Technical Field and Prior Art
[0001] The invention relates to a thread separation mechanism for a weft feeder device with
a winding drum having a winding circumference for storing weft thread. The invention
further relates to a weft feeder device comprising a thread separation mechanism.
[0002] In weaving machines, in particular in airjet weaving machines, it is known to provide
weft feeder devices with a winding drum for storing a weft thread for a subsequent
insertion into a shed. Such weft feeder devices are also referred to as prewinders.
The weft thread is stored in several windings on the winding drum. In order to allow
for a reliable withdrawal of the stored weft thread, the windings are arranged on
the winding drum by means of a thread separation mechanism adjacent to one another
or separated from one another in the axial direction of the winding drum.
[0003] EP 0 538 316 B1 shows a thread storage apparatus with a winding drum having an axial direction and
a winding circumference formed by a plurality of rod-shaped bearing elements, and
a thread separation mechanism. A weft thread is stored in several windings on the
winding drum. The thread separation mechanism comprises several rod-shaped advancing
elements distributed over the winding circumference, which are moved by means of a
drive system relative to the winding drum along a trajectory having radial and axial
components for advancing windings of the weft thread in the axial direction along
the winding drum. In one embodiment, each thread separation element comprises a bottom
part and a top part, which are moveable relative to each other in the axial direction,
wherein the drive system comprises two tubular elements formed integrally with the
bottom part and the top part, respectively, wherein the tubular elements are actuated
to move to-and-fro in the axial direction with a phase shift between the to-and-fro
movement of the tubular elements.
Summary of the Invention
[0004] It is an object of the invention to provide a thread separation mechanism allowing
for a reliable storing of a weft thread in several windings on a winding drum with
a defined distance between the windings. It is a further object of the invention to
provide a weft feeder device comprising such a thread separation mechanism.
[0005] According to a first aspect of the invention, a thread separation mechanism according
to claim 1 is provided. In an embodiment, a thread separation mechanism for a weft
feeder device with a winding drum having an axial direction and a winding circumference
for storing a weft thread is provided, the thread separation mechanism comprising
a separation element arranged at the winding circumference and extending in the axial
direction of the winding drum, and a drive system for moving the separation element
relative to the winding drum along a trajectory having radial and axial components
for advancing windings of the weft thread in the axial direction along the winding
drum, wherein the drive system comprises a first carrier element and a second carrier
element, wherein the first carrier element and the second carrier element are actuated
to move to-and-fro in the axial direction with a phase shift between the to-and-fro
movement of the first carrier element and the second carrier element, and wherein
the separation element is coupled to the first carrier element and the second carrier
element via a linkage system in such manner that the relative movement between the
first carrier element and the second carrier element in the axial direction causes
a radial movement of the separation element and a conjoint movement of the first carrier
element and the second carrier element in the axial direction causes an axial movement
of the separation element.
[0006] In order to advance the windings, the separation element is moved along an oval trajectory
in a radial direction away from a central axis of the winding drum to protrude from
the winding circumference and to come into contact with the windings on the winding
drum. Next, the separation element together with the windings is moved in the axial
direction of the winding drum towards a withdrawal side for thread to transport the
windings towards the withdrawal side. Then, the separation element is moved in the
radial direction towards the central axis of the winding drum to place the windings
on the winding drum and to lose contact with the windings. Finally, the separation
element is moved in the axial direction away from the withdrawal side. The separation
distance between two windings depends on the length of the movement in the axial direction.
Preferably, the weft feeder device comprises several thread separation mechanisms
to move windings arranged in the form of a helix having a defined separation distance
along a winding drum.
[0007] According to the invention, the separation element is driven by means of two carrier
elements moving to-and-fro in the axial direction with a phase shift between the two
movements. As a relative movement between the first carrier elements in the axial
direction causes a radial movement of the separation element and a conjoint movement
of the carrier elements in the axial direction causes an axial movement of the separation
element, the phase shift defines the separation distance between two windings. Hence,
in one embodiment, by selecting the phase shift, the separation distance is adjusted.
This is possible while all other parameters are kept constant. The phase shift and,
hence, the separation distance is selected appropriately by the person skilled in
the art. The phase shift in one embodiment is set in manufacturing the thread separation
mechanism and/or the weft feeder device. In other embodiments, the phase shift can
be adjusted by an operator of the weft feeder device. In addition or in alternative
to setting the phase shift, in other embodiments, the separation distance is changed
by other measures. For example, in one embodiment, the angle of the inclined hubs,
and/or the length of the tilting pins, is changed, resulting in a change of the movement
of the carrier elements. In other embodiments, the length of the levers, and/or the
position of the guide rods, is changed, resulting in a change of the relative position
of the fingers and the separation element. Such measures will have an effect on the
trajectory of the separation element with respect to the associated finger and, hence,
on the separation distance of the windings.
[0008] In contrast to prior art systems, wherein one tubular element is driven to cause
an axial movement, whereas the other tubular element causes the radial movement, in
the thread separation mechanism according to the invention both carrier elements contribute
to the axial movement as well as to the radial movement.
[0009] According to one embodiment, the drive system comprises a first lever and a second
lever. The first lever is pivotally coupled to the first carrier element via a first
carrier element joint and pivotally coupled to the separation element via a first
separation element joint. The second lever in one embodiment is pivotally coupled
to the second carrier element via a second carrier element joint and pivotally coupled
to the first lever via a second separation element joint. In preferred embodiments,
the second lever is pivotally coupled to the second carrier element via a second carrier
element joint and pivotally coupled to the separation element via a second separation
element joint.
