time. During this conduction time the snubber capacitors 22 for the third, fourth,
fifth, and seventh switch modules 20 (S3, S4, S5, S7) are charged to one half the
DC bus voltage potential. At the completion of the desired conduction time, the processor
48 turns off the gating signal 25 for the first and eighth switch modules S1, S8.
The gating signals 25 for the second and sixth switch modules S2, S6 remain set. The
resonant current causes the snubber capacitors 22 for the first and eighth switch
modules S1, S8, which were just turned off, to become charged and the snubber capacitors
22 for the fourth and fifth switch modules S4, S5 to become discharged.
[0040] Once the snubber charge transfer is complete, the resonant current begins to flow
through the freewheeling diodes 26 of the fourth and fifth switch modules S4, S5 and
the power converter 10 transitions to the sixth operating state of the second operating
mode. As shown in FIG. 7, the current flows from the negative rail 16 of the DC bus
12 through the freewheeling diode 26 of the fourth switch module S4 to the third intermediate
connection 34 and then through the flying capacitor 38 to the first intermediate connection
point 30 of the first switching arm 11. The current is then conducted through the
second switch module S2 and to the second switching arm 13 via the load across the
output voltage terminals 18. In the second switching arm 13, the current is conducted
through the sixth switch module S6 and the freewheeling diode 26 of the fifth switch
module S5 to the positive rail 14 of the DC bus 12. The voltage potential seen across
the output voltage terminals 18 is negative one half of the voltage potential present
on the DC bus 12. During the sixth operating state, the processor 48 sets the gating
signals 25 for the fourth and fifth switch modules S4, S5, transitioning to the seventh
operating state.
[0041] In the seventh operating state for the second operating mode, the gating signals
25 for the second, fourth, fifth, and sixth switch modules 20 (S2, S4, S5, S6) are
set. The gating signals 25 for the first, third, seventh, and eighth switch modules
20 (S1, S3, S7, S8) remain off. As shown in FIG. 7, the current flows from the positive
rail 14 of the DC bus 12 through the fifth and sixth switch modules S5, S6 to the
second intermediate connection 32 in the second switching arm 13 and then to the first
switching arm 11 via the load across the output voltage terminals 18. The current
continues to flow thorough the first switching arm 11 to the negative rail 16 via
the second switch module S2, the flying capacitor 38 to the third intermediate connection
34, and the fourth switch module S4. The voltage potential on each of the switch modules
20 for which the gating signals 25 are set is zero, and the voltage potential on each
of the switch modules 20 for which the gating signals 25 are off is one-half the voltage
potential present on the DC bus 12. Consequently, the voltage potential on the DC
bus 12 is distributed across two of the switch modules 20 in each arm 11, 13. The
voltage potential seen across the output voltage terminals 18 is negative one half
of the voltage potential present on the DC bus 12.
[0042] The power converter 10 remains in the seventh operating state for a desired conduction
time. During this conduction time the snubber capacitors 22 for the first, third,
seventh, and eighth switch modules 20 (S1, S3, S7, S8) are charged to one half the
DC bus voltage potential. At the completion of the desired conduction time, the processor
48 turns off the gating signal 25 for the fifth and sixth switch modules S5, S6. The
gating signals 25 for the second and fourth switch modules S2, S4 remain set. The
resonant current causes the snubber capacitors 22 for the fifth and sixth switch modules
S5, S6, which were just turned off, to become charged and the snubber capacitors 22
for the seventh and eighth switch modules S7, S8 to become discharged.
[0043] Once the snubber charge transfer is complete, the resonant current begins to flow
through the freewheeling diodes 26 of the seventh and eighth switch modules S7, S8
and the power converter 10 transitions to the eighth operating state of the second
operating mode. As shown in FIG. 7, the current flows from the negative rail 16 of
the DC bus 12 through the freewheeling diodes 26 of the seventh and eighth switch
modules S7, S8 to the second intermediate connection 32 of the second switching arm
13 and then to the first switching arm 11 via the load across the output voltage terminals
18. In the first switching arm 11, the current is conducted back to the negative rail
16 via the second switch module S2, the flying capacitor 38 to the third intermediate
connection point 34, and the fourth switch module S4. The voltage potential seen across
the output voltage terminals 18 is one half of the voltage potential present on the
DC bus 12. During the eighth operating state, the processor 48 sets the gating signals
25 for the seventh and eighth switch modules S7, S8, such that the second operating
mode returns to its first operating state. These eight operating states are repeated
during the second operating mode to generate a desired output voltage at the output
voltage terminals 18.
[0044] With reference next to FIGS. 8 and 9, the processor 48 is operable to execute a third
control method. The third control method is configured for a third operating mode,
where the third operating mode may include low power operation less than about 12.5%
of rated power and, more preferably, at about 6.125% of rated power. The switch modules
20 are controlled to provide either one half of the voltage potential present on the
DC bus 12 or zero volts at the output voltage terminals 18. The processor 48 generates
eight sets of gating signals 25, resulting in eight states of operation. As further
seen in FIG. 9, the third operating mode is configured to execute utilizing only one
of the two switching arms 11, 13. According to the illustrated states, operation with
respect to the first switching arm 11 will be discussed. It is understood that similar
operation may be achieved utilizing the second switching arm 13 and generating gating
signals 25 for the corresponding switch modules 20 in the second switching arm 13.
It is further contemplated that the first and second switching arms 11, 13 may be
alternately utilized during the third control operating mode to balance losses and
utilization of the two switching arms 11, 13.
[0045] In the first operating state for the third operating mode, the processor sets gating
signals 25 for, or enables, the second and fourth switch modules 20 (S2, S4). The
gating signals 25 for the first and third switch modules 20 (S1, S3) remain off. As
shown in FIG. 9, the current flows from the negative rail 16 of the DC bus 12 through
the fourth switch module S4, through the flying capacitor 38 to the first intermediate
connection 30, and then through the second switch module S2 to the output terminal
18 on the first switching arm 11. The current is then conducted through the load and
back to the negative rail 16 of the DC bus 12. The conduction path may be established,
for example, by setting gating signals 25 for the seventh and eighth switch modules
S7, S8 on. The gating signals 25 for the seventh and eighth switch modules S7, S8
remain on throughout the third operating mode when the second switching arm 13 is
providing the return conduction path to the negative rail 16. The voltage potential
on each of the switch modules 20 in the first switching arm 11 for which the gating
signals 25 are set is zero, and the voltage potential on each of the switch modules
20 in the first switching arm 11 for which the gating signals 25 are off is one-half
the voltage potential present on the DC bus 12. Consequently, the voltage potential
on the DC bus 12 is distributed across two of the switch modules 20 in the first switching
arm 11. The voltage potential seen across the output voltage terminals 18 is one half
of the voltage potential present on the DC bus 12.
