

(11) EP 3 252 267 A1

(12)

EUROPEAN PATENT APPLICATION

(43) Date of publication:

06.12.2017 Bulletin 2017/49

(51) Int Cl.:

E21B 41/00 (2006.01)

E21B 47/01 (2012.01)

(21) Application number: 16171923.2

(22) Date of filing: 30.05.2016

(84) Designated Contracting States:

AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

Designated Extension States:

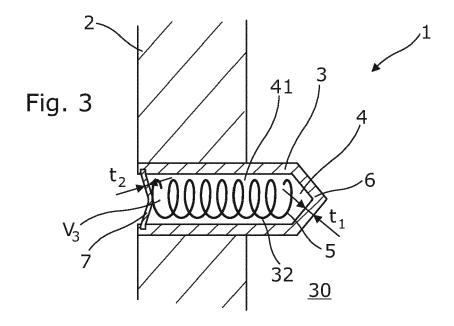
BA ME

Designated Validation States:

MA MD

(71) Applicant: Welltec A/S 3450 Allerød (DK)

(72) Inventor: KRÜGER, Christian 3450 Allerød (DK)


(74) Representative: Hoffmann Dragsted A/S Rådhuspladsen 16

1550 Copenhagen V (DK)

(54) DOWNHOLE COMPLETION DEVICE WITH LIQUID

(57) The present invention relates to a downhole completion device configured to be mounted as part of a well tubular metal structure. The downhole completion device comprises a metal housing enclosing a closed space, an electrical component arranged in the space inside the metal housing, the metal housing being filled with a liquid having a first volume of 1 bar at 20°C, wherein the metal housing has a first housing section and a sec-

ond housing section, the first housing section having a first thickness and the second housing section having a second thickness, and the second thickness being smaller than the first thickness so that the second housing section is more flexible than the first housing section. Furthermore, the invention relates to a downhole completion system.

EP 3 252 267 A1

25

30

35

Field of the invention

[0001] The present invention relates to a downhole completion device configured to be mounted as part of a well tubular metal structure. Furthermore, the invention relates to a downhole completion system.

1

Background art

[0002] When having electrical components downhole, such as a pressure or temperature sensor, the sensor is subjected to both high temperature and high pressure. The sensor is often comprised in a housing, but when the temperature in the well increases, the pressure in the housing also increases, which jeopardises the functionality of the sensor.

Summary of the invention

[0003] It is an object of the present invention to wholly or partly overcome the above disadvantages and drawbacks of the prior art. More specifically, it is an object to provide an improved downhole completion device which is able to house and protect an electrical component to prevent its functionality from deteriorating.

[0004] The above objects, together with numerous other objects, advantages and features, which will become evident from the below description, are accomplished by a solution in accordance with the present invention by a downhole completion device configured to be mounted as part of a well tubular metal structure, comprising:

- a metal housing enclosing a closed space,
- an electrical component arranged in the space inside the housing, the housing being filled with a liquid having a first volume of 1 bar at 20°C,

wherein the metal housing has a first housing section and a second housing section, the first housing section having a first thickness and the second housing section having a second thickness, and the second thickness being smaller than the first thickness so that the second housing section is more flexible than the first housing section.

[0005] In this way, the electrical component is protected from any temperature and pressure changes that naturally occur downhole in a well during production, fracturing, aciding, gas lifting or other activities taking place downhole during the service life of a well.

[0006] The second housing section may be made of a non-metallic material.

[0007] Furthermore, the electrical component may be a sensor.

[0008] Also, the electrical component may be a piezoelectric element, a strain gauge, a coil or an anemometer. [0009] Moreover, the second thickness may be less than 50% of the first thickness.

[0010] In addition, the second thickness may be less than 33% of the first thickness, preferably less than 25%.

[0011] Further, the housing may have an outer face and the outer face may be provided with a thread.

[0012] Additionally, the liquid may be silicone, grease or any liquid suitable for electrical components.

[0013] Also, the housing may have a third housing section having a third thickness, the third thickness being smaller than the first thickness.

