

(11) **EP 3 248 984 A2**

(12)

EUROPEAN PATENT APPLICATION

(43) Date of publication:

29.11.2017 Bulletin 2017/48

(51) Int Cl.:

C07K 1/18 (2006.01)

(21) Application number: 17165390.0

(22) Date of filing: 07.04.2017

(84) Designated Contracting States:

AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

Designated Extension States:

BA ME

Designated Validation States:

MA MD

(30) Priority: 07.04.2016 JP 2016077127

(71) Applicant: SYSMEX CORPORATION Kobe-shi
Hyogo 651-0073 (JP)

(72) Inventor: Takahashi, Ryo Kobe-shi, Hyogo, 651-0073 (JP)

(74) Representative: De Clercq & Partners Edgard Gevaertdreef 10a 9830 Sint-Martens-Latem (BE)

(54) METHOD FOR PURIFYING PROTEIN, FUSION PROTEIN CONTAINING PEPTIDE TAG, AND PRODUCTION METHOD THEREOF

(57) Disclosed is a method for purifying a protein, comprising steps of: preparing a sample containing a fusion protein containing an amino acid sequence of a peptide tag and an amino acid sequence of a target protein;

and separating contaminant proteins contained with the fusion protein in the sample and the fusion protein in the sample, wherein the peptide tag contains 12 or more acidic amino acid residues.

Description

TECHNICAL FIELD

⁵ **[0001]** The present invention relates to a method for purifying a protein, a fusion protein containing a peptide tag, and a production method thereof.

BACKGROUND

35

40

45

[0002] According to the progress of molecular biology, a system for mass expressing an objective protein by introducing a recombinant gene encoding the objective protein into a host such as E. coli, a yeast or a cell has been developed. In such system, a sample prepared from the host contains contaminant proteins such as host-derived endogenous proteins, together with the objective protein. Thus, the objective protein needs to be further purified. As a method for purifying an objective protein, for example, a method for purifying VP1 protein by introducing eight glutamic acids and cysteine into polyoma VP1 protein is disclosed in Stubenrauch K, et al, Purification of a viral coat protein by an engineered polyionic sequence. J. Chromatogr. B. Biomed. Sci. Appl: 737: 77-84, 2000.

SUMMARY OF THE INVENTION

20 [0003] An object of the present invention is to provide a purification method capable of easily obtaining high purity recombinant protein.

[0004] One aspect of the present invention is a method for purifying a protein, comprising steps of: preparing a sample comprising a fusion protein and contaminant proteins, the fusion protein comprising an amino acid sequence of a peptide tag and an amino acid sequence of a target protein, and separating the contaminant proteins and the fusion protein, wherein the peptide tag comprises 12 or more acidic amino acid residues.

[0005] In particular embodiments, the peptide tag comprises any of the amino acid sequences of SEQ ID NOs. 1 to 8.

[0006] In particular embodiments, the peptide tag comprises 18 or more acidic amino acid residues.

[0007] In particular embodiments, the isoelectric point of the fusion protein is less than 6.

[0008] In particular embodiments, the salt concentration of the sample is 50 mM or more and 500 mM or less.

[0009] In particular embodiments, in the sample preparation step, a vector containing a polynucleotide encoding the fusion protein is introduced into a host cell, and the protein is expressed in the host cell to prepare the sample.

[0010] In particular embodiments, the fusion protein further comprises a cleavable site recognized by a protease, between the amino acid sequence of a peptide tag and the amino acid sequence of the target protein.

[0011] In particular embodiments, in the step of separating the contaminant proteins, the fusion protein and the contaminant proteins are separated using an ion exchange resin.

[0012] In particular embodiments, the ion exchange resin is an anion exchange resin.

[0013] In particular embodiments, the step of separating the contaminant proteins comprises passing the sample through an anion exchange resin to obtain (i) the anion exchange resin to which the fusion protein is bound and (ii) a flow-through fraction comprising the contaminant proteins, and eluting the fusion protein from the anion exchange resin using a buffer with a salt concentration of 600 mM or more.

[0014] In particular embodiments, after the step of separating the contaminant proteins, the method further comprises a step of separating the fusion protein into the target protein and the peptide tag in a solution, using the protease recognizing the cleavable site.

[0015] In particular embodiments, in the step of separating the fusion protein, the solution comprising the separated target protein and the separated peptide tag is passed through an anion exchange resin, and (i) the anion exchange resin to which the separated peptide tag is bound, and (ii) a flow-through fraction comprising the target protein, are obtained.

[0016] In particular embodiments, the salt concentration of the solution comprising the target protein and the peptide tag is 500 mM or less.

[0017] Another aspect of the present invention is a fusion protein comprising an amino acid sequence of a peptide tag and an amino acid sequence of a target protein, the peptide tag comprising 12 or more acidic amino acid residues.

[0018] In particular embodiment, the peptide tag comprises any of the amino acid sequences of SEQ ID NOs. 1 to 8.

[0019] In particular embodiments, the peptide tag comprises 18 or more acidic amino acid residues.

[0020] In particular embodiments, the isoelectric point of the fusion protein is less than 6.

[0021] In particular embodiments, the fusion protein further comprises a cleavable site recognized by a protease, between the amino acid sequence of the peptide tag and the amino acid sequence of the target protein.

[0022] Another aspect of the present invention is a method for producing the fusion protein, comprising steps of introducing a polynucleotide encoding the amino acid sequence of the peptide tag and a polynucleotide encoding the

amino acid sequence of the target protein into a host cell, and expressing the fusion protein in the host cell.

[0023] Another aspect of the present invention is a method for producing a pure target protein, the method comprising producing the fusion protein as described above, purifying the fusion protein by separating the contaminant proteins and the fusion protein and, after said purification, cleaving said fusion protein to obtain said target protein and separating said target protein from said peptide tag and optionally said enzyme used for said cleaving.

[0024] Another aspect of the present invention is use of a peptide tag comprising 12 or more acidic amino acid residues, for the above-mentioned method for purifying a protein.

[0025] A higher purity recombinant protein can be obtained by a simple method.

10 BRIEF DESCRIPTION OF THE DRAWINGS

[0026]

15

25

35

40

50

- Figs. 1A to 1C are diagrams schematically showing a principle of the purification methods provided herein, in which Fig. 1A shows a separation step, and Figs. 1B and 1C show a target protein acquisition step.
 - Fig. 2 is a figure showing the results of SDS (Sodium dodecyl sulfate)-polyacrylamide gel electrophoresis (SDS-PAGE) in Example 1.
 - Fig. 3 is a figure showing the results of SDS-PAGE in Example 2.
 - Fig. 4 is a figure showing the results of SDS-PAGE in Example 3.
- Fig. 5 is a figure showing the results of SDS-PAGE in Example 4.
 - Fig. 6 is a figure showing the results of SDS-PAGE in Example 5.
 - Fig. 7 is a figure showing the results of SDS-PAGE in Example 6.
 - Fig. 8 is a figure showing the results of SDS-PAGE in Example 7.
 - Fig. 9 is a figure showing the results of SDS-PAGE in Example 8.
 - Fig. 10 is a figure showing the results of SDS-PAGE in Example 9.
 - Fig. 11 is a figure showing the results of SDS-PAGE in Example 10.

 - Fig. 12 is a figure showing the results of SDS-PAGE in Example 11.
 - Fig. 13 is a figure showing the results of SDS-PAGE in Example 12.
 - Fig. 14 is a figure showing the results of SDS-PAGE in Example 13.
- Fig. 15 is a figure showing the results of SDS-PAGE in Comparative Example 1.
 - Fig. 16 is a figure showing the results of SDS-PAGE in Example 14.
 - Fig. 17 is a figure showing the results of SDS-PAGE in Example 15.
 - Fig. 18 is a figure showing the results of SDS-PAGE in Example 16.
 - Fig. 19 is a figure showing the results of SDS-PAGE in Example 17.
 - Fig. 20 is a figure showing the results of SDS-PAGE in Example 18.
 - Fig. 21 is a figure showing the results of SDS-PAGE in Example 19. Fig. 22 is a figure showing the results of SDS-PAGE in Example 20.
 - Fig. 23 is a figure showing the results of SDS-PAGE in Example 21.
 - Fig. 24 is a figure showing the results of SDS-PAGE in Example 22.
 - Fig. 25 is a figure showing the results of SDS-PAGE in Example 23.
 - Fig. 26 is a figure showing the results of SDS-PAGE in Example 24.
 - Fig. 27 is a figure showing the results of SDS-PAGE in Example 25.
 - Fig. 28 is a figure showing the results of SDS-PAGE in Example 26.
 - Fig. 29 is a figure showing the results of SDS-PAGE in Example 27.
- Fig. 30 is a figure showing the results of SDS-PAGE in Example 28.

DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS

- **[0027]** The purification methods of the present invention include steps of preparing a sample containing a fusion protein containing an amino acid sequence of a peptide tag and an amino acid sequence of a target protein and contaminant proteins (sample preparation step), and separating the fusion protein and the contaminant proteins (separation step). The contaminant protein means a protein such as host-derived endogenous proteins, other than the fusion protein and the target protein.
- 55 (Sample Preparation Step)

[0028] The fusion protein contains amino acid sequences of a peptide tag and a target protein. The peptide tag may be one containing 12 or more acidic amino acid residues. The number of the acidic amino acid residues in the peptide

tag is preferably 18 residues or more, more preferably 24 residues or more, further preferably 30 residues or more, and particularly preferably 36 residues or more, since separation from the contaminant proteins is improved, and an effect on separation due to the isoelectric point of the target protein, pH of the buffer and the like can be more suppressed, in the separation step. The upper limit of the number of the acidic amino acid residues is not particularly limited. The upper limit of the number of the acidic amino acid residues is preferably 100 residues or less, and more preferably 70 residues or less, from the viewpoint of the effect on the three-dimensional structure of the fusion protein and the like. The acidic amino acid residues contained in the peptide tag may be either one of an aspartic acid residue or a glutamic acid residue or both of them. The peptide tag may contain a neutral amino acid residue and/or a basic amino acid residue, other than the acidic amino acid residue. The ratio of the number of the acidic amino acid residues to the number of the amino acid residues of the total peptide tags is preferably 20% or more and more preferably 60% or more, since separation from the contaminant proteins is improved. In the sequence of the total peptide tags, the amino acid sequence containing the acidic amino acid residues may be a sequence in which all acidic amino acid residues are continuous, or one or a plurality of neutral amino acid residues and/or basic amino acid sequences may be interposed between the acidic amino acid residues. In particular embodiments, the peptide comprises at least 4 consecutive acidic amino acid residues. More particularly, the peptide comprises at least 6 consecutive acidic amino acid residues. Preferably the peptide comprises at least 6 consecutive aspartic acid residues and/or at least 6 consecutive glutamic acid residues or at least 12 consecutive acidic amino acids which are preferably selected from aspartic acid and/or glutamic acid. The isoelectric point (pl) of the peptide tag is preferably 5 or less and more preferably 4 or less, since separation from the contaminant proteins is improved, and the effects on separation due to the isoelectric point of the target protein, pH of the buffer and the like can be more suppressed. The isoelectric point is a pH value when the positive and negative ion concentrations in the aqueous solution become equal to each other. The isoelectric point can be measured, for example, by isoelectric electrophoresis, or the like. Specific examples of the peptide tag include the following peptide tags 1 to 8 (D; aspartic acid residue, E; glutamic acid residue).

<Peptide Tag>

[0029]

Peptide tag 6

35

40

45

50

55

10

15

20

25

30

NVEGKTGNATDEEEEEEEEEEEDDDDDDDDDDDDDDDSGAEIQDDDEE

GFDDEEEFDDDDDDEHDDDDLENEENELEELEERVEARKK (DED; SEQ ID NO.:

6)

[0030] The target protein is not particularly limited. Examples of the target protein include proteins such as enzymes, receptors, interferons, interleukins, antibodies, and fluorescent proteins. The isoelectric point of the target protein is not particularly limited. Generally, the isoelectric point of a protein is 6 to 7, and even when any protein is targeted, the isoelectric point can be lowered by fusing a peptide tag, to an extent that the peptide tag can be sufficiently separated from the contaminant proteins.

[0031] In the fusion protein, the peptide tag may be bound to either N-terminal side or C-terminal side of the target protein. The peptide tag may be adjacently bound to the target protein, or other amino acid sequence may be inserted between the target protein and the peptide tag. For example, when an amino acid sequence of the cleavable site to be recognized by a protease is inserted between the amino acid sequences of the fusion protein and the peptide tag, it becomes easier to acquire a target protein by cleaving the peptide tag from the fusion protein. The isoelectric point of the fusion protein is not particularly limited. The isoelectric point of the fusion protein is preferably less than 6 and more preferably less than 5. The isoelectric point of many proteins is generally 6 to 7, thus when the isoelectric point of the

fusion protein is less than 6, separation of the fusion protein from the contaminant proteins becomes easier, and purity of the fusion protein can be improved.

[0032] The sample containing a fusion protein and contaminant proteins can be acquired by introducing a polynucleotide containing a base sequence encoding a peptide tag and a base sequence encoding a target protein into a host cell and expressing the fusion protein in the host cell. Expression of the fusion protein can be performed by a known genetic engineering method. A polynucleotide encoding a peptide tag and a polynucleotide encoding a target protein can be acquired by a known method such as chemical synthesis. The acquired polynucleotides can be amplified according to a known gene amplification method using these as templates. The amplified polynucleotide and an expression vector are treated with a restriction enzyme, and bound using an appropriate DNA ligase, whereby a recombinant expression vector containing the polynucleotides each encoding a peptide tag and a target protein can be constructed. In the construction of the expression vector, the base sequence encoding a peptide tag may be arranged at the 5' side or 3' side of the base sequence encoding a target protein. The base sequence encoding a peptide tag and the base sequence encoding a target protein may be adjacently arranged, or a base sequence encoding a cleavable site recognized by a protease or the like may be inserted there between. The host is not particularly limited. As the host, E. coli, a yeast, an insect cell, an insect body, an animal cell, a plant cell or the like can be used. The expression vector is not particularly limited. The expression vector includes plasmid vectors, phage vectors, virus vectors and the like. The expression vector can be properly selected depending on the used host. The expression vector may contain a regulatory sequence such as a replication origin, a promoter sequence or an enhancer sequence, or a sequence such as a selectable marker. Introduction of an expression vector into a host can be performed according to a known method depending on the host. Examples of the method include a calcium phosphate method, an electroporation method, a lipofection method, and the like. As described above, a transformant in which the expression vector is introduced into the host cell can be obtained. The obtained transformant is incubated under preferred conditions, thus a fusion protein can be produced.

10

20

30

35

40

45

50

55

[0033] After expressing the fusion protein, treatment such as extraction, crushing, centrifugation, solubilization and body fluid collection is performed on cells of the host, tissue, insect body, and the like, as necessary, to acquire a sample as a cell culture liquid, an extract, a homogenate, a solution, a body fluid, or the like. The sample contains contaminant proteins such as host-derived endogenous proteins, other than the produced fusion protein. For the preparation of the sample, a buffer such as a phosphate buffer, a citrate buffer, an acetate buffer, a tris buffer, a MOPS buffer or a HEPES buffer can be used. These buffers contain a salt with a weak acid or weak base used for obtaining a buffer action. In addition, salts such as sodium chloride, potassium chloride and calcium chloride can be used. The salt concentration of a buffer or sample herein means a concentration of a salt other than the salt intended for buffer action described above. The salt concentration of a sample is preferably 50 mM or more and 500 mM or less, and more preferably 50 mM or more and 250 mM or less, from the viewpoint of stability of the fusion protein, easiness of adjustment in the separation step, and the like. The pH of a sample is preferably 5 or more and 9 or less, and more preferably 6 or more and 8 or less, from the viewpoint of stability of the fusion protein, easiness of adjustment in the separation step, and the like. [0034] When a sample is acquired using an Escherichia coli expression system, a plasmid vector can be used as an expression vector. Specific examples of the plasmid vector include pET, pGEX, pCold, pMAL, pCAL, and the like. The expression vector may contain a promoter sequence such as a replication origin, lac, T7 or tac, an enhancer sequence, or a sequence of a selectable marker such as ampicillin resistance gene or kanamycin resistance gene. Introduction of an expression vector into E. coli can be performed by a calcium phosphate method, an electroporation method, a lipofection method, and the like. After the introduction of an expression vector, E. coli is cultured in a medium containing the selectable marker, whereby a transformant in which the expression vector is introduced into E. coli can be selected. The thus-obtained transformant is proliferated under preferred conditions. Then, the proliferated transformant is expressed and induced depending on the selected promoter to produce a fusion protein. After expressing the fusion protein, a sample containing the fusion protein and contaminant proteins derived from E. coli can be acquired by crushing E. coli or the like.

[0035] When using an insect body such as silkworm or insect cells as an expression system, a transfer vector can be used. The transfer vector is transduced into the insect cells together with baculovirus DNA, and then an objective gene can be inserted into the baculovirus DNA by homologous recombination. Examples of the transfer vector include pM01, pM02, pHS01, pHS02, and the like. The transfer vector preferably contains a promoter such as a polyhedrin promoter or a p10 promoter. Examples of the insect cells include Sf9, Sf21, High5, TN-368, Bm5, and the like. Examples of the baculovirus include nuclear polyhedrosis virus (NPV), and specifically, AcMNPV, BmNPV and the like can be exemplified. The transfer vector and linearized baculovirus DNA are introduced into the insect cells, whereby homologous recombination occurs, and a recombinant baculovirus into which an objective gene is inserted is obtained. A virus solution containing a recombinant baculovirus is inoculated into an insect body or insect cells, or the like, whereby the recombinant baculovirus can be infected. The insect body such as silkworm may be in any form of imago, pupa, and larva. The insect body or insect cells are infected with the recombinant baculovirus, and bred or cultured for 1 to 7 days, whereby a fusion protein can be expressed. After expressing the fusion protein, a sample containing the fusion protein and contaminant proteins derived from the insect body or insect cells can be acquired by crushing the insect body or insect cells, or the like.

(Fusion Protein)

10

30

35

50

55

[0036] The fusion protein in the methods provided herein can be obtained, as the sample preparation step described above, by a production method including steps of introducing a polynucleotide containing a base sequence encoding an amino acid sequence of a peptide tag and a base sequence encoding an amino acid sequence of a fusion protein into a host cell, and expressing the fusion protein in the host cell. The fusion protein contains the amino acid sequence of a peptide tag containing 12 or more acidic amino acid residues and the amino acid sequence of a target protein. Examples of the fusion protein of the present invention include the following constructs 1 to 12 obtained by fusing NAD(P)H dehydrogenase, quinone 1 human (NQO1; pI = 8.91; SEQ ID NO.: 9) or Luciferase (pI = 6.71; SEQ ID NO.: 10) that is a target protein and the above peptide tags 1 to 8, and inserting a cleavable site recognized by protease HRV3C there between. The following construct 13 obtained by fusing HRV3C (pI = 8.46; SEQ ID NO.: 11) that is a target protein and the above peptide tag 7 is also exemplified.

	Construct 1	DE12-HRV3Csite-NQO1 (SEQ ID NO.: 12)
15	Construct 2	DE18-HRV3Csite-NQO1 (SEQ ID NO.: 13)
	Construct 3	DE24-HRV3Csite-NQO1 (SEQ ID NO.: 14)
	Construct 4	DE30-HRV3Csite-NQO1 (SEQ ID NO.: 15)
	Construct 5	DE36-HRV3Csite-NQO1 (SEQ ID NO.: 16)
20	Construct 6	DED-HRV3Csite-NQO1 (SEQ ID NO.: 17)
20	Construct 7	DES-HRV3Csite-NQO1 (SEQ ID NO.: 18)
	Construct 8	EO24-HRV3Csite-NQO1 (SEQ ID NO.: 19)
	Construct 9	NQO1-HRV3Csite-DED (SEQ ID NO.: 20)
	Construct 10	NQO1-HRV3Csite-DES (SEQ ID NO.: 21)
25	Construct 11	DED-HRV3Csite-Luciferase (SEQ ID NO.: 22)
	Construct 12	DES-HRV3Csite-Luciferase (SEQ ID NO.: 23)
	Construct 13	DED-HRV3C (SEQ ID NO.: 24)

(Separation Step)

[0037] As to the sample containing the fusion protein obtained in the sample preparation step and the contaminant proteins, in the methods provided herein, the fusion protein and the contaminant proteins are separated. The phrase "the fusion protein and the contaminant proteins are separated" includes extracting and purifying the fusion protein, and storing into a container different from the contaminant proteins. The contaminant proteins may be substantially completely separated, or a part of the contaminant proteins may be separated. A part or all of the contaminant proteins is separated, whereby the purity of the fusion protein can be improved.

[0038] The separation means is not particularly limited, and a known separation means can be used. Separation by an ion exchange resin is preferred, and separation by an anion exchange resin is more preferred, since good separation from the contaminant proteins is obtained. The ion exchange group of the anion exchange resin is not particularly limited, and a quaternary ammonium (QA), a quaternary aminoethyl (QAE), diethylaminoethyl (DEAE) and the like can be used. Specific examples include Hitrap HP Q (GE Healthcare), TOYOPEARL GigaCap Q-650M, TOYOPEARL Q-600C AR, TOYOPEARL QAE-550, TOYOPEARL DEAE-650M, TOYOPEARL SuperQ-650M (all, Tosoh Corporation), Q101, DE101 (Mitsubishi Chemical Corporation), and the like. As a carrier of the ion exchange group, cellulose, dextran, agarose, a hydrophilic vinyl polymer or the like can be used. The sample containing the fusion protein obtained in the sample preparation step and the contaminant proteins is passed through such anion exchange resin to bind the fusion protein to the anion exchange resin. Thereafter, for example, the salt concentration of an eluate is increased to elute the contaminant proteins, then the fusion protein is eluted from the ion exchange resin with the eluate with a high salt concentration, whereby a purified fusion protein can be acquired. Examples of a method for increasing the salt concentration of an eluate include a stepwise method in which the salt concentration is stepwisely changed to elute an objective protein, a gradient method in which the salt concentration is continuously changed to elute an objective protein, and the like. As a buffer used for elution, a buffer such as a phosphate buffer, a citrate buffer, an acetate buffer, a tris buffer, a MOPS buffer or a HEPES buffer can be used. The salt concentration of the buffer is preferably set in the range of 50 mM or more and 2000 mM or less, and more preferably in the range of 50 mM or more and 1000 mM or less, from the viewpoint of separation from the contaminant proteins, stability of the fusion protein, and the like. Particularly, when the salt concentration of the buffer is set at 600 mM or more and more preferably 750 mM or more, separation from the contaminant proteins is improved. The range of pH of the buffer is not particularly limited. The range of pH of the buffer is preferably in the range of 5 or more and 9 or less, and more preferably in the range of 6 or more and 8 or less, from

the viewpoint of separation from the contaminant proteins, stability of the fusion protein, and the like.