[0010] In one embodiment, a guiding element is provided for guiding the separation element
and to prevent the separation element from tilting with respect to the central axis.
In preferred embodiments, the drive system comprises a pair of first levers pivotally
coupled to the first carrier element via first carrier element joints and pivotally
coupled to the separation element via first separation element joints, wherein the
first levers of the pair of first levers are of equal length and are arranged in parallel.
Thereby, a simple structure is achieved.
[0011] Preferably, the second lever is arranged between the two levers of the pair of first
levers. This allows for a very compact structure.
[0012] In preferred embodiments, the at least one first lever, or if applicable the first
levers of the pair of first levers, and the second lever have equal length.
[0013] In one embodiment, the first carrier element and/or the second carrier element move
along an arched path mainly in the axial direction of the winding drum. For a simple
structure, in preferred embodiments, the first carrier element and the second carrier
element move in parallel to the axial direction of the winding drum. This also allows
to obtain a constant separation distance between the windings. In alternative, the
carrier elements do not move in parallel but at a small angle with respect to the
axial direction and/or with respect to the fingers of the winding drum, which allows
to change the separation distance between the windings in axial direction along the
winding drum.
[0014] In preferred embodiments, the first carrier element and/or the second carrier element
are designed as a carriage moving along at least one guiding rod. The guiding rod
locks four out of six degrees of freedom of the carriage. Preferably, a pair of guiding
rods, more preferably a pair of guiding rods comprising two linear guiding rods extending
in parallel to the axial direction of the winding drum, is provided for further preventing
a rotation of the carriage about an axis of the guiding rod. Hence, by means of the
pair of guiding rods, five out of six degrees of freedom of the carriage are locked
and the movement of the carriage is restricted to a movement in the axial direction.
In one embodiment, both carriages are arranged slidingly on the shared pair of guiding
rods. In other embodiments the two carriages are arranged on separate guiding rods
or separate pairs of guiding rods, wherein one carriage is slidingly arranged on an
arced guiding rod or an arced pair of guiding rods. In preferred embodiments, the
sliding connection comprises bearings in order to minimize any friction.
[0015] The thread separation mechanism, more particular the drive system, further comprises
a structure and/or elements for moving the carrier elements to-and-fro. In preferred
embodiments, the first carrier element is driven to move to-and-fro by means of a
first tilting pin and the second carrier element is driven to move to-and-fro by means
of a second tilting pin. In preferred embodiments, the first tilting pin is assigned
to a first inclined rotating hub and the second tilting pin is assigned to a second
inclined rotating hub. The inclined rotating hubs in preferred embodiments are mounted
on a central driving shaft to rotate together with the central driving shaft. The
inclined rotating hubs in one embodiment are manufactured and mounted separately.
In other embodiments, the inclined rotating hubs are integrally manufactured as cams
of one single shaft-like element. The inclined rotating hubs in one embodiment are
arranged eccentric with respect to the central axis of the driving shaft as described
in
EP 0 538 316 B1, the content of which is herewith incorporated by reference. The tilting pins are
each mounted on a sleeve, which sleeves are mounted rotatably on the two hubs, respectively,
wherein due to the rotation of the inclined rotating hubs, a wobbling movement is
imposed to the sleeves and, hence, the tilting pins are tilted forward and backward.
With each revolution of the central driving shaft, the tilting pins perform a pivot
movement cycle between a first extreme position, in which the tilting pins are tilted
towards the withdrawal side, and a second extreme position, in which the tilting pins
are tilted away from the withdrawal side, with a phase shift between the pivot movement
of the first tilting pin and the pivot movement of the second tilting pin. In one
embodiment, a phase shift between the two inclined rotating hubs in circumferential
direction can be adjusted for adjusting the phase shift between the to-and-fro movement
of the first carrier element and the second carrier element.
[0016] Preferably, the carrier elements are designed as carriages as described above, wherein
a movement of the carriages caused by the tilting pins is restricted to a movement
of the carriages along the at least one guiding rod, in particular is restricted to
a movement of the carriages in axial direction along a pair of parallel guiding rods
extending in the axial direction of the winding drum. In order to couple the carriages
or any alternative carrier elements to the tilting pins, in preferred embodiments
a first cylinder is fixedly mounted to the first carrier element, wherein a distal
end of the first tilting pin is mounted in the first cylinder and/or a second cylinder
is fixedly mounted to the second carrier element, wherein a distal end of the second
tilting pin is mounted in the second cylinder. The cylinder and the tilting pins extend
at least essentially in the radial direction. The tilting pin in preferred embodiments
is received in the associated cylinder moveable in the longitudinal direction. Hence,
a displacement of the tilting pin in the radial direction is not transmitted to the
carrier elements. In addition, the carrier elements in one embodiment are moveable
in the radial direction for an adjustment of the winding circumference. As the tilting
pins are received in the associated cylinders moveable in the radial direction, the
adjustment of the winding circumference is possible without the necessity to dismount
the thread separation mechanism.
[0017] In order to avoid a transmission of the tilting movement to an associated cylinder,
in one embodiment the tilting pins and/or the cylinders are elastically deformable.
In preferred embodiments, the distal end of each of the tilting pins is mounted in
the associated cylinder by means of a ball system.
[0018] In one embodiment, the separation element contacts the windings of the weft thread
with a contact area extending in the axial direction of the winding drum. In preferred
embodiments, the separation element comprises a plurality of contact rails for contacting
the windings of the weft thread. The contact rails are also referred to as contact
bars, contact tracks or contact tongues. In preferred embodiments, the contact rails
are formed integrally with the rigid separation element. In other embodiments, the
contact rails are manufactured separately from a different material and fixedly coupled
to the main body of the separation element. The contact rails perform a conjoint movement
in the radial direction for making contact with the windings of the weft thread, in
the axial direction for advancing the windings, in the radial direction away from
the windings and in the axial direction away from the withdrawal side. The contact
rails are distributedly arranged over the winding circumference. In preferred embodiments,
four contact rails are provided at each separation element.