[0046] The power converter 10 remains in the first operating state of the third operating
mode for a desired conduction time. During this conduction time the snubber capacitors
22 for the first and third switch modules 20 (S1, S3) are charged to one half the
DC bus voltage potential. At the completion of the desired conduction time, the processor
48 turns off the gating signals 25 for the second and fourth switch modules S2, S4.
The resonant current causes the snubber capacitor 22 for the second switch module
S2, which was just turned off, to become charged and the snubber capacitor 22 for
the third switch module S3 to become discharged.
[0047] Once the snubber charge transfer is complete, the resonant current begins to flow
through the freewheeling diodes 26 of the third and fourth switch modules S3, S4 and
the power converter 10 transitions to the second operating state of the third operating
mode. As shown in FIG. 9, the current flows from the negative rail 16 of the DC bus
12 through the freewheeling diodes 26 of the third and fourth switch modules S3, S4
to the output voltage terminal 18 on the first switching arm 11. The return conduction
path through the seventh and eighth switch modules S7, S8 on the second switching
arm 13 is maintained, and the voltage potential seen across the output voltage terminals
18 is zero. During the second operating state, the processor 48 sets the gating signals
25 for the third and fourth switch modules S3, S4, transitioning to the third operating
state.
[0048] In the third operating state for the third operating mode, the gating signals 25
for the third and fourth switch modules S3, S4 are set. The gating signals 25 for
the first and second switch modules S1, S2 remain off. As shown in FIG. 9, the current
flows from the negative rail 16 of the DC bus 12 through the conduction path in the
second switching arm 13, through the load to the first switching arm 11, and returns
to the negative rail 16 via the third and fourth switch modules S3, S4. The voltage
potential on each of the switch modules 20 in the first switching arm 11 for which
the gating signals 25 are set is zero, and the voltage potential on each of the switch
modules 20 in the first switching arm 11 for which the gating signals 25 are off is
one-half the voltage potential present on the DC bus 12. Consequently, the voltage
potential on the DC bus 12 is distributed across two of the switch modules 20 in the
first switching arm 11 and the voltage potential seen across the output voltage terminals
18 is zero.
[0049] The power converter 10 remains in the third operating state of the third operating
mode for a desired conduction time. During this conduction time the snubber capacitors
22 for the first and second switch modules S1, S2 are charged to one half the DC bus
voltage potential. At the completion of the desired conduction time, the processor
48 turns off the gating signal 25 for the fourth switch module S4, and the gating
signal 25 for the third switch module S3 remains on. The resonant current causes the
snubber capacitor 22 for the fourth switch module S4, which was just turned off, to
become charged and the snubber capacitor 22 for the first switch module S1 to become
discharged.
[0050] Once the snubber charge transfer is complete, the resonant current begins to flow
through the freewheeling diode 26 of the first switch module S1 and the power converter
10 transitions to the fourth operating state of the third operating mode. As shown
in FIG. 9, the current flows from the negative rail 16 of the DC bus 12 through the
conduction path of the second switching arm 13 and through the load to the first switching
arm 11. In the first switching arm 11, the current flows to the positive rail 14 via
the third switch module S3, the flying capacitor 38, and the freewheeling diode 26
of the first switch module SI.The voltage potential seen across the output voltage
terminals 18 is one half of the voltage potential present on the DC bus 12. During
the fourth operating state, the processor 48 sets the gating signal 25 for the first
switch module S1, transitioning to the fifth operating state.
[0051] In the fifth operating state for the third operating mode, the gating signals 25
for the first and third switch modules S1, S3 are set. The gating signals 25 for the
second and fourth switch modules S2, S4 remain off. As shown in FIG. 9, the current
flows from the positive rail 14 of the DC bus 12 through the first switch module S1,
through the flying capacitor 38 to the third intermediate connection 34, and then
through the third switch module S3 to the output terminal 18 on the first switching
arm 11. The current is then conducted through the load and to the negative rail 16
via the conduction path in the second switching arm 13. The voltage potential on each
of the switch modules 20 in the first switching arm 11 for which the gating signals
25 are set is zero, and the voltage potential on each of the switch modules 20 in
the first switching arm 11 for which the gating signals 25 are off is one-half the
voltage potential present on the DC bus 12. Consequently, the voltage potential on
the DC bus 12 is distributed across two of the switch modules 20 in the first switching
arm 11. The voltage potential seen across the output voltage terminals 18 is one half
of the voltage potential present on the DC bus 12.
[0052] The power converter 10 remains in the fifth operating state of the third operating
mode for a desired conduction time. During this conduction time the snubber capacitors
22 for the second and fourth switch modules S2, S4 are charged to one half the DC
bus voltage potential. At the completion of the desired conduction time, the processor
48 turns off the gating signals 25 for the first and third switch modules S1, S3.
The resonant current causes the snubber capacitor 22 for the first switch module S1,
which was just turned off, to become charged and the snubber capacitor 22 for the
fourth switch module S4 to become discharged.
[0053] Once the snubber charge transfer is complete, the resonant current begins to flow
through the freewheeling diodes 26 of the third and fourth switch modules S3, S4 and
the power converter 10 transitions to the sixth operating state of the third operating
mode. As shown in FIG. 9, the current flows from the negative rail 16 of the DC bus
12 through the freewheeling diodes 26 of the third and fourth switch modules S3, S4
to the output voltage terminal 18 on the first switching arm 11. The return conduction
path through the seventh and eighth switch modules S7, S8 on the second switching
arm 13 is maintained, and the voltage potential seen across the output voltage terminals
18 is zero. During the sixth operating state, the processor 48 sets the gating signals
25 for the third and fourth switch modules S3, S4, transitioning to the seventh operating
state.
[0054] In the seventh operating state for the third operating mode, the gating signals 25
for the third and fourth switch modules S3, S4 are set. The gating signals 25 for
the first and second switch modules S1, S2 remain off. As shown in FIG. 9, the current
flows from the negative rail 16 of the DC bus 12 through the conduction path in the
second switching arm 13, through the load to the first switching arm 11, and returns
to the negative rail 16 via the third and fourth switch modules S3, S4. The voltage
potential on each of the switch modules 20 in the first switching arm 11 for which
the gating signals 25 are set is zero, and the voltage potential on each of the switch
modules 20 in the first switching arm 11 for which the gating signals 25 are off is
one-half the voltage potential present on the DC bus 12. Consequently, the voltage
potential on the DC bus 12 is distributed across two of the switch modules 20 in the
first switching arm 11. The voltage potential seen across the output voltage terminals
18 is zero.