[0039] Figs. 1A to 1C are schematic diagrams showing one embodiment, and Fig. 1A is a diagram showing a separation step. The principle of the separation step in the purification method of the present methods will be described based on this diagram. When a fusion protein is expressed in a host cell, a sample such as a disrupted cell suspension contains contaminant proteins 21A to 21F such as host-derived endogenous proteins, other than a fusion protein 20. The isoelectric points of the contaminant proteins 21 are high in the order of A to F. In a particular embodiment, a peptide tag 20b containing 12 or more acidic amino acid residues is bound to a target protein 20a to lower the isoelectric point of the fusion protein 20. The fusion protein 20 in which the isoelectric point is lowered can be held in an anion exchange resin 10 up to a high salt concentration. On the other hand, most of host-derived contaminant proteins cannot be held in the anion exchange resin 10 up to the same salt concentration. The fusion protein and the contaminant proteins are separated, based on the difference in the isoelectric points. Specifically, when a sample is brought into contact with the anion exchange resin 10, the contaminant protein 21A with a high isoelectric point passes without binding to the anion exchange resin. Other contaminant proteins and the fusion protein 20 bind to the anion exchange resin 10. When the salt concentration of the eluate is increased, contaminant proteins are eluted in the higher order of the isoelectric point (21B to 21D). The fusion protein 20 is eluted by an eluate with further higher salt concentration. This elution fraction contains contaminant proteins 21E and 21F with an isoelectric point close to that of the fusion protein 20. The salt concentration of the eluate is adjusted as described above, whereby many contaminant proteins can be separated, thus a high purity fusion protein can be obtained. The difference in the isoelectric points between the fusion protein and the contaminant proteins is relatively large, thus good separation is obtained also by a stepwise method in which the salt concentration is stepwisely changed to elute a protein.

[0040] The fusion protein and the contaminant proteins contained in the sample can be separated as described above.

(Target Protein Acquisition Step)

be easily separated by an ion exchange resin.

10

15

20

25

30

35

40

45

50

55

When the fusion protein further contains a cleavable site to be recognized by a protease, the protease is reacted with the separated fusion protein, whereby a peptide tag is cleaved from the fusion protein, and only a target protein can be acquired. The purification methods provided herein, after the separation step, may further include a step of cleaving the peptide tag from the fusion protein in the solution, using a protease as described above, to acquire a target protein. [0041] The kind of the protease is not particularly limited. Examples include HRV3C, PreScission protease, factor Xa, thrombin, TEV protease, and the like. For example, such protease is added to the eluate containing a target protein obtained in the separation step, whereby the peptide tag can be cleaved from the fusion protein. The reaction temperature and the reaction time can be properly set according to the kind of the protease and the like. In the solution after reaction, the target protein, the peptide tag and the protease are contained. The target protein can be separated from this solution, using a known separation means. The separation means is not particularly limited, and a known separation means such as various chromatography can be used. In particular embodiments, the separation step is based on the difference in the isoelectric points between the target protein and the peptide tag when the peptide tag is cleaved from the fusion protein. More particularly separation by an ion exchange resin using the difference in the isoelectric points is preferred, and separation by an anion exchange resin is further preferred. When a solution containing the target protein, the peptide tag and the protease after reaction by the protease is brought into contact with the anion exchange resin, the cleaved peptide tag binds to the ion exchange resin, and the target protein passes without binding to the ion exchange resin. Therefore, the target protein can be acquired by collecting this flow-through fraction. The salt concentration of the solution containing the target protein, the peptide tag and the protease is preferably 500 mM or less and more preferably 300 mM or less, since separation from the peptide tag is improved. The pH of the solution is preferably 5 or more and 9 or less, and more preferably 6 or more and 8 or less. As a buffer used for adjustments of the salt concentration and pH of the solution, a phosphate buffer, a citrate buffer, an acetate buffer, a tris buffer, a MOPS buffer, a HEPES buffer or the like can be used. Even when contaminant proteins remain in the solution fraction containing a fusion protein obtained in the separation step, the isoelectric point of those contaminant proteins is relatively close to that of the fusion protein. Therefore, the difference in the isoelectric point with the remaining contaminant proteins is also increased by cleaving the peptide tag from the fusion protein. Therefore, when using an ion exchange resin, separation from contaminant proteins is also improved, and a higher purity target protein can be obtained. The protease can be separated by a known separation means. When a difference is present in the isoelectric points of the target protein and the protease, both can

[0042] Accordingly, in particular embodiments of the methods provided herein, the isoelectric point of the protease is preferably different from the isoelectric point of the target protein, preferably lower than that of the target protein. This makes it possible to easily separate the target protein and the protease, after cleaving the peptide tag with the protease. In particular embodiments this difference in isoelectric point is obtained by fusing the protease with a peptide tag. This makes it possible to adjust the isoelectric point of the protease to a desired value. As the peptide tag fused to the protease, the same one as the peptide tag to be bound to the fusion protein described above can be used. The amino acid sequence

of the peptide tag to be bound to the protease may be the same as or different from the amino acid sequence of the peptide tag to be bound to the fusion protein. The amino acid sequence of the peptide tag to be bound to the protease is preferably the same as the amino acid sequence of the peptide tag contained in the fusion protein. Thereby, the protease has the isoelectric point almost same as that of the fusion protein and also different from that of the target protein. The protease fused with the peptide tag preferably does not have a cleavable site to be recognized by this protease, in order to avoid decomposition by itself. When the protease fused with the peptide tag is used, the target protein, the cleaved peptide tag and the protease fused with the peptide tag are contained in the solution after reaction. This solution is passed through an anion exchange resin, whereby the protease fused with the peptide tag also binds to the anion exchange resin, together with the cleaved peptide tag, thus a step of separating the protease is not separately required.

[0043] The protease fused with the peptide tag can be obtained by using the protease as the target protein, in the expression of the fusion protein described above. The fusion protein and the protease can be expressed by introducing a vector into which a polynucleotide containing a base sequence encoding both amino acid sequences into a host. A vector into which a polynucleotide encoding the fusion protein is introduced and a vector into which a polynucleotide encoding the protease is inserted may be introduced into the host to express the fusion protein and the protease. The vector into which a polynucleotide encoding the fusion protein is inserted is introduced into the host, and the vector into which a polynucleotide encoding the protease is inserted is introduced into the host, and the fusion protein and the protease are expressed alone respectively, and then may be mixed. In this case, the hosts may be the same kind or the different kind, and are preferably the same kind, in the aspect of easiness of handling after expression and the like. The isoelectric point of the protease fused with the peptide tag is not particularly limited. The isoelectric point is preferably less than 6 and more preferably less than 5, since separation from the target protein is improved.

[0044] Based on the Figs. 1B and 1C, the principle of the target protein acquisition step in the purification methods provided herein will be described. The fusion protein 20 contains a cleavable site 20c to be recognized by the protease 22, between the target protein 20a and the peptide tag 20b. In a protease 22 fused with the peptide tag, a peptide tag 22b is bound to a protease 22a. When the fusion protein 20 and the protease 22 are reacted in the solution, the peptide tag 20b is cleaved from the fusion protein 20. The target protein 20a, the cleaved peptide tag 20b, the protease 22 fused with the peptide tag and contaminant proteins 21E and 21F remained in the separation step are contained in the solution after reaction. A peptide tag 20b with a low isoelectric point is cleaved, thus the isoelectric point of the target protein 20a becomes high as compared to that of the fusion protein 20. The contaminant proteins 21E and 21F have an isoelectric point relatively close to that of the fusion protein 20, thus the target protein 20a has an isoelectric point higher than those of those proteins. Furthermore, the target protein 20a has an isoelectric point higher than those of the cleaved peptide tag 20b and the protease 22 fused with the peptide tag 22b. Therefore, when this solution is diluted to lower the salt concentration, and passed through the anion exchange resin 10, the cleaved peptide tag 20b, the protease fused with the peptide tag 22 and contaminant proteins 21E and 21F bind to the anion exchange resin 10, but the target protein 20a passes through without binding thereto. High purity target protein 20a can be acquired by collecting this flow-through fraction.

EXAMPLES

10

20

30

35

50

55

[0045] Hereinbelow, the present invention will be further described in detail with reference to examples, but the present invention is not limited to these examples.

Example 1 [Expression and Purification of Fusion Protein DE12-HRV3Csite-NQO1 (Construct 1; pl = 5.84)]

[0046] Peptide tag 1 (DE12) was fused to the N-terminal side of NAD(P)H dehydrogenase, quinone 1 human (NQO1; pl = 8.91) that is a target protein, and expression and purification of a fusion protein containing a cleavable site HRV3Csite recognized by protease HRV3C between NQO1 and DE12 were performed.

(1) Construction of pM01_DE12 Vector

[0047] A pM01_DE12 vector in which the peptide tag DE12 was inserted into a pM01 vector was constructed. [0048] Polynucleotides encoding DE12 (SEQ ID NOs.: 25 and 26) were annealed in pairs to prepare an insert part. A Nhel site of the pM01 vector (SYSMEX CORPORATION) was treated with Nhel (TAKARA BIO INC.), and the insert part was inserted using In-Fusion HD Cloning Kit (Clontech Laboratories, Inc.). Stellar Competent Cells were transformed with the constructed vector, then the obtained transformant was seeded on a LBA plate, and cultured at 37°C for 16 hrs. An ampicillin resistant transformant was selected from the obtained transformants according to normal procedure, and purification of plasmid was performed. In order to confirm a base sequence of the selected clone, the PCR reaction was performed by Big Dye Terminator v3.1 (Thermo Fisher Scientific Inc.), using primer 1 (SEQ ID NO.: 27) and primer 2

(SEQ ID NO.: 28) for sequence confirmation, then the base sequence was analyzed by a DNA sequencer (Thermo Fisher Scientific Inc.). A vector into which the insert part was introduced, that had no variation in other part, was defined as pM01_DE12.

(2) Construction of pM01_DE12_HRV3Csite_NQO1

[0049] An expression vector pM01_DE12_HRV3Csite_NQ01 into which a polynucleotide (SEQ ID NO.: 29) encoding NQ01 (SEQ ID NO.: 9) was inserted into pM01_DE12 was constructed.

[0050] The polynucleotide encoding NQO1 and primers 3F (SEQ ID NO.: 30) and 3R (SEQ ID NO.: 31) corresponding to the insert part were prepared, and the insert part was amplified using KOD-Plus- (TOYOBO CO., LTD.) as a PCR enzyme, under the following PCR conditions. The amplified PCR product was migrated by 1.0% (w/v) agarose electrophoresis, and the part matched to the length of the insert part was cut out from the gel and purified to prepare an insert part. A Smal site of the pM01_DE12 vector was treated with Smal (TAKARA BIO INC.), and the insert part was inserted using In-Fusion HD Cloning Kit (Clontech Laboratories, Inc.). Stellar Competent Cells (Clontech Laboratories, Inc.) were transformed with the constructed vector, then the obtained transformant was seeded on a LBA plate. The transformant was cultured at 37°C for 16 hrs. An ampicillin resistant transformant was selected from the obtained transformants according to normal procedure, and purification of plasmid was performed. In order to confirm a base sequence of the selected clone, the PCR reaction was performed by Big Dye Terminator v3.1 (Thermo Fisher Scientific Inc.), using primers 1 and 2 for sequence confirmation, then the base sequence was analyzed by a DNA sequencer (Thermo Fisher Scientific Inc.). A vector into which the insert part was introduced, that had no variation in other part, was defined as pM01_DE12_HRV3Csite_NQO1.

<PCR Conditions>

40

45

- [0051] Reaction 1: 94.0°C, 2-minute reaction 2: 94.0°C, 15-second reaction 3: 52.0°C, 30-second reaction 4: 68.0°C, 1-minute reaction 5: reaction 2 to reaction 4 are repeated 30 times per 1 kbp
 - (3) Preparation of Recombinant Baculovirus and Expression of Fusion Protein DE12-HRV3Csite-NQ01
- [0052] pM01_DE12_HRV3Csite_NQO1 and baculovirus DNA were introduced into silkworm culture cells (BmN cells), and homologous recombination of virus was performed. The culture cells were cultured for 6 days, and the recombinant virus was collected. Thereafter, a virus solution diluted 50 times with MilliQ water was inoculated into pupa of silkworm, and the pupa was incubated for 6 days.
- 35 (4) Purification of DE12-HRV3Csite-NQO1
 - [0053] After incubation, the pupa of silkworm was collected, and 50 mL of a buffer (20 mM Tris-HCl (pH 8.0), 150 mM NaCl, 1 tablet Complete EDTA free (Roche), phenylthiourea) was added per a pupa to homogenate the pupa. The solution was centrifuged (8,000 g, 10 minutes), then the supernatant fraction was filtered with 0.8 uM of a filter agent, and the filtrate was collected. The collected filtrate was loaded on an ion exchange resin (Hitrap Q HP (1 mL)), and purified using a mixed solution of 20 mM Tris-HCl (pH 8.0, 150 mM NaCl; buffer A) and 20 mM Tris-HCl (pH 8.0, 1000 mM NaCl; buffer B). First, only buffer A (NaCl concentration of 150 mM) was flown through the ion exchange resin (EL0), and a fraction eluted with a 3:1 mixed solution of buffer A:buffer B (NaCl concentration of 363 mM) (EL1), a fraction eluted with a 1:1 mixed solution of buffer A:buffer B (NaCl concentration of 575 mM) (EL2), a fraction eluted with only buffer B (NaCl concentration of 1000 mM) (EL4) were each collected.
 - (5) Detection of DE12-HRV3Csite-NQO1
- 50 **[0054]** SDS (Sodium dodecyl sulfate)-polyacrylamide gel electrophoresis (SDS-PAGE) was performed using 5 to 20% gradient gel and an electrophoresis apparatus (APRO Science Inc.). A sample and β-ME Sample Treatment for Tris SDS (COSMO BIO Co., Ltd. were mixed in a volume ratio of 1:1, and treated at 100°C for 3 minutes, then 5 uL of the resulting solution was loaded on the gel. As a molecular weight marker, 2.5 uL of Blue Star (NIPPON Genetics Co., Ltd.) was loaded on the gel. The gel loaded with the sample was migrated at a voltage of 400 V for 14 minutes, and then transferred to a membrane using Trans-Blot Turbo Transfer System (Bio-Rad Laboratories, Inc.). The transferred membrane was set in i-Bind system (Thermo Fisher Scientific Inc.), and an antigen-antibody reaction was performed. In the antigen-antibody reaction, an ANTI-FLAG (registered trademark) M2-Peroxidase (HRP) antibody (Merck & Co., Inc.) or an Anti-NQO1 antibody (Cell Signaling Technology, Inc.) and Anti-IgG (H+L chain) (Mouse) pAb-HRP (Beckman Coulter,

Inc.) were diluted 2000 times and used. Also, Luminata Forte (Merck & Co., Inc.) as a HRP reagent for detection and Gel Doc XR+ system (Bio-Rad Laboratories, Inc.) as a detector were used.

[0055] After performing western blotting, the used membrane was stained by GelCode Blue Stain Reagent (Thermo Fisher Scientific Inc.), and excess staining was bleached, then the image was photographed using Gel Doc XR+ system (Bio-Rad Laboratories, Inc.). The results were shown in Fig. 2. In Fig. 2, the results of electrophoresis are shown as follows; M: molecular weight marker, lane 1: homogenate solution, lane 2: supernatant fraction after centrifugation, lane 3: precipitated fraction after centrifugation, lanes 4 to 7: flow-through fractions 1 to 4 of the ion exchange resin, lane 8: elution fraction by buffer A (NaCl concentration of 150 mM) (EL0), lane 9: elution fraction by a 3:1 mixed solution of buffer A:buffer B (NaCl concentration of 363 mM) (EL1), lane 10: elution fraction by a 1:1 mixed solution of buffer A:buffer B (NaCl concentration of 575 mM) (EL2), lane 11: elution fraction by a 1:3 mixed solution of buffer A:buffer B (NaCl concentration of 788 mM) (EL3), and lane 12: elution fraction by buffer B (NaCl concentration of 1000 mM) (EL4). The part surrounded by a broken line shows a band containing the target protein. Explanation of each lane is common in Figs. 3 to 15.

15 Example 2 [Expression and Purification of Fusion Protein DE18-HRV3Csite-NQO1 (Construct 2; pl = 5.03)]

[0056] Peptide tag 2 (DE18) was fused to the N-terminal side of NQO1 that is a target protein, and expression and purification of a fusion protein containing HRV3Csite between NQO1 and DE18 were performed.

[0057] The same procedures were carried out as in Example 1, except for preparing an insert part using polynucleotides (SEQ ID NOs.: 32 and 33) encoding DE18 (SEQ ID NO.: 2) in place of the polynucleotides encoding the peptide tag DE12, to construct a pM01_DE18 vector.

[0058] Further, pM01_DE18_HRV3Csite_NQO1 was constructed, and a recombinant baculovirus was prepared in the same manner as in Example 1, then expression, purification and detection of fusion protein DE18-HRV3Csite-NQO1 were performed. The results were shown in Fig. 3.

Example 3 [Expression and Purification of Fusion Protein DE24-HRV3Csite-NQO1 (Construct 3; pl = 4.78)]

[0059] Peptide tag 3 (DE24) was fused to the N-terminal side of NQO1 that is a target protein, and expression and purification of a fusion protein containing HRV3Csite between NQO1 and DE24 were performed.

(1) Construction of pM01_DE24 Vector

10

20

25

30

35

40

45

50

55

A pM01_DE24 vector in which a polynucleotide encoding peptide tag DE24 was inserted into a pM01 vector was constructed as below.

The polynucleotide (SEQ ID NO.: 34) encoding peptide tag 6 (DED; SEQ ID NO.: 6) and primers 4F (SEQ ID NO.: 35) and 4R (SEQ ID NO.: 36) corresponding to the insert part were prepared, and the insert part was amplified using KOD-Plus- (TOYOBO CO., LTD.) as a PCR enzyme, under the same PCR conditions as in Example 1. The amplified PCR product was migrated by 1.0% (w/v) agarose electrophoresis, and the part matched to the length of the insert part was cut out from the gel and purified to prepare an insert part. A Smal site of the pM01 vector (SYSMEX CORPORATION) was treated with Smal (TAKARA BIO INC.), and the insert part was inserted using In-Fusion HD Cloning Kit (Clontech Laboratories, Inc.). Stellar Competent Cells (Clontech Laboratories, Inc.) were transformed with the constructed vector, then the obtained transformant was seeded on a LBA plate. The transformant was cultured at 37°C for 16 hrs. An ampicillin resistant transformant was selected from the obtained transformants according to normal procedure, and purification of plasmid was performed. In order to confirm a base sequence of the selected clone, the PCR reaction was performed by Big Dye Terminator v3.1 (Thermo Fisher Scientific Inc.), using primers 1 and 2 for sequence confirmation, then the base sequence was analyzed by a DNA sequencer (Thermo Fisher Scientific Inc.). A vector into which the insert part was introduced, that had no variation in other part, was defined as pM01_DE24.

(2) pM01_DE24_HRV3Csite_NQO1 was constructed, and a recombinant baculovirus was prepared in the same manner as in Example 1, then expression, purification and detection of fusion protein DE24-HRV3Csite-NQO1 were performed. The results were shown in Fig. 4.

Example 4 [Expression and Purification of Fusion Protein DE30-HRV3Csite-NQO1 (Construct 4; pl = 4.61)]

[0060] Peptide tag 4 (DE30) was fused to the N-terminal side of NQO1 that is a target protein, and expression and purification of a fusion protein containing HRV3Csite between NQO1 and DE30 were performed.

[0061] The same procedures were carried out as in Example 1, except for preparing an insert part using polynucleotides (SEQ ID NOs.: 37 and 38) encoding DE30 (SEQ ID NO.: 4) in place of the polynucleotides encoding the peptide tag DE12, to construct a pM01_DE30 vector.

[0062] Further, pM01_DE30_HRV3Csite_NQO1 was constructed, and a recombinant baculovirus was prepared in the same manner as in Example 1, then expression, purification and detection of fusion protein DE30-HRV3Csite-NQO1 were performed. The results were shown in Fig. 5.

5 Example 5 [Expression and Purification of Fusion Protein DE36-HRV3Csite-NQO1 (Construct 5; pl = 4.49)]

[0063] Peptide tag 5 (DE36) was fused to the N-terminal side of NQO1 that is a target protein, and expression and purification of a fusion protein containing HRV3Csite between NQO1 and DE36 were performed.

[0064] The same procedures were carried out as in Example 1, except for preparing an insert part using polynucleotides (SEQ ID NOs.: 39 and 40) encoding DE36 (SEQ ID NO.: 5) in place of the polynucleotides encoding the peptide tag DE12, to construct a pM01_DE36 vector.

[0065] Further, pM01_DE36_HRV3Csite_NQO1 was constructed, and a recombinant baculovirus was prepared in the same manner as in Example 1, then expression, purification and detection of fusion protein DE36-HRV3Csite-NQO1 were performed. The results were shown in Fig. 6.

Example 6 [Expression and Purification of Fusion Protein DED-HRV3Csite-NQO1 (Construct 6; pl = 4.26)]

[0066] Peptide tag 6 (DED) was fused to the N-terminal side of NQO1 that is a target protein, and expression and purification of a fusion protein containing HRV3Csite between NQO1 and DED were performed.

