
Printed by Jouve, 75001 PARIS (FR)

(19)
E

P
3

25
2

62
5

A
1

TEPZZ¥ 5 6 5A_T
(11) EP 3 252 625 A1

(12) EUROPEAN PATENT APPLICATION

(43) Date of publication:
06.12.2017 Bulletin 2017/49

(21) Application number: 17174092.1

(22) Date of filing: 01.06.2017

(51) Int Cl.:
G06F 17/30 (2006.01) G06F 17/21 (2006.01)

(84) Designated Contracting States:
AL AT BE BG CH CY CZ DE DK EE ES FI FR GB
GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO
PL PT RO RS SE SI SK SM TR
Designated Extension States:
BA ME
Designated Validation States:
MA MD

(30) Priority: 01.06.2016 US 201662344077 P

(71) Applicant: Taboola.com Ltd.
6789104 Tel Aviv (IL)

(72) Inventor: NADIV, Efraim
6425608 Tel Aviv (IL)

(74) Representative: Boult Wade Tennant
Verulam Gardens
70 Gray’s Inn Road
London WC1X 8BT (GB)

(54) SCALABLE CONTENT RENDERING

(57) The presently disclosed subject matter includes
a computer-implemented system and method for receiv-
ing content from another computer device and dynami-
cally adapting display of the received content within a
container of a formatted document, the container defining
a restricted area within the formatted document desig-

nated for displaying the content. Sub-elements within at
least one content item are identified and tagged, the tag-
ging enables to acquire display parameters of tagged
sub-elements and calculate therefor a required adapta-
tion of the content item such that it can be fitted within
the respective container.

EP 3 252 625 A1

2

5

10

15

20

25

30

35

40

45

50

55

Description

[0001] This application claims priority from provisional
application number 62/344,077 filed on 1 June, 2016
which is incorporated herein by reference in its entirety.

FIELD OF THE PRESENTLY DISCLOSED SUBJECT
MATTER

[0002] The presently disclosed subject matter relates
to the field of formatting and displaying digital content.

BACKGROUND

[0003] Digital content is usually sent from a content
source or server, to be consumed in a client or another
machine or location. A browser (e.g. web browser) is a
software application that consists of numerous software
components, which process digital content of various
types (normally including information resources identi-
fied by uniform resource identifier or locator), together
with a set of internal (i.e. defined locally by the browser)
and external (i.e. defined by entities other than the brows-
er such as the content source, the operating system, the
host device, etc.) directives and constraints, and even-
tually decides how exactly the content should be laid out
and eventually displayed on a display device of a certain
host computer, under those specific circumstances. Ex-
amples of browsers include Google Chrome, Internet Ex-
plorer, Opera, Safari, and others.
[0004] Fig. 1 is a schematic illustration of an example
of a webpage layout. Webpage 100 displays multiple vis-
ual containers, some of these containers assigned with
a certain restricted area for displaying respective content
items. Containers 110 and 120 display a menu and nav-
igation bar, container 130 displays the title, and container
140 displays contents of an article. In addition, the web-
page example shows four different recommendation
widgets 150, 160, 170 and 180, each comprising in turn
a number of inner visual containers (including e.g. 151,
152, 153, 161, etc.) for displaying recommendations for
webpage viewers. A recommendation can include a sug-
gested clickable alternative information resource.

GENERAL DESCRIPTION

[0005] A browser handles an abundance of input pa-
rameters, including code, instructions, directives, con-
straints, and content of various types, in a dynamic real-
time environment. For example, in the case of text ren-
dering, such browser input parameters include, inter alia:
type of host device, size of display screen, size of display
window, size of content (e.g. word count), available fonts,
word-spacing, letter-spacing, word-breaking, hyphena-
tion, other font metrics, specific JavaScript and cascade
styling sheet (CSS) instructions received from a content
source, etc.
[0006] Due to the abundance of these parameters as