[0055] The power converter 10 remains in the seventh operating state of the third operating
mode for a desired conduction time. During this conduction time the snubber capacitors
22 for the first and second switch modules S1, S2 are charged to one half the DC bus
voltage potential. At the completion of the desired conduction time, the processor
48 turns off the gating signal 25 for the third switch module S3, and the gating signal
25 for the fourth switch module S4 remains on. The resonant current causes the snubber
capacitor 22 for the third switch module S3, which was just turned off, to become
charged and the snubber capacitor 22 for the second switch module S2 to become discharged.
[0056] Once the snubber charge transfer is complete, the resonant current begins to flow
through the freewheeling diode 26 of the second switch module S2 and the power converter
10 transitions to the eighth operating state of the third operating mode. As shown
in FIG. 9, the current flows from the negative rail 16 of the DC bus 12 through the
conduction path of the second switching arm 13 and through the load to the first switching
arm 11. In the first switching arm 11, the current returns to the negative rail 16
via the freewheeling diode 26 of the second switch module S2, the flying capacitor
38, and the fourth switch module S4.The voltage potential seen across the output voltage
terminals 18 is one half of the voltage potential present on the DC bus 12. During
the eighth operating state, the processor 48 sets the gating signal 25 for the second
switch module S2, returning to the first operating state. These eight operating states
are repeated during the third operating mode to generate a desired output voltage
at the output voltage terminals 18.
[0057] Referring next to FIG. 10, operation of the above-described power converter is graphically
illustrated for an exemplary application. The exemplary application is a power converter
operable to provide a single phase or a multiphase output voltage to the primary side
of a high voltage transformer for an X-ray generator. The X-ray generator is configured
for three operating modes. During the first, high power, operating mode, the X-ray
generator is configured to output a voltage at about 120 kV. During the second, medium
power, operating mode, the X-ray generator is configure to output a voltage at about
60 kV. During the third, low power, operating mode, the X-ray generator generates
about 30 kV. Operation of the power converter for the X-ray generator in the first
operating mode, utilizes the first switching technique discussed above. Operation
of the power converter for the X-ray generator in the second operating mode, utilizes
the second switching technique discussed above. Operation of the power converter for
the X-ray generator in the third operating mode, utilizes the third switching technique
discussed above.
[0058] According to the illustrated example, the power converter is able to generate the
desired output voltage during the first operating mode at about 260 kHz switching
frequency, as identified by the point labeled by reference numeral 70. If, however,
the X-ray generator attempted to operate at the desired low power setting utilizing
the first operating mode, the curve extends off the plot to the right to reach 30
kV, requiring a switching frequency in excess of 350 kHz, which is beyond the range
of the switching devices. Operation of the power converter in the third operating
mode, however, results in the desired output voltage again being generated at about
260 kHz, as identified by the point labeled by reference numeral 74. Similarly, operation
of the power converter in the second operating mode results in the desired output
voltage again being generated at about 260 kHz, as identified by the point labeled
by reference numeral 72. Each of these operating points is above the resonant point,
identified by the peak of each curve, to ensure soft switching operation of the power
converter.
[0059] This written description uses examples to disclose the invention, including the best
mode, and also to enable any person skilled in the art to practice the invention,
including making and using any devices or systems and performing any incorporated
methods. The patentable scope of the invention is defined by the claims, and may include
other examples that occur to those skilled in the art. Such other examples are intended
to be within the scope of the claims if they have structural elements that do not
differ from the literal language of the claims, or if they include equivalent structural
elements with insubstantial differences from the literal languages of the claims.
1. A multilevel soft switching power converter (10), comprising:
a direct current (DC) bus (12) having a positive rail (14) and a negative rail (16)
operable to have a voltage potential present across the DC bus (12);
a pair of switching arms (11,13), each switching arm connected between the positive
rail (14) and the negative rail (16), each switching arm further comprising:
a first soft switch connected between the positive rail (14) and a first intermediate
connection (30) and controlled by a first gating signal,
a second soft switch connected between the first intermediate connection (30) and
a second intermediate connection (32) and controlled by a second gating signal,
a third soft switch connected between the second intermediate connection (32) and
a third intermediate connection (34) and controlled by a third gating signal,
a fourth soft switch connected between the third intermediate connection (34) and
the negative rail (16) and controlled by a fourth gating signal,
a flying capacitor (38) connected between the first intermediate connection (30) and
the third intermediate connection (34), and
an output terminal (18) connected at the second intermediate connection (32); and
a controller (48) operable to:
receive a command signal, wherein the command signal corresponds to a desired operation
of the multilevel soft switching power converter (10);
receive at least one first feedback signal corresponding to one of a current and a
voltage present at an input to the power converter;
receive at least one second feedback signal corresponding to one of a current and
a voltage present at an output of the power converter; and
generate a plurality of sets of gating signals, wherein:
each gating signal is generated responsive to the command signal, the first feedback
signal, and the second feedback signal,
each gating signal corresponds to one of the soft switches and each set of gating
signals results in a state of operation;
wherein the controller generates a first sequence of operating states for a first
operating mode; a second sequence of operating states for a second operating mode;
and a third sequence of operating states for a third operating mode.
2. The multilevel soft switching power converter (10) of claim 1 wherein:
the first soft switch includes a first solid state switch (24), a first freewheeling
diode (26), and a first snubbing capacitor (22);
the second soft switch includes a second solid state switch (24), a second freewheeling
diode (26), and a second snubbing capacitor (22);
the third soft switch includes a third solid state switch (24), a third freewheeling
diode (26), and a third snubbing capacitor (22); and
the fourth soft switch includes a fourth solid state switch (24), a fourth freewheeling
diode (26), and a fourth snubbing capacitor (22).
3. The multilevel soft switching power converter (10) of claim 2 further comprising:
a first resistor (28) connected in parallel to the first soft switch;
a second resistor (28) connected in parallel to the second soft switch;
a third resistor (28) connected in parallel to the third soft switch; and
a fourth resistor (28) connected in parallel to the fourth soft switch.
4. The multilevel soft switching power converter (10) of claim 1 wherein a voltage potential
across the flying capacitor (38) of each switching arm (11,13) is about one half the
voltage potential present across the DC bus (12) during each of the three operating
modes.
5. The multilevel soft switching power converter (10) of claim 4 wherein a voltage potential
across two of the soft switches in each switching arm (11,13) is about one half the
voltage potential present across the DC bus (12) during each of the three operating
modes.