(1) Construction of pHS01_DED Vector

A pHS01_DED vector in a peptide tag DED (SEQ ID NO.: 6) was inserted into a pHS01 vector was constructed as below

The polynucleotide (SEQ ID NO.: 34) encoding the peptide tag DED and primers 5F (SEQ ID NO.: 41) and 5R (SEQ ID NO.: 42) corresponding to the insert part were prepared, and the insert part was amplified using KOD-Plus-(TOYOBO CO., LTD.) as a PCR enzyme, under the same PCR conditions as in Example 1. The amplified PCR product was migrated by 1.0% (w/v) agarose electrophoresis, and the part matched to the length of the insert part was cut out from the gel and purified to prepare an insert part. A Nhel site of the pHS01 vector (SYSMEX CORPO-RATION) was treated with Nhel (TAKARA BIO INC.), and the insert part was inserted using In-Fusion HD Cloning Kit (Clontech Laboratories, Inc.). Stellar Competent Cells were transformed with the constructed vector, then the obtained transformant was seeded on a LBA plate. The transformant was cultured at 37°C for 16 hrs. An ampicillin resistant transformant was selected from the obtained transformants according to normal procedure, and purification of plasmid was performed. In order to confirm a base sequence of the selected clone, the PCR reaction was performed by Big Dye Terminator v3.1 (Thermo Fisher Scientific Inc.), using primers 1 and 2 for sequence confirmation, then the base sequence was analyzed by a DNA sequencer (Thermo Fisher Scientific Inc.). A vector into which the insert part was introduced, that had no variation in other part, was defined as pHS01_DED.

(2) HS01_DED_HRV3Csite_NQO1 was constructed, and a recombinant baculovirus was prepared in the same manner as in Example 1, then expression, purification and detection of fusion protein DED-HRV3Csite-NQO1 were performed. The results were shown in Fig. 7.

Example 7 [Expression and Purification of Fusion Protein DES-HRV3Csite-NQO1 (Construct 7; pl = 4.55)]

[0067] Peptide tag 7 (DES) was fused to the N-terminal side of NQO1 that is a target protein, and expression and purification of a fusion protein containing HRV3Csite between NQO1 and DES were performed.

[0068] The same procedures were carried out as in Example 6, except for using primers 6F (SEQ ID NO.: 43) and 6R (SEQ ID NO.: 44) as the primers corresponding to the insert part, to construct pHS01_DES.

[0069] pHS01_DES_HRV3Csite_NQO1 was constructed, and a recombinant baculovirus was prepared in the same manner as in Example 1, then expression, purification and detection of fusion protein DES-HRV3Csite-NQO1 were performed. The results were shown in Fig. 8.

Example 8 [Expression and Purification of Fusion Protein E024-HRV3Csite-NQO1 (Construct 8; pl = 4.73)]

[0070] Peptide tag 8 (EO24) was fused to the N-terminal side of NQO1 that is a target protein, and expression and purification of a fusion protein containing HRV3Csite between NQO1 and EO24 were performed.

(1) Construction of pHS01_EO24

Polynucleotides encoding peptide tag EO24 (SEQ ID NOs.: 45 and 46) were annealed in pairs to prepare an insert part. A Nhel site of the pHS01 vector (SYSMEX CORPORATION) was treated with Nhel (TAKARA BIO INC.), and

11

30

10

15

20

25

40

35

50

55

45

the insert part was inserted using In-Fusion HD Cloning Kit (Clontech Laboratories, Inc.). Stellar Competent Cells (Clontech Laboratories, Inc.) were transformed with the constructed vector, then the obtained transformant was seeded on a LBA plate. The transformant was cultured at 37°C for 16 hrs. An ampicillin resistant transformant was selected from the obtained transformants according to normal procedure, and purification of plasmid was performed. In order to confirm a base sequence of the selected clone, the PCR reaction was performed by Big Dye Terminator v3.1 (Thermo Fisher Scientific Inc.), using primers 1 and 2 for sequence confirmation, then the base sequence was analyzed by a DNA sequencer (Thermo Fisher Scientific Inc.). A vector into which the insert part was introduced, that had no variation in other part, was defined as pHS01_E024.

(2) pHS01_EO24_HRV3Csite_NQO1 was constructed, and a recombinant baculovirus was prepared in the same manner as in Example 1, then expression, purification and detection of fusion protein EO24-HRV3Csite-NQO1 were performed. The results were shown in Fig. 9.

Example 9 [Expression and Purification of Fusion Protein NQO1-HRV3Csite-DED (Construct 9; pl = 4.26)]

[0071] The peptide tag DED was fused to the C-terminal side of NQO1 that is a target protein, and expression and purification of a fusion protein containing HRV3Csite between NQO1 and DED were performed.

(1) Construction of pHS02_DED Vector

pHS02_DE12 Vector in which a polynucleotide encoding the peptide tag DED was inserted into pHS02 vector was constructed as below.

The polynucleotide (SEQ ID NO.: 34) encoding the peptide tag DED and primers 7F (SEQ ID NO.: 47) and 7R (SEQ ID NO.: 48) corresponding to the insert part were prepared, and the insert part was amplified using KOD-Plus-(TOYOBO CO., LTD.) as a PCR enzyme, under the same PCR conditions as in Example 1. The amplified PCR product was migrated by 1.0% (w/v) agarose electrophoresis, and the part matched to the length of the insert part was cut out from the gel and purified to prepare an insert part. A Nhel site of the pHS02 vector (SYSMEX CORPO-RATION) was treated with Nhel (TAKARA BIO INC.), and the insert part was inserted using In-Fusion HD Cloning Kit (Clontech Laboratories, Inc.). Stellar Competent Cells (Clontech Laboratories, Inc.) were transformed with the constructed vector, then the obtained transformant was seeded on a LBA plate. The transformant was cultured at 37°C for 16 hrs. An ampicillin resistant transformant was selected from the obtained transformants according to normal procedure, and purification of plasmid was performed. In order to confirm a base sequence of the selected clone, the PCR reaction was performed by Big Dye Terminator v3.1 (Thermo Fisher Scientific Inc.), using primers 1 and 2 for sequence confirmation, then the base sequence was analyzed by a DNA sequencer (Thermo Fisher Scientific Inc.). A vector into which the insert part was introduced, that had no variation in other part, was defined as pHS02_DED.

- (2) The same procedures were carried out as in Example 1, except for using primers 8F (SEQ ID NO.: 49) and 8R (SEQ ID NO.: 50) as the primers corresponding to the insert part, to construct pHS02_NQ01_HRV3Csite_DED.
- (3) Further, a recombinant baculovirus was prepared in the same manner as in Example 1, and expression, purification and detection of fusion protein NQO1-HRV3Csite-DED were performed. The results were shown in Fig. 10.
- Example 10 [Expression and Purification of Fusion Protein NQO1-HRV3Csite-DES (Construct 10; pl = 4.55)]

[0072] Peptide tag DES was fused to the C-terminal side of NQO1 that is a target protein, and expression and purification of a fusion protein containing HRV3Csite between NQO1 and DES were performed.

- (1) The same procedures were carried out as in Example 9, except for using 9F (SEQ ID NO.: 51) and 9R (SEQ ID NO.: 52) as the primers, to construct pHSO2_DES.
 - (2) The same procedures were carried out as in Example 9 to construct pHS01 NQO1_HRV3Csite_DES.
 - (3) A recombinant baculovirus was prepared in the same manner as in Example 1, and expression, purification and detection of fusion protein NQO1-HRV3Csite-DES were performed. The results were shown in Fig. 11.

Example 11 [Expression and Purification of Fusion Protein DED-HRV3Csite-Luciferase (Construct 11; pl = 4.47)]

[0073]

5

10

20

25

30

35

50

55 (1) Construction of pHS01_DED Vector

The same procedures were carried out as in Example 6 to construct pHS01_DED.

(2) Construction of pHS01_DED_HRV3Csite_Luciferase

The polynucleotide (SEQ ID NO.: 53) encoding Luciferase and primers 10F (SEQ ID NO.: 54) and 10R (SEQ ID

NO.: 55) corresponding to the insert part were prepared, and the insert part was amplified using KOD-Plus- (TOYOBO CO., LTD.) as a PCR enzyme, under the same PCR conditions as in Example 1. The amplified PCR product was migrated by 1.0% (w/v) agarose electrophoresis, and the part matched to the length of the insert part was cut out from the gel and purified to prepare an insert part. A Smal site of the pHS01_DED vector was treated with Smal (TAKARA BIO INC.), and the insert part was inserted using In-Fusion HD Cloning Kit (Clontech Laboratories, Inc.). Stellar Competent Cells (Clontech Laboratories, Inc.) were transformed with the constructed vector, then the obtained transformant was seeded on a LBA plate. The transformant was cultured at 37°C for 16 hrs. An ampicillin resistant transformant was selected from the obtained transformants according to normal procedure, and purification of plasmid was performed. In order to confirm a base sequence of the selected clone, the PCR reaction was performed by Big Dye Terminator v3.1 (Thermo Fisher Scientific Inc.), using primers 1 and 2 for sequence confirmation, then the base sequence was analyzed by a DNA sequencer (Thermo Fisher Scientific Inc.). A vector into which the insert part was introduced, that had no variation in other part, was defined as pHS01_DED_HRV3Csite_Luciferase. (3) A recombinant baculovirus was prepared in the same manner as in Example 1, and expression, purification and detection of fusion protein DED-HRV3Csite-Luciferase were performed. The results were shown in Fig. 12.

Example 12 [Expression and Purification of Fusion Protein DES-HRV3Csite-Luciferase (Construct 12; pl = 4.75)]

[0074] The same procedures were carried out as in Example 11, except for using a pHS01_DES vector constructed in Example 7 in place of the pHS01_DED vector, to construct pHS02_DES_HRV3Csite_Luciferase.

[0075] A recombinant baculovirus was prepared in the same manner as in Example 1, and expression, purification and detection of fusion protein DES-HRV3Csite-Luciferase were performed. The results were shown in Fig. 13.

Example 13 [Expression and Purification of Fusion Protein DED-HRV3C (Construct 13; pl = 4.75)]

[0076]

5

10

15

20

25

30

35

40

45

50

55

(1) Construction of pET17b_DED_HRV3C

The polynucleotide (SEQ ID NO.: 34) encoding the peptide tag DED, a polynucleotide (SEQ ID NO.: 56) encoding HRV3C, primers 11F and 11R (SEQ ID NOs.: 57 and 58; DED) corresponding to the insert part and primers 12F and 12R (SEQ ID NOs.: 59 and 60; HRV3C) were prepared, and the insert part was amplified using KOD-Plus-(TOYOBO CO., LTD.) as a PCR enzyme, under the same PCR conditions as in Example 1. The amplified PCR product was migrated by 1.0% (w/v) agarose electrophoresis, and the part matched to the length of the insert part was cut out from the gel and purified to prepare an insert part. A Smal site and a Nhel site of the pHS01 vector (SYSMEX CORPORATION) were treated with Smal (TAKARA BIO INC.) and Nhel (TAKARA BIO INC.), and the two insert parts were inserted using In-Fusion HD Cloning Kit (Clontech Laboratories, Inc.). Stellar Competent Cells (Clontech Laboratories, Inc.) were transformed with the constructed vector, then the obtained transformant was seelected from the obtained transformant was cultured at 37°C for 16 hrs. An ampicillin resistant transformant was selected from the obtained transformants according to normal procedure, and purification of plasmid was performed. In order to confirm a base sequence of the selected clone, the PCR reaction was performed by Big Dye Terminator v3.1 (Thermo Fisher Scientific Inc.), using primers 1 and 2 for sequence confirmation, then the base sequence was analyzed by a DNA sequencer (Thermo Fisher Scientific Inc.). A vector into which the insert part was introduced, that had no variation in other part, was defined as pHS01_DED_HRV3C.

Next, an insert for pET17b was prepared. Primers 13F (SEQ ID NO.: 61) and 13R (SEQ ID NO.: 62) were prepared, and the primers were amplified using pHS01_DED_HRV3C as a template, and using KOD-Plus- (TOYOBO CO., LTD.) as a PCR enzyme, under the same PCR conditions as in Example 1. The amplified PCR product was migrated by 1.0% (w/v) agarose electrophoresis, and the part matched to the length of the insert part was cut out from the gel and purified to prepare an insert part. A Ndel site of the pET17b Vector (Novagen, Inc.) was treated with Ndel (TAKARA BIO INC.), and the insert part was inserted using In-Fusion HD Cloning Kit (Clontech Laboratories, Inc.). Stellar Competent Cells (Clontech Laboratories, Inc.) were transformed with the constructed vector, then the obtained transformant was seeded on a LBA plate. The transformant was cultured at 37°C for 16 hrs. An ampicillin resistant transformant was selected from the obtained transformants according to normal procedure, and purification of plasmid was performed. In order to confirm a base sequence of the selected clone, the PCR reaction was performed by Big Dye Terminator v3.1 (Thermo Fisher Scientific Inc.), using primers 14 (SEQ ID NO.: 63) and 15 (SEQ ID NO.: 64) for sequence confirmation, then the base sequence was analyzed by a DNA sequencer (Thermo Fisher Scientific Inc.). A vector into which the insert part was introduced, that had no variation in other part, was defined as pET17b_DED_HRV3C.

(2) Expression and Purification of DED-HRV3C

E. coli was transformed using pET17b_DED_HRV3C, and 1.5 L of an LB medium containing ampicillin was cultured

at 37°C and cooled to 15°C around a turbidity OD of about 0.6, then IPTG was added thereto to induce expression of protein. After 16 hours, bacteria were collected by centrifugation (8,000 g, 15 minutes) and frozen at -80°C. 120 mL of a buffer (20 mM Tris-HCl (pH 8.0), 150 mM NaCl, 1 tablet Complete EDTA free (Roche)) was added to the frozen E. coli, and E. coli was crushed by ultrasonic wave. The crushed solution was centrifuged (15,000 g x 30 minutes), then the supernatant fraction was filtered with 0.8 uM of a filter agent, and the filtrate was collected. The filtrate was loaded on an ion exchange resin (Hitrap Q HP (1 mL)), and purified using a mixed solution of 20 mM Tris-HCl (pH 8.0, 150 mM NaCl; buffer A) and 20 mM Tris-HCl (pH 8.0, 1000 mM NaCl; buffer B). First, only buffer A (NaCl concentration of 150 mM) was flown through the ion exchange resin (EL0), and a fraction eluted with a 3 : 1 mixed solution of buffer A: buffer B (NaCl concentration of 575 mM) (EL1), a fraction eluted with a 1 : 3 mixed solution of buffer B (NaCl concentration of 788 mM) (EL2), a fraction eluted with only buffer B (NaCl concentration of 1000 mM) (EL4) were each collected.

(3) The same procedures were carried out as in Example 1 to detect a fusion protein. The results were shown in Fig. 14. In Fig. 14, the results of electrophoresis are shown as follows; M: molecular weight marker, lane 1: homogenate solution, lane 2: supernatant fraction after centrifugation, lane 3: precipitated fraction after centrifugation, lanes 4 to 7: flow-through fractions 1 to 4 of the ion exchange resin, lane 8: elution fraction by buffer A (NaCl concentration of 150 mM) (EL0), lane 9: elution fraction by a 3: 1 mixed solution of buffer A: buffer B (NaCl concentration of 363 mM) (EL1), lane 10: elution fraction by a 1: 1 mixed solution of buffer A: buffer B (NaCl concentration of 778 mM) (EL2), lane 11: elution fraction by a 1: 3 mixed solution of buffer A: buffer B (NaCl concentration of 788 mM) (EL3), and lane 12: elution fraction by buffer B (NaCl concentration of 1000 mM) (EL4).

Comparative Example 1 [Expression and Purification of Fusion Protein DE6-HRV3Csite-NQO1 (pl = 6.4)]

[0077] Peptide tag DE6 was fused to the N-terminal side of NQO1 that is a target protein, and expression and purification of a fusion protein containing HRV3Csite between NQO1 and DE6 were performed.

[0078] The same procedures were carried out as in Example 1, except for preparing an insert part using polynucleotides (SEQ ID NOs.: 66 and 67) encoding DE6 (EEEDDD; SEQ ID NO.: 65) in place of the polynucleotides encoding the peptide tag DE12, to construct a pM01_DE6 vector.

[0079] Further, pM01_DE6_HRV3Csite_NQO1 was constructed, and a recombinant baculovirus was prepared in the same manner as in Example 1, then expression, purification and detection of fusion protein DE6-HRV3Csite-NQO1 were performed. The results were shown in Fig. 15.

(Regarding Results of Examples 1 to 13 and Comparative Example 1)

5

10

15

20

25

30

50

55

[0080] In Comparative Example 1 (DE6-HRV3Csite-NQO1, pl = 6.4), a fusion protein was contained in every fraction, and separation was insufficient. On the other hand, Examples 1 to 13 all showed good separation. Particularly, a fusion protein binding a peptide tag with 18 or more acidic amino acid residues was held in the ion exchange resin up to a high salt concentration of 500 mM or more, and separation from contaminant proteins was improved (Examples 2 to 13). Also in all three target proteins, good separation was obtained (Examples 6 to 7 and 11 to 13). The peptide tag, even the peptide tag containing both aspartic acid residue and glutamic acid residue as acidic amino acid residues, or the peptide tag only containing either one, equally showed good separation (Examples 3 and 8). Even when the binding position of the peptide tag is either N-terminal side or C-terminal side of the target protein, separation was good (Examples 6 to 7 and 9 to 10).

Example 14 [Separation and Detection of Target Protein NQ1 from Fusion Protein DE12-HRV3Csite-NQO1]

[0081] Protease DED-HRV3C was reacted with DE12-HRV3Csite-NQO1 to cleave DE12 from DE12-HRV3Csite-NQO1.

[0082] To Fraction EL2 collected in Example 1 was mixed a 1/10 volume of Fraction EL3 collected in Example 13, and the mixture was allowed to stand at 4°C. After 16 hours, 20 mM Tris-HCl (pH 8.0) was added to this reaction solution to be diluted to a NaCl concentration of about 250 mM, and the diluted solution was loaded on an ion exchange resin (Hitrap Q HP (1 mL)) equilibrated with 20 mM Tris-HCl (pH 8.0), 150 mM NaCl. Flow-through fractions were collected (Fr. 1 to 6 (NaCl concentration of about 250 mM)), and fractions finally eluted (Fr. 7 to 10) with only buffer B (NaCl concentration of about 1000 mM) were each collected.

[0083] SDS-PAGE was performed using 5 to 20% gradient gel and an electrophoresis apparatus (APRO Science Inc.). Each collected fraction and β -ME Sample Treatment for Tris SDS (COSMO BIO Co., Ltd.) were mixed in a volume ratio of 1:1, and treated at 100°C for 3 minutes, then 5 uL of the resulting solution was loaded on the gel. As a molecular weight marker, 2.5 uL of Blue Star (NIPPON Genetics Co., Ltd.) was loaded on the gel. The gel loaded with the sample

was migrated at a voltage of 400 V for 14 minutes, and then the gel was stained by GelCode Blue Stain Reagent (Thermo Fisher Scientific Inc.), and excess staining was bleached, then the image was photographed using Gel Doc XR+ system (Bio-Rad Laboratories, Inc.). The results were shown in Fig. 16. In Fig. 16, the results of electrophoresis are shown as follows; M: molecular weight marker, lane 1: EL2 (Examples 1 and 8) or EL3 (Examples 2 to 7 and 11 to 12), lane 2: EL3 of Example 13, lane 3: a mixed reaction liquid of EL2 or EL3 of Examples 1 to 12, and EL3 of Example 13, lanes 4 to 8: flow-through fractions 1 to 5 of the ion exchange resin, and lanes 9 to 13: elution fractions 1 to 5 by buffer B. Explanation of each lane is common in Figs. 17 to 25.

Example 15

10

15

20

25

30

35

40

45

50

55

[0084] The same procedures were carried out as in Example 14, except for using EL2 of Example 2 in place of EL2 of Example 1, to detect a target protein NQO1. The results were shown in Fig. 17.

Example 16

[0085] The same procedures were carried out as in Example 14, except for using EL3 of Example 3 in place of EL2 of Example 1, to detect a target protein NQO1. The results were shown in Fig. 18.

Example 17

[0086] The same procedures were carried out as in Example 14, except for using EL3 of Example 4 in place of EL2 of Example 1, to detect a target protein NQO1. The results were shown in Fig. 19.

Example 18

[0087] The same procedures were carried out as in Example 14, except for using EL3 of Example 5 in place of EL2 of Example 1, to detect a target protein NQO1. The results were shown in Fig. 20.

Example 19

[0088] The same procedures were carried out as in Example 14, except for using EL3 of Example 6 in place of EL2 of Example 1, to detect a target protein NQO1. The results were shown in Fig. 21.

Example 20

[0089] The same procedures were carried out as in Example 14, except for using EL3 of Example 7 in place of EL2 of Example 1, to detect a target protein NQO1. The results were shown in Fig. 22.

Example 21

[0090] The same procedures were carried out as in Example 14, except for using EL2 of Example 8 in place of EL2 of Example 1, to detect a target protein NQO1. The results were shown in Fig. 23.

Example 22

[0091] The same procedures were carried out as in Example 14, except for using EL3 of Example 11 in place of EL2 of Example 1, to detect a target protein Luciferase. The results were shown in Fig. 24.

Example 23

[0092] The same procedures were carried out as in Example 14, except for using EL3 of Example 12 in place of EL2 of Example 1, to detect a target protein Luciferase. The results were shown in Fig. 25.

(Regarding Results of Examples 14 to 23)

[0093] Based on the results of Examples 14 to 23, it was shown that the protease is reacted with the fusion protein, whereby a target protein NQO1 or Luciferase can be acquired in the flow-through fraction of the anion exchange resin.