[0014] Moreover, the second housing section may have a projected state in which the liquid has a second volume being larger than the first volume, and a retracted state in which the liquid has a third volume being smaller than the first volume.

[0015] The downhole completion device may further comprise a communication unit connected with the electrical component.

[0016] In addition, the downhole completion device may further comprise a storage unit connected with the electrical component.

[0017] Also, the downhole completion device may further comprise a power supply arranged in the space.

[0018] Furthermore, the housing may comprise a filling nozzle.

The present invention furthermore relates to a [0019] downhole completion system comprising:

- a well tubular metal structure arranged in a borehole of a well, the well tubular metal structure having a longitudinal axis and a wall, and
- a downhole completion device according to any of the preceding claims, mounted as part of the well tubular metal structure.

[0020] The downhole completion device may be configured to be mounted in the well tubular metal structure.

[0021] Furthermore, the downhole completion device may be configured to be mounted on an outer face of the well tubular metal structure.

[0022] Also, the downhole completion device may be configured to be mounted on an inner face of the well tubular metal structure.

[0023] Moreover, the housing of the downhole completion device and the outer face of the well tubular metal structure may enclose the space.

[0024] In addition, the electrical component may abut the outer face of the well tubular metal structure.

[0025] Further, the downhole completion device may have a longitudinal extension which is perpendicular to the longitudinal axis and extends radially from the longitudinal axis.

[0026] Additionally, the downhole completion device may extend through the wall of the well tubular metal structure.

[0027] Furthermore, the downhole completion device may extend through the wall of the well tubular metal structure in a sealing manner.

2

20

35

40

50

[0028] Moreover, the downhole completion device may at least partly project from the outer face of the well tubular metal structure.

[0029] The downhole completion system may further comprise a downhole tool for communication with the downhole completion device.

[0030] Finally, the well tubular metal structure may comprise one or more annular barriers, each annular barrier comprising:

- a tubular metal part for mounting as part of the well tubular metal structure, the tubular metal part having a first expansion opening and an outer face,
- an expandable metal sleeve surrounding the tubular metal part and having an inner face facing the tubular metal part and an outer face facing a wall of the borehole, each end of the expandable metal sleeve being connected with the tubular metal part, and
- an annular space between the inner face of the expandable metal sleeve and the tubular metal part, the expandable metal sleeve being configured to expand when pressurised fluid is injected into the annular space through the first expansion opening.

Brief description of the drawings

[0031] The invention and its many advantages will be described in more detail below with reference to the accompanying schematic drawings, which for the purpose of illustration show some non-limiting embodiments and in which

Fig. 1 shows a cross-sectional view of a downhole completion device mounted in a well tubular metal structure,

Figs. 2 and 3 show the downhole completion device of Fig. 1 in a projected and a retracted state, respectively,

Fig. 4 shows a cross-sectional view of another downhole completion device,

Fig. 5 shows a cross-sectional view of a downhole completion device mounted outside the well tubular metal structure,

Fig. 6 shows a cross-sectional view of another downhole completion device mounted outside the well tubular metal structure, and

Fig. 7 shows a cross-sectional view of a downhole completion system having an annular barrier.

[0032] All the figures are highly schematic and not necessarily to scale, and they show only those parts which are necessary in order to elucidate the invention, other parts being omitted or merely suggested.

Detailed description of the invention

[0033] Fig. 1 shows a downhole completion device 1 configured to be mounted as part of a well tubular metal structure 2 in a borehole 30. The downhole completion device 1 comprises a metal housing 3 enclosing a closed space 4 and an electrical component 5, such as a coil 32, arranged in the space inside the metal housing. The metal housing 3 is filled with a liquid 41 having a first volume V₁ of 1 bar at 20°C. The metal housing 3 has a first housing section 6 and second housing section 7. The first housing section 6 has a first thickness t₁ and the second housing section 7 has a second thickness t₂, and the second thickness is smaller than the first thickness so that the second housing section is more flexible than the first housing section. When the temperature in the well increases, the pressure inside the closed space 4 increases accordingly. This causes the second housing section 7 to bulge radially outwards into the inside of the well tubular metal structure 2, as shown in Fig. 2, to a projected state of the second housing section in which the liquid 41 has a second volume V₂ which is larger than the first volume. When the pressure decreases, the second housing section 7 bulges radially inwards to a retracted state in which the liquid 41 has a third volume V₃ which is smaller than the first volume, as shown in Fig. 3. The electrical component is hereby protected from any temperature and pressure changes that naturally occur downhole in a well during production, fracturing, aciding, gas lifting or other activities taking place downhole during the service life of a well.