6. The multilevel soft switching power converter (10) of claim 1 wherein during a first
operating mode the first soft switch and the second soft switch on one of the switching
arms (11,13) from the pair of switching arms are switched in tandem and the third
soft switch and the fourth soft switch on one of the switching arms from the pair
of switching arms (11,13) are switched in tandem.
7. The multilevel soft switching power converter (10) of claim 6 wherein during a second
operating mode:
the first soft switch, the second soft switch, the third soft switch, and the fourth
soft switch are controlled to alternately connect one of a first voltage potential
and a second voltage potential across the output terminals of the pair of switching
arms (11,13),
the first voltage potential is a positive one half times the voltage potential present
across the DC bus (12); and
the second voltage potential is a negative one half times the voltage potential present
across the DC bus (12).
8. The multilevel soft switching power converter (10) of claim 7 wherein during a third
operating mode:
the first soft switch, the second soft switch, the third soft switch, and the fourth
soft switch are controlled to alternately connect one of the first voltage potential
and zero volts across the output terminals of the pair of switching arms (11,13).
9. A method of controlling a multilevel soft switching power converter (10), wherein
the multilevel soft switching power converter includes a pair of switching arms (11,13),
each switching arm connected between a positive rail (14) and a negative rail (16)
of a direct current (DC) bus (12) and each switching arm (11,13) comprising four soft
switches, connected in series between the positive rail (14) and the negative rail
(16), and a flying capacitor (38), the method comprising the steps of:
receiving a command signal at a controller (48), wherein the command signal corresponds
to a desired operation of the multilevel soft switching power converter (10) and wherein
the multilevel soft switching power converter is operable to control the soft switches
in at least a first operating mode, a second operating mode, and a third operating
mode;
receiving at the controller (48) at least one first feedback signal corresponding
to one of a current and a voltage present at an input to the power converter;
receiving at the controller (48) at least one second feedback signal corresponding
to one of a current and a voltage present at an output of the power converter; and
generating a plurality of sets of gating signals with the controller (48), wherein:
each gating is generated responsive to the command signal, the first feedback signal,
and the second feedback signal,
each gating signal corresponds to one of the soft switches and each set of gating
signals results in a state of operation, and
the gating signals are generated to form a first sequence of operating states in the
first operating mode, a second sequence of operating states in the second operating
mode, and a third sequence of operating states in the third operating mode.
10. The method of claim 9 wherein:
a first soft switch from the four soft switches includes a first solid state switch
(24), a first freewheeling diode (26), and a first snubbing capacitor (22);
a second soft switch from the four soft switches includes a second solid state switch
(24), a second freewheeling diode (26), and a second snubbing capacitor (22);
a third soft switch from the four soft switches includes a third solid state switch
(24), a third freewheeling diode (26), and a third snubbing capacitor (22); and
a fourth soft switch from the four soft switches includes a fourth solid state switch
(24), a fourth freewheeling diode (26), and a fourth snubbing capacitor (22).
11. The method of claim 10 further comprising the steps of:
providing a first resistor (28) connected in parallel to the first soft switch;
providing a second resistor (28) connected in parallel to the second soft switch;
providing a third resistor (28) connected in parallel to the third soft switch; and
providing a fourth resistor (28) connected in parallel to the fourth soft switch.
12. The method of claim 10 wherein during the first operating mode, the gating signals
for the first soft switch and the second soft switch on one of the switching arms
(11,13) from the pair of switching arms are switched in tandem and the third soft
switch and the fourth soft switch on one of the switching arms from the pair of switching
arms (11,13) are switched in tandem.
13. The method of claim 12 wherein during the first operating mode, the gating signals
are generated according to the following steps:
setting the gating signal for the first soft switch and the second soft switch for
a first switching arm selected from the pair of switching arms in tandem with the
third soft switch and the fourth soft switch of a second switching arm selected from
the pair of switching arms (11,13);
resetting the gating signal for all of the soft switches;
setting the gating signal for the first soft switch and the second soft switch for
the second switching arm in tandem with the third soft switch and the fourth soft
switch of the second switching arm (13); and
resetting the gating signal for all of the soft switches.
14. The method of claim 12 wherein, during the second operating mode:
the first soft switch, the second soft switch, the third soft switch, and the fourth
soft switch are controlled to alternately connect one of a first voltage potential
and a second voltage potential across the output terminals of the pair of switching
arms (11,13),
the first voltage potential is a positive one half times the voltage potential present
across the DC bus (12); and
the second voltage potential is a negative one half times the voltage potential present
across the DC bus (12).
15. The method of claim 14 wherein during the second operating mode, the gating signals
are generated according to the following steps:
setting the gating signal for the second and fourth soft switch in the first switching
arm (11) and for the third and fourth soft switch in the second switching arm in tandem;
resetting the gating signal for the second soft switch in the first switching arm
(11) and for the third soft switch in the second switching arm in tandem;
setting the gating signal for the third soft switch in the first switching arm (11)
and for the second soft switch in the second switching arm (13) in tandem;
resetting the gating signal for the third and fourth soft switch in the first switching
arm (11) in tandem;
setting the gating signal for the first and second soft switch in the first switching
arm (11) in tandem;
resetting the gating signal for the first soft switch in the first switching arm (11)
and for the fourth soft switch in the second switching arm (13) in tandem;
setting the gating signal for the fourth soft switch in the first switching arm (11)
and for the first soft switch in the second switching arm (13) in tandem; and
resetting the gating signal for the first and second soft switch in the second switching
arm (13) in tandem.