[0019] According to a second aspect a weft feeder device with a winding drum having a winding
circumference for storing a weft thread is provided, wherein the weft feeder device
comprises a thread separation mechanism as described above.
[0020] In preferred embodiments, the winding drum comprises a plurality of fingers which
are distributed over the winding circumference of the winding drum, wherein a separation
element is assigned to each of the fingers. In preferred embodiments, four fingers
positioned at intervals of 90° are provided.
[0021] Each separation element assigned to one of the plurality of fingers comprises two
carrier elements, preferably two carriages, which are moved to-and-fro with a phase
shift between the to-and-fro movement of the first carrier element and the second
carrier element. In preferred embodiments, the carrier elements are driven by means
of associated tilting pins, wherein all tilting pins driving the first carrier elements
of the plurality of separation elements are mounted on a first shared sleeve, so as
to extend in radial direction, and all tilting pins driving the second carrier elements
of the separation elements are mounted on a second shared sleeve, so as to extend
in radial direction. The first shared sleeve and the second shared sleeve are assigned
to a first inclined rotating hub and a second inclined rotating hub, respectively,
which impose a wobbling movement to the sleeves.
[0022] In preferred embodiments, each finger comprises a plurality of spaced contact portions,
wherein the associated separation element is provided with a plurality of contact
rails, each contact rail is arranged between two contact portions of the finger, and
driven to temporarily protrude between the contact portions for advancing the windings
of the weft thread.
[0023] In one embodiment, the winding circumference of the weft feeder device is fixed.
In preferred embodiments, at least one of the plurality of fingers is moveable in
the radial direction of the winding drum in order to change the length of the winding
circumference. The carrier elements, in particular the carriages in preferred embodiments
are moved in radial direction together with the finger. In one embodiment, the guiding
rails are mounted on the finger, so that when moving the finger the guiding rails
are displaced together with the finger. In preferred embodiments, the tilting pins
and the cylinders provided on the carriages are designed to compensate the displacement
of the carriages in the radial directions.
Brief Description of the Drawings
[0024] Further characteristics and advantages of the invention will emerge from the following
description of the embodiments schematically illustrated in the drawings. Throughout
the drawings, the same elements will be denoted by the same reference numerals. In
the drawings:
Figure 1 is a schematic illustration of a thread separation mechanism in a first phase,
Figure 2 is a schematic illustration of the thread separation mechanism of figure
1 in a second phase,
Figure 3 is a schematic perspective view of a drive system of the thread separation
mechanism of figures 1 and 2;
Figure 4 is a schematic perspective view of the drive system of figure 3, wherein
a second carriage is removed;
Figure 5 is a schematic perspective view of the drive system of figure 3, wherein
a first carriage is removed;
Figure 6 is a schematic sectional view of a part of the drive system of figure 5;
Figure 7 is a perspective view of a thread separation mechanism comprising the drive
system of figure 3;
Figure 8 is a perspective view of the thread separation mechanism of figure 7 together
with the finger and a central driving shaft;
Figure 9 is a partial cross section of the thread separation mechanism of figure 8;
and
Figure 10 is a front view of a weft feeder device.
Detailed Description of Embodiments
[0025] Figures 1 and 2 schematically show a thread separation mechanism 1 for a weft feeder
device 30 (shown in figure 10), which weft feeder device 30 has a winding drum 31,
a central driving shaft 29 and a winding circumference for storing weft thread. The
winding circumference is formed by a plurality of fingers 2 schematically illustrated
as a line in figure 1 and that determine the winding drum 31. The winding drum 31
extends in axial direction A indicated by an arrow in figure 1.
[0026] The thread separation mechanism 1 comprises a separation element 3 arranged at the
winding circumference, in particular disposed near the fingers determining the winding
circumference, and extending in the axial direction A of the winding drum. The separation
element 3 is moved along a trajectory 4 having radial and axial components for advancing
windings 32 (shown in figure 1 and 2) of the weft thread in the axial direction A
along the fingers 2 of the winding drum.
[0027] More particular, as generally known in order to advance the windings 32, the separation
element 3 is moved along an oval trajectory 4 in a radial direction R indicated by
an arrow in figure 1 away from a central driving shaft 29 of the winding drum 31 (upwards
in figure 1) to protrude from the winding circumference defined by the fingers 2 as
shown in figure 1. At the phase of the movement shown in figure 1, the separation
element 3 comes into contact with the windings 32 (schematically shown in figure 1).
After the separation element 3 protrudes from the winding circumference, the separation
element 3 is moved in the axial direction A of the winding drum towards a thread withdrawal
side to transport the winding towards the withdrawal side (to the right in figure
1). Next, the separation element 3 is moved in the radial direction R towards the
central axis of the winding drum (downwards in figure 2) to place the winding on the
finger 2 and to lose contact with the winding. Finally, the separation element 3 is
moved back to the starting position in the axial direction A away from the withdrawal
side (to the left in figure 2).
[0028] In order to move the separation element 3 along the trajectory 4 relative to the
winding drum, the thread separation mechanism 1 further comprises a drive system 5.