[0034] Known sensors are filled with gas, such as air, and during insertion of the well tubular metal structure, the sensors are exposed to a lot of bumps, and often, the sensors no longer work when the well is completed because they could not withstand these bumps. By the present invention, the liquid inside the downhole completion device 1 surrounds the electrical component and thereby protects the electronics from these bumps during installation of the well tubular metal structure since the liquid fills out the space and has a substantially dampening effect when such bumps and shakings occur.

[0035] The second housing section 7 may be made of metal or a non-metallic material. The second housing section 7 is in Figs. 1-3 a separate part fastened to the first housing section 6, and in Fig. 4, the second housing section 7 is made as a thinner part of the metal housing 3 and not as a separate part. In Fig. 4, the second thickness is less than 50% of the first thickness, and the second housing section 7 is made of the same material as the first housing section 6. The downhole completion device 1 extends through a wall of the well tubular metal structure 2 and partly projects from the outer face 28 of the well tubular metal structure 2. The downhole completion device 1 has a longitudinal extension 15 being perpendicular to a longitudinal axis 12 and extends radially from the longitudinal axis. Furthermore, the electrical component 5 is a sensor, such as an anemometer having

a hot wire 17, extending from the metal housing 3 into the borehole 30 and is thus in connection with the well fluid. The metal housing 3 has an outer face 8, and the outer face is provided with a thread 9. The metal housing 3 comprises a filling nozzle 19 or filling plug for filling the space 4 with liquid, such as silicone, grease or a similar liquid suitable for electrical components.

[0036] In Fig. 5, the electrical component 5 is a piezoelectric element 29 which also functions as a communication unit 18. The downhole completion device 1 further comprises an energy harvesting unit 22 functioning as a power supply 10 for supplying power to the electrical component 5. The downhole completion device 1 further comprises a control unit 23 having a storage unit 24 for storing data, e.g. from a sensor 25 arranged outside the downhole completion device 1, or for controlling the communication from the communication unit 18. Thus, the electrical component 5 may be connected with the communication unit 18, the energy harvesting unit 22, the power supply 10, the control unit 23 or the storage unit 24. The energy harvesting unit 22 may obtain energy from a downhole tool 16, and the downhole tool 16 may also communicate with the downhole completion device

[0037] In Fig. 6, the electrical component 5 is a sensor having access via a line 27 to measure a condition, such as temperature or pressure, of the well fluid in the borehole 30. The electrical component 5 may also be a strain gauge.

[0038] In Fig. 5, a downhole completion system 100 is shown comprising a well tubular metal structure 2 arranged in a borehole 30 of a well 20. The well tubular metal structure 2 has a longitudinal axis 12 and a wall 21. The downhole completion system 100 further comprises a downhole completion device 1 mounted as part of the well tubular metal structure 2 on an outer face 28 of the well tubular metal structure. The downhole completion device 1 may also be mounted on an inner face 14 of the well tubular metal structure 2. In Figs. 5 and 6, the metal housing 3 of the downhole completion device 1 and the outer face 8 of the well tubular metal structure 2 enclose the space. In this way, the electrical component 5 being the piezoelectric element 29 abuts and has direct contact to the outer face 8 of the well tubular metal structure 2 in order to communicate and/or harvest energy. [0039] In Fig. 7, the well tubular metal structure 2 of the downhole completion system 100 comprises an annular barrier 50. The annular barrier 50 comprises a tubular metal part 51 for mounting as part of the well tubular metal structure 2. The tubular metal part 51 has a first expansion opening 52 and an outer face 53. The annular barrier 50 further comprises an expandable metal sleeve 54 surrounding the tubular metal part 51 and having an inner face 55 facing the tubular metal part and an outer face 56 facing a wall of the borehole 30. Each end 57 of the expandable metal sleeve 54 is connected with the tubular metal part 51, thereby defining an annular space 58 between the inner face 55 of the expandable metal