1. Mehrstufiger, weichschaltender Stromwandler (10), umfassend:
einen Gleichstrom-(DC-)Bus (12) mit einer positiven Schiene (14) und einer negativen
Schiene (16), der so betrieben werden kann, dass er ein Spannungspotenzial aufweist,
das am DC-Bus (12) anliegt;
ein Paar von Schaltarmen (11, 13), wobei jeder Schaltarm zwischen die positive Schiene
(14) und die negative Schiene (16) geschaltet ist, und jeder Schaltarm ferner umfasst:
einen ersten weichen Schalter, der zwischen die positive Schiene (14) und eine erste
Zwischenverbindung (30) geschaltet ist und durch ein erstes Ansteuerungssignal gesteuert
wird,
einen zweiten weichen Schalter, der zwischen die erste Zwischenverbindung (30) und
eine zweite Zwischenverbindung (32) geschaltet ist und durch ein zweites Ansteuerungssignal
gesteuert wird,
einen dritten weichen Schalter, der zwischen die zweite Zwischenverbindung (32) und
eine dritte Zwischenverbindung (34) geschaltet ist und durch ein drittes Ansteuerungssignal
gesteuert wird,
einen vierten weichen Schalter, der zwischen die dritte Zwischenverbindung (34) und
die negative Schiene (16) geschaltet ist und durch ein viertes Ansteuerungssignal
gesteuert wird,
einen fliegenden Kondensator (38), der zwischen die erste Zwischenverbindung (30)
und die dritte Zwischenverbindung (34) geschaltet ist, und
eine Ausgangsklemme (18), die an die zweite Zwischenverbindung (32) angeschlossen
ist; und
eine Steuerung (48), die ausgelegt ist zum:
Empfangen eines Befehlssignals, wobei das Befehlssignal einem gewünschten Betrieb
des mehrstufigen, weichschaltenden Stromwandlers (10) entspricht;
Empfangen mindestens eines ersten Rückkopplungssignals, das einem von einem Strom
und einer Spannung entspricht, der/die an einem Eingang in den Stromwandler anliegt;
Empfangen mindestens eines zweiten Rückkopplungssignals, das einem von einem Strom
und einer Spannung entspricht, der/die an einem Ausgang des Stromwandlers anliegt;
und
Erzeugen einer Mehrzahl von Sätzen von Ansteuerungssignalen, wobei:
jedes Ansteuerungssignal in Reaktion auf das Befehlssignal, das erste Rückkopplungssignal
und das zweite Rückkopplungssignal erzeugt wird,
jedes Ansteuerungssignal einem der weichen Schalter entspricht, und jeder Satz von
Ansteuerungssignalen zu einem Betriebszustand führt;
wobei die Steuerung eine erste Sequenz von Betriebszuständen für einen ersten Betriebsmodus;
eine zweite Sequenz von Betriebszuständen für einen zweiten Betriebsmodus und eine
dritte Sequenz von Betriebszuständen für einen dritten Betriebsmodus erzeugt.
2. Mehrstufiger, weichschaltender Stromwandler (10) nach Anspruch 1, wobei:
der erste weiche Schalter einen ersten Festkörperschalter (24), eine erste Freilaufdiode
(26) und einen ersten Überspannungsschutzkondensator (22) umfasst;
der zweite weiche Schalter einen zweiten Festkörperschalter (24), eine zweite Freilaufdiode
(26) und einen zweiten Überspannungsschutzkondensator (22) umfasst;
der dritte weiche Schalter einen dritten Festkörperschalter (24), eine dritte Freilaufdiode
(26) und einen dritten Überspannungsschutzkondensator (22) umfasst; und
der vierte weiche Schalter einen vierten Festkörperschalter (24), eine vierte Freilaufdiode
(26) und einen vierten Überspannungsschutzkondensator (22) umfasst.
3. Mehrstufiger, weichschaltender Stromwandler (10) nach Anspruch 2, ferner umfassend:
einen ersten Widerstand (28), der zum ersten weichen Schalter parallelgeschaltet ist;
einen zweiten Widerstand (28), der zum zweiten weichen Schalter parallelgeschaltet
ist;
einen dritten Widerstand (28), der zum dritten weichen Schalter parallelgeschaltet
ist; und
einen vierten Widerstand (28), der zum vierten weichen Schalter parallelgeschaltet
ist.
4. Mehrstufiger, weichschaltender Stromwandler (10) nach Anspruch 1, wobei ein Spannungspotenzial
am fliegenden Kondensator (38) jedes Schaltarms (11, 13) etwa die Hälfte des Spannungspotenzials
ist, das während eines jeden der drei Betriebsmodi am DC-Bus (12) anliegt.
5. Mehrstufiger, weichschaltender Stromwandler (10) nach Anspruch 4, wobei ein Spannungspotenzial
an zweien der weichen Schalter in jedem Schaltarm (11, 13) etwa die Hälfte des Spannungspotenzials
ist, das während eines jeden der drei Betriebsmodi am DC-Bus (12) anliegt.
6. Mehrstufiger, weichschaltender Stromwandler (10) nach Anspruch 1, wobei während eines
ersten Betriebsmodus der erste weiche Schalter und der zweite weiche Schalter auf
einem der Schaltarme (11, 13) vom Paar von Schaltarmen im Tandem geschaltet sind,
und der dritte weiche Schalter und der vierte weiche Schalter auf einem der Schaltarme
vom Paar von Schaltarmen (11, 13) im Tandem geschaltet sind.
7. Mehrstufiger, weichschaltender Stromwandler (10) nach Anspruch 6, wobei während eines
zweiten Betriebsmodus:
der erste weiche Schalter, der zweite weiche Schalter, der dritte weiche Schalter
und der vierte weiche Schalter so gesteuert werden, dass sie abwechselnd eines von
einem ersten Spannungspotenzial und einem zweiten Spannungspotenzial an die Ausgangsklemmen
des Paares von Schaltarmen (11, 13) anlegen,
das erste Spannungspotenzial ein positives ist, das die Hälfte des am DC-Bus (12)
anliegenden Spannungspotenzials ist; und
das zweite Spannungspotenzial ein negatives ist, das die Hälfte des am DC-Bus (12)
anliegenden Spannungspotenzials ist.
8. Mehrstufiger, weichschaltender Stromwandler (10) nach Anspruch 7, wobei während eines
dritten Betriebsmodus:
der erste weiche Schalter, der zweite weiche Schalter, der dritte weiche Schalter
und der vierte weiche Schalter so gesteuert werden, dass sie abwechselnd eines vom
ersten Spannungspotenzial und null Volt an die Ausgangsklemmen des Paares von Schaltarmen
(11, 13) anlegen.