Example 24 [Evaluation of Effect on Separation due to pH of Buffer]

[0094] The same procedures were carried out as in Example 6 to construct pHS01_DED_HRV3Csite_NQO1. [0095] pHS01_DED_HRV3Csite_NQO1 and baculovirus DNA were introduced into silkworm culture cells (BmN cells), and homologous recombination of virus was performed. The culture cells were cultured for 6 days, and the recombinant virus was collected. Thereafter, a virus solution diluted 50 times with MilliQ water was inoculated into pupa of silkworm, and the pupa was incubated for 6 days. The pupa of silkworm was collected, and 50 mL of a buffer (20 mM PIPES (pH 6.1), 150 mM NaCl, 1 tablet Complete EDTA free (Roche), phenylthiourea) was added per a pupa to homogenate the pupa. The solution was centrifuged (8,000 g, 10 minutes), then the supernatant fraction was filtered with 0.8 uM of a filter agent, and the filtrate was collected. The filtrate was loaded on an ion exchange resin (Hitrap Q HP (1 mL)), and purified using a mixed solution of 20 mM PIPES (pH 6.1, 150 mM NaCl; buffer C) and 20 mM PIPES (pH 6.1, 1000 mM NaCl; buffer D). First, only buffer C (NaCl concentration of 150 mM) was flown through the ion exchange resin (EL0), and a fraction eluted with a solution with a mixing ratio of buffer C: buffer D of 3:1 (NaCl concentration of 363 mM) (EL1), a fraction eluted with a solution with a mixing ratio of buffer C: buffer D of 1:1 (NaCl concentration of 575 mM) (EL2), a fraction eluted with a solution with a mixing ratio of buffer C: buffer D of 1:3 (NaCl concentration of 788 mM) (EL3), and finally, a fraction eluted with only buffer D (NaCl concentration of 1000 mM) (EL4) were each collected. [0096] The same procedures were carried out as in Example 1 to detect DED-HRV3Csite-NQO1. The results were shown in Fig. 26. In Fig. 26, the results of electrophoresis are shown as follows; M: molecular weight marker, lane 1: homogenate solution, lane 2: supernatant fraction after centrifugation, lane 3: precipitated fraction after centrifugation, lanes 4 to 7: flow-through fractions 1 to 4 of the ion exchange resin, lane 8: elution fraction by buffer C (NaCl concentration of 150 mM) (EL0), lane 9: elution fraction by a 3:1 mixed solution of buffer C: buffer D (NaCl concentration of 363 mM) (EL1), lane 10: elution fraction by a 1:1 mixed solution of buffer C: buffer D (NaCl concentration of 575 mM) (EL2), lane 11: elution fraction by a 1:3 mixed solution of buffer C: buffer D (NaCl concentration of 788 mM) (EL3), and lane 12: elution fraction by buffer D (NaCl concentration of 1000 mM) (EL4). Explanation of each lane is common in Figs. 27 to 28.

Example 25

20

25

30

35

40

45

50

55

[0097] The same procedures were carried out as in Example 7 to construct pHS01_DES_HRV3Csite_NQO1. [0098] Furthermore, the same procedures were carried out as in Example 24 to express, purify and detect DES-HRV3Csite-NQO1. The results were shown in Fig. 27.

Example 26

[0099] The same procedures were carried out as in Example 11 to construct pHS01_DED_HRV3Csite_Luciferase. [0100] Furthermore, the same procedures were carried out as in Example 24 to express, purify and detect DED-HRV3Csite-Luciferase. The results were shown in Fig. 28.

Example 27

[0101] The same procedures were carried out as in Example 7 to construct pHS01_DES_HRV3Csite_NQO1.

[0102] E. coli was transformed using pHS01_DES_HRV3Csite_NQO1, and 1.5 L of an LB medium containing ampicillin was cultured at 37°C and cooled to 15°C around a turbidity OD of about 0.6, then IPTG was added thereto to induce expression of protein. After 16 hours, bacteria were collected by centrifugation (8,000 g, 15 minutes) and frozen at -80°C. 120 mL of a buffer (20 mM PIPES (pH 6.1), 150 mM NaCl, 1 tablet Complete EDTA free (Roche)) was added to the frozen E. coli, and E. coli was crushed by ultrasonic wave. The crushed solution was centrifuged (15,000 g x 30 minutes), then the supernatant fraction was filtered with 0.8 uM of a filter agent, and the filtrate was collected. The filtrate was loaded on an ion exchange resin (Hitrap Q HP (1 mL)), and purified using a mixed solution of 20 mM PIPES (pH 6.1, 150 mM NaCl; buffer C) and 20 mM PIPES (pH 6.1, 1000 mM NaCl; buffer D). First, only buffer C (NaCl concentration of 150 mM) was flown through the ion exchange resin (EL0), and a fraction eluted with a 3 : 1 mixed solution of buffer C : buffer D (NaCl concentration of 363 mM) (EL1), a fraction eluted with a 1 : 1 mixed solution of buffer C : buffer D (NaCl concentration of 775 mM) (EL2), a fraction eluted with a 1 : 3 mixed solution of 500 mM) (EL4) were each collected.

[0103] The same procedures were carried out as in Example 1 to detect DED-HRV3Csite-NQO1. The results were shown in Fig. 29. In Fig. 29, the results of electrophoresis are shown as follows; M: molecular weight marker, lane 1: homogenate solution, lane 2: supernatant fraction after centrifugation, lane 3: precipitated fraction after centrifugation, lanes 4 to 7: flow-through fractions 1 to 4 of the ion exchange resin, lane 8: elution fraction by buffer C (NaCl concentration

of 150 mM) (EL0), lane 9: elution fraction by a 3:1 mixed solution of buffer C: buffer D (NaCl concentration of 363 mM) (EL1), lane 10: elution fraction by a 1:1 mixed solution of buffer C: buffer D (NaCl concentration of 575 mM) (EL2), lane 11: elution fraction by a 1:3 mixed solution of buffer C: buffer D (NaCl concentration of 788 mM) (EL3), and lane 12: elution fraction by buffer D (NaCl concentration of 1000 mM; EL4).

Example 28

[0104] To EL3 of Example 24 was added a 1/10 volume of EL3 of Example 27, and the mixture was allowed to stand at 4°C. After 16 hours, 20 mM PIPES (pH 6.1) was added to the reaction solution to be diluted to a NaCl concentration of about 250 mM, and the diluted solution was loaded on an ion exchange resin (Hitrap Q HP (1 mL)) equilibrated with 20 mM PIPES (pH 6.1, 150 mM NaCl). Flow-through fractions were collected (Fr. 1 to 6 (NaCl concentration of about 250 mM)), and fractions finally eluted (Fr. 7 to 10) with only buffer D (NaCl concentration of about 1000 mM) were each collected.

[0105] The same procedures were carried out as in Example 1 to detect a target protein EQO1. The results were shown in Fig. 30. In Fig. 30, the results of electrophoresis are shown as follows; M: molecular weight marker, lane 1: EL3 of Example 24, lane 2: EL3 of Example 27, lane 3: a mixed reaction liquid of EL3 of Example 24, and EL3 of Example 27, lanes 4 to 8: flow-through fractions 1 to 5 of the ion exchange resin, and lanes 9 to 13: elution fractions 1 to 5 by buffer D.

(Regarding Results of Examples 24 to 28)

[0106] Based on the results of Examples 24 to 28, it was shown that, in the expression and purification of the fusion protein and purification of the target protein, good separation is obtained even the pH of the buffer is lowered.

SEQUENCE LISTING

```
<110> SYSMEX CORPORATION
       <120> Method of purifying protein, fusion protein comprising peptide tag,
5
       and production method thereof
       <130>
             SYSM-117-EP
       <140> JP2016-077127
10
       <141> 2016-04-07
       <160> 67
       <170> PatentIn version 3.5
15
       <210> 1
       <211>
             12
       <212>
             PRT
       <213>
             Artificial Sequence
       <220>
20
       <223> DE12
       <400> 1
       Glu Glu Glu Glu Glu Asp Asp Asp Asp Asp
25
       <210> 2
       <211> 18
       <212> PRT
30
       <213> Artificial Sequence
       <220>
       <223> DE18
35
       <400> 2
       Glu Glu Glu Glu Glu Glu Glu Glu Asp Asp Asp Asp Asp Asp
                                                          15
40
       Asp Asp
       <210>
             3
       <211>
             24
45
       <212>
             PRT
       <213> Artificial Sequence
       <220>
       <223> DE24
50
       <400> 3
       5
                                       10
                                                          15
55
```

Asp Asp Asp Asp Asp Asp

5	<211> 3 <212> 1	4 30 PRT Artif	icia	ıl Se	equei	nce									
10		DE30													
	<400>	4													
	Glu Glu 1	Glu	Glu	Glu 5	Glu	Glu	Glu	Glu	Glu 10	Glu	Glu	Glu	Glu	Glu 15	Asp
15															
	Asp Asp	Asp	Asp 20	Asp	Asp	Asp	Asp	Asp 25	Asp	Asp	Asp	Asp	Asp 30		
20	<211> 3 <212> 1	5 36 PRT Artif	icia	ıl Se	eguei	nce									
					.q	.00									
25	<220> <223> I	DE36													
	<400>	5													
30	Glu Glu 1	Glu	Glu	Glu 5	Glu	Glu	Glu	Glu	Glu 10	Glu	Glu	Glu	Glu	Glu 15	Glu
	Glu Glu	Asp	Asp 20	Asp	Asp	Asp	Asp	As p 25	Asp	Asp	Asp	Asp	Asp 30	Asp	Asp
35	Asp Asp	Asp 35	Asp												
40	<211> 3 <212> 1	6 88 PRT Artif	ici:	ıl Çe	201101	nce									
					-que.										
45	<220> <223> I	DED													
	<400>	6													
50	Asn Val 1	Glu	Gly	Lys 5	Thr	Gly	Asn	Ala	Thr 10	Asp	Glu	Glu	Glu	Glu 15	Glu
	Glu Glu	Glu	Glu 20	Glu	Glu	Glu	Asp	As p 25	Asp	Asp	Asp	Asp	As p 30	Asp	Asp
55	Asp Asp	Asp 35	Glu	Asp	Ser	Gly	Ala 40	Glu	Ile	Gln	Asp	Asp 45	Asp	Glu	Glu

	50	e Asp	Asp	GLu	GLu	GIu 55	Phe	Asp	Asp	Asp	Asp 60	Asp	Asp	GLu	His
5	Asp Asp 65	p Asp	Asp	Leu	Glu 70	Asn	Glu	Glu	Asn	Glu 75	Leu	Glu	Glu	Leu	Glu 80
10	Glu Arc	g Val	Glu	Ala 85	Arg	Lys	Lys								
15	<210> <211> <212> <213>	7 44 PRT Arti	ficia	al Se	equei	nce									
	<220> <223>	DES													
20	<400>	7													
	Asp Let	ı Ser	Asn	Val 5	Glu	Gly	Lys	Thr	Gly 10	Asn	Ala	Thr	Asp	Glu 15	Glu
25	Glu Gl	ı Glu	Glu 20	Glu	Glu	Glu	Glu	Glu 25	Glu	Asp	Asp	Asp	Asp 30	Asp	Asp
30	Asp Asp	9 Asp 35	Asp	Asp	Asp	Glu	Asp 40	Ser	Gly	Ala	Glu				
35	<210> <211> <212> <213>	8 24 PRT Arti	ficia	al Se	equei	nce									
	<220> <223>	E024													
40	<400>	8													
	Glu Glu 1	ı Glu	Glu	Glu 5	Glu	Glu	Glu	Glu	Glu 10	Glu	Glu	Glu	Glu	Glu 15	Glu
45	Glu Glı	ı Glu	Glu 20	Glu	Glu	Glu	Glu								
50	<210> <211> <212> <213>	9 274 PRT Arti	ficia	al Se	equei	nce									
55	<220> <223>	NQ01													
	<400>	9													

	Met 1	Val	GTA	Arg	Arg 5	Ala	Leu	Ile	Val	Leu 10	Ala	Hıs	Ser	GLu	Arg 15	Thr
5	Ser	Phe	Asn	Tyr 20	Ala	Met	Lys	Glu	Ala 25	Ala	Ala	Ala	Ala	Leu 30	Lys	Lys
10	Lys	Gly	Trp 35	Glu	Val	Val	Glu	Ser 40	Asp	Leu	Tyr	Ala	Met 45	Asn	Phe	Asn
	Pro	Ile 50	Ile	Ser	Arg	Lys	As p 55	Ile	Thr	Gly	Lys	Leu 60	Lys	Asp	Pro	Ala
15	Asn 65	Phe	Gln	Tyr	Pro	Ala 70	Glu	Ser	Val	Leu	Ala 75	Tyr	Lys	Glu	Gly	His 80
20	Leu	Ser	Pro	Asp	Ile 85	Val	Ala	Glu	Gln	Lys 90	Lys	Leu	Glu	Ala	Ala 95	Asp
25	Leu	Val	Ile	Phe 100	Gln	Phe	Pro	Leu	Gln 105	Trp	Phe	Gly	Val	Pro 110	Ala	Ile
	Leu	Lys	Gly 115	Trp	Phe	Glu	Arg	Val 120	Phe	Ile	Gly	Glu	Phe 125	Ala	Tyr	Thr
30	Tyr	A la 130	Ala	Met	Tyr	Asp	Lys 135	Gly	Pro	Phe	Arg	Ser 140	Lys	Lys	Ala	Val
35	Leu 145	Ser	Ile	Thr	Thr	Gly 150	Gly	Ser	Gly	Ser	Met 155	Tyr	Ser	Leu	Gln	Gly 160
	Ile	His	Gly	Asp	Met 165	Asn	Val	Ile	Leu	Trp 170	Pro	Ile	Gln	Ser	Gly 175	Ile
40	Leu	His	Phe	Cys 180	Gly	Phe	Gln	Val	Leu 185	Glu	Pro	Gln	Leu	Thr 190	Tyr	Ser
45	Ile	Gly	His 195	Thr	Pro	Ala	Asp	Ala 200	Arg	Ile	Gln	Ile	Leu 205	Glu	Gly	Trp
50	Lys	Lys 210	Arg	Leu	Glu	Asn	Ile 215	Trp	Asp	Glu	Thr	Pro 220	Leu	Tyr	Phe	Ala
	Pro 225	Ser	Ser	Leu	Phe	Asp 230	Leu	Asn	Phe	Gln	Ala 235	Gly	Phe	Leu	Met	Lys 240
55	Lys	Glu	Val	Gln	Asp 245	Glu	Glu	Lys	Asn	Lys 250	Lys	Phe	Gly	Leu	Ser 255	Val

Gly His His Leu Gly Lys Ser Ile Pro Thr Asp Asn Gln Ile Lys Ala 260 265 270

5	Arg	Lys														
10	<210 <210 <210 <210	1> ! 2> I	10 546 PRT Arti:	ficia	al Se	equei	nce									
15	<220 <220	-	Luci	feras	se											
	<40	0> :	LO													
20	Glu 1	Asp	Ala	Lys	Asn 5	Ile	Lys	Lys	Gly	Pro 10	Ala	Pro	Phe	Tyr	Pro 15	Leu
	Glu	Asp	Gly	Thr 20	Ala	Gly	Glu	Gln	Leu 25	His	Lys	Ala	Met	Lys 30	Arg	Tyr
25	Ala	Leu	Val 35	Pro	Gly	Thr	Ile	Ala 40	Phe	Thr	Asp	Ala	His 45	Ile	Glu	Val
30	Asn	Ile 50	Thr	Tyr	Ala	Glu	Tyr 55	Phe	Glu	Met	Ser	Val 60	Arg	Leu	Ala	Glu
35	Ala 65	Met	Lys	Arg	Tyr	Gly 70	Leu	Asn	Thr	Asn	His 75	Arg	Ile	Val	Val	Cys 80
	Ser	Glu	Asn	Ser	Leu 85	Gln	Phe	Phe	Met	Pro 90	Val	Leu	Gly	Ala	Leu 95	Phe
40	Ile	Gly	Val	Ala 100	Val	Ala		Ala		_		_		Glu 110	Arg	Glu
45	Leu	Leu	Asn 115	Ser	Met	Asn	Ile	Ser 120	Gln	Pro	Thr	Val	Val 125	Phe	Val	Ser
50	Lys	Lys 130	Gly	Leu	Gln	Lys	Ile 135	Leu	Asn	Val	Gln	Lys 140	Lys	Leu	Pro	Ile
	Ile 145	Gln	Lys	Ile	Ile	Ile 150	Met	Asp	Ser	Lys	Thr 155	Asp	Tyr	Gln	Gly	Phe 160
55	Gln	Ser	Met	Tyr	Thr 165	Phe	Val	Thr	Ser	His 170	Leu	Pro	Pro	Gly	Phe 175	Asn

	Glu	Tyr	Asp	Phe 180	Val	Pro	Glu	Ser	Phe 185	Asp	Arg	Asp	Lys	Thr 190	Ile	Ala
5	Leu	Ile	Met 195	Asn	Ser	Ser	Gly	Ser 200	Thr	Gly	Leu	Pro	Lys 205	Gly	Val	Ala
10	Leu	Pro 210	His	Arg	Thr	Ala	Cys 215	Val	Arg	Phe	Ser	His 220	Ala	Arg	Asp	Pro
	Ile 225	Phe	Gly	Asn	Gln	Ile 230	Ile	Pro	Asp	Thr	Ala 235	Ile	Leu	Ser	Val	Val 240
15	Pro	Phe	His	His	Gly 245	Phe	Gly	Met	Phe	Thr 250	Thr	Leu	Gly	Tyr	Leu 255	Ile
20	Cys	Gly	Phe	Arg 260	Val	Val	Leu	Met	Tyr 265	Arg	Phe	Glu	Glu	Glu 270	Leu	Phe
25	Leu	Arg	Ser 275	Leu	Gln	Asp	Tyr	Lys 280	Ile	Gln	Ser	Ala	Leu 285	Leu	Val	Pro
	Thr	Leu 290	Phe	Ser	Phe	Phe	Ala 295	Lys	Ser	Thr	Leu	Ile 300	Asp	Lys	Tyr	Asp
30	Leu 305	Ser	Asn	Leu	His	Glu 310	Ile	Ala	Ser	Gly	Gly 315	Ala	Pro	Leu	Ser	Lys 320
35	Glu	Val	Gly	Glu	Ala 325	Val	Ala	Lys	Arg	Phe 330	His	Leu	Pro	Gly	Ile 335	Arg
40	Gln	Gly	Tyr	Gly 340	Leu				Thr 345		Ala	Ile	Leu	Ile 350	Thr	Pro
40	Glu	Gly	As p 355	Asp	Lys	Pro	Gly	Ala 360	Val	Gly	Lys	Val	Val 365	Pro	Phe	Phe
45	Glu	Ala 370	Lys	Val	Val	Asp	Leu 375	Asp	Thr	Gly	Lys	Thr 380	Leu	Gly	Val	Asn
50	Gln 385	Arg	Gly	Glu	Leu	Cys 390	Val	Arg	Gly	Pro	Met 395	Ile	Met	Ser	Gly	Tyr 400
	Val	Asn	Asn	Pro	Glu 405	Ala	Thr	Asn	Ala	Leu 410	Ile	Asp	Lys	Asp	Gly 415	Trp
55	Leu	His	Ser	Gly 420	Asp	Ile	Ala	Tyr	Trp 425	Asp	Glu	Asp	Glu	His 430	Phe	Phe

	Ile		Asp 435	Arg	Leu	Lys	Ser	Leu 440	Ile	Lys	Tyr	Lys	Gly 445	Tyr	Gln	Val
5	Ala	Pro 450	Ala	Glu	Leu	Glu	Ser 455	Ile	Leu	Leu	Gln	His 460	Pro	Asn	Ile	Phe
10	Asp .	Ala	Gly	Val	Ala	Gly 470	Leu	Pro	Asp	Asp	Asp 475	Ala	Gly	Glu	Leu	Pro 480
15	Ala	Ala	Val	Val	Val 485	Leu	Glu	His	Gly	Lys 490	Thr	Met	Thr	Glu	Lys 495	Glu
	Ile	Val	Asp	Tyr 500	Val	Ala	Ser	Gln	Val 505	Thr	Thr	Ala	Lys	Lys 510	Leu	Arg
20	Gly		Val 515	Val	Phe	Val	Asp	Glu 520	Val	Pro	Lys	Gly	Leu 525	Thr	Gly	Lys
25	Leu .	As p 530	Ala	Arg	Lys	Ile	Arg 535	Glu	Ile	Leu	Ile	Lys 540	Ala	Lys	Lys	Gly
	Gly :	Lys														
35	<210 <211 <212 <213	> 2 > P	.1 202 PRT Artif	ficia	al Se	equer	ıce									
	<220 <400		IRV30 .1													
40	Asp	Leu	Val	Pro	Arg 5	Gly	Ser	Pro	Glu	Phe 10	Pro	Gly	Arg	Leu	Glu 15	Arg
45	Pro	His	Arg	Asp 20	Gly	Pro	Asn	Thr	Glu 25	Phe	Ala	Leu	Ser	Leu 30	Leu	Arg
50	Lys .	Asn	Ile 35	Met	Thr	Ile	Thr	Thr 40	Ser	Lys	Gly	Glu	Phe 45	Thr	Gly	Leu
	Gly	Ile 50	His	Asp	Arg	Val	C ys 55	Val	Ile	Pro	Thr	His 60	Ala	Gln	Pro	Gly
55	Asp .	Asp	Val	Leu	Val	Asn 70	Gly	Gln	Lys	Ile	Arg 75	Val	Lys	Asp	Lys	Tyr 80

	Lys	Leu	Val	Asp	Pro 85	Glu	Asn	Ile	Asn	Leu 90	Glu	Leu	Thr	Val	Leu 95	Thr
5	Leu	Asp	Arg	Asn 100	Glu	Lys	Phe	Arg	Asp 105	Ile	Arg	Gly	Phe	Ile 110	Ser	Glu
10	Asp	Leu	Glu 115	Gly	Val	Asp	Ala	Thr 120	Leu	Val	Val	His	Ser 125	Asn	Asn	Phe
45	Thr	Asn 130	Thr	Ile	Leu	Glu	Val 135	Gly	Pro	Val	Thr	Met 140	Ala	Gly	Leu	Ile
15	Asn 145	Leu	Ser	Ser	Thr	Pro 150	Thr	Asn	Arg	Met	Ile 155	Arg	Tyr	Asp	Tyr	Ala 160
20	Thr	Lys	Thr	Gly	Gln 165	Cys	Gly	Gly	Val	Leu 170	Cys	Ala	Thr	Gly	Lys 175	Ile
25	Phe	Gly	Ile	His 180	Val	Gly	Gly	Asn	Gly 185	Arg	Gln	Gly	Phe	Ser 190	Ala	Gln
	Leu	Lys	Lys 195	Gln	Tyr	Phe	Val	Glu 200	Lys	Gln						
30	<210 <211 <212 <213	1> 2 2> I	12 298 PRT Arti:	ficia	al Se	equer	nce									
35	<220 <223		DE12-	-HRV3	3Csit	:e-N(201									
40	<400 Met 1		l2 Glu	Glu	Glu 5	Glu	Glu	Asp	Asp	Asp 10	Asp	Asp	Asp	Lys	Gly 15	Thr
45	Leu	Glu	Val	Leu 20	Phe	Gln	Gly	Pro	Met 25	Val	Gly	Arg	Arg	Ala 30	Leu	Ile
50	Val	Leu	Ala 35	His	Ser	Glu	Arg	Thr 40	Ser	Phe	Asn	Tyr	Ala 45	Met	Lys	Glu
	Ala	Ala 50	Ala	Ala	Ala	Leu	Lys 55	Lys	Lys	Gly	Trp	Glu 60	Val	Val	Glu	Ser
55	Asp 65	Leu	Tyr	Ala	Met	Asn 70	Phe	Asn	Pro	Ile	Ile 75	Ser	Arg	Lys	Asp	Ile 80