[0029] The drive system 5 comprises a first carrier element 6 and a second carrier element
7, wherein the first carrier element 6 and the second carrier element 7 are actuated
to move along a path B to-and-fro in the axial direction A with a phase shift between
the to-and-fro movement of the first carrier element 6 and the second carrier element
7. The separation element 3 is coupled to both carrier elements 6, 7. More particular,
the separation element 3 is coupled to the first carrier element 6 and the second
carrier element 7 via a linkage system 8 in such manner that the relative movement
(as schematically shown in figure 2) between the first carrier element 6 and the second
carrier element 7 in the axial direction A causes a radial movement of the separation
element 3 and that a conjoint movement (as schematically shown in figure 1) of the
first carrier element 6 and the second carrier element 7 in the axial direction A
causes an axial movement of the separation element 3.
[0030] In the schematic illustration shown in figures 1 and 2, the linkage system 8 comprises
a pair of first levers 9, 10 and a second lever 11. The first levers 9, 10 of the
pair of first levers are of equal length and are arranged in parallel. In alternative,
it is possible to design a separation mechanism having first levers that are not of
equal length and/or that are not in parallel. Although too large differences will
give detrimental results, small differences can be handled and can be used to change
the behavior of the separation element. Preferably, the first levers 9, 10 and the
second lever 11 have equal length. In alternative, it is possible to design a separation
mechanism having first levers and a second lever of different length, wherein a length
difference between the first levers and the second lever will have an effect on the
trajectory of the separation element, for example will result in a more asymmetrical
trajectory.
[0031] Both first levers 9, 10 are pivotally coupled to the first carrier element 6 via
a first carrier element joint 12 and pivotally coupled to the separation element 3
via a first separation element joint 13. The two first levers 9, 10, the first carrier
element 6 and the separation element 3 together form a parallelogram, wherein the
separation element 3 is always in parallel to the axial direction A. In other embodiments,
only one first lever 9 is provided, wherein the orientation of the separation element
3 is achieved by alternative means, for example a guiding surface.
[0032] The linkage system 8 shown in figures 1 and 2 further comprises a second lever 11,
which is pivotally coupled to the second carrier element 7 via a second carrier element
joint 14 and, which is also pivotally coupled to the separation element 3 via a second
separation element joint 15. In other embodiments, the second lever 11 is not directly
coupled to the separation element 3, but to one of the first levers 9, 10.
[0033] In the embodiment shown, the two carrier elements 6, 7 are moved along a linear path
B in the axial direction. In other embodiments, the second carrier element 7 is moved
along an arched path.
[0034] Further, in the embodiment shown, the second lever 11 is arranged between the two
levers 9, 10 of the pair of first levers. Arranging the second lever 11 between the
first levers 9, 10 is preferred, as it allows a compact design and also allows a long
distance between the first levers 9, 10, which is advantageous to limit errors in
the orientation of the separation element due to tolerances. In other embodiments,
the second lever 11 is arranged adjacent to the pair of first levers.
[0035] In order to allow for a simple structure, in the embodiment shown the second lever
11 has the same length as the first levers 9, 10 and the first carrier element joints
12 and the second carrier element joint 14 are moved along the same plane.
[0036] Figure 3 schematically shows an embodiment of the drive system 5 and the linkage
system 8 in a perspective view. In the embodiment shown, the first carrier element
6 and the second carrier element 7 each are designed as a carriage moving along a
shared pair of guiding rods 16. The carriage functioning as the first carrier element
6 is referred to as first carriage. The carriage functioning as the second carrier
element 7 is referred to as second carriage. Figure 4 shows the drive system 5 of
Figure 3, wherein the second carrier element 7 is removed. Figure 5 shows the drive
system 5 of Figure 3, wherein the first carrier element 6 is removed.
[0037] In the embodiment shown, both carrier elements 6, 7 are slidingly coupled to one
shared pair of guiding rods 16. Thereby, the number of elements is minimized. In other
embodiments, two distinct pairs of guiding rods or three guiding rods for forming
two pairs having one shared guiding rod are provided.
[0038] The drive system 5 further comprises a first tilting pin 17 and a second tilting
pin 18. As will be explained in more detail below, the tilting pins 17, 18 are moved
between a first position, in which the tilting pin 17, 18 is tilted forward and second
position, in which the tilting pin 17, 18 is tilted backward. The first carrier element
6 is driven to move to-and-fro by means of the first tilting pin 17, wherein the guiding
rods 16 restrict the movement of the first carrier element 6 so that the first carrier
element 6 moves in parallel to the axial direction A. In other words, the tilting
movement is not transmitted to the first carrier element 6. The second carrier element
7 is driven to move to-and-fro by means of the second tilting pin 18, wherein the
guiding rods 16 restrict the movement of the second carrier element 7 so that the
second carrier element 7 also moves in parallel to the axial direction A.
[0039] The first tilting pin 17 is arranged on a first sleeve 19, wherein the tilting pin
17 extends at least essentially in radial direction of the first sleeve 19. The second
tilting pin 18 is arranged on a second sleeve 20, wherein the tilting pin 18 extends
at least essentially in radial direction of the second sleeve 20. The first sleeve
19 rotatably receives a first inclined rotating hub 21 and the second sleeve 20 rotatably
receives a second inclined rotating hub 22, wherein the inclined rotating hubs 21,
22 are only partly visible in figures 3 to 5. The inclined rotating hubs 21, 22 are
arranged on a central driving shaft 29 (shown in figure 8) to rotate with the central
driving shaft 29. Due to the rotation of the inclined rotating hubs 21, 22, a wobbling
movement is imposed to the sleeves 19, 20, causing a tilting movement of the tilting
pins 17, 18. Preferably, a plurality of tilting pins, more particular four tilting
pins positioned at intervals of 90°, are mounted to each sleeve 19, 20, wherein each
tilting pin drives a first carrier element 6 or a second carrier element 7 of an associated
thread separation mechanism 1. Each tilting pin 17, 18 is hereby arranged in an assigned
opening 35, 36 of a sleeve 19, 20, wherein in the embodiment shown the openings 35,
36 are positioned at intervals of 90°. In the embodiment shown, the two hubs 21, 22
are formed by a common element. In other embodiments two elements are provided, each
associated to a hub.