well as the dynamic real-time environment (resulting, in-
ter alia, from the fact that many of these parameters are
only taken into account by the browser in real-time during
the rendering process), in a lot of cases it is practically
impossible to predict in advance the precise manner in
which the content would be eventually rendered and dis-
played on display device of a specific host computer.
[0007] Some variations in displayed content result
from differences in the operating system which is being
used (e.g. the same "Helvetica" font may have a different
implementation in a Windows operating system vs. in a
Macintosh operating system), other variations from dif-
ferences in the installed software packages and yet oth-
ers from differences in hardware configuration (e.g. in
the same type of device), or from other real-time condi-
tions (e.g. whether or not a certain font is available for
retrieval from a third-party server during the rending proc-
ess), may result.
[0008] Consequently, the exact size of a container as-
signed for displaying certain text and/or the specific area
which is required for displaying the text may not be known
until the webpage has been rendered. For example, if
some style directive of a webpage, which is being ren-
dered at a host computer, assumes a specific font should
be used for a specific textual content, but that specific
font is not available for some reason on the browser soft-
ware at that time, then the browser may select, in real-
time, a different font from the ones which are available,
and use it to display the textual content. As further dem-
onstrated with reference to Fig. 2 below, selection of font
type in real-time can affect the way the text is rendered
on the display, and in particular can affect the size of the
specific area which is required to display that certain text.
[0009] Ultimately, such real-time decisions may affect
various visual aspects of the overall rendered page. For
example, selection of alternative fonts by the browser,
with metrics larger than the metrics of the originally in-
tended fonts, may result in an increase in the area re-
quired for displaying a certain textual content, leading to
an "overflow" of the text outside its designated container,
or alternatively "pushing" other content to be displayed
further below than originally intended. On the other hand,
selection of alternative fonts with metrics smaller than
metrics of the originally intended fonts may result in leav-
ing a large empty space within the designated container,
unlike the originally intended result, and further degrad-
ing the appearance of the page and the overall user ex-
perience.
[0010] One example of this problem is related to the
rendering of multiple lines of text within a restricted des-
ignated container, referred to herein below as the "mul-
tiline clamping problem". As mentioned above with re-
spect to Fig. 1, text in a webpage is many times displayed
within a restricted area of a container designated for that
purpose. Each such container (e.g. in a respective rec-
ommendation widget) has a predefined display area that
has been allocated for it, and the relevant text can only
be displayed within this area.

1 2

EP 3 252 625 A1

3

5

10

15

20

25

30

35

40

45

50

55

[0011] Therefore, at least from the point of view of the
overall user experience, it is often required or expected
that during rendering of a webpage, where "multiline
clamping problems" occur, text designated to be dis-
played in a certain container may be truncated, or
"clamped", by the browser of the host computer so it fits
the area of the respective container. In some cases, when
such clamping occurs, the browser further adds a visual
indication (e.g. an ellipsis character "...") to indicate to a
webpage viewer that the text has been truncated.
[0012] According to some existing approaches for han-
dling the "multiline clamping problem", the text is truncat-
ed at the server before it is sent to the browser to be
rendered in a specific manner, with the intention that after
this truncation the text would be rendered by the browser
in a way that is intelligible, aesthetic and appealing to
eye. However, due to the dynamic real-time environment
in which the browser operates, many times a text trun-
cated by the server is eventually rendered by the browser
in a way that is aesthetically degraded, unappealing and
sometimes unintelligible (e.g. due to text overflow from
the designated container).
[0013] Fig. 2 is a schematic illustration of an example
of two different layouts of the same recommendations
widget, which demonstrates how this approach may fail.
It is noted that the example shown in Fig. 2 is non-limiting
and recommendations can include various combinations
of components including one or more of: images, videos,
text, etc. Fig. 2 shows widget 210 and widget 220, each
comprising three containers for textual content. Widget
210 shows the texts rendered as originally intended by
the server (see 212, 214, 216), and widget 220 shows
the same texts as they were actually rendered and dis-
played (see 222, 224, 226) by a browser at a host com-
puter under the constraints resulting from the specific
dynamic real-time environment of the browser.
[0014] For example, a specific font family and font size
may be selected at the server side with the intention that
the text would fit into exactly two visual lines within the
container. However, since the selected font is not avail-
able at the browser in real-time (e.g. the font was not
installed or otherwise unavailable at time of webpage ren-
dering) the browser selects, in real-time, an alternative
font, resulting in the text rendered as shown in widget
220.
[0015] Notice for example, containers 214 and 224,
where the same text that originally intended to fit into two
visual lines now spans more than two visual lines. The
text in in 224 ends after one word in the third visual line,
leaving the rest of line empty, which is different than the
originally intended visual outcome.
[0016] Notice further containers 212 and 222. In con-
tainer 212 the ellipsis character ("...") at the end of the
second visual line indicates to the reader that the original
sentence was longer, but was truncated after the word
"Act...", because there is evidently no room to display the
rest of the words in the original sentence. Indeed, this
truncation was done in advance by the server, expecting