9. Verfahren zur Steuerung eines mehrstufigen, weichschaltenden Stromwandlers (10), wobei
der mehrstufige, weichschaltende Stromwandler ein Paar von Schaltarmen (11, 13) umfasst,
jeder Schaltarm zwischen eine positive Schiene (14) und eine negative Schiene (16)
eines Gleichstrom-(DC-)Busses (12) geschaltet ist, und jeder Schaltarm (11, 13) vier
weiche Schalter, die zwischen der positiven Schiene (14) und der negativen Schiene
(16) in Reihe geschaltet sind, und einen fliegenden Kondensator (38) umfasst, wobei
das Verfahren die folgenden Schritte umfasst:
Empfangen eines Befehlssignals an einer Steuerung (48), wobei das Befehlssignal einem
gewünschten Betrieb des mehrstufigen weichschaltenden Stromwandlers (10) entspricht,
und wobei der mehrstufige weichschaltende Stromwandler zum Steuern der weichen Schalter
in mindestens einem ersten Betriebsmodus, einem zweiten Betriebsmodus und einem dritten
Betriebsmodus betrieben werden kann;
Empfangen mindestens eines ersten Rückkopplungssignals an der Steuerung (48), das
einem von einem Strom und einer Spannung entspricht, der/die an einem Eingang in den
Stromwandler anliegt;
Empfangen mindestens eines zweiten Rückkopplungssignals an der Steuerung (48), das
einem von einem Strom und einer Spannung entspricht, der/die an einem Ausgang des
Stromwandlers anliegt; und
Erzeugen einer Mehrzahl von Sätzen von Ansteuerungssignalen mit der Steuerung (48),
wobei:
jedes Ansteuerungssignal in Reaktion auf das Befehlssignal, das erste Rückkopplungssignal
und das zweite Rückkopplungssignal erzeugt wird,
jedes Ansteuerungssignal einem der weichen Schalter entspricht, und jeder Satz von
Ansteuerungssignalen zu einem Betriebszustand führt, und
die Ansteuerungssignale erzeugt werden, um eine erste Sequenz von Betriebszuständen
im ersten Betriebsmodus; eine zweite Sequenz von Betriebszuständen im zweiten Betriebsmodus
und eine dritte Sequenz von Betriebszuständen im dritten Betriebsmodus zu bilden.
10. Verfahren nach Anspruch 9, wobei:
ein erster weicher Schalter von den vier weichen Schaltern einen ersten Festkörperschalter
(24), eine erste Freilaufdiode (26) und einen ersten Überspannungsschutzkondensator
(22) umfasst;
ein zweiter weicher Schalter von den vier weichen Schaltern einen zweiten Festkörperschalter
(24), eine zweite Freilaufdiode (26) und einen zweiten Überspannungsschutzkondensator
(22) umfasst;
ein dritter weicher Schalter von den vier weichen Schaltern einen dritten Festkörperschalter
(24), eine dritte Freilaufdiode (26) und einen dritten Überspannungsschutzkondensator
(22) umfasst; und
ein vierter weicher Schalter von den vier weichen Schaltern einen vierten Festkörperschalter
(24), eine vierte Freilaufdiode (26) und einen vierten Überspannungsschutzkondensator
(22) umfasst.
11. Verfahren nach Anspruch 10, ferner umfassend die folgenden Schritte:
Bereitstellen eines ersten Widerstands (28), der zum ersten weichen Schalter parallelgeschaltet
ist;
Bereitstellen eines zweiten Widerstands (28), der zum zweiten weichen Schalter parallelgeschaltet
ist;
Bereitstellen eines dritten Widerstands (28), der zum dritten weichen Schalter parallelgeschaltet
ist; und
Bereitstellen eines vierten Widerstands (28), der zum vierten weichen Schalter parallelgeschaltet
ist.
12. Verfahren nach Anspruch 10, wobei während des ersten Betriebsmodus die Ansteuerungssignale
für den ersten weichen Schalter und den zweiten weichen Schalter auf einem der Schaltarme
(11, 13) vom Paar von Schaltarmen im Tandem geschaltet werden, und der dritte weiche
Schalter und der vierte weiche Schalter auf einem der Schaltarme vom Paar von Schaltarmen
(11, 13) im Tandem geschaltet werden.
13. Verfahren nach Anspruch 12, wobei die Ansteuerungssignale während des ersten Betriebsmodus
gemäß den folgenden Schritten erzeugt werden:
Setzen des Ansteuerungssignals für den ersten weichen Schalter und den zweiten weichen
Schalter für einen ersten aus dem Paar von Schaltarmen ausgewählten Schaltarm im Tandem
mit dem dritten weichen Schalter und dem vierten weichen Schalter eines zweiten aus
dem Paar von Schaltarmen (11, 13) ausgewählten Schaltarms;
Rücksetzen des Ansteuerungssignals für alle der weichen Schalter;
Setzen des Ansteuerungssignals für den ersten weichen Schalter und den zweiten weichen
Schalter für den zweiten Schaltarm im Tandem mit dem dritten weichen Schalter und
dem vierten weichen Schalter des zweiten Schaltarms (13); und
Rücksetzen des Ansteuerungssignals für alle der weichen Schalter.
14. Verfahren nach Anspruch 12, wobei während des zweiten Betriebsmodus:
der erste weiche Schalter, der zweite weiche Schalter, der dritte weiche Schalter
und der vierte weiche Schalter so gesteuert werden, dass sie abwechselnd eines von
einem ersten Spannungspotenzial und einem zweiten Spannungspotenzial an die Ausgangsklemmen
des Paares von Schaltarmen (11, 13) anlegen,
das erste Spannungspotenzial ein positives ist, das die Hälfte des am DC-Bus (12)
anliegenden Spannungspotenzials ist; und
das zweite Spannungspotenzial ein negatives ist, das die Hälfte des am DC-Bus (12)
anliegenden Spannungspotenzials ist.
15. Verfahren nach Anspruch 14, wobei die Ansteuerungssignale während des zweiten Betriebsmodus
gemäß den folgenden Schritten erzeugt werden:
Setzen des Ansteuerungssignals für den zweiten und den vierten weichen Schalter im
ersten Schaltarm (11) und für den dritten und den vierten weichen Schalter im zweiten
Schaltarm im Tandem;
Rücksetzen des Ansteuerungssignals für den zweiten Schalter im ersten Schaltarm (11)
und für den dritten Schalter im zweiten Schaltarm im Tandem;
Setzen des Ansteuerungssignals für den dritten weichen Schalter im ersten Schaltarm
(11) und für den zweiten weichen Schalter im zweiten Schaltarm (13) im Tandem;
Rücksetzen des Ansteuerungssignals für den dritten und den vierten weichen Schalter
im ersten Schaltarm (11) im Tandem;
Setzen des Ansteuerungssignals für den ersten und den zweiten weichen Schalter im
ersten Schaltarm (11) im Tandem;
Rücksetzen des Ansteuerungssignals für den ersten weichen Schalter im ersten Schaltarm
(11) und für den vierten weichen Schalter im zweiten Schaltarm (13) im Tandem;
Setzen des Ansteuerungssignals für den vierten weichen Schalter im ersten Schaltarm
(11) und für den ersten weichen Schalter im zweiten Schaltarm (13) im Tandem; und
Rücksetzen des Ansteuerungssignals für den ersten und den zweiten weichen Schalter
im zweiten Schaltarm (13) im Tandem.