[0040] For coupling the first carrier element 6 and the first tilting pin 17, a first cylinder
23 is fixedly mounted to the first carrier element 6, wherein a distal end of the
first tilting pin 17 is slidingly received in the first cylinder 23. Similar, for
coupling the second carrier element 7 and the second tilting pin 18, a second cylinder
24 is fixedly mounted to the second carrier element 7, wherein a distal end of the
second tilting pin 18 is slidingly received in the second cylinder 24.
[0041] Figure 6 is a schematic sectional view of a part of the drive system 5 of figure
5. As can be seen in figure 6, the distal ends of the tilting pins 17, 18 are each
mounted in the associated cylinders 23, 24 by means of a ball system 25, 26. The ball
systems 25, 26 are received in the associated cylinders 23, 24, wherein only the movement
of the tilting pins 17, 18 in the axial direction A of the winding drum is transmitted
to the cylinders 23, 24, whereas neither a pivot component nor the radial component
of the movement of the tilting pins 17, 18 are transmitted to the cylinders 23, 24
and, hence, to the carrier elements 6, 7.
[0042] Figure 7 is a perspective view of the thread separation mechanism 1 comprising the
separation element 3, the drive system 5 of figures 3 to 6, and the linkage system
8, wherein the separation element 3 is coupled to the drive system 5 by means of the
linkage system 8. The separation element 3 comprises a plurality of contact rails
27 with which the separation element 3 contacts the windings in several distinct areas.
In the embodiment shown, four contact rails 27 are provided. The contact rails 27
are formed integrally via connecting elements 33 and, hence, perform a conjoint movement
along a defined trajectory for advancing a winding.
[0043] Figure 8 is a perspective view of the thread separation mechanism 1 of figure 7 together
with a finger 2 and a central driving shaft 29. The central driving shaft 29 extends
in axial direction.
[0044] As can be best seen in figure 8, the finger 2 comprises a plurality of spaced contact
portions 28. Each of the contact rails 27 is arranged between two contact portions
28 of the finger 2. By means of the drive system 5, the separation element 3 with
the contact rails 27 is driven in such manner that the contact rails 27 temporarily
protrude between the contact portions of the finger 2 in order to advance the windings
of the weft thread. Each separation element 3 is driven by two carrier elements 6,
7 (shown in figure 9) for moving the separation element 3, and two tilting pins 17,
18 for driving the carrier elements 6, 7.
[0045] As will be clear by the person skilled in the art, a complete weft feeder device
30 (shown in figure 10) with the elements of figure 9 has a winding drum 31 formed
by a plurality of, namely four fingers 2, which are evenly distributed about a central
axis to form a winding circumference. A separation element 3 is assigned to each of
the fingers 2.
[0046] The first tilting pins 17 of all thread separation mechanisms 1 are mounted on a
first sleeve 19. A wobbling movement is imposed to the first sleeve 19, wherein the
tilting pins 17 mounted on the first sleeve 19 are consecutively tilted forward and
backward. In the same way, the second tilting pins 18 of all thread separation mechanisms
1 are mounted on a second sleeve 20 and a wobbling movement is imposed to the second
sleeve 20, so that the tilting pins 18 mounted on the second sleeve 20 are consecutively
tilted forward and backward. The tilting pins 17, 18 drive the carrier elements 6,
7 for moving each separation element 3 along an oval trajectory in order to advance
the windings of a weft thread stored on the winding drum.
[0047] As shown in figure 10, the winding drum 31 comprises a plurality of fingers 2 which
are distributed over the winding circumference of the winding drum 31, wherein a separation
element 3 is assigned to each of the fingers 2. At least one of the plurality of fingers
2 is displaceable in the radial direction of the winding drum 31 in order to change
the length of the winding circumference. In an embodiment, three fingers 2 are displaceable
in the radial direction, while one finger can be set in a fixed radial position, for
example the finger that is arranged near the magnet pin 34.
[0048] The thread separation mechanism according to the invention can be used in any type
of weaving machine. The thread separation mechanism and the weft feeder device are
not limited to the embodiments described by way of example and shown in the drawings,
also variants and combinations of the described and shown embodiments are possible
that fall under the claims.
1. Thread separation mechanism for a weft feeder device (30) with a winding drum (31)
having an axial direction (A) and a winding circumference for storing a weft thread,
the thread separation mechanism (1) comprises a separation element (3) arranged at
the winding circumference and extending in the axial direction (A) of the winding
drum (31), and a drive system (5) for moving the separation element (3) relative to
the winding drum (31) along a trajectory (4) having radial and axial components for
advancing windings (32) of the weft thread in the axial direction (A) along the winding
drum (31), wherein the drive system (5) comprises a first carrier element (6) and
a second carrier element (7), the first carrier element (6) and the second carrier
element (7) are actuated to move to-and-fro in the axial direction (A) with a phase
shift between the to-and-fro movement of the first carrier element (6) and the second
carrier element (7), characterized in that the separation element (3) is coupled to the first carrier element (6) and the second
carrier element (7) via a linkage system (8) in such manner that the relative movement
between the first carrier element (6) and the second carrier element (7) in the axial
direction (A) causes a radial movement of the separation element (3) and a conjoint
movement of the first carrier element (6) and the second carrier element (7) in the
axial direction (A) causes an axial movement of the separation element (3).