	Thr	Gly	Lys	Leu	Lys 85	Asp	Pro	Ala	Asn	Phe 90	Gln	Tyr	Pro	Ala	Glu 95	Ser
5	Val	Leu	Ala	Tyr 100	Lys	Glu	Gly	His	Leu 105	Ser	Pro	Asp	Ile	Val 110	Ala	Glu
10	Gln	Lys	Lys 115	Leu	Glu	Ala	Ala	Asp 120	Leu	Val	Ile	Phe	Gln 125	Phe	Pro	Leu
	Gln	Trp 130	Phe	Gly	Val	Pro	Ala 135	Ile	Leu	Lys	Gly	Trp 140	Phe	Glu	Arg	Val
15	Phe 145	Ile	Gly	Glu	Phe	A la 150	Tyr	Thr	Tyr	Ala	Ala 155	Met	Tyr	Asp	Lys	Gly 160
20	Pro	Phe	Arg	Ser	Lys 165	Lys	Ala	Val	Leu	Ser 170	Ile	Thr	Thr	Gly	Gly 175	Ser
25	Gly	Ser	Met	Tyr 180	Ser	Leu	Gln	Gly	Ile 185	His	Gly	Asp	Met	Asn 190	Val	Ile
	Leu	Trp	Pro 195	Ile	Gln	Ser	Gly	Ile 200	Leu	His	Phe	Cys	Gly 205	Phe	Gln	Val
30	Leu	Glu 210	Pro	Gln	Leu	Thr	Tyr 215	Ser	Ile	Gly	His	Thr 220	Pro	Ala	Asp	Ala
35	Arg 225	Ile	Gln	Ile	Leu	Glu 230	Gly	Trp	Lys	Lys	Arg 235	Leu	Glu	Asn	Ile	Trp 240
	Asp	Glu	Thr	Pro	Leu 245	Tyr	Phe	Ala	Pro	Ser 250	Ser	Leu	Phe	Asp	Leu 255	Asn
40	Phe	Gln	Ala	Gly 260	Phe	Leu	Met	Lys	Lys 265	Glu	Val	Gln	Asp	Glu 270	Glu	Lys
45	Asn	Lys	Lys 275	Phe	Gly	Leu	Ser	Val 280	Gly	His	His	Leu	Gly 285	Lys	Ser	Ile
50	Pro	Thr 290	Asp	Asn	Gln	Ile	Lys 295	Ala	Arg	Lys						
50		L> : 2> I	13 304 PRT Artif	:: -: -	.1 C											
55	<223 <223)>	DE18-			-										

	<400)> 1	L3													
5	Met 1	Glu	Glu	Glu	Glu 5	Glu	Glu	Glu	Glu	Glu 10	Asp	Asp	Asp	Asp	Asp 15	Asp
	Asp	Asp	Asp	Lys 20	Gly	Thr	Leu	Glu	Val 25	Leu	Phe	Gln	Gly	Pro 30	Met	Val
10	Gly	Arg	Arg 35	Ala	Leu	Ile	Val	Leu 40	Ala	His	Ser	Glu	Arg 45	Thr	Ser	Phe
15	Asn	Tyr 50	Ala	Met	Lys	Glu	Ala 55	Ala	Ala	Ala	Ala	Leu 60	Lys	Lys	Lys	Gly
20	Trp 65	Glu	Val	Val	Glu	Ser 70	Asp	Leu	Tyr	Ala	Met 75	Asn	Phe	Asn	Pro	Ile 80
	Ile	Ser	Arg	Lys	Asp 85	Ile	Thr	Gly	Lys	Leu 90	Lys	Asp	Pro	Ala	Asn 95	Phe
25	Gln	Tyr	Pro	Ala 100	Glu	Ser	Val	Leu	Ala 105	Tyr	Lys	Glu	Gly	His 110	Leu	Ser
30	Pro	Asp	Ile 115	Val	Ala	Glu	Gln	Lys 120	Lys	Leu	Glu	Ala	Ala 125	Asp	Leu	Val
35	Ile	Phe 130	Gln	Phe	Pro	Leu	Gln 135	Trp	Phe	Gly	Val	Pro 140	Ala	Ile	Leu	Lys
	Gly 145	Trp	Phe	Glu	Arg	V al 150	Phe	Ile	Gly	Glu	Phe 155	Ala	Tyr	Thr	Tyr	A la 160
40	Ala	Met	Tyr	Asp	Lys 165	Gly	Pro	Phe	Arg	Ser 170	Lys	Lys	Ala	Val	Leu 175	Ser
45	Ile	Thr	Thr	Gly 180	Gly	Ser	Gly	Ser	Met 185	Tyr	Ser	Leu	Gln	Gly 190	Ile	His
50	Gly	Asp	Met 195	Asn	Val	Ile	Leu	Trp 200	Pro	Ile	Gln	Ser	Gly 205	Ile	Leu	His
	Phe	Cys 210	Gly	Phe	Gln	Val	Leu 215	Glu	Pro	Gln	Leu	Thr 220	Tyr	Ser	Ile	Gly

His Thr Pro Ala Asp Ala Arg Ile Gln Ile Leu Glu Gly Trp Lys Lys 225 230 235 240

	Arg 1	Leu	Glu	Asn	Ile 245	Trp	Asp	Glu	Thr	Pro 250	Leu	Tyr	Phe	Ala	Pro 255	Ser
5	Ser 1	Leu	Phe	Asp 260	Leu	Asn	Phe	Gln	Ala 265	Gly	Phe	Leu	Met	Lys 270	Lys	Glu
10	Val (Gln	Asp 275	Glu	Glu	Lys	Asn	Lys 280	Lys	Phe	Gly	Leu	Ser 285	Val	Gly	His
	His 1	Leu 290	Gly	Lys	Ser	Ile	Pro 295	Thr	Asp	Asn	Gln	Ile 300	Lys	Ala	Arg	Lys
15	<2103 <2113 <2123 <2133	> 3 > F	.4 310 PRT Artif	icia	al Se	equer	nce									
20	<220 <223 <400	> D)E24-	-HRV3	BCsit	e-N(QO1									
25	Met (Glu	Glu 5	Glu	Glu	Glu	Glu	Glu 10	Glu	Glu	Glu	Asp	Asp 15	Asp
30	Asp i	Asp	Asp	Asp 20	Asp	Asp	Asp	Asp	Asp 25	Lys	Gly	Thr	Leu	Glu 30	Val	Leu
	Phe (Gln	Gly 35	Pro	Met	Val	Gly	Arg 40	Arg	Ala	Leu	Ile	Val 45	Leu	Ala	His
35	Ser (Glu 50	Arg	Thr	Ser	Phe	Asn 55	Tyr	Ala	Met	Lys	Glu 60	Ala	Ala	Ala	Ala
40	Ala 1	Leu	Lys	Lys	Lys	Gly 70	Trp	Glu	Val	Val	Glu 75	Ser	Asp	Leu	Tyr	Ala 80
	Met i	Asn	Phe	Asn	Pro 85	Ile	Ile	Ser	Arg	Lys 90	Asp	Ile	Thr	Gly	Lys 95	Leu
45	Lys i	Asp	Pro	Ala 100	Asn	Phe	Gln	Tyr	Pro 105	Ala	Glu	Ser	Val	Leu 110	Ala	Tyr
50	Lys (Glu	Gly 115	His	Leu	Ser	Pro	Asp 120	Ile	Val	Ala	Glu	Gln 125	Lys	Lys	Leu
55	Glu i	Ala 130	Ala	Asp	Leu	Val	Ile 135	Phe	Gln	Phe	Pro	Leu 140	Gln	Trp	Phe	Gly
	Val 1	Pro	Ala	Ile	Leu	Lys	Gly	Trp	Phe	Glu	Arg	Val	Phe	Ile	Gly	Glu

	145	150	155 160
5	Phe Ala Tyr Thr Tyr 165		Lys Gly Pro Phe Arg Ser 175
	Lys Lys Ala Val Leu 180	Ser Ile Thr Thr Gly 185	Gly Ser Gly Ser Met Tyr 190
10	Ser Leu Gln Gly Ile 195	His Gly Asp Met Asn 200	Val Ile Leu Trp Pro Ile 205
15	Gln Ser Gly Ile Leu 210	His Phe Cys Gly Phe 215	Gln Val Leu Glu Pro Gln 220
20	Leu Thr Tyr Ser Ile 225	Gly His Thr Pro Ala 230	Asp Ala Arg Ile Gln Ile 235 240
	Leu Glu Gly Trp Lys 245		Ile Trp Asp Glu Thr Pro 255
25	Leu Tyr Phe Ala Pro 260	Ser Ser Leu Phe Asp 265	Leu Asn Phe Gln Ala Gly 270
30	Phe Leu Met Lys Lys 275	Glu Val Gln Asp Glu 280	Glu Lys Asn Lys Lys Phe 285
	Gly Leu Ser Val Gly 290	His His Leu Gly Lys 295	Ser Ile Pro Thr Asp Asn 300
35	Gln Ile Lys Ala Arg 305	Lys 310	
40	<210> 15 <211> 316 <212> PRT <213> Artificial S	equence	
45	<220> <223> DE30-HRV3Csi	te-NQ01	
	<400> 15		
50	Met Glu Glu Glu Glu 1 5	Glu Glu Glu Glu 10	Glu Glu Glu Glu Glu 15
	Asp Asp Asp Asp 20	Asp Asp Asp Asp 25	Asp Asp Asp Asp Lys
55	Gly Thr Leu Glu Val	Leu Phe Gln Gly Pro 40	Met Val Gly Arg Arg Ala 45

	Leu	Ile 50	Val	Leu	Ala	His	Ser 55	Glu	Arg	Thr	Ser	Phe 60	Asn	Tyr	Ala	Met
5	Lys 65	Glu	Ala	Ala	Ala	A la 70	Ala	Leu	Lys	Lys	Lys 75	Gly	Trp	Glu	Val	Val 80
10	Glu	Ser	Asp	Leu	Tyr 85	Ala	Met	Asn	Phe	Asn 90	Pro	Ile	Ile	Ser	Arg 95	Lys
	Asp	Ile	Thr	Gly 100	Lys	Leu	Lys	Asp	Pro 105	Ala	Asn	Phe	Gln	Tyr 110	Pro	Ala
15	Glu	Ser	Val 115	Leu	Ala	Tyr	Lys	Glu 120	Gly	His	Leu	Ser	Pro 125	Asp	Ile	Val
20	Ala	Glu 130	Gln	Lys	Lys	Leu	Glu 135	Ala	Ala	Asp	Leu	Val 140	Ile	Phe	Gln	Phe
25	Pro 145	Leu	Gln	Trp	Phe	Gly 150	Val	Pro	Ala	Ile	Leu 155	Lys	Gly	Trp	Phe	Glu 160
	Arg	Val	Phe	Ile	Gly 165	Glu	Phe	Ala	Tyr	Thr 170	Tyr	Ala	Ala	Met	Tyr 175	Asp
30	Lys	Gly	Pro	Phe 180	Arg	Ser	Lys	Lys	Ala 185	Val	Leu	Ser	Ile	Thr 190	Thr	Gly
35	Gly	Ser	Gly 195	Ser	Met	Tyr	Ser	Leu 200	Gln	Gly	Ile	His	Gly 205	Asp	Met	Asn
40	Val	Ile 210	Leu	Trp	Pro	Ile	Gln 215	Ser	Gly	Ile	Leu	His 220	Phe	Cys	Gly	Phe
	Gln 225	Val	Leu	Glu	Pro	Gln 230	Leu	Thr	Tyr	Ser	Ile 235	Gly	His	Thr	Pro	Ala 240
45	Asp	Ala	Arg	Ile	Gln 245	Ile	Leu	Glu	Gly	Trp 250	Lys	Lys	Arg	Leu	Glu 255	Asn
50	Ile	Trp	Asp	Glu 260	Thr	Pro	Leu	Tyr	Phe 265	Ala	Pro	Ser	Ser	Leu 270	Phe	Asp
	Leu	Asn	Phe 275	Gln	Ala	Gly	Phe	Leu 280	Met	Lys	Lys	Glu	Val 285	Gln	Asp	Glu
55	Glu	Lys	Asn	Lys	Lys	Phe	Gly	Leu	Ser	Val	Gly	His	His	Leu	Gly	Lys

	2.7	•				233					500				
5	Ser Il	e Pro	Thr	Asp	A sn 310	Gln	Ile	Lys	Ala	Arg 315	Lys				
10	<210> <211> <212> <213>	16 322 PRT Artif	ficia	ıl Se	equei	nce									
	<220> <223>	DE36-	-HRV3	Csit	:e-N(201									
15	<400>	16													
	Met Gl	u Glu	Glu	Glu 5	Glu	Glu	Glu	Glu	Glu 10	Glu	Glu	Glu	Glu	Glu 15	Glu
20	Glu Gl	u Glu	Asp 20	Asp	Asp	Asp	Asp	Asp 25	Asp	Asp	Asp	Asp	Asp 30	Asp	Asp
25	Asp As	p Asp 35	Asp	Asp	Lys	Gly	Thr 40	Leu	Glu	Val	Leu	Phe 45	Gln	Gly	Pro
	Met Va 50	l Gly	Arg	Arg	Ala	Leu 55	Ile	Val	Leu	Ala	His 60	Ser	Glu	Arg	Thr
30	Ser Pho	e Asn	Tyr	Ala	Met 70	Lys	Glu	Ala	Ala	Ala 75	Ala	Ala	Leu	Lys	Lys 80
35	Lys Gl	y Trp	Glu	Val 85	Val	Glu	Ser	Asp	Leu 90	Tyr	Ala	Met	Asn	Phe 95	Asn
40	Pro Il	e Ile	Ser 100	Arg	Lys	Asp	Ile	Thr 105	Gly	Lys	Leu	Lys	Asp 110	Pro	Ala
	Asn Ph	e Gln 115	Tyr	Pro	Ala	Glu	Ser 120	Val	Leu	Ala	Tyr	Lys 125	Glu	Gly	His
45	Leu Se		Asp	Ile	Val	Ala 135	Glu	Gln	Lys	Lys	Leu 140	Glu	Ala	Ala	Asp
50	Leu Va 145	l Ile	Phe	Gln	Phe 150	Pro	Leu	Gln	Trp	Phe 155	Gly	Val	Pro	Ala	Ile 160
	Leu Ly	s Gly	Trp	Phe 165	Glu	Arg	Val	Phe	Ile 170	Gly	Glu	Phe	Ala	Tyr 175	Thr
55	Tyr Al	a Ala	Met 180	Tyr	Asp	Lys	Gly	Pro 185	Phe	Arg	Ser	Lys	Lys 190	Ala	Val

	Leu	Ser	Ile 195	Thr	Thr	Gly	Gly	Ser 200	Gly	Ser	Met	Tyr	Ser 205	Leu	Gln	Gly
5	Ile	His 210	Gly	Asp	Met	Asn	Val 215	Ile	Leu	Trp	Pro	Ile 220	Gln	Ser	Gly	Ile
10	Leu 225	His	Phe	Cys	Gly	Phe 230	Gln	Val	Leu	Glu	Pro 235	Gln	Leu	Thr	Tyr	Ser 240
15	Ile	Gly	His	Thr	Pro 245	Ala	Asp	Ala	Arg	Ile 250	Gln	Ile	Leu	Glu	Gly 255	Trp
	Lys	Lys	Arg	Leu 260	Glu	Asn	Ile	Trp	Asp 265	Glu	Thr	Pro	Leu	Tyr 270	Phe	Ala
20	Pro	Ser	Ser 275	Leu	Phe	Asp	Leu	Asn 280	Phe	Gln	Ala	Gly	Phe 285	Leu	Met	Lys
25	Lys	Glu 290	Val	Gln	Asp	Glu	Glu 295	Lys	Asn	Lys	Lys	Phe 300	Gly	Leu	Ser	Val
30	Gly 305	His	His	Leu	Gly	Lys 310	Ser	Ile	Pro	Thr	Asp 315	Asn	Gln	Ile	Lys	Ala 320
	Arg	Lys														
35	<210 <211 <212 <213	L> 3 2> E	L7 388 PRT Artif	ficia	al Se	equer	nce									
40	<220 <223	3> [DED-I	irv30	Csite	≘−N Q(01									
45	Met 1	Asp	Tyr	Lys	Asp 5	Asp	Asp	Asp	Lys	Gly 10	Met	Ala	Ser	Asp	Leu 15	Ser
50	Asn	Val	Glu	Gly 20	Lys	Thr	Gly	Asn	Ala 25	Thr	Asp	Glu	Glu	Glu 30	Glu	Glu
	Glu	Glu	Glu 35	Glu	Glu	Glu	Glu	Asp 40	Asp	Asp	Asp	Asp	Asp 45	Asp	Asp	Asp
55	Asp	Asp 50	Asp	Glu	Asp	Ser	Gly 55	Ala	Glu	Ile	Gln	Asp 60	Asp	Asp	Glu	Glu

	Gly 65	Phe	Asp	Asp	Glu	Glu 70	Glu	Phe	Asp	Asp	Asp 75	Asp	Asp	Asp	Glu	His 80
5	Asp	Asp	Asp	Asp	Leu 85	Glu	Asn	Glu	Glu	Asn 90	Glu	Leu	Glu	Glu	Leu 95	Glu
10	Glu	Arg	Val	Glu 100	Ala	Arg	Lys	Lys	Ala 105	Ser	Leu	Glu	Val	Leu 110	Phe	Gln
	Gly	Pro	Met 115	Val	Gly	Arg	Arg	Ala 120	Leu	Ile	Val	Leu	Ala 125	His	Ser	Glu
15	Arg	Thr 130	Ser	Phe	Asn	Tyr	Ala 135	Met	Lys	Glu	Ala	Ala 140	Ala	Ala	Ala	Leu
20	Lys 145	Lys	Lys	Gly	Trp	Glu 150	Val	Val	Glu	Ser	Asp 155	Leu	Tyr	Ala	Met	Asn 160
25	Phe	Asn	Pro	Ile	Ile 165	Ser	Arg	Lys	Asp	Ile 170	Thr	Gly	Lys	Leu	Lys 175	Asp
	Pro	Ala	Asn	Phe 180	Gln	Tyr	Pro	Ala	Glu 185	Ser	Val	Leu	Ala	Tyr 190	Lys	Glu
30	Gly	His	Leu 195	Ser	Pro	Asp	Ile	Val 200	Ala	Glu	Gln	Lys	Lys 205	Leu	Glu	Ala
35	Ala	Asp 210	Leu	Val	Ile	Phe	Gln 215	Phe	Pro	Leu	Gln	Trp 220	Phe	Gly	Val	Pro
40	Ala 225		Leu	Lys	Gly	_			_	Val		Ile			Phe	Ala 240
40	Tyr	Thr	Tyr	Ala	Ala 245	Met	Tyr	Asp	Lys	Gly 250	Pro	Phe	Arg	Ser	Lys 255	Lys
45	Ala	Val	Leu	Ser 260	Ile	Thr	Thr	Gly	Gly 265	Ser	Gly	Ser	Met	Tyr 270	Ser	Leu
50	Gln	Gly	Ile 275	His	Gly	Asp	Met	Asn 280	Val	Ile	Leu	Trp	Pro 285	Ile	Gln	Ser
	Gly	Ile 290	Leu	His	Phe	Cys	Gly 295	Phe	Gln	Val	Leu	Glu 300	Pro	Gln	Leu	Thr
55	Tyr 305	Ser	Ile	Gly	His	Thr 310	Pro	Ala	Asp	Ala	Arg 315	Ile	Gln	Ile	Leu	Glu 320

	Gly	Trp	Lys	Lys	Arg 325	Leu	Glu	Asn	Ile	Trp 330	Asp	Glu	Thr	Pro	Leu 335	Tyr
5	Phe	Ala	Pro	Ser 340	Ser	Leu	Phe	Asp	Leu 345	Asn	Phe	Gln	Ala	Gly 350	Phe	Leu
10	Met	Lys	Lys 355	Glu	Val	Gln	Asp	Glu 360	Glu	Lys	Asn	Lys	Lys 365	Phe	Gly	Leu
	Ser	Val 370	Gly	His	His	Leu	Gly 375	Lys	Ser	Ile	Pro	Thr 380	Asp	Asn	Gln	Ile
15	Lys 385	Ala	Arg	Lys												
20	<210 <211 <212 <213	L> 3 2> E	18 341 PRT Artif	ficia	al Se	equer	nce									
25	<220 <223		ES-F	irv30	Csite	∍− N Q(01									
	<400)> 1	. 8													
30	Met 1	Asp	Tyr	Lys	Asp 5	Asp	Asp	Asp	Lys	Gly 10	Met	Ala	Ser	Asp	Leu 15	Ser
35	Asn	Val	Glu	Gly 20	Lys	Thr	Gly	Asn	Ala 25	Thr	Asp	Glu	Glu	Glu 30	Glu	Glu
	Glu	Glu	Glu 35	Glu	Glu	Glu	Glu	Asp 40	Asp	Asp	Asp	Asp	Asp 45	Asp	Asp	Asp
40	Asp	Asp 50	Asp	Glu	Asp	Ser	Gly 55	Ala	Glu	Ala	Ser	Leu 60	Glu	Val	Leu	Phe
45	Gln 65	Gly	Pro	Met	Val	Gly 70	Arg	Arg	Ala	Leu	Ile 75	Val	Leu	Ala	His	Ser 80
50	Glu	Arg	Thr	Ser	Phe 85	Asn	Tyr	Ala	Met	Lys 90	Glu	Ala	Ala	Ala	Ala 95	Ala
	Leu	Lys	Lys	Lys 100	Gly	Trp	Glu	Val	Val 105	Glu	Ser	Asp	Leu	Tyr 110	Ala	Met
55	Asn	Phe	Asn 115	Pro	Ile	Ile	Ser	Arg 120	Lys	Asp	Ile	Thr	Gly 125	Lys	Leu	Lys