the visual result shown in container 212. In container 222,
the same truncated text that was provided by the server
spans across three visual lines, and the ellipsis character
"..." appears in the middle of the third visual line after the
word "Act". This results in a degraded user experience
as it is not clear to the user why no more words of the
sentence appear where there is evidently more room to
show them.
[0017] According to other existing approaches, the
rendering of the original text is performed by the browser
at the host computer, which determines in real-time if and
how the text should be rendered and possibly truncated.
Fig. 3 is a schematic illustration demonstrating such ap-
proaches.
[0018] Container 310 includes certain text rendered
according to some textual styling requirements that in-
clude rendering the text over three visible lines within the
container. Container 320 includes the text which was ac-
tually rendered by the browser under the constraints im-
posed by the browser’s real-time dynamic environment.
Note that unlike the styling shown in container 310, here
the text is bounded by the area of the container and thus
only the part of the text which fits within the first two lines
of the container is visible. Namely, part of the text includ-
ing the words "full guide you must read" is omitted, and
the text abruptly terminates with the word "The", with no
visual indication that the displayed text is a truncated
version of a longer text, and thus may degrade user ex-
perience. In contrast, a more desired user experience
can be achieved by adding a visual indication (e.g. ellip-
sis) to indicate that the original text was truncated, as
illustrated in container 330.
[0019] Another problem that can arise from the real-
time decisions made by the browser during execution of
the rendering process is demonstrated in container 350.
The original text that required four visual lines (as shown
in container 340) has been constrained, due to the size
of the container, to only three visible lines. The truncation
of text in container 350 inadvertently resulted in text trun-
cated in the middle of the word "title" (leading to poten-
tially offensive language).
[0020] Some of the existing approaches, which intend
to handle the "multiline clamping problem" provide a so-
lution which is limited only to specific cases e.g. applica-
ble only in a certain type of browser, applicable only in a
specific configuration, or assume that the background of
the text is always of some specific color, etc.
[0021] Some of the existing approaches, which enable
to better control how a content is rendered by the browser
and truncate the text to fit more accurately within a des-
ignated container, consume valuable computer resourc-
es (e.g. processing resources, time and memory resourc-
es), a consumption which degrades both computer per-
formance and user experience, sometimes to the extent
that such approaches are no longer acceptable as a valid
solution to the problem by the industry, e.g. the required
time resources are unacceptable.
[0022] According to one such approach, text overflow-

3 4

EP 3 252 625 A1

4

5

10

15

20

25

30

35

40

45

50

55

ing from its container is repeatedly truncated (e.g. by a
single letter or by a whole word) until it is determined that
the truncated text fits its respective container. To this
end, the browser is repeatedly queried (e.g. after each
truncation) to provide measurements of certain visual as-
pects of the rendered texts and their respective contain-
ers. These visual measurements can be used for deter-
mining the location of a text relative to its designated
container and eventually deduce therefrom whether the
text is properly fitted within the boundaries of the con-
tainer.
[0023] However, changes made to the content of a
webpage (such as truncation of text) are likely to invoke
a "reflow" (the process of re-rendering and repainting the
webpage to the changes made) computation by the
browser in response to subsequent queries for visual
measurements. Approaches such as the above (repeat-
edly modifying text and querying for visual measure-
ments) may lead to a large number of "reflow" computa-
tions.
[0024] Reflow is a costly process (in terms of computer
resources consumption), sometimes effectively involving
heavy calculations and the repainting of the entire web-
page. Repeatedly executing a reflow process after each
truncation can tremendously degrade both computer per-
formance and user experience (e.g. resulting in a signif-
icant delay in the webpage loading time). In addition, it
may be required to repeat this process for each of the
"multiline clamping problem" instances in the webpage,
e.g. for each of the containers in each of the widgets in
a webpage, until all the texts are fitted within their respec-
tive containers. This repetitive process increases even
further computer resources consumption as well as the
total rendering time of the webpage.
[0025] The presently disclosed subject matter includes
a computer system and a computer implemented method
that allow to better understand the relation between con-
tent and the manner in which it is rendered, thereby in-
creasing control over the manner in which content is be-
ing rendered at a host device (e.g. by a browser) in a
performant, responsive and scalable manner, notwith-
standing the dynamic real-time environment of the
browser.
[0026] According to one aspect of the presently dis-
closed subject matter there is provided a computer-im-
plemented method for dynamically adapting display of
content within a container of a formatted document, the
container defining a restricted area within the formatted
document designated for displaying the content, the
method comprising:

using one or more computer processors for execut-
ing a content rendering process (e.g. by a browser),
comprising:

identifying sub-elements within at least one con-
tent item, the at least one content item is as-
signed to be displayed within a respective con-

tainer in a formatted document; tagging at least
some of the sub-elements to thereby obtain a
plurality of tagged sub-elements of the at least
one content item; wherein the tagging enables
to obtain display parameters of tagged sub-ele-
ments (e.g. from the browser); displaying at least
some of the tagged sub-elements of the content
item in the respective container in the formatted
document; determining display parameters of at
least some of the tagged sub-elements; calcu-
lating, based on at least the display parameters,
whether at least one sub-element overflows
from an area designated for displaying content
in the respective container; in case at least one
sub-element overflows the respective container:
adapting the at least one content item to fit in
the area; and displaying the adapted at least one
content item within the area of the container in
the formatted document.

[0027] Additional to the above features, the method
according to this aspect of the presently disclosed subject
matter can optionally comprise one or more of features
(i) to (xi) below, mutatis mutandis, in any technically pos-
sible combination or permutation.

i) wherein, in case at least one sub-element over-
flows the respective container, an increase in the
number of overflowing sub-elements does not re-
quire an increase in the number of displaying oper-
ations.
ii) wherein the at least one content item includes tex-
tual content and the tagged sub-elements include
tagged textual sub-elements.
iii) wherein the calculating whether at least one sub-
element overflows the respective container compris-
es:

determining, based on the display parameters,
position of at least one tagged sub-element with
respect to the area designated for displaying
content in the respective container; and deter-
mining whether the position is indicative of an
overflow of the at least one sub-element outside
the boundaries of the area.

iv) wherein the calculating whether at least one sub-
element overflows the respective container compris-
es one or more of (1) and (2):

1)

(a) determining the height and width of the
tagged textual sub-element;
(b) determining the height and width of the
respective container;
(c) determining based on (a) and (b) wheth-
er at least one sub-element overflows the

5 6

EP 3 252 625 A1

5

5

10

15

20

25

30

35

40

45

50

55

respective container;

2)

(a) determining the offset of at least one
tagged textual sub-element relative to the
respective container;
(b) determining the height of the respective
container;
(c) determining based on (a) and (b) wheth-
er at least one sub-element overflows the
respective container.

v) wherein the adapting the at least one content item
to fit in the respective container, comprises identify-
ing a last visible line of the at least one content item;
and modifying the last visible line in the container to
include a new textual element; the new textual ele-
ment is configured to be displayed in a single line,
such that it is truncated in case of a text overflow.
vi) wherein the adapting the at least one content item
to fit in the respective container, comprises, remov-
ing a plurality of tagged textual sub-elements such
that the remaining textual sub-elements fit within the
area; and adding a visual indication that the plurality
of tagged textual sub-elements were removed.
vii) wherein the adapting further comprises adding
one or more characters designated for indicating to
a viewer of the document that sub-elements have
been truncated.
viii) wherein the at least one content item includes a
plurality of content items each assigned to be dis-
played in a plurality of respective containers in the
formatted document and wherein, in case at least
one content item overflowed the respective contain-
er, an increase in the number of content items does
not require an increase in the number of displaying
operations.
ix) wherein the tagging at least part of the sub-ele-
ments comprises: wrapping each one of sub-ele-
ments with an HTML tag to thereby transform the
sub-element into a Document Object Model element.
x) The method further comprises, in response to a
change in one or more display environment charac-
teristics, automatically repeating the content render-
ing process to thereby adapt the content item to fit
within the respective container.
xi) The method further comprising: monitoring dis-
play environment characteristics, including at least
size of window assigned for displaying the formatted
document, dimensions of window assigned for dis-
playing the formatted document, size of the respec-
tive container, and dimensions of the container.

[0028] According to another aspect of the presently
disclosed subject matter there is provided a computer-
implemented system comprising: at least one computer
device configured for receiving content from another

computer device and dynamically adapting display of the
received content within a container of a formatted docu-
ment, the container defining a restricted area within the
formatted document designated for displaying the con-
tent, the computer device comprising a processing cir-
cuitry configured to:

identifying sub-elements within at least one content
item, the at least one content item is assigned to be
displayed within a respective container in a formatted
document; tagging at least part of the sub-elements
to thereby obtain a plurality of tagged sub-elements
of the at least one content item; wherein the tagging
enables to obtain display parameters of tagged sub-
elements; displaying at least part of the tagged sub-
elements of the content item in the respective con-
tainer in the formatted document; determining dis-
play parameters of at least part of the tagged sub-
elements; calculating, based on at least the display
parameters, whether at least one sub-element over-
flows from an area designated for displaying content
in the respective container; in case at least one sub-
element overflows the respective container: adapt-
ing the at least one content item to fit in the area;
and displaying the adapted at least one content item
within the area of the container in the formatted doc-
ument.