2. Thread separation mechanism according to claim 1, characterized in that the drive system (5) comprises a first lever (9) pivotally coupled to the first carrier
element (6) via a first carrier element joint (12) and pivotally coupled to the separation
element (3) via a first separation element joint (13), and a second lever (11) pivotally
coupled to the second carrier element (7) via a second carrier element joint (14)
and pivotally coupled to the separation element (3) via a second separation element
joint (15).
3. Thread separation mechanism according to claim 2, characterized in that the drive system (5) comprises a pair of first levers (9, 10) pivotally coupled to
the first carrier element (6) via first carrier element joints (12) and pivotally
coupled to the separation element (3) via first separation element joints (13), wherein
the first levers (9, 10) of the pair of first levers are of equal length and are arranged
in parallel.
4. Thread separation mechanism according to claim 3, characterized in that the second lever (11) is arranged between the two levers (9, 10) of the pair of first
levers.
5. Thread separation mechanism according to any one of claims 2, 3 or 4, characterized in that the at least one first lever (9, 10) and the second lever (11) have equal length.
6. Thread separation mechanism according to any one of claims 1 to 5, characterized in that the first carrier element (6) and/or the second carrier element (7) move in parallel
to the axial direction (A) of the winding drum (31).
7. Thread separation mechanism according to any one of claims 1 to 6, characterized in that the first carrier element (6) and/or the second carrier element (7) are designed
as a carriage moving along at least one guiding rod (16).
8. Thread separation mechanism according to claim 7, characterized in that the first carrier element (6) and/or the second carrier element (7) are designed
as a carriage moving along a pair of guiding rods (16).
9. Thread separation mechanism according to any one of claims 1 to 8, characterized in that the first carrier element (6) is driven to move to-and-fro by means of a first tilting
pin (17) and the second carrier element (7) is driven to move to-and-fro by means
of a second tilting pin (18), wherein the first tilting pin (17) is assigned to a
first inclined rotating hub (21) and the second tilting pin (18) is assigned to a
second inclined rotating hub (22).
10. Thread separation mechanism according to claim 9, characterized in that a first cylinder (23) is fixedly mounted to the first carrier element (6), wherein
a distal end of the first tilting pin (17) is mounted in the first cylinder (23) and/or
a second cylinder (24) is fixedly mounted to the second carrier element (7), wherein
a distal end of the second tilting pin (18) is mounted in the second cylinder (24).
11. Thread separation mechanism according to claim 10, characterized in that the distal end of each of the tilting pins (17, 18) is mounted in the associated
cylinder (23, 24) by means of a ball system (25, 26).
12. Thread separation mechanism according to any one of claims 1 to 11, characterized in that the separation element (3) comprises a plurality of contact rails (27) for contacting
the windings (32) of the weft thread.
13. Weft feeder device with a winding drum having a winding circumference for storing
weft thread, characterized in that the weft feeder device (30) comprises a thread separation mechanism (1) according
to any one of claims 1 to 12.
14. Weft feeder device according to claim 13, characterized in that the winding drum (31) comprises a plurality of fingers (2) which are distributed
over the winding circumference of the winding drum (31), wherein a separation element
(3) is assigned to each of the fingers (2).
15. Weft feeder device according to claim 14, characterized in that at least one of the plurality of fingers (2) is moveable in the radial direction
(R) of the winding drum (31) in order to change the length of the winding circumference.
1. Fadentrennmechanismus für eine Schussfadenzufuhrvorrichtung (30) mit einer Wickeltrommel
(31) mit einer axialen Richtung (A) und einem Wickelumfang zum Speichern eines Schussfadens,
der Fadentrennmechanismus (1) umfasst ein Trennelement (3), das an dem Wickelumfang
angeordnet ist und sich in der axialen Richtung (A) der Wickeltrommel (31) erstreckt,
und ein Antriebssystem (5) zum Bewegen des Trennelements (3) relativ zu der Wickeltrommel
(31) entlang einer Bewegungsbahn (4) mit radialen und axialen Komponenten zum Vorschieben
von Wicklungen (32) des Schussfadens in der axialen Richtung (A) entlang der Wickeltrommel
(31), wobei das Antriebssystem (5) ein erstes Trägerelement (6) und ein zweites Trägerelement
(7) umfasst, das erste Trägerelement (6) und das zweite Trägerelement (7) werden betätigt,
um sich in der axialen Richtung (A) hin und her zu bewegen mit einer Phasenverschiebung
zwischen der Hin- und Herbewegung des ersten Trägerelements (6) und des zweiten Trägerelements
(7), dadurch gekennzeichnet, dass das Trennelement (3) mit dem ersten Trägerelement (6) und dem zweiten Trägerelement
(7) über ein Gestängesystem (8) derart gekoppelt ist, dass die Relativbewegung zwischen
dem ersten Trägerelement (6) und dem zweiten Trägerelement (7) in der axialen Richtung
(A) eine radiale Bewegung des Trennelements (3) verursacht und eine gemeinsame Bewegung
des ersten Trägerelements (6) und des zweiten Trägerelements (7) in der axialen Richtung
(A) eine axiale Bewegung des Trennelements (3) verursacht.