	Asp	Pro 130	Ala	Asn	Phe	Gln	Tyr 135	Pro	Ala	Glu	Ser	Val 140	Leu	Ala	Tyr	Lys
5	Glu 145	Gly	His	Leu	Ser	Pro 150	Asp	Ile	Val	Ala	Glu 155	Gln	Lys	Lys	Leu	Glu 160
10	Ala	Ala	Asp	Leu	Val 165	Ile	Phe	Gln	Phe	Pro 170	Leu	Gln	Trp	Phe	Gly 175	Val
	Pro	Ala	Ile	Leu 180	Lys	Gly	Trp	Phe	Glu 185	Arg	Val	Phe	Ile	Gly 190	Glu	Phe
15	Ala	Tyr	Thr 195	Tyr	Ala	Ala	Met	Tyr 200	Asp	Lys	Gly	Pro	Phe 205	Arg	Ser	Lys
20	Lys	Ala 210	Val	Leu	Ser	Ile	Thr 215	Thr	Gly	Gly	Ser	Gly 220	Ser	Met	Tyr	Ser
25	Leu 225	Gln	Gly	Ile	His	Gly 230	Asp	Met	Asn	Val	Ile 235	Leu	Trp	Pro	Ile	Gln 240
	Ser	Gly	Ile	Leu	His 245	Phe	Cys	Gly	Phe	Gln 250	Val	Leu	Glu	Pro	Gln 255	Leu
30	Thr	Tyr	Ser	Ile 260	Gly	His	Thr	Pro	Ala 265	Asp	Ala	Arg	Ile	Gln 270	Ile	Leu
35	Glu	Gly	Trp 275	Lys	Lys	Arg	Leu	Glu 280	Asn	Ile	Trp	Asp	Glu 285	Thr	Pro	Leu
40	Tyr	Phe 290	Ala	Pro	Ser	Ser				Leu		Phe 300		Ala	Gly	Phe
40	Leu 305	Met	Lys	Lys	Glu	Val 310	Gln	Asp	Glu	Glu	Lys 315	Asn	Lys	Lys	Phe	Gly 320
45	Leu	Ser	Val	Gly	His 325	His	Leu	Gly	Lys	Ser 330	Ile	Pro	Thr	Asp	Asn 335	Gln
50	Ile	Lys	Ala	Arg 340	Lys											
	<210 <210 <210	L> 3	L9 321 PRT													
55	<213 <220		Artii	ficia	al S€	equer	nce									

<223> EO24-HRV3Csite-NQO1

	<400> 19															
5	Met 1	Asp	Tyr	Lys	Asp 5	Asp	Asp	Asp	Lys	Gly 10	Met	Ala	Ser	Glu	Glu 15	Glu
10	Glu	Glu	Glu	Glu 20	Glu	Glu	Glu	Glu	Glu 25	Glu	Glu	Glu	Glu	Glu 30	Glu	Glu
	Glu	Glu	Glu 35	Glu	Glu	Ala	Ser	Leu 40	Glu	Val	Leu	Phe	Gln 45	Gly	Pro	Met
15	Val	Gly 50	Arg	Arg	Ala	Leu	Ile 55	Val	Leu	Ala	His	Ser 60	Glu	Arg	Thr	Ser
20	Phe 65	Asn	Tyr	Ala	Met	Lys 70	Glu	Ala	Ala	Ala	Ala 75	Ala	Leu	Lys	Lys	Lys 80
25	Gly	Trp	Glu	Val	Val 85	Glu	Ser	Asp	Leu	Tyr 90	Ala	Met	Asn	Phe	Asn 95	Pro
	Ile	Ile	Ser	Arg 100	Lys	Asp	Ile	Thr	Gly 105	Lys	Leu	Lys	Asp	Pro 110	Ala	Asn
30	Phe	Gln	Tyr 115	Pro	Ala	Glu	Ser	Val 120	Leu	Ala	Tyr	Lys	Glu 125	Gly	His	Leu
35	Ser	Pro 130	Asp	Ile	Val	Ala	Glu 135	Gln	Lys	Lys	Leu	Glu 140	Ala	Ala	Asp	Leu
	Val 145	Ile	Phe	Gln	Phe	Pro 150	Leu	Gln	Trp	Phe	Gly 155	Val	Pro	Ala	Ile	Leu 160
40	Lys	Gly	Trp	Phe	Glu 165	Arg	Val	Phe	Ile	Gly 170	Glu	Phe	Ala	Tyr	Thr 175	Tyr
45	Ala	Ala	Met	Tyr 180	Asp	Lys	Gly	Pro	Phe 185	Arg	Ser	Lys	Lys	Ala 190	Val	Leu
50	Ser	Ile	Thr 195	Thr	Gly	Gly	Ser	Gly 200	Ser	Met	Tyr	Ser	Leu 205	Gln	Gly	Ile
	His	Gly 210	Asp	Met	Asn	Val	Ile 215	Leu	Trp	Pro	Ile	Gln 220	Ser	Gly	Ile	Leu
55	His 225	Phe	Cys	Gly	Phe	Gln 230	Val	Leu	Glu	Pro	Gln 235	Leu	Thr	Tyr	Ser	Ile 240

	Gly	His	Thr	Pro	Ala 245	Asp	Ala	Arg	Ile	Gln 250	Ile	Leu	Glu	Gly	Trp 255	Lys
5	Lys	Arg	Leu	Glu 260	Asn	Ile	Trp	Asp	Glu 265	Thr	Pro	Leu	Tyr	Phe 270	Ala	Pro
10	Ser	Ser	Leu 275	Phe	Asp	Leu	Asn	Phe 280	Gln	Ala	Gly	Phe	Leu 285	Met	Lys	Lys
15	Glu	Val 290	Gln	Asp	Glu	Glu	Lys 295	Asn	Lys	Lys	Phe	Gly 300	Leu	Ser	Val	Gly
13	His 305	His	Leu	Gly	Lys	Ser 310	Ile	Pro	Thr	Asp	As n 315	Gln	Ile	Lys	Ala	A rg 320
20	Lys															
25	<210 <211 <212 <213	L> 3 2> I	20 386 PRT Artii	ficia	al Se	equer	nce									
30	<220 <223 <400	3> 1	1001- 20	-HRV3	BCsit	e-DI	ED									
35		Val		Arg	Arg 5	Ala	Leu	Ile	Val	Leu 10	Ala	His	Ser	Glu	Arg 15	Thr
	Ser	Phe	Asn	Tyr 20	Ala	Met	Lys	Glu	Ala 25	Ala	Ala	Ala	Ala	Leu 30	Lys	Lys
40	Lys	Gly	Trp 35	Glu	Val	Val	Glu	Ser 40	Asp	Leu	Tyr	Ala	Met 45	Asn	Phe	Asn
45	Pro	Ile 50	Ile	Ser	Arg	Lys	Asp 55	Ile	Thr	Gly	Lys	Leu 60	Lys	Asp	Pro	Ala
50	Asn 65	Phe	Gln	Tyr	Pro	Ala 70	Glu	Ser	Val	Leu	A la 75	Tyr	Lys	Glu	Gly	His 80
	Leu	Ser	Pro	Asp	Ile 85	Val	Ala	Glu	Gln	Lys 90	Lys	Leu	Glu	Ala	Ala 95	Asp
55	Leu	Val	Ile	Phe	Gln	Phe	Pro	Leu	Gln	Trp	Phe	Gly	Val	Pro 110	Ala	Ile

	Leu	Lys	Gly 115	Trp	Phe	Glu	Arg	Val 120	Phe	Ile	Gly	Glu	Phe 125	Ala	Tyr	Thr
5	Tyr	Ala 130	Ala	Met	Tyr	Asp	Lys 135	Gly	Pro	Phe	Arg	Ser 140	Lys	Lys	Ala	Val
10	Leu 145	Ser	Ile	Thr	Thr	Gly 150	Gly	Ser	Gly	Ser	Met 155	Tyr	Ser	Leu	Gln	Gly 160
	Ile	His	Gly	Asp	Met 165	Asn	Val	Ile	Leu	Trp 170	Pro	Ile	Gln	Ser	Gly 175	Ile
15	Leu	His	Phe	Cys 180	Gly	Phe	Gln	Val	Leu 185	Glu	Pro	Gln	Leu	Thr 190	Tyr	Ser
20	Ile	Gly	His 195	Thr	Pro	Ala	Asp	Ala 200	Arg	Ile	Gln	Ile	Leu 205	Glu	Gly	Trp
25	Lys	Lys 210	Arg	Leu	Glu	Asn	Ile 215	Trp	Asp	Glu	Thr	Pro 220	Leu	Tyr	Phe	Ala
	Pro 225	Ser	Ser	Leu	Phe	Asp 230	Leu	Asn	Phe	Gln	Ala 235	Gly	Phe	Leu	Met	Lys 240
30	Lys	Glu	Val	Gln	Asp 245	Glu	Glu	Lys	Asn	Lys 250	Lys	Phe	Gly	Leu	Ser 255	Val
35	Gly	His	His	Leu 260	Gly	Lys	Ser	Ile	Pro 265	Thr	Asp	Asn	Gln	Ile 270	Lys	Ala
40	Arg	Lys		Leu					Gln	_				_	Leu	Ser
40	Asn	Val 290	Glu	Gly	Lys	Thr	Gly 295	Asn	Ala	Thr	Asp	Glu 300	Glu	Glu	Glu	Glu
45	Glu 305	Glu	Glu	Glu	Glu	Glu 310	Glu	Asp	Asp	Asp	Asp 315	Asp	Asp	Asp	Asp	Asp 320
50	Asp	Asp	Asp	Glu	Asp 325	Ser	Gly	Ala	Glu	Ile 330	Gln	Asp	Asp	Asp	Glu 335	Glu
	Gly	Phe	Asp	Asp 340	Glu	Glu	Glu	Phe	Asp 345	Asp	Asp	Asp	Asp	Asp 350	Glu	His
55	Asp	Asp	Asp 355	Asp	Leu	Glu	Asn	Glu 360	Glu	Asn	Glu	Leu	Glu 365	Glu	Leu	Glu

Glu Arg Val Glu Ala Arg Lys Lys Ala Ser Asp Tyr Lys Asp Asp Asp 370 375 380

5	Asp 385	Lys														
10	<210 <211 <212 <213	L> 3 2> E	21 339 PRT Artii	ficia	al Se	equei	nce									
15	<220 <223	3> 1	1Q01-	-HRV3	3Csit	ce-DI	ES									
	<400)> 2	21													
20	Met 1	Val	Gly	Arg	Arg 5	Ala	Leu	Ile	Val	Leu 10	Ala	His	Ser	Glu	Arg 15	Thr
	Ser	Phe	Asn	Tyr 20	Ala	Met	Lys	Glu	Ala 25	Ala	Ala	Ala	Ala	Leu 30	Lys	Lys
25	Lys	Gly	Trp 35	Glu	Val	Val	Glu	Ser 40	Asp	Leu	Tyr	Ala	Met 45	Asn	Phe	Asn
30	Pro	Ile 50	Ile	Ser	Arg	Lys	Asp 55	Ile	Thr	Gly	Lys	Leu 60	Lys	Asp	Pro	Ala
35	Asn 65	Phe	Gln	Tyr	Pro	Ala 70	Glu	Ser	Val	Leu	Ala 75	Tyr	Lys	Glu	Gly	His 80
	Leu	Ser	Pro	Asp	Ile 85	Val	Ala	Glu	Gln	Lys 90	Lys	Leu	Glu	Ala	Ala 95	Asp
40	Leu	Val	Ile	Phe 100	Gln	Phe	Pro	Leu	Gln 105	Trp	Phe	Gly	Val	Pro 110	Ala	Ile
45	Leu	Lys	Gly 115	Trp	Phe	Glu	Arg	Val 120	Phe	Ile	Gly	Glu	Phe 125	Ala	Tyr	Thr
50	Tyr	Ala 130	Ala	Met	Tyr	Asp	Lys 135	Gly	Pro	Phe	Arg	Ser 140	Lys	Lys	Ala	Val
	Leu 145	Ser	Ile	Thr	Thr	Gly 150	Gly	Ser	Gly	Ser	Met 155	Tyr	Ser	Leu	Gln	Gly 160
55	Ile	His	Gly	Asp	Met 165	Asn	Val	Ile	Leu	Trp 170	Pro	Ile	Gln	Ser	Gly 175	Ile

	Leu	His	Phe	Cys 180	Gly	Phe	Gln	Val	Leu 185	Glu	Pro	Gln	Leu	Thr 190	Tyr	Ser
5	Ile	Gly	His 195	Thr	Pro	Ala	Asp	Ala 200	Arg	Ile	Gln	Ile	Leu 205	Glu	Gly	Trp
10	Lys	Lys 210	Arg	Leu	Glu	Asn	Ile 215	Trp	Asp	Glu	Thr	Pro 220	Leu	Tyr	Phe	Ala
	Pro 225	Ser	Ser	Leu	Phe	Asp 230	Leu	Asn	Phe	Gln	Ala 235	Gly	Phe	Leu	Met	Lys 240
15	Lys	Glu	Val	Gln	Asp 245	Glu	Glu	Lys	Asn	Lys 250	Lys	Phe	Gly	Leu	Ser 255	Val
20	Gly	His	His	Leu 260	Gly	Lys	Ser	Ile	Pro 265	Thr	Asp	Asn	Gln	Ile 270	Lys	Ala
25	Arg	Lys	Gly 275	Leu	Glu	Val	Leu	Phe 280	Gln	Gly	Pro	Ala	Ser 285	Asp	Leu	Ser
25	Asn	Val 290	Glu	Gly	Lys	Thr	Gly 295	Asn	Ala	Thr	Asp	Glu 300	Glu	Glu	Glu	Glu
30	Glu 305	Glu	Glu	Glu	Glu	Glu 310	Glu	Asp	Asp	Asp	Asp 315	Asp	Asp	Asp	Asp	Asp 320
35	Asp	Asp	Asp	Glu	Asp 325	Ser	Gly	Ala	Glu	Ala 330	Ser	Asp	Tyr	Lys	Asp 335	Asp
	Asp	Asp	Lys													
40		L> (2> I	22 660 PRT Artif	ficia	al Se	equei	nce									
45	<220 <223		DED-H	irv30	Csite	∋−Luo	cife	rase								
)> 2							_						_	
50	Met 1	Asp	Tyr	Lys	Asp 5	Asp	Asp	Asp	Lys	Gly 10	Met	Ala	Ser	Asp	Leu 15	Ser
55	Asn	Val	Glu	Gly 20	Lys	Thr	Gly	Asn	Ala 25	Thr	Asp	Glu	Glu	Glu 30	Glu	Glu
	Glu	Glu	Glu	Glu	Glu	Glu	Glu	Asp	Asp	Asp	Asp	Asp	Asp	Asp	Asp	Asp

5	Asp	Asp 50	Asp	Glu	Asp	Ser	Gly 55	Ala	Glu	Ile	Gln	Asp 60	Asp	Asp	Glu	Glu
10	Gly 65	Phe	Asp	Asp	Glu	Glu 70	Glu	Phe	Asp	Asp	Asp 75	Asp	Asp	Asp	Glu	His 80
	Asp	Asp	Asp	Asp	Leu 85	Glu	Asn	Glu	Glu	Asn 90	Glu	Leu	Glu	Glu	Leu 95	Glu
15	Glu	Arg	Val	Glu 100	Ala	Arg	Lys	Lys	Ala 105	Ser	Leu	Glu	Val	Leu 110	Phe	Gln
20	Gly	Pro	Glu 115	Asp	Ala	Lys	Asn	Ile 120	Lys	Lys	Gly	Pro	Ala 125	Pro	Phe	Tyr
	Pro	Leu 130	Glu	Asp	Gly	Thr	Ala 135	Gly	Glu	Gln	Leu	His 140	Lys	Ala	Met	Lys
25	Arg 145	Tyr	Ala	Leu	Val	Pro 150	Gly	Thr	Ile	Ala	Phe 155	Thr	Asp	Ala	His	Ile 160
30	Glu	Val	Asn	Ile	Thr 165	Tyr	Ala	Glu	Tyr	Phe 170	Glu	Met	Ser	Val	A rg 175	Leu
35	Ala	Glu	Ala	Met 180	Lys	Arg	Tyr	Gly	Leu 185	Asn	Thr	Asn	His	Arg 190	Ile	Val
	Val	Cys	Ser 195	Glu	Asn	Ser	Leu	Gln 200	Phe	Phe	Met	Pro	Val 205	Leu	Gly	Ala
40	Leu	Phe 210	Ile	Gly	Val	Ala	Val 215	Ala	Pro	Ala	Asn	Asp 220	Ile	Tyr	Asn	Glu
45	Arg 225	Glu	Leu	Leu	Asn	Ser 230	Met	Asn	Ile	Ser	Gln 235	Pro	Thr	Val	Val	Phe 240
50	Val	Ser	Lys	Lys	Gly 245	Leu	Gln	Lys	Ile	Leu 250	Asn	Val	Gln	Lys	Lys 255	Leu
	Pro	Ile	Ile	Gln 260	Lys	Ile	Ile	Ile	Met 265	Asp	Ser	Lys	Thr	Asp 270	Tyr	Gln
55	Gly	Phe	Gln 275	Ser	Met	Tyr	Thr	Phe 280	Val	Thr	Ser	His	Leu 285	Pro	Pro	Gly

	Phe	Asn 290	Glu	Tyr	Asp	Phe	Val 295	Pro	Glu	Ser	Phe	Asp 300	Arg	Asp	Lys	Thr
5	Ile 305	Ala	Leu	Ile	Met	Asn 310	Ser	Ser	Gly	Ser	Thr 315	Gly	Leu	Pro	Lys	Gly 320
10	Val	Ala	Leu	Pro	His 325	Arg	Thr	Ala	Cys	Val 330	Arg	Phe	Ser	His	Ala 335	Arg
	Asp	Pro	Ile	Phe 340	Gly	Asn	Gln	Ile	Ile 345	Pro	Asp	Thr	Ala	Ile 350	Leu	Ser
15	Val	Val	Pro 355	Phe	His	His	Gly	Phe 360	Gly	Met	Phe	Thr	Thr 365	Leu	Gly	Tyr
20	Leu	Ile 370	Cys	Gly	Phe	Arg	Val 375	Val	Leu	Met	Tyr	Arg 380	Phe	Glu	Glu	Glu
25	Leu 385	Phe	Leu	Arg	Ser	Leu 390	Gln	Asp	Tyr	Lys	Ile 395	Gln	Ser	Ala	Leu	Leu 400
	Val	Pro	Thr	Leu	Phe 405	Ser	Phe	Phe	Ala	Lys 410	Ser	Thr	Leu	Ile	Asp 415	Lys
30	Tyr	Asp	Leu	Ser 420	Asn	Leu	His	Glu	Ile 425	Ala	Ser	Gly	Gly	Ala 430	Pro	Leu
35	Ser	Lys	Glu 435	Val	Gly	Glu	Ala	Val 440	Ala	Lys	Arg	Phe	His 445	Leu	Pro	Gly
40		Arg 450		_	_	_								Ile	Leu	Ile
40	Thr 465	Pro	Glu	Gly	Asp	Asp 470	Lys	Pro	Gly	Ala	Val 475	Gly	Lys	Val	Val	Pro 480
45	Phe	Phe	Glu	Ala	Lys 485	Val	Val	Asp	Leu	Asp 490	Thr	Gly	Lys	Thr	Leu 495	Gly
50	Val	Asn	Gln	Arg 500	Gly	Glu	Leu	Cys	Val 505	Arg	Gly	Pro	Met	Ile 510	Met	Ser
	Gly	Tyr	Val 515	Asn	Asn	Pro	Glu	Ala 520	Thr	Asn	Ala	Leu	Ile 525	Asp	Lys	Asp
55	Gly	Trp 530	Leu	His	Ser	Gly	Asp 535	Ile	Ala	Tyr	Trp	Asp 540	Glu	Asp	Glu	His

	Phe P 545	he Ile	· Val	Asp	Arg 550	Leu	Lys	Ser	Leu	Ile 555	Lys	Tyr	Lys	Gly	Tyr 560
5	Gln V	al Ala	Pro	Ala 565	Glu	Leu	Glu	Ser	Ile 570	Leu	Leu	Gln	His	Pro 575	Asn
10	Ile P	he Asp	Ala 580	Gly	Val	Ala	Gly	Leu 585	Pro	Asp	Asp	Asp	A la 590	Gly	Glu
15	Leu P	ro Ala 595		Val	Val	Val	Leu 600	Glu	His	Gly	Lys	Thr 605	Met	Thr	Glu
75		3lu Il∈ 310	val	Asp	Tyr	Val 615	Ala	Ser	Gln	Val	Thr 620	Thr	Ala	Lys	Lys
20	Leu A 625	rg Gly	Gly	Val	Val 630	Phe	Val	Asp	Glu	Val 635	Pro	Lys	Gly	Leu	Thr 640
25	Gly L	ys Lev	Asp	Ala 645	Arg	Lys	Ile	Arg	Glu 650	Ile	Leu	Ile	Lys	Ala 655	Lys
20	Lys G	ly Gly	Lys 660												
30	<210><211><211><212><213>	613 PRT	ficia.	al Se	equer	nce									
35	<220> <223>	DES-	HRV3	Csite	e-Luc	cifer	case								
40	<400> Met A	· 23 Asp Tyr	Lys	Asp 5	Asp	Asp	Asp	Lys	Gly 10	Met	Ala	Ser	Asp	Leu 15	Ser
45	Asn V	al Glu	Gly 20	Lys	Thr	Gly	Asn	Ala 25	Thr	Asp	Glu	Glu	Glu 30	Glu	Glu
50	Glu G	lu Glu 35	Glu	Glu	Glu	Glu	Asp 40	Asp	Asp	Asp	Asp	Asp 45	Asp	Asp	Asp
	_	sp Asp 0	Glu	Asp	Ser	Gly 55	Ala	Glu	Ala	Ser	Leu 60	Glu	Val	Leu	Phe
55	Gln G 65	Sly Pro	Glu	Asp	Ala 70	Lys	Asn	Ile	Lys	Lys 75	Gly	Pro	Ala	Pro	Phe 80