[0029] According to another aspect of the presently
disclosed subject matter there is provided a non-transi-
tory program storage device readable by a computer,
tangibly embodying computer readable instructions ex-
ecutable by the computer to perform a computer-imple-
mented method of for dynamically adapting display of
content within a container of a formatted document, the
container defining a restricted area within the formatted
document designated for displaying the content, the
method comprising:

obtaining data indicative of sub-elements within at
least one content item, the at least one content item
is assigned to be displayed within a respective con-
tainer in a formatted document, the sub-elements
comprising a plurality of tagged sub-elements;
wherein tagging of sub-elements enables to obtain
display parameters of tagged sub-elements;
displaying at least part of the tagged sub-elements
of the content item in the respective container in the
formatted document; determining display parame-
ters of at least part of the tagged sub-elements; cal-
culating, based on at least the display parameters,
whether at least one sub-element overflows from an
area designated for displaying content in the respec-
tive container; in case at least one sub-element over-
flows the respective container: adapting the at least
one content item to fit in the area; and displaying the
adapted at least one content item within the area of
the container in the formatted document.

7 8

EP 3 252 625 A1

6

5

10

15

20

25

30

35

40

45

50

55

[0030] The presently disclosed subject matter further
contemplates a user device configured for executing the
operations of the method disclosed above.
[0031] The system, the computer storage device and
the user device disclosed in accordance with the pres-
ently disclosed subject matter can optionally comprise
one or more of features (i) to (xi) listed above, mutatis
mutandis, in any technically possible combination or per-
mutation.

BRIEF DESCRIPTION OF THE DRAWINGS

[0032] In order to understand the presently disclosed
subject matter and to see how it may be carried out in
practice, the subject matter will now be described, by way
of non-limiting examples only, with reference to the ac-
companying drawings, in which:

Fig. 1 is a schematic illustration of a webpage exam-
ple;
Fig. 2 is a schematic illustration of an example of two
manners in which a recommendation widget may be
rendered;
Fig. 3 is a schematic illustration of different examples
demonstrating results of real-time rendering by the
browser.
Fig. 4 is a schematic illustration of a block diagram
of a general view of a computer system, in accord-
ance with some examples of the presently disclosed
subject matter;
Fig. 5 is a schematic illustration of a more detailed
view of some components of Fig. 4, in accordance
with some examples of the presently disclosed sub-
ject matter;
Fig. 6 is a flowchart showing operations carried out
in accordance with some examples of the presently
disclosed subject matter; and
Fig. 7a, 7b and 7c are schematic illustrations dem-
onstrating some principles of the method described
with reference to Fig. 6, in accordance with some
examples of the presently disclosed subject matter.

DETAILED DESCRIPTION

[0033] Elements in the drawings are not necessarily
drawn to scale. Unless specifically stated otherwise, as
apparent from the following discussions, it is appreciated
that throughout the specification discussions utilizing
terms such as "identifying", "tagging", "displaying", "cal-
culating", "adapting", "executing" or the like, include ac-
tions and/or processes of a computer that manipulate
and/or transform data into other data, said data repre-
sented as physical quantities, e.g. such as electronic
quantities, and/or said data representing the physical ob-
jects.
[0034] The terms "computer", "computer device",
"computerized device", "computer system", or variation
thereof should be expansively construed to include any