1. Convertisseur de puissance à commutation logicielle multi-niveaux (10), comprenant
:
un bus (12) de courant continu (DC) ayant un rail positif (14) et un rail négatif
(16) utilisables pour avoir un potentiel de tension présent aux bornes du bus DC (12)
;
une paire de bras de commutation (11, 13), chaque bras de commutation étant connecté
entre le rail positif (14) et le rail négatif (16), chaque bras de commutation comprenant
en outre :
un premier commutateur logiciel connecté entre le rail positif (14) et une première
connexion intermédiaire (30) et commandé par un premier signal de déclenchement,
un deuxième commutateur logiciel connecté entre la première connexion intermédiaire
(30) et une deuxième connexion intermédiaire (32) et commandé par un deuxième signal
de déclenchement,
un troisième commutateur logiciel connecté entre la deuxième connexion intermédiaire
(32) et une troisième connexion intermédiaire (34) et commandé par un troisième signal
de déclenchement,
un quatrième commutateur logiciel connecté entre la troisième connexion intermédiaire
(34) et le rail négatif (16) et commandé par un quatrième signal de déclenchement,
un condensateur volant (38) connecté entre la première connexion intermédiaire (30)
et la troisième connexion intermédiaire (34), et
une borne de sortie (18) connectée à la deuxième connexion intermédiaire (32) ; et
un dispositif de commande (48) utilisable pour :
recevoir un signal de commande, dans lequel le signal de commande correspond à un
fonctionnement souhaité du convertisseur de puissance à commutation logicielle multi-niveaux
(10) ;
recevoir au moins un premier signal de rétroaction correspondant à l'un d'un courant
et d'une tension présents à une entrée du convertisseur de puissance ;
recevoir au moins un deuxième signal de rétroaction correspondant à l'un d'un courant
et d'une tension présents à une sortie du convertisseur de puissance ; et
générer une pluralité d'ensembles de signaux de déclenchement, dans lequel :
chaque signal de déclenchement est généré en réponse au signal de commande, au premier
signal de rétroaction et au deuxième signal de rétroaction,
chaque signal de déclenchement correspond à l'un des commutateurs logiciels et chaque
ensemble de signaux de déclenchement a pour résultat un état de fonctionnement ;
dans lequel le dispositif génère une première séquence d'états de fonctionnement pour
un premier mode de fonctionnement ; une deuxième séquence d'états de fonctionnement
pour un deuxième mode de fonctionnement ;
et une troisième séquence d'états de fonctionnement pour un troisième mode de fonctionnement.
2. Convertisseur de puissance à commutation logicielle multi-niveaux (10) selon la revendication
1, dans lequel :
le premier commutateur logiciel comprend un premier commutateur à semi-conducteurs
(24), une première diode de roue libre (26) et un premier condensateur d'amortissement
(22) ;
le deuxième commutateur logiciel comprend un deuxième commutateur à semi-conducteurs
(24), une deuxième diode de roue libre (26) et un deuxième condensateur d'amortissement
(22) ;
le troisième commutateur logiciel comprend un troisième commutateur à semi-conducteurs
(24), une troisième diode de roue libre (26) et un troisième condensateur d'amortissement
(22) ; et
le quatrième commutateur logiciel comprend un quatrième commutateur à semi-conducteurs
(24), une quatrième diode de roue libre (26) et un quatrième condensateur d'amortissement
(22).
3. Convertisseur de puissance à commutation logicielle multi-niveaux (10) selon la revendication
2, comprenant en outre :
une première résistance (28) connectée en parallèle au premier commutateur logiciel
;
une deuxième résistance (28) connectée en parallèle au deuxième commutateur logiciel
;
une troisième résistance (28) connectée en parallèle au troisième commutateur logiciel
; et
une quatrième résistance (28) connectée en parallèle au quatrième commutateur logiciel.
4. Convertisseur de puissance à commutation logicielle multi-niveaux (10) selon la revendication
1, dans lequel un potentiel de tension aux bornes du condensateur volant (38) de chaque
bras de commutation (11, 13) est d'environ une moitié du potentiel de tension présent
aux bornes du bus DC (12) pendant chacun des trois modes de fonctionnement.
5. Convertisseur de puissance à commutation logicielle multi-niveaux (10) selon la revendication
4, dans lequel un potentiel de tension aux bornes de deux des commutateurs logiciels
dans chaque bras de commutation (11, 13) est d'environ une moitié du potentiel de
tension présent aux bornes du bus DC (12) pendant chacun des trois modes de fonctionnement.
6. Convertisseur de puissance à commutation logicielle multi-niveaux (10) selon la revendication
1, dans lequel, pendant un premier mode de fonctionnement, le premier commutateur
logiciel et le deuxième commutateur logiciel sur l'un des bras de commutation (11,
13) de la paire de bras de commutation sont commutés en tandem et le troisième commutateur
logiciel et le quatrième commutateur logiciel sur l'un des bras de commutation de
la paire de bras de commutation (11, 13) sont commutés en tandem.
7. Convertisseur de puissance à commutation logicielle multi-niveaux (10) selon la revendication
6, dans lequel, pendant un deuxième mode de fonctionnement :
le premier commutateur logiciel, le deuxième commutateur logiciel, le troisième commutateur
logiciel et le quatrième commutateur logiciel sont commandés pour connecter alternativement
l'un d'un premier potentiel de tension et d'un deuxième potentiel de tension aux bornes
de sortie de la paire de bras de commutation (11, 13), le premier potentiel de tension
est une moitié positive du potentiel de tension présent aux bornes du bus DC (12)
; et
le deuxième potentiel de tension est une moitié négative du potentiel de tension présent
aux bornes du bus DC (12).
8. Convertisseur de puissance à commutation logicielle multi-niveaux (10) selon la revendication
7, dans lequel, pendant un troisième mode de fonctionnement :
le premier commutateur logiciel, le deuxième commutateur logiciel, le troisième commutateur
logiciel et le quatrième commutateur logiciel sont commandés pour connecter alternativement
l'un du premier potentiel de tension et zéro volt aux bornes de sortie de la paire
de bras de commutation (11, 13).