	Tyr	Pro	Leu	Glu	Asp 85	Gly	Thr	Ala	Gly	Glu 90	Gln	Leu	His	Lys	Ala 95	Met
5	Lys	Arg	Tyr	Ala 100	Leu	Val	Pro	Gly	Thr 105	Ile	Ala	Phe	Thr	Asp 110	Ala	His
10	Ile	Glu	Val 115	Asn	Ile	Thr	Tyr	Ala 120	Glu	Tyr	Phe	Glu	Met 125	Ser	Val	Arg
	Leu	Ala 130	Glu	Ala	Met	Lys	A rg 135	Tyr	Gly	Leu	Asn	Thr 140	Asn	His	Arg	Ile
15	Val 145	Val	Cys	Ser	Glu	Asn 150	Ser	Leu	Gln	Phe	Phe 155	Met	Pro	Val	Leu	Gly 160
20	Ala	Leu	Phe	Ile	Gly 165	Val	Ala	Val	Ala	Pro 170	Ala	Asn	Asp	Ile	Tyr 175	Asn
25	Glu	Arg	Glu	Leu 180	Leu	Asn	Ser	Met	Asn 185	Ile	Ser	Gln	Pro	Thr 190	Val	Val
	Phe	Val	Ser 195	Lys	Lys	Gly	Leu	Gln 200	Lys	Ile	Leu	Asn	Val 205	Gln	Lys	Lys
30	Leu	Pro 210	Ile	Ile	Gln	Lys	Ile 215	Ile	Ile	Met	Asp	Ser 220	Lys	Thr	Asp	Tyr
35	Gln 225	Gly	Phe	Gln	Ser	Met 230	Tyr	Thr	Phe	Val	Thr 235	Ser	His	Leu	Pro	Pro 240
40	Gly	Phe	Asn	Glu	_	_			Pro		Ser		Asp	Arg	Asp 255	_
40	Thr	Ile	Ala	Leu 260	Ile	Met	Asn	Ser	Ser 265	Gly	Ser	Thr	Gly	Leu 270	Pro	Lys
45	Gly	Val	Ala 275	Leu	Pro	His	Arg	Thr 280	Ala	Cys	Val	Arg	Phe 285	Ser	His	Ala
50	Arg	Asp 290	Pro	Ile	Phe	Gly	Asn 295	Gln	Ile	Ile	Pro	Asp 300	Thr	Ala	Ile	Leu
	Ser 305	Val	Val	Pro	Phe	His 310	His	Gly	Phe	Gly	Met 315	Phe	Thr	Thr	Leu	Gly 320
55	Tyr	Leu	Ile	Cys	Gly 325	Phe	Arg	Val	Val	Leu 330	Met	Tyr	Arg	Phe	Glu 335	Glu

	Glu	Leu	Phe	Leu 340	Arg	Ser	Leu	Gln	Asp 345	Tyr	Lys	Ile	Gln	Ser 350	Ala	Leu
5	Leu	Val	Pro 355	Thr	Leu	Phe	Ser	Phe 360	Phe	Ala	Lys	Ser	Thr 365	Leu	Ile	Asp
10	Lys	Tyr 370	Asp	Leu	Ser	Asn	Leu 375	His	Glu	Ile	Ala	Ser 380	Gly	Gly	Ala	Pro
	Leu 385	Ser	Lys	Glu	Val	Gly 390	Glu	Ala	Val	Ala	Lys 395	Arg	Phe	His	Leu	Pro 400
15	Gly	Ile	Arg	Gln	Gly 405	Tyr	Gly	Leu	Thr	Glu 410	Thr	Thr	Ser	Ala	Ile 415	Leu
20	Ile	Thr	Pro	Glu 420	Gly	Asp	Asp	Lys	Pro 425	Gly	Ala	Val	Gly	Lys 4 30	Val	Val
25	Pro	Phe	Phe 435	Glu	Ala	Lys	Val	Val 440	Asp	Leu	Asp	Thr	Gly 445	Lys	Thr	Leu
	Gly	Val 450	Asn	Gln	Arg	Gly	Glu 455	Leu	Cys	Val	Arg	Gly 460	Pro	Met	Ile	Met
30	Ser 465	Gly	Tyr	Val	Asn	Asn 470	Pro	Glu	Ala	Thr	Asn 475	Ala	Leu	Ile	Asp	Lys 480
35	Asp	Gly	Trp	Leu	His 485	Ser	Gly	Asp	Ile	Ala 490	Tyr	Trp	Asp	Glu	Asp 495	Glu
40	His	Phe	Phe		Val	_	_		Lys 505	Ser	Leu	Ile	Lys	Tyr 510	_	Gly
40	Tyr	Gln	Val 515	Ala	Pro	Ala	Glu	Leu 520	Glu	Ser	Ile	Leu	Leu 525	Gln	His	Pro
45	Asn	Ile 530	Phe	Asp	Ala	Gly	Val 535	Ala	Gly	Leu	Pro	Asp 540	Asp	Asp	Ala	Gly
50	Glu 545	Leu	Pro	Ala	Ala	Val 550	Val	Val	Leu	Glu	His 555	Gly	Lys	Thr	Met	Thr 560
	Glu	Lys	Glu	Ile	Val 565	Asp	Tyr	Val	Ala	Ser 570	Gln	Val	Thr	Thr	Ala 575	Lys
55	Lys	Leu	Arg	Gly 580	Gly	Val	Val	Phe	Val 585	Asp	Glu	Val	Pro	Lys 590	Gly	Leu

Thr Gly Lys Leu Asp Ala Arg Lys Ile Arg Glu Ile Leu Ile Lys Ala 595 600 605

5	Lys	Lys 610	Gly	Gly	Lys											
10	<210 <211 <212 <213	1> ! 2> 1	24 535 PRT Artii	ficia	al Se	equei	nce									
15	<220 <223		DED-I	HRV30	C											
	<400	0> 2	24													
20	Met 1	Asp	Tyr	Lys	Asp 5	Asp	Asp	Asp	Lys	Gly 10	Met	Ala	Ser	Asp	Leu 15	Ser
	Asn	Val	Glu	Gly 20	Lys	Thr	Gly	Asn	Ala 25	Thr	Asp	Glu	Glu	Glu 30	Glu	Glu
25	Glu	Glu	Glu 35	Glu	Glu	Glu	Glu	Asp 40	Asp	Asp	Asp	Asp	Asp 45	Asp	Asp	Asp
30	Asp	Asp 50	Asp	Glu	Asp	Ser	Gly 55	Ala	Glu	Ile	Gln	Asp 60	Asp	Asp	Glu	Glu
35	Gly 65	Phe	Asp	Asp	Glu	Glu 70	Glu	Phe	Asp	Asp	Asp 75	Asp	Asp	Asp	Glu	His 80
	Asp	Asp	Asp	Asp	Leu 85	Glu	Asn	Glu	Glu	Asn 90	Glu	Leu	Glu	Glu	Leu 95	Glu
40	Glu	Arg	Val	Glu 100	Ala	Arg	Lys	Lys	Met 105	His	His	His	His	His 110	His	Ser
45	Ser	Gly	Met 115	Ser	Pro	Ile	Leu	Gly 120	Tyr	Trp	Lys	Ile	Lys 125	Gly	Leu	Val
50	Gln	Pro 130	Thr	Arg	Leu	Leu	Leu 135	Glu	Tyr	Leu	Glu	Glu 140	Lys	Tyr	Glu	Glu
	His 145	Leu	Tyr	Glu	Arg	Asp 150	Glu	Gly	Asp	Lys	Trp 155	Arg	Asn	Lys	Lys	Phe 160
55	Glu	Leu	Gly	Leu	Glu 165	Phe	Pro	Asn	Leu	Pro 170	Tyr	Tyr	Ile	Asp	Gly 175	Asp

	Val	Lys	Leu	Thr 180	Gln	Ser	Met	Ala	Ile 185	Ile	Arg	Tyr	Ile	Ala 190	Asp	Lys
5	His	Asn	Met 195	Leu	Gly	Gly	Cys	Pro 200	Lys	Glu	Arg	Ala	Glu 205	Ile	Ser	Met
10	Leu	Glu 210	Gly	Ala	Val	Leu	Asp 215	Ile	Arg	Tyr	Gly	Val 220	Ser	Arg	Ile	Ala
	Tyr 225	Ser	Lys	Asp	Phe	Glu 230	Thr	Leu	Lys	Val	Asp 235	Phe	Leu	Ser	Lys	Leu 240
15	Pro	Glu	Met	Leu	Lys 245	Met	Phe	Glu	Asp	Arg 250	Leu	Cys	His	Lys	Thr 255	Tyr
20	Leu	Asn	Gly	Asp 260	His	Val	Thr	His	Pro 265	Asp	Phe	Met	Leu	Tyr 270	Asp	Ala
25	Leu	Asp	Val 275	Val	Leu	Tyr	Met	Asp 280	Pro	Met	Cys	Leu	Asp 285	Ala	Phe	Pro
	Lys	Leu 290	Val	Cys	Phe	Lys	Lys 295	Arg	Ile	Glu	Ala	Ile 300	Pro	Gln	Ile	Asp
30	Lys 305	Tyr	Leu	Lys	Ser	Ser 310	Lys	Tyr	Ile	Ala	Trp 315	Pro	Leu	Gln	Gly	Trp 320
35	Gln	Ala	Thr	Phe	Gly 325	Gly	Gly	Asp	His	Pro 330	Pro	Lys	Ser	Asp	Leu 335	Val
40	Pro	Arg	Gly	Ser 340	Pro	Glu	Phe	Pro	_	Arg			_	Pro 350	His	Arg
40	Asp	Gly	Pro 355	Asn	Thr	Glu	Phe	Ala 360	Leu	Ser	Leu	Leu	Arg 365	Lys	Asn	Ile
45	Met	Thr 370	Ile	Thr	Thr	Ser	Lys 375	Gly	Glu	Phe	Thr	Gly 380	Leu	Gly	Ile	His
50	Asp 385	Arg	Val	Сув	Val	Ile 390	Pro	Thr	His	Ala	Gln 395	Pro	Gly	Asp	Asp	Val 400
	Leu	Val	Asn	Gly	Gln 405	Lys	Ile	Arg	Val	Lys 410	Asp	Lys	Tyr	Lys	Leu 415	Val
55	Asp	Pro	Glu	Asn 420	Ile	Asn	Leu	Glu	Leu 425	Thr	Val	Leu	Thr	Leu 430	Asp	Arg

	Asn	Glu	Lys 435	Phe	Arg	Asp	Ile	Arg 440	Gly	Phe	Ile	Ser	Glu 445	Asp	Leu	Glu	
5	Gly	Val 450	_	Ala	Thr	Leu	Val 455	Val	His	Ser	Asn	Asn 460	Phe	Thr	Asn	Thr	
10	Ile 465	Leu	Glu	Val	Gly	Pro 470	Val	Thr	Met	Ala	Gly 475	Leu	Ile	Asn	Leu	Ser 480	
	Ser	Thr	Pro	Thr	Asn 485	Arg	Met	Ile	Arg	Tyr 490	Asp	Tyr	Ala	Thr	Lys 495	Thr	
15	Gly	Gln	Cys	Gly 500	Gly	Val	Leu	Cys	A la 505	Thr	Gly	Lys	Ile	Phe 510	Gly	Ile	
20	His	Val	Gly 515	Gly	Asn	Gly	Arg	Gln 520	Gly	Phe	Ser	Ala	Gln 525	Leu	Lys	Lys	
25	Gln	Tyr 530	Phe	Val	Glu	Lys	Gln 535										
30		L> ' 2> 1		a													
30	<213 <220 <223)>	Arti: DE12	ficia	al Se	equer	nce										
35		gaca				ag co	gagga	agga	a ga	ggaaq	gaag	atga	atgat	ga t	tgac	gacgct	60 78
40	<210 <211 <212)> ; L> ; 2> ;	26 78 DNA	ttct:		equei	nce										70
45	<220 <223		DE12														
50	_	caga		tccaq		ag co	gtcgl	tcato	c ato	catca	atct	tcti	ccto	ett o	cctc	cteget	60 78
55		L> : 2> 1		ficia	al Se	equei	nce										

	<220> <223> primer1	
5	<400> 27 cgatacaaat ggaaataata accatctcgc	30
40	<210> 28 <211> 30 <212> DNA	
10	<213> Artificial Sequence <220> <223> primer2	
15	<400> 28 cgcacagaat ctaacgctta ataaatgtac	30
20	<210> 29 <211> 825 <212> DNA <213> Artificial Sequence	
	<220> <223> NQ01	
25	<400> 29 atggtgggac gccgtgctct gatcgtgctc gctcactcgg aaagaacatc gttcaactac	60
	gctatgaagg aggctgctgc cgctgccctg aagaagaagg gctgggaggt ggtcgaatcc	120
30	gacttgtacg ctatgaactt caaccccatc atctctcgta aggacatcac cggcaagctg	180
	aaggateeag eeaaetteea gtaeeegget gagteagttt tggeetaeaa ggaaggeeae	240
	ctgtcgcctg acatcgtggc tgagcaaaag aagctcgaag ctgccgattt ggttatcttc	300
35	cagttcccct tgcaatggtt cggtgtgcct gctatcctga agggctggtt cgagagggtc	360
	ttcatcggag aattcgccta cacttacgct gccatgtacg acaagggtcc attcagatcg	420
	aagaaggccg teetgteeat caccactggt ggeageggat caatgtacag cetecaggga	480
40	atccacggtg acatgaacgt catcctgtgg ccgatccaat ctggcatcct ccacttctgc	540
	ggattccagg tgttggagcc acaactgaca tactccatcg gacacacccc agctgacgct	600
	cgtatccaga tcctcgaagg atggaagaag cgcttggaga acatctggga cgaaactccc	660
45	ttgtacttcg ctccttcctc tctgttcgat ctcaacttcc aggccggttt cctcatgaag	720
	aaggaggtee aagaegagga aaagaaeaag aagtteggee tgtetgttgg acaeeaeete	780
50	ggcaagagca tccccacaga taaccagatc aaggctagga agtaa	825
55	<210> 30 <211> 30 <212> DNA <213> Artificial Sequence <220>	
	· 	