sleeve and the tubular metal part. The expandable metal sleeve 54 is expanded by letting pressurised fluid into the annular space through the first expansion opening 52 and further through an expansion unit 59. A strain gauge 47 is mounted on the expandable metal sleeve 54 and is electrically connected with the electrical component 5 inside the space 4 for measuring the expansion of the expandable metal sleeve of the annular barrier 50. The downhole completion device 1 further comprises a power supply 10 for powering the electrical component 5. [0040] By fluid or well fluid is meant any kind of fluid that may be present in oil or gas wells downhole, such as natural gas, oil, oil mud, crude oil, water, etc. By gas is meant any kind of gas composition present in a well, completion, or open hole, and by oil is meant any kind of oil composition, such as crude oil, an oil-containing fluid, etc. Gas, oil, and water fluids may thus all comprise other elements or substances than gas, oil, and/or water, respectively.

[0041] By a casing or well tubular metal structure is meant any kind of pipe, tubing, tubular, liner, string etc. used downhole in relation to oil or natural gas production. **[0042]** In the event that the tool is not submergible all the way into the casing, a downhole tractor can be used to push the tool all the way into position in the well. The downhole tractor may have projectable arms having wheels, wherein the wheels contact the inner surface of the casing for propelling the tractor and the tool forward in the casing. A downhole tractor is any kind of driving tool capable of pushing or pulling tools in a well downhole, such as a Well Tractor®.

[0043] Although the invention has been described in the above in connection with preferred embodiments of the invention, it will be evident for a person skilled in the art that several modifications are conceivable without departing from the invention as defined by the following claims.

40 Claims

45

50

55

- A downhole completion device (1) configured to be mounted as part of a well tubular metal structure (2), comprising:
 - a metal housing (3) enclosing a closed space (4),
 - an electrical component (5) arranged in the space inside the metal housing, the metal housing being filled with a liquid having a first volume (V_1) of 1 bar at 20°C,

wherein the metal housing has a first housing section (6) and a second housing section (7), the first housing section having a first thickness (t_1) and the second housing section having a second thickness (t_2) , and the second thickness being smaller than the first thickness so that the second housing section is more flexible than the