2. Fadentrennmechanismus nach Anspruch 1, dadurch gekennzeichnet, dass das Antriebssystem (5) einen ersten Hebel (9) schwenkbar gekoppelt mit dem ersten
Trägerelement (6) über ein erstes Trägerelementgelenk (12) und schwenkbar gekoppelt
mit dem Trennelement (3) über ein erstes Trennelementgelenk (13), und einen zweiten
Hebel (11) schwenkbar gekoppelt mit dem zweiten Trägerelement (7) über ein zweites
Trägerelementgelenk (14) und schwenkbar gekoppelt mit dem Trennelement (3) über ein
zweites Trennelementgelenk (15) umfasst.
3. Fadentrennmechanismus nach Anspruch 2, dadurch gekennzeichnet, dass das Antriebssystem (5) ein Paar erster Hebel (9, 10) schwenkbar gekoppelt mit dem
ersten Trägerelement (6) über erste Trägerelementgelenke (12) und schwenkbar gekoppelt
mit dem Trennelement (3) über erste Trennelementgelenke (13) umfasst, wobei die ersten
Hebel (9, 10) des Paares erster Hebel gleich lang sind und parallel angeordnet sind.
4. Fadentrennmechanismus nach Anspruch 3, dadurch gekennzeichnet, dass der zweite Hebel (11) zwischen den zwei Hebeln (9, 10) des Paars erster Hebel angeordnet
ist.
5. Fadentrennmechanismus nach einem der Ansprüche 2, 3 oder 4, dadurch gekennzeichnet, dass der mindestens eine erste Hebel (9, 10) und der zweite Hebel (11) gleiche Länge haben.
6. Fadentrennmechanismus nach einem der Ansprüche 1 bis 5, dadurch gekennzeichnet, dass das erste Trägerelement (6) und/oder das zweite Trägerelement (7) sich parallel zu
der axialen Richtung (A) der Wickeltrommel (31) bewegen.
7. Fadentrennmechanismus nach einem der Ansprüche 1 bis 6, dadurch gekennzeichnet, dass das erste Trägerelement (6) und/oder das zweite Trägerelement (7) als ein sich entlang
mindestens einer Führungsstange (16) bewegender Schlitten ausgebildet sind.
8. Fadentrennmechanismus nach Anspruch 7, dadurch gekennzeichnet, dass das erste Trägerelement (6) und/oder das zweite Trägerelement (7) als ein sich entlang
eines Paares von Führungsstangen (16) bewegender Schlitten ausgebildet sind.
9. Fadentrennmechanismus nach einem der Ansprüche 1 bis 8, dadurch gekennzeichnet, dass das erste Trägerelement (6) für eine Hin- und Herbewegung mittels eines ersten Kippstiftes
(17) angetrieben ist und das zweite Trägerelement (7) für eine Hin- und Herbewegung
mittels eines zweiten Kippstiftes (18) angetrieben ist, wobei der erste Kippstift
(17) einer ersten geneigten rotierenden Nabe (21) zugeordnet ist und der zweite Kippstift
(18) einer zweiten geneigten rotierenden Nabe (22) zugeordnet ist.
10. Fadentrennmechanismus nach Anspruch 9, dadurch gekennzeichnet, dass ein erster Zylinder (23) fest an dem ersten Trägerelement (6) montiert ist, wobei
ein distales Ende des ersten Kippstiftes (17) in dem ersten Zylinder (23) montiert
ist und/oder ein zweiter Zylinder (24) fest an dem zweiten Trägerelement (7) montiert
ist, wobei ein distales Ende des zweiten Kippstiftes (18) in dem zweiten Zylinder
(24) montiert ist.
11. Fadentrennmechanismus nach Anspruch 10, dadurch gekennzeichnet, dass das distale Ende jedes der Kippstifte (17, 18) in dem zugeordneten Zylinder (23,
24) mittels eines Kugelsystems (25, 26) montiert ist.
12. Fadentrennmechanismus nach einem der Ansprüche 1 bis 11, dadurch gekennzeichnet, dass das Trennelement (3) eine Mehrzahl von Kontaktschienen (27) zum Kontaktieren der
Wicklungen (32) des Schussfadens umfasst.
13. Schussfadenzufuhrvorrichtung mit einer Wickeltrommel mit einem Wickelumfang zum Speichern
von Schussfaden, dadurch gekennzeichnet, dass die Schussfadenzufuhrvorrichtung (30) einen Fadentrennmechanismus (1) nach einem
der Ansprüche 1 bis 12 umfasst.
14. Schussfadenzufuhrvorrichtung nach Anspruch 13, dadurch gekennzeichnet, dass die Wickeltrommel (31) eine Mehrzahl von Fingern (2) umfasst, die über den Wickelumfang
der Wickeltrommel (31) verteilt sind, wobei ein Trennelement (3) zu jedem der Finger
(2) zugeordnet ist.
15. Schussfadenzufuhrvorrichtung nach Anspruch 14, dadurch gekennzeichnet, dass mindestens einer der Mehrzahl von Fingern (2) in der radialen Richtung (R) der Wickeltrommel
(31) bewegbar ist, um die Länge des Wickelumfangs zu ändern.