	<223>	prim	er3F					
	<400>	30						
			gtcccatggt	gggacgccgt				30
5	_							
	<210>	_						
	<211> <212>	36						
			ficial Sequ	ience				
10	12137	111.01	riciar bode					
	<220>							
	<223>	prim	er3R					
	<400>	31	LLLLL	L				2.0
15	ggaget	cgaa	tteeettaet	tcctagcctt	gatetg			36
	<210>	32						
	<211>	96						
20	<212>							
20	<213>	Arti	ficial Sequ	ience				
	<220>							
		DE18						
25	<400>	32						
	gatgac	aaag	gtatggctag	cgaagaagag	gaggaggaag	aggaagaaga	tgatgatgat	60
	~~~~~	~~ ~~		aataaaaatt	atatta			96
	gacgac	gacg	acgacgetag	cctggaagtt	etgite			36
30	<210>	33						
	<211>	96						
		DNA	c: : 1 a					
	<213>	Artı	ficial Sequ	ience				
0.5	<220>							
35	<223>	DE18						
	<400>	33						
	gaacag	aact	tccaggctag	cgtcgtcgtc	gtcgtcatca	tcatcatctt	cttcctcttc	60
40	ctcctc	at at	tettegetag	ccataccttt	gtgatg			96
	000000	0000	cccccgccag	Coacaccccc	goodoo			30
	<210>	34						
	<211>	273						
45	<212>	DNA	e: -: -1					
	<213>	Artı	ficial Sequ	ience				
	<220>							
	<223>	DED						
50	<400>			L				<b>~</b> ^
	gatcta	agta	atgtggaagg	taagacagga	aatgcaacag	atgaagagga	ggaagaagag	60
	gaggag	gaag	aggaagaaga	tgatgatgat	gacgacgacg	acgacgatga	tgatgaagag	120
	J- JJ91	y	J J J J	J - J J J	J J J	- 5 - 5 - 5 - 5 -	<i>y</i> =	•
55	tctgga	gctg	agatacaaga	tgatgatgag	gaaggttttg	atgatgaaga	ggaatttgat	180
- <del>-</del>		~~+ ·	a+ aa+			a+ aa	aaaaa+	0.40
	gatgac	yatg	aigatgaada	igatgatgat	gatcttgaga	acgaggaaaa	cgaactggaa	240

	gagttggaag agagggtaga agccaggaag aaa	273
5	<210> 35 <211> 34 <212> DNA <213> Artificial Sequence	
10	<220> <223> primer4F	
	<400> 35 aatagatett ggtacecatg gaagaggagg aaga	34
15	<210> 36 <211> 63 <212> DNA <213> Artificial Sequence	
20	<220> <223> primer4R	
	<400> 36 ggagctcgaa ttcccgggac cctggaacag aacttccagg gtacctttat catcatcgtc	60
25	gtc	63
	<210> 37 <211> 132 <212> DNA	
30	<213> Artificial Sequence	
	<220> <223> DE30	
35	<400> 37 gaacagaact tecaggetag cateateate gtegtegteg tegteateat cateategte	60
	gtcgtcctct tcctcttctt cctcttcctc ctcctcttct tcctcc	120
40	acctttgtca tc	132
40	<210> 38 <211> 132 <212> DNA <213> Artificial Sequence	
45	<220> <223> DE30	
50	<400> 38 gatgacaaag gtatggctag cgaagaggag gaagaagagg aggaggaaga ggaagaag	60
	gaagaggacg acgacgatga tgatgatgac gacgacgacg acgatgatga tgctagcctg	120
	gaagttetgt te	132
55	<210> 39 <211> 150	

	<212> <213>	DNA Artificial Sequence	
5	<220> <223>	DE36	
	<400>	39	
	gaacag	aact tecaggetag cateateate gtegtegteg tegteateat cateategte	60
10	gtcgtc	gtcg tcgtcctctt cctcctcttc ctcttcttcc tcttcctcct	120
	ctcctc	ttcg ctagccatac ctttgtcatc	150
	<210>		
15	<211> <212>	150 DNA	
	<213>		
	<220> <223>	D#36	
20	\ <b>L</b> LJ>		
	<400>	40	
	gatgac	aaag gtatggctag cgaagaggag gaagaagagg aggaggaaga ggaagaag	60
	gaagag	gagg aagaggacga cgacgacgac gacgatgatg atgatgacga cgacgacgac	120
25	gatgat	gatg ctagcctgga agttctgttc	150
	<210>	41	
	<211>	36	
30	<212>		
	<213>	Artificial Sequence	
	<220>		
	<223>	primer5F	
35	<400>	41	
	caaaggf	tatg gctagcgatc taagtaatgt ggaagg	36
	<210>	42	
	<211>		
40	<212>	DNA	
	<213>	Artificial Sequence	
	<220>		
	<223>	primer5R	
45	<400>	42	
		ccag gctagctttc ttcctggctt ctacc	35
	<210>		
50	<211>		
	<212>		
	<213>	Artificial Sequence	
	<220>		
55	<223>	primer6F	
	<400>	43	

	gacaaaggta tggctagcga tctaagtaat gtggaagg	38
5	<210> 44 <211> 37 <212> DNA <213> Artificial Sequence	
10	<220> <223> primer6R	
	<400> 44 ggaacagaac ttccaggcta gcctcagctc cagagtc	37
15	<210> 45 <211> 114 <212> DNA <213> Artificial Sequence	
20	<220> <223> EO24	
	<400> 45 gatgacaaag gtatggctag cgaagaggag gaagaagagg aggaggaaga ggaagaag	60
25	gaggaggaag aagaggagga ggaagaggaa gaagctagcc tggaagttct gttc	114
30	<210> 46 <211> 114 <212> DNA <213> Artificial Sequence	
	<220> <223> EO24	
35	<400> 46 gaacagaact tecaggetag ettetteete tteeteetee tettetteet eetettet	60
	ttcctcttcc tcctcctctt cttcctcctc ttcgctagcc atacctttgt catc	114
40	<210> 47 <211> 35 <212> DNA <213> Artificial Sequence	
45	<220> <223> primer7F	
	<400> 47 gttccagggt ccagctagcg atctaagtaa tgtgg	35
50	<210> 48 <211> 34 <212> DNA <213> Artificial Sequence	
55	<220> <223> primer7R	

	<400> cgtcct	48 tgta gtcgctagct ttcttcctgg cttc	34
5	<210>	49	
	<211>		
	<212>		
	<213>	Artificial Sequence	
40	<220>		
10	<223>	primer8F	
	<400>	49	
	cctata	aata gatctcccat ggtgggacgc cgt	33
45			
15	<210>	50	
	<211>		
	<212>	DNA	
	<213>	Artificial Sequence	
20	<220>		
		primer8R	
	<400>	50	
		maact tecageeest teetageett gatetg	36
25			
	<210>	51	
	<211>		
	<212>		
		Artificial Sequence	
30			
	<220>		
	<223>	primer9F	
	<400>	51	
35	gttcca	gggt ccagctagcg atctaagtaa tgtggaagg	39
00			
	<210>	52	
	<211>	37	
	<212>	DNA	
40	<213>	Artificial Sequence	
	<220>		
	<223>	primer9R	
	<400>	52	
45		cett gtagtegeta geeteagete eagagte	37
	caccyc	coor gragoryera gooraagere cagager	σ.
	Z210s	F.2	
	<210> <211>		
50	<211>		
50		Artificial Sequence	
	<220>		
	<223>	Luciferase	
55	<400>	53	
		gcca aaaacataaa gaaaggcccg gcgccattct atcctctaga ggatggaacc	60

	gctggagagc	aactgcataa	ggctatgaag	agatacgccc	tggttcctgg	aacaattgct	120
	tttacagatg	cacatatcga	ggtgaacatc	acgtacgcgg	aatacttcga	aatgtccgtt	180
5	cggttggcag	aagctatgaa	acgatatggg	ctgaatacaa	atcacagaat	cgtcgtatgc	240
	agtgaaaact	ctcttcaatt	ctttatgccg	gtgttgggcg	cgttatttat	cggagttgca	300
	gttgcgcccg	cgaacgacat	ttataatgaa	cgtgaattgc	tcaacagtat	gaacatttcg	360
10	cagcctaccg	tagtgtttgt	ttccaaaaag	gggttgcaaa	aaattttgaa	cgtgcaaaaa	420
	aaattaccaa	taatccagaa	aattattatc	atggattcta	aaacggatta	ccagggattt	480
15	cagtcgatgt	acacgttcgt	cacatctcat	ctacctcccg	gttttaatga	atacgatttt	540
15	gtaccagagt	cctttgatcg	tgacaaaaca	attgcactga	taatgaattc	ctctggatct	600
	actgggttac	ctaagggtgt	ggcccttccg	catagaactg	cctgcgtcag	attctcgcat	660
20	gccagagatc	ctatttttgg	caatcaaatc	attccggata	ctgcgatttt	aagtgttgtt	720
	ccattccatc	acggttttgg	aatgtttact	acactcggat	atttgatatg	tggatttcga	780
	gtcgtcttaa	tgtatagatt	tgaagaagag	ctgtttttac	gatcccttca	ggattacaaa	840
25	attcaaagtg	cgttgctagt	accaacccta	ttttcattct	tcgccaaaag	cactctgatt	900
	gacaaatacg	atttatctaa	tttacacgaa	attgcttctg	ggggcgcacc	tctttcgaaa	960
	gaagtcgggg	aagcggttgc	aaaacgcttc	catcttccag	ggatacgaca	aggatatggg	1020
30	ctcactgaga	ctacatcagc	tattctgatt	acacccgagg	gggatgataa	accgggcgcg	1080
	gtcggtaaag	ttgttccatt	ttttgaagcg	aaggttgtgg	atctggatac	cgggaaaacg	1140
	ctgggcgtta	atcagagagg	cgaattatgt	gtcagaggac	ctatgattat	gtccggttat	1200
35	gtaaacaatc	cggaagcgac	caacgccttg	attgacaagg	atggatggct	acattctgga	1260
	gacatagctt	actgggacga	agacgaacac	ttcttcatag	ttgaccgctt	gaagtcttta	1320
40	attaaataca	aaggatatca	ggtggccccc	gctgaattgg	aatcgatatt	gttacaacac	1380
	cccaacatct	tcgacgcggg	cgtggcaggt	cttcccgacg	atgacgccgg	tgaacttccc	1440
	gccgccgttg	ttgttttgga	gcacggaaag	acgatgacgg	aaaaagagat	cgtggattac	1500
45	gtcgccagtc	aagtaacaac	cgcgaaaaag	ttgcgcggag	gagttgtgtt	tgtggacgaa	1560
	gtaccgaaag	gtcttaccgg	aaaactcgac	gcaagaaaaa	tcagagagat	cctcataaag	1620
	gccaagaagg	gcggaaag					1638

<210> 54 <211> 30 <212> DNA <213> Artificial Sequence

⁵⁵ <220>

<223> primer10F

	<400> 54 ctgttccagg gtcccgaaga cgccaaaaac	30
5	<210> 55 <211> 35 <212> DNA <213> Artificial Sequence	
10	<220> <223> primer10R	
	<400> 55 ggagctcgaa ttcccttact ttccgccctt cttgg	35
15	<210> 56 <211> 1296 <212> DNA <213> Artificial Sequence	
20	<220> <223> HRV3C	
	<400> 56 atgcaccacc accatcatca ttcgagcggt atgagcccca ttttgggggta ttggaaaatc	60
25	aaaggtctgg ttcaaccaac ccggctcctg cttgaatatc ttgaagagaa atacgaagag	120
	catctgtatg aacgtgacga aggcgataaa tggcgcaata agaagtttga acttggcctg	180
30	gagtttccga acttgccgta ttacattgat ggcgatgtga aactgacaca gtctatggcg	240
00	attattcgct atattgcgga caaacacaac atgttaggcg gttgcccgaa agaacgtgcg	300
	gaaatctcaa tgttagaagg ggctgttctc gatattcgct atggcgtgtc tcgtatcgca	360
35	tacagtaaag actttgaaac gctgaaagtc gattttcttt cgaaattgcc ggagatgctg	420
	aaaatgttcg aagatcggtt gtgccacaaa acgtatctga acggggatca tgtcacccat	480
	ccggatttca tgttgtacga tgctctggat gtggtgctgt atatggaccc aatgtgcttg	540
40	gacgcgtttc caaagctggt gtgtttcaag aaacgcattg aggccattcc gcagattgat	600
	aaatacctga aaagctcgaa atatattgcg tggcctctgc agggttggca agccaccttt	660
	ggtggcggag atcaccctcc gaaaagcgat ctggtcccgc gtgggagtcc tgaatttcca	720
45	ggtcgccttg agcgcccgca tcgtgatggt ccgaacacgg aattcgcact gtccctcctg	780
	cgcaagaaca ttatgacaat caccacgagc aaaggcgaat tcactggact gggaatccat	840
50	gategegtgt gtgttattee cacceatgea cageetggtg atgaegteet ggtaaatgge	900
-	cagaaaatcc gcgttaaaga caaatacaaa ctggtagacc cggaaaacat caatctcgaa	960
	ctgaccgtgt taaccttaga ccgtaacgag aaatttcgcg acattcgcgg tttcatttcc	1020
55	gaggacctcg aaggtgtgga tgcaacgctg gtagtgcatt ccaacaattt cacgaatacc	1080
	atcctggaag ttggcccggt tacaatggcc ggcttaatca acctgtctag tactcccacc	1140

	aatcgta	ıtga ttcgc	tatga	ttacgcgacc	aagactggcc	aatgtggtgg	agtcttatgc	1200
	gctacto	gca aaatc	tttgg	gatccacgtt	ggtggcaatg	gccgtcaggg	cttttcagcc	1260
5	caactga	aga aacag	tactt	cgtagaaaag	cagtaa			1296
	<210>	57						
	<211>							
10	<212>							
10	<213>	Artificia	l Seq	uence				
	<220>							
	<223>	primer11F						
15	<400>	57						
	cgatga	aaa ggtat	ggcta	gcgatctaag	taatgtggaa	gg		42
	<210>							
20	<211>							
	<212>	DNA Artificia	1 Com					
	<b>\213</b> >	ALCITICIA	ı seq	uence				
	<220>							
	<223>	primer11R						
25								
	<400>	58	1 1					20
	gatgate	lara araar	gcatt	ttcttcctgg	CTTCTACCC			39
	<210>	59						
30		39						
	<212>							
		Artificia	l Seq	uence				
	<220>							
35	<223>	primer12F						
	<400>	59						
	gggtaga	agc cagga	agaaa	atgcaccacc	accatcatc			39
40	-01 O	60						
40	<210> <211>							
	<211>							
		Artificia	l Sec	ijence				
	1213		r beq	uccc				
45	<220>							
.0	<223>	primer12R						
	<400>	60						
	ctcgag	gagc tcgaa	ttccc	ttactgcttt	tctacgaagt	actg		44
50								
	<210>	61						
	<211>							
	<212>							
	<213>	Artificia	l Seq	uence				
55	<220>							
		primer13F						

	<400>	61	
	ctttaa	gaag gagatataca tatggactac aaggacgacg atgac	45
5	<210>	62	
· ·	<211>		
	<212>		
		Artificial Sequence	
	\215/	Artificial bequence	
	<220>		
10		minoral 3D	
	<b>\223</b> /	primer13R	
	.400.	60	
	<400>	62	
	ccacca	gtca tgctagccat atgttactgc ttttctacga agtac	45
15			
	<210>		
	<211>		
	<212>		
	<213>	Artificial Sequence	
20	<220>		
	<223>	primer14	
	<400>	63	
		ccgg cgtaga	16
		555	
25			
	<210>	64	
	<211>		
	<212>		
		Artificial Sequence	
	\213/	Artificial Sequence	
30	<220>		
		primer15	
	<b>\</b> 223>	primeris	
	<400>		
			10
35	ccctca	agac ccgtttag	18
30			
	010		
	<210>		
	<211>		
	<212>		
40	<213>	Artificial Sequence	
-			
	<220>		
	<223>	DE6	
	<400>	65	
45			
	Glu Gl	u Glu Asp Asp Asp	
	1	5	
	<210>	66	
50	<211>		
	<212>		
	<213>		
	<220>		
	<223>	DE.6	
55	-2237		
	<400>	66	

#### 60 gatgacaaag gtatggctag cgaggaagaa gatgatgatg ctagcctgga agttctgttc <210> 67 5 <211> 60 <212> DNA <213> Artificial Sequence <220> 10 <223> DE6 <400> gaacagaact tccaggctag catcatcatc ttcttcctcg ctagccatac ctttgtcatc 60

**Claims** 

15

30

40

- 1. A method for purifying a protein, comprising steps of:
- preparing a sample comprising a fusion protein and contaminant proteins, the fusion protein comprising an amino acid sequence of a peptide tag and an amino acid sequence of a target protein, and separating the contaminant proteins and the fusion protein, wherein the peptide tag comprises 12 or more acidic amino acid residues.
- 25 **2.** The method for purifying a protein according to claim 1, wherein the peptide tag comprises any of the amino acid sequences of SEQ ID NOs. 1 to 8.
  - 3. The method for purifying a protein according to claim 1 or 2, wherein the peptide tag comprises 18 or more acidic amino acid residues.
  - **4.** The method for purifying a protein according to any of claims 1 to 3, wherein the isoelectric point of the fusion protein is less than 6.
- 5. The method for purifying a protein according to any of claims 1 to 4, wherein the salt concentration of the sample is 50 mM or more and 500 mM or less.
  - **6.** The method for purifying a protein according to any of claims 1 to 5, wherein, in the sample preparation step, a vector containing a polynucleotide encoding the fusion protein is introduced into a host cell, and the protein is expressed in the host cell to prepare the sample.
  - 7. The method for purifying a protein according to any of claims 1 to 6, wherein the fusion protein further comprises a cleavable site recognized by a protease, between the amino acid sequence of a peptide tag and the amino acid sequence of the target protein.
- **8.** The method for purifying a protein according to any of claims 1 to 7, wherein, in the step of separating the contaminant proteins, the fusion protein and the contaminant proteins are separated using an ion exchange resin.
  - 9. The method for purifying a protein according to claim 8, wherein the ion exchange resin is an anion exchange resin.
- 10. The method for purifying a protein according to any of claims 1 to 9, wherein, the step of separating the contaminant proteins comprises passing the sample through a anion exchange resin to obtain (i) the anion exchange resin to which the fusion protein is bound and (ii) a flow-through fraction comprising the contaminant proteins, and eluting the fusion protein from the anion exchange resin using a buffer with a salt concentration of 600 mM or more.
  - **11.** The method for purifying a protein according to any of claims 1 to 10, after the step of separating the contaminant proteins, further comprising a step of

separating the fusion protein into the target protein and the peptide tag in a solution, using the protease recognizing the cleavable site.

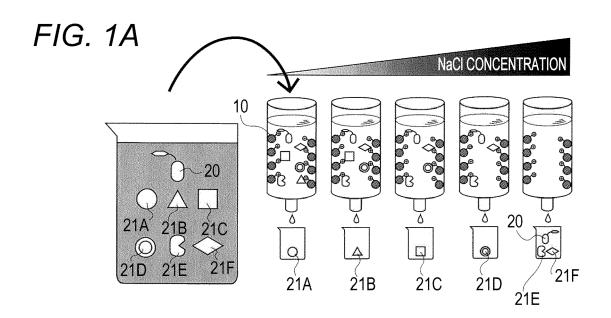
**12.** The method for purifying a protein according to claim 11, wherein, in the step of separating the fusion protein, the solution comprising the separated target protein and the separated peptide tag is passed through an anion exchange resin, and

5

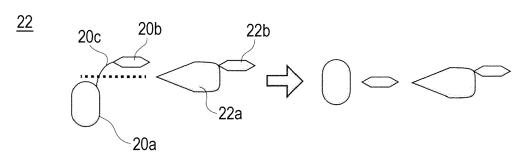
10

15

30


40

45


50

55

- (i) the anion exchange resin to which the separated peptide tag is bound, and (ii) a flow-through fraction comprising the target protein are obtained.
- **13.** The method for purifying a protein according to claim 10, wherein the salt concentration of the solution comprising the target protein and the peptide tag is 500 mM or less.
- **14.** A fusion protein comprising an amino acid sequence of a peptide tag and an amino acid sequence of a target protein, the peptide tag comprising 12 or more acidic amino acid residues.
  - **15.** The fusion protein according to claim 14, wherein the peptide tag comprises any of the amino acid sequences of SEQ ID NOs. 1 to 8.
- 16. The fusion protein according to claim 14 or 15, wherein the peptide tag comprises 18 or more acidic amino acid residues.
  - 17. The fusion protein according to any of claims 14 to 16, wherein the isoelectric point of the fusion protein is less than 6.
- 18. The fusion protein according to any of claims 14 to 17, wherein the fusion protein further comprises a cleavable site recognized by a protease, between the amino acid sequence of the peptide tag and the amino acid sequence of the target protein.
  - **19.** A method for producing the fusion protein according to any of claims 14 to 18, comprising steps of introducing a polynucleotide encoding the amino acid sequence of the peptide tag and a polynucleotide encoding the amino acid sequence of the target protein into a host cell, and expressing the fusion protein in the host cell.
- **20.** Use of a peptide tag comprising 12 or more acidic amino acid residues, for the method according to any of claims 1 to 13.



# FIG. 1B



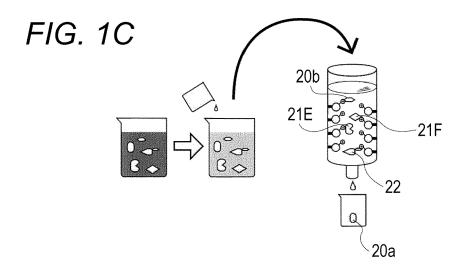



FIG. 2 (kDa) 100 75 63

(kDa) 

M 1 2 3 4 5 6 7 8 9 10 11 12

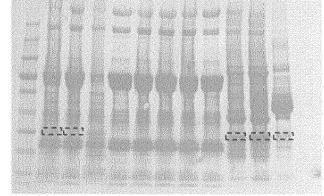



FIG. 3

M 1 2 3 4 5 6 7 8 9 10 11 12

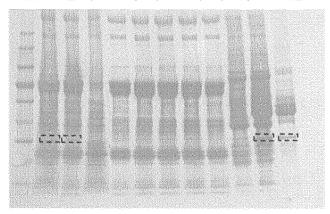



FIG. 4

6 7 8 9 10 11 12 M 1 2 3 4 

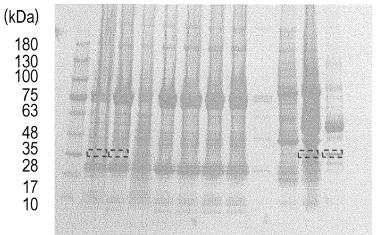
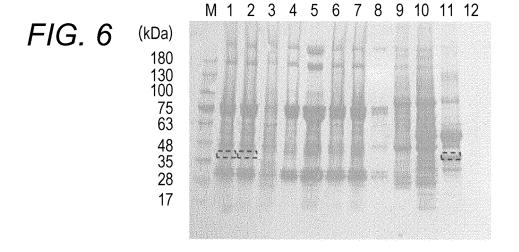
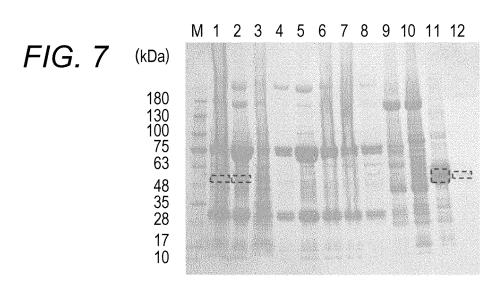





FIG. 5 (kDa)

180
130
100
75
63
48
35
28
17
10





 $M\ 1\ 2\ 3\ 4\ 5\ 6\ 7\ 8\ 9\ 10\ 11\ 12$ 

FIG. 8 (kDa)

180
130
100
75
63
48
35
28
17
10

FIG. 9 (kDa)

180
130
17
10
17
10

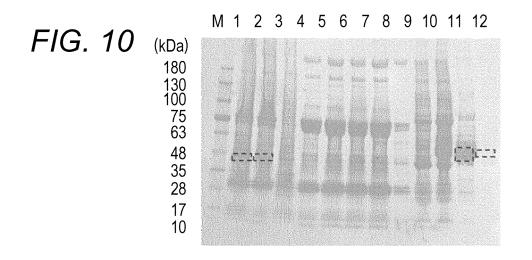



FIG. 11 (kDa) 180 130 100 75 63 48 35 28

M 1 2 3 4 5 6 7 8 9 10 11 12 half put goes had

FIG. 12 (kDa)

17 10

M 1 2 3 4 5 6 7 8 9 10 11 12

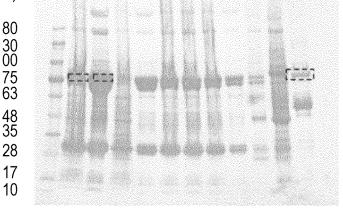



FIG. 13 (kDa)

M 1 2 3 4 5 6 7 8 9 10 11 12

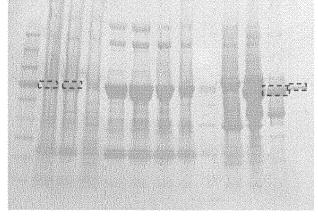



FIG. 14 (kDa)

M 1 2 3 4 5 6 7 8 9 10 11 12

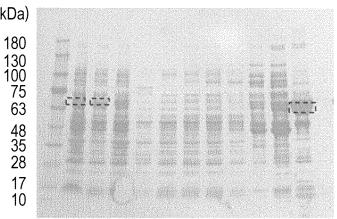



FIG. 15 (kDa)

M 1 2 3 4 5 6 7 8 9 10 11 12

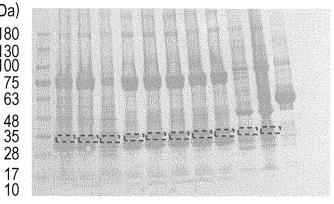



FIG. 16 (kDa)

M 1 2 3 M 4 5 6 7 8 9 10 11 12 13



FIG. 17

(kDa)

180
130
100
75
63
48
35
28
17
10

FIG. 18 (kDa)

180
130
130
175
63
48
35
28
17
10

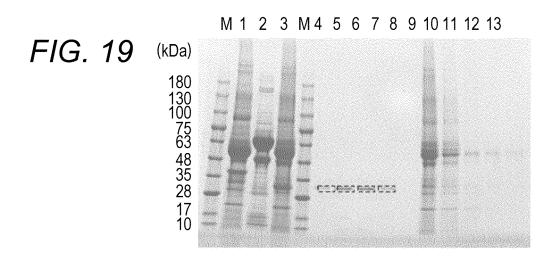



FIG. 20 (kDa)

180
130
100
75
63
48
35
28
17
10

FIG. 21 (kDa)

180
130
175
63
48
35
28
17
10

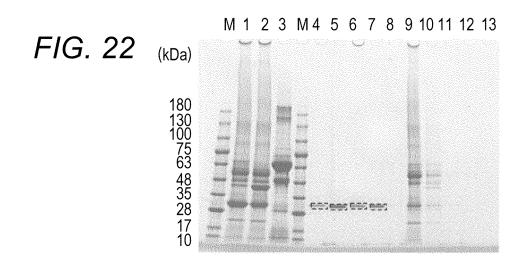
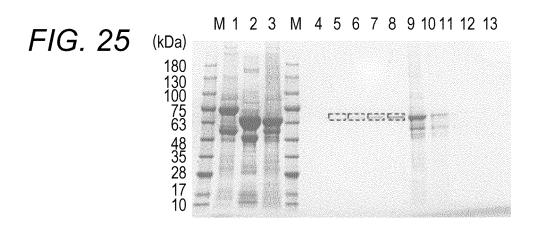
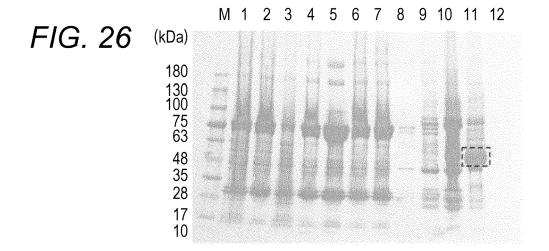
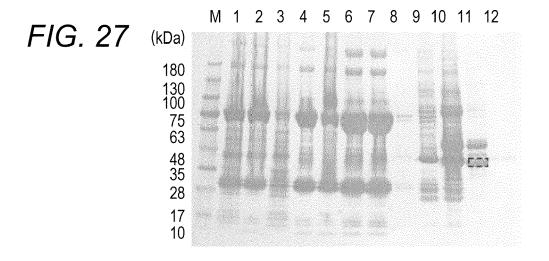






FIG. 24 (kDa)

180
130
100
75
63
48
35
28
17
10







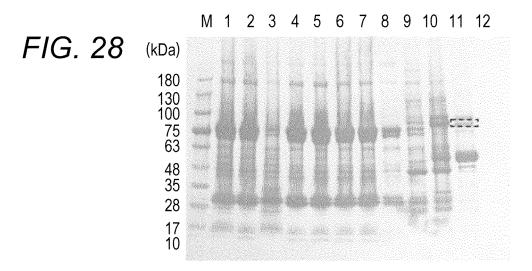



FIG. 29

M 1 2 3 4 5 6 7 8 9 10 11 12

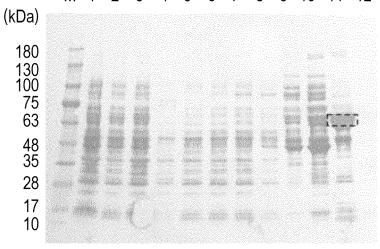
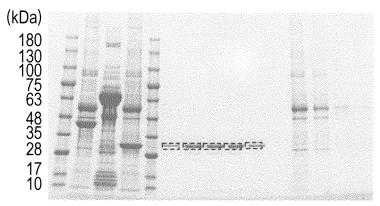




FIG. 30

M 1 2 3 M 4 5 6 7 8 9 10 11 12 13



#### REFERENCES CITED IN THE DESCRIPTION

This list of references cited by the applicant is for the reader's convenience only. It does not form part of the European patent document. Even though great care has been taken in compiling the references, errors or omissions cannot be excluded and the EPO disclaims all liability in this regard.

#### Non-patent literature cited in the description

• STUBENRAUCH K et al. Purification of a viral coat protein by an engineered polyionic sequence. *J. Chromatogr. B. Biomed. Sci. Appl*, 2000, vol. 737, 77-84 [0002]