10

15

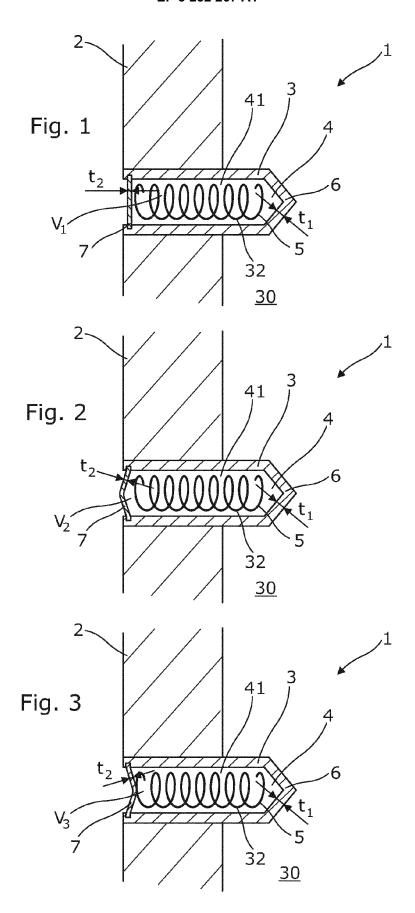
35

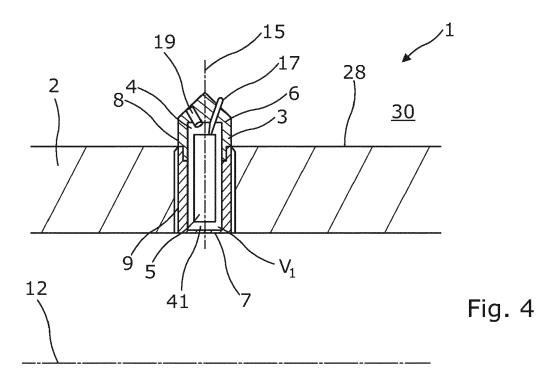
40

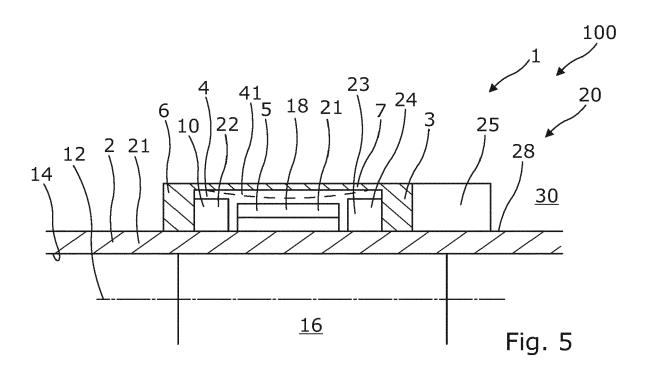
45

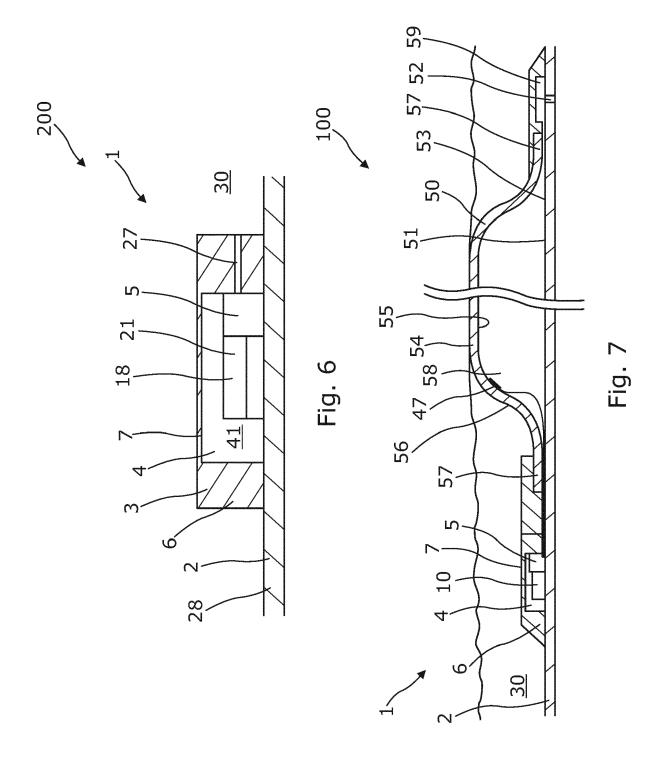
50

55


first housing section.


- A downhole completion device according to claim 1, wherein the second housing section is made of a non-metallic material.
- A downhole completion device according to any of the preceding claims, wherein the electrical component is a sensor.
- **4.** A downhole completion device according to any of the preceding claims, wherein the metal housing has an outer face (8) and the outer face is provided with a thread (9).
- **5.** A downhole completion device according to claim 4, wherein the liquid is silicone, grease or any liquid suitable for electrical components.
- **6.** A downhole completion device according to any of the preceding claims, wherein the second housing section has a projected state in which the liquid has a second volume (V₂) being larger than the first volume, and a retracted state in which the liquid has a third volume (V₃) being smaller than the first volume.
- A downhole completion device according to any of the preceding claims, further comprising a communication unit (9) connected with the electrical component.
- **8.** A downhole completion device according to any of the preceding claims, further comprising a power supply (10) arranged in the space.
- **9.** A downhole completion system comprising:
 - a well tubular metal structure (2) arranged in a borehole (30) of a well (20), the well tubular metal structure having a longitudinal axis (12) and a wall (21), and
 - a downhole completion device (1) according to any of the preceding claims, mounted as part of the well tubular metal structure.
- 10. A downhole completion system according to claim 9, wherein the downhole completion device is configured to be mounted in the well tubular metal structure.
- 11. A downhole completion system according to claim 9, wherein the downhole completion device is configured to be mounted on an outer face (28) of the well tubular metal structure.
- **12.** A downhole completion system according to claim 11, wherein the metal housing of the downhole completion device and the outer face of the well tubular


metal structure enclose the space.