1. Mécanisme de séparation de fil pour un dispositif d'alimentation de trame (30) avec
un tambour d'enroulement (31) ayant une direction axiale (A) et une circonférence
d'enroulement pour stocker un fil de trame, le mécanisme de séparation de fil (1)
comprend un élément de séparation (3) disposé au niveau de la circonférence d'enroulement
et s'étendant dans la direction axiale (A) du tambour d'enroulement (31), et un système
d'entraînement (5) pour déplacer l'élément de séparation (3) par rapport au tambour
d'enroulement (31) le long d'une trajectoire (4) ayant des composants radiaux et axiaux
pour avancer les enroulements (32) du fil de trame dans la direction axiale (A) le
long du tambour d'enroulement (31), dans lequel le système d'entraînement (5) comprend
un premier élément porteur (6) et un deuxième élément porteur (7), le premier élément
porteur (6) et le deuxième élément porteur (7) sont actionnés pour se déplacer en
avant et en arrière dans la direction axiale (A) avec un déphasage entre le déplacement
en avant et en arrière du premier élément porteur (6) et du deuxième élément porteur
(7), caractérisé en ce que l'élément de séparation (3) est couplé au premier élément porteur (6) et au deuxième
élément porteur (7) par un système de liaison (8) de telle sorte que le déplacement
relatif entre le premier élément porteur (6) et le deuxième élément porteur (7) dans
la direction axiale (A) provoque un déplacement radial de l'élément de séparation
(3) et un déplacement conjoint du premier élément porteur (6) et du deuxième élément
porteur (7) dans la direction axiale (A) provoque un déplacement axial de l'élément
de séparation (3).
2. Mécanisme de séparation de fil selon la revendication 1, caractérisé en ce que le système d'entraînement (5) comprend un premier levier (9) couplé de manière pivotante
au premier élément porteur (6) par un premier joint d'élément porteur (12) et couplé
de manière pivotante à l'élément de séparation (3) par un premier joint d'élément
de séparation (13), et d'un deuxième levier (11) couplé de manière pivotante au deuxième
élément porteur (7) par un deuxième joint d'élément porteur (14) et couplé de manière
pivotante à l'élément de séparation (3) par un deuxième joint d'élément de séparation
(15).
3. Mécanisme de séparation de fil selon la revendication 2, caractérisé en ce que le système d'entraînement (5) comprend une paire de premiers leviers (9, 10) couplés
de manière pivotante au premier élément porteur (6) par des premier joints d'élément
porteur (12) et couplés de manière pivotante à l'élément de séparation (3) par des
premiers joints d'élément de séparation (13), dans lequel les premiers leviers (9,
10) de la paire de premiers leviers sont de longueur égale et sont disposés parallèlement.
4. Mécanisme de séparation de fil selon la revendication 3, caractérisé en ce que le deuxième levier (11) est disposé entre les deux leviers (9, 10) de la paire de
premiers leviers.
5. Mécanisme de séparation de fil selon l'une quelconque des revendications 2, 3 ou 4,
caractérisé en ce que le au moins un premier levier (9, 10) et le deuxième levier (11) ont une longueur
égale.
6. Mécanisme de séparation de fil selon l'une quelconque des revendications 1 à 5, caractérisé en ce que le premier élément porteur (6) et/ou le deuxième élément porteur (7) se déplacent
parallèlement à la direction axiale (A) du tambour d'enroulement (31).
7. Mécanisme de séparation de fil selon l'une quelconque des revendications 1 à 6, caractérisé en ce que le premier élément porteur (6) et/ou le deuxième élément porteur (7) sont conçus
sous la forme d'un chariot se déplaçant le long d'au moins une tige de guidage (16).
8. Mécanisme de séparation de fil selon la revendication 7, caractérisé en ce que le premier élément porteur (6) et/ou le deuxième élément porteur (7) sont conçus
sous la forme d'un chariot se déplaçant le long d'une paire de tiges de guidage (16).
9. Mécanisme de séparation de fil selon l'une quelconque des revendications 1 à 8, caractérisé en ce que le premier élément porteur (6) est entraîné pour se déplacer en avant et en arrière
au moyen d'une première goupille basculante (17) et le deuxième élément porteur (7)
est entraîné pour se déplacer en avant et en arrière au moyen d'une deuxième goupille
basculante (18), dans lequel la première goupille basculante (17) est associée à un
premier moyeu rotatif incliné (21) et la deuxième goupille basculante (18) est associée
à un deuxième moyeu rotatif incliné (22).
10. Mécanisme de séparation de fil selon la revendication 9, caractérisé en ce qu'un premier cylindre (23) est monté fixement sur le premier élément porteur (6), dans
lequel une extrémité distale de la première goupille basculante (17) est montée dans
le premier cylindre (23) et/ou un deuxième cylindre (24) est monté fixement sur le
deuxième élément porteur (7), dans lequel une extrémité distale de la deuxième goupille
basculante (18) est montée dans le deuxième cylindre (24).
11. Mécanisme de séparation de fil selon la revendication 10, caractérisé en ce que l'extrémité distale de chacune des goupilles basculantes (17, 18) est montée dans
le cylindre (23, 24) associé au moyen d'un système à bille (25, 26).
12. Mécanisme de séparation de fil selon l'une quelconque des revendications 1 à 11, caractérisé en ce que l'élément de séparation (3) comprend une pluralité de rails de contact (27) pour
contacter les enroulements (32) du fil de trame.
13. Dispositif d'alimentation de trame avec un tambour d'enroulement ayant une circonférence
d'enroulement pour stocker fil de trame, caractérisé en ce que le dispositif d'alimentation de trame (30) comprend un mécanisme de séparation de
fil (1) selon l'une quelconque des revendications 1 à 12.
14. Dispositif d'alimentation de trame selon la revendication 13, caractérisé en ce que le tambour d'enroulement (31) comprend une pluralité de doigts (2) qui sont distribués
sur la circonférence d'enroulement du tambour d'enroulement (31), dans lequel un élément
de séparation (3) est associé à chacun des doigts (2).
15. Dispositif d'alimentation de trame selon la revendication 14, caractérisé en ce qu'au moins un de la pluralité de doigts (2) est déplaçable dans la direction radiale
(R) du tambour d'enroulement (31) afin de changer la longueur de la circonférence
d'enroulement.