9. Procédé de commande d'un convertisseur de puissance à commutation logicielle multi-niveaux
(10), dans lequel le convertisseur de puissance à commutation logicielle multi-niveaux
comprend une paire de bras de commutation (11, 13), chaque bras de commutation étant
connecté entre un rail positif (14) et un rail négatif (16) d'un bus de courant continu
(DC) (12) et chaque bras de commutation (11, 13) comprenant quatre commutateurs logiciels,
connectés en série entre le rail positif (14) et le rail négatif (16), et un condensateur
volant (38), le procédé comprenant les étapes suivantes :
la réception d'un signal de commande au niveau d'un dispositif de commande (48), dans
lequel le signal de commande correspond à un fonctionnement souhaité du convertisseur
de puissance à commutation logicielle multi-niveaux (10) et dans lequel le convertisseur
de puissance à commutation logicielle multi-niveaux est utilisable pour commander
les commutateurs logiciels dans au moins un premier mode de fonctionnement, un deuxième
mode de fonctionnement, et un troisième mode de fonctionnement ;
la réception au niveau du dispositif de commande (48) d'au moins un premier signal
de rétroaction correspondant à l'un d'un courant et d'une tension présents à une entrée
du convertisseur de puissance ;
la réception au niveau du dispositif de commande (48) d'au moins un deuxième signal
de rétroaction correspondant à l'un d'un courant et d'une tension présents à une sortie
du convertisseur de puissance ; et la génération d'une pluralité d'ensembles de signaux
de déclenchement au moyen du dispositif de commande (48), dans lequel :
chaque déclenchement est généré en réponse au signal de commande, au premier signal
de rétroaction, et au deuxième signal de rétroaction,
chaque signal de déclenchement correspond à l'un des commutateurs logiciels et chaque
ensemble de signaux de déclenchement a pour résultat un état de fonctionnement, et
les signaux de déclenchement sont générés pour former une première séquence d'états
de fonctionnement dans le premier mode de fonctionnement, une deuxième séquence d'états
de fonctionnement dans le deuxième mode de fonctionnement, et une troisième séquence
d'états de fonctionnement dans le troisième mode de fonctionnement.
10. Procédé selon la revendication 9, dans lequel :
un premier commutateur logiciel parmi les quatre commutateurs logiciels comprend un
premier commutateur à semi-conducteurs (24), une première diode de roue libre (26)
et un premier condensateur d'amortissement (22) ;
un deuxième commutateur logiciel parmi les quatre commutateurs logiciels comprend
un deuxième commutateur à semi-conducteurs (24), une deuxième diode de roue libre
(26) et un deuxième condensateur d'amortissement (22) ;
un troisième commutateur logiciel parmi les quatre commutateurs logiciels comprend
un troisième commutateur à semi-conducteurs (24), une troisième diode de roue libre
(26) et un troisième condensateur d'amortissement (22) ; et
un quatrième commutateur logiciel parmi les quatre commutateurs logiciels comprend
un quatrième commutateur à semi-conducteurs (24), une quatrième diode de roue libre
(26) et un quatrième condensateur d'amortissement (22).
11. Procédé selon la revendication 10, comprenant en outre les étapes suivantes :
la fourniture d'une première résistance (28) connectée en parallèle au premier commutateur
logiciel ;
la fourniture d'une deuxième résistance (28) connectée en parallèle au deuxième commutateur
logiciel ;
la fourniture d'une troisième résistance (28) connectée en parallèle au troisième
commutateur logiciel ; et
la fourniture d'une quatrième résistance (28) connectée en parallèle au quatrième
commutateur logiciel.
12. Procédé selon la revendication 10, dans lequel, pendant le premier mode de fonctionnement,
les signaux de déclenchement destinés au premier commutateur logiciel et au deuxième
commutateur logiciel sur l'un des bras de commutation (11, 13) de la paire de bras
de commutation sont commutés en tandem et le troisième commutateur logiciel et le
quatrième commutateur logiciel sur l'un des bras de commutation de la paire de bras
de commutation (11, 13) sont commutés en tandem.
13. Procédé selon la revendication 12, dans lequel, pendant le premier mode de fonctionnement,
les signaux de déclenchement sont générés selon les étapes suivantes :
le réglage du signal de déclenchement pour le premier commutateur logiciel et le deuxième
commutateur logiciel pour un premier bras de commutation sélectionné parmi la paire
de bras de commutation en tandem avec le troisième commutateur logiciel et le quatrième
commutateur logiciel d'un deuxième bras de commutation sélectionné parmi la paire
de bras de commutation (11, 13) ;
la réinitialisation du signal de déclenchement pour tous les commutateurs logiciels
;
le réglage du signal de déclenchement pour le premier commutateur logiciel et le deuxième
commutateur logiciel pour le deuxième bras de commutation en tandem avec le troisième
commutateur logiciel et le quatrième commutateur logiciel du deuxième bras de commutation
(13) ; et
la réinitialisation du signal de déclenchement pour tous les commutateurs logiciels.
14. Procédé selon la revendication 12, dans lequel, pendant le deuxième mode de fonctionnement
:
le premier commutateur logiciel, le deuxième commutateur logiciel, le troisième commutateur
logiciel et le quatrième commutateur logiciel sont commandés pour connecter alternativement
l'un d'un premier potentiel de tension et d'un deuxième potentiel de tension aux bornes
de sortie de la paire de bras de commutation (11, 13), le premier potentiel de tension
est une moitié positive du potentiel de tension présent aux bornes du bus DC (12)
; et
le deuxième potentiel de tension est une moitié négative du potentiel de tension présent
aux bornes du bus DC (12).
15. Procédé selon la revendication 14, dans lequel, pendant le deuxième mode de fonctionnement,
les signaux de déclenchement sont générés selon les étapes suivantes :
le réglage du signal de déclenchement pour les deuxième et quatrième commutateurs
logiciels dans le premier bras de commutation (11) et pour les troisième et quatrième
commutateurs logiciels dans le deuxième bras de commutation en tandem ;
la réinitialisation du signal de déclenchement pour le deuxième commutateur logiciel
dans le premier bras de commutation (11) et pour le troisième commutateur logiciel
dans le deuxième bras de commutation en tandem ;
le réglage du signal de déclenchement pour le troisième commutateur logiciel dans
le premier bras de commutation (11) et pour le deuxième commutateur logiciel dans
le deuxième bras de commutation (13) en tandem ;
la réinitialisation du signal de déclenchement pour les troisième et quatrième commutateurs
logiciels dans le premier bras de commutation (11) en tandem ;
le réglage du signal de déclenchement pour les premier et deuxième commutateurs logiciels
dans le premier bras de commutation (11) en tandem ;
la réinitialisation du signal de déclenchement pour le premier commutateur logiciel
dans le premier bras de commutation (11) et pour le quatrième commutateur logiciel
dans le deuxième bras de commutation (13) en tandem ;
le réglage du signal de déclenchement pour le quatrième commutateur logiciel dans
le premier bras de commutation (11) et pour le premier commutateur logiciel dans le
deuxième bras de commutation (13) en tandem ; et
la réinitialisation du signal de déclenchement pour les premier et deuxième commutateurs
logiciels dans le deuxième bras de commutation (13) en tandem.