- 13. A downhole completion system according to claim 10, wherein the downhole completion device extends through the wall of the well tubular metal structure.
- **14.** A downhole completion system according to any of claims 9-13, wherein the downhole completion device at least partly projects from the outer face of the well tubular metal structure.
- 15. A downhole completion system according to any of claims 9-14, further comprising a downhole tool (16) for communication with the downhole completion device.

5

EUROPEAN SEARCH REPORT

DOCUMENTS CONSIDERED TO BE RELEVANT

Application Number

EP 16 17 1923

Category	Citation of document with inc of relevant passa		Relevant to claim	CLASSIFICATION OF THE APPLICATION (IPC)	
Χ	EP 2 876 251 A1 (WEI 27 May 2015 (2015-09			E21B41/00	
Υ	* paragraphs [0030] [0050] - [0055], [0 figures 1,7,9 *		12,14,15 E21B47/01 3,7,10,		
Υ	CN 204 371 260 U (PR 3 June 2015 (2015-06 * see machine trans figures 1-2 *	5-03)	3,7,10,		
A	US 2005/248334 A1 ([AL) 10 November 2005 * paragraph [0038];		15		
А	PETROL [FR]; SCHLUME	rch 2008 (2008-03-27)	15		
Α	WO 2015/069721 A1 (I 14 May 2015 (2015-05 * paragraph [0053]		1-3	TECHNICAL FIELDS SEARCHED (IPC)	
	The present search report has be	•	<u> </u>		
	Place of search Munich	Date of completion of the search 12 August 2016	Ber	ean, Jiri	
CATEGORY OF CITED DOCUMENTS X: particularly relevant if taken alone Y: particularly relevant if combined with another document of the same category A: technological background O: non-written disclosure P: intermediate document		T : theory or principl E : earlier patent do after the filling dat er D : document cited f L : document cited f	T: theory or principle underlying the invention E: earlier patent document, but published on, or after the filing date D: document cited in the application L: document cited for other reasons		
			& : member of the same patent family, corresponding		

EP 3 252 267 A1

ANNEX TO THE EUROPEAN SEARCH REPORT ON EUROPEAN PATENT APPLICATION NO.

EP 16 17 1923

5

This annex lists the patent family members relating to the patent documents cited in the above-mentioned European search report. The members are as contained in the European Patent Office EDP file on The European Patent Office is in no way liable for these particulars which are merely given for the purpose of information.

12-08-2016

10	Patent document cited in search report	Publication date	Patent family member(s)	Publication date
15	EP 2876251 A1	27-05-2015	AU 2014351908 A1 CA 2929914 A1 CN 105705727 A EP 2876251 A1 WO 2015075118 A1	23-06-2016 28-05-2015 22-06-2016 27-05-2015 28-05-2015
	CN 204371260 U	03-06-2015	NONE	
20	US 2005248334 A1	10-11-2005	US 2005248334 A1 US 2008128126 A1	10-11-2005 05-06-2008
25	WO 2008034761 A1	27-03-2008	AT 543981 T BR PI0716903 A2 CA 2663923 A1 EP 1903181 A1 US 2010011853 A1 WO 2008034761 A1	15-02-2012 22-10-2013 27-03-2008 26-03-2008 21-01-2010 27-03-2008
30	WO 2015069721 A1	14-05-2015	CA 2929795 A1 WO 2015069721 A1	14-05-2015 14-05-2015
35				
40				
45				
50				
55 PORM P0459				

For more details about this annex : see Official Journal of the European Patent Office, No. 12/82