kind of electronic device with a processing circuitry ca-
pable of data processing and which includes one or more
computer processors operatively connected to a compu-
ter memory (optionally including non-transitory computer
memory) operating together for executing and/or gener-
ating instructions. Examples of such a device include:
digital signal processor (DSP), a microcontroller, a field
programmable gate array (FPGA), an application specific
integrated circuit (ASIC), a personal computer, server
computer device, other dedicated processing device, etc.
[0035] As used herein, the phrase "for example," "such
as", "for instance" and variants thereof describe non-lim-
iting embodiments of the presently disclosed subject mat-
ter. Reference in the specification to "one case", "some
cases", "other cases" or variants thereof means that a
particular feature, structure or characteristic described in
connection with the embodiment(s) is included in at least
one embodiment of the presently disclosed subject mat-
ter. Thus the appearance of the phrase "one case", "some
cases", "other cases" or variants thereof does not nec-
essarily refer to the same embodiment(s).
[0036] It is appreciated that certain features of the pres-
ently disclosed subject matter, which are, for clarity, de-
scribed in the context of separate embodiments, may al-
so be provided in combination in a single embodiment.
Conversely, various features of the presently disclosed
subject matter, which are, for brevity, described in the
context of a single embodiment, may also be provided
separately or in any suitable sub-combination.
[0037] In embodiments of the presently disclosed sub-
ject matter, fewer, more and/or different stages than
those shown in Fig. 6 may be executed. Also the order
of execution of the described operations should not be
limited to the order which is presented in the figures.
[0038] Figs. 4 and 5 illustrate general schematic dia-
grams of the system functional in accordance with an
embodiment of the presently disclosed subject matter.
The components in Figs. 4 and 5 may be centralized in
one location or dispersed over more than one location.
In other embodiments of the presently disclosed subject
matter, the system may comprise fewer, more, and/or
different modules than those shown in Figs. 4 and 5. For
example, while server computer 450 is illustrated as a
single computer device, in other examples it may be im-
plemented as several interconnected computer devices
distributed at different locations (e.g. some onboard the
aircraft and some located elsewhere).
[0039] The term "performant" as used herein should
be broadly construed to include the efficient usage of
computers’ resources (including CPU, memory, disk re-
sources etc.), as well as time resources. For example, a
website owner may not use a third-party JavaScript code
if it imposes a performance overhead, such as causing
the web page to be displayed after more than a certain
time (e.g. 500 milliseconds), or consuming too much
memory, or too high CPU resources.
[0040] The term "responsive" or "responsiveness" as
used herein, should be broadly construed to include ap-

9 10

EP 3 252 625 A1

7

5

10

15

20

25

30

35

40

45

50

55

plicability to different display environments as well as to
changes (in real-time) in display environment. The term
"display environment" is used to include various param-
eters which characterize the display of content in a com-
puter device including, but not limited to: size or dimen-
sions of display screen, size or dimensions of display
windows or containers, display screen resolution, etc.
[0041] The term "scalable" or "scalability" as used
herein, should be broadly construed to the capability to
handle a growing amount of work, or the potential to ac-
commodate that growth.
[0042] Bearing the above in mind, attention is now
drawn to Fig. 4 which shows a schematic illustration of
a block diagram of a general view of a computer system
according to some examples of the presently disclosed
subject matter. System 400 shown in Fig. 4 is a general
example which demonstrates some principles of the
presently disclosed subject matter and should not be con-
strued as limiting in any way.
[0043] System 400 comprises a number of computer
devices connected over a communication network. In the
illustrated example, system 400 comprises user device
410, Content Server 450 and Content Model Server 460.
Communication between different computer devices in
system 400 can be facilitated over one or more types of
communication networks 480. For example communica-
tion networks can include any one of: the Internet, local
area network (LAN), wide area network (WAN), metro-
politan area network (MAN), various types of telephone
networks (including for example PSTN with DSL tech-
nology) or mobile networks (including for example GSM,
GPRS, CDMA etc.), or any combination thereof. Com-
munication within the network can be realized through
any suitable connection (including wired or wireless) and
communication technology or standard (WiFi, 3G, LTE,
etc). The various computer devices in system 400 are
operable to communicate over the network communica-
tion links.
[0044] User device 410 represents a viewing entity
consuming content provided by Content Server 450. Us-
er device 410 can be any computer device (e.g. PC, lap-
top, Smartphone, notepad, etc.) comprising, inter alia, a
processing circuity (e.g. including one or more computer
processors 414 operatively connected to a computer
memory 412), a communication infrastructure for facili-
tating communication with other computer devices, and
display device 490 (e.g. LED display device, e.g. via dis-
play adapter 422). User device 410 further comprises
various computer programs 416 executable by the
processing circuitry. Computer programs include, but are
not limited to, one or more operating systems and a client
agent configured to manage communication between us-
er device 410 and another computer device inter-con-
nected by communication network 480. According to
some examples, client agent can be implemented as web
browser 420.
[0045] According to some examples of the presently
disclosed subject matter, web browser 420 further com-

prises Content Monitoring Engine 430, which is received
(or updated) at the user device 410 in real-time and in-
cludes data and computer instructions to be executed by
the browser.
[0046] Content Server 450 represents one or more
server computer devices configured to provide content
to other computer devices (such as user device 410). In
some cases, content is provided to a computer device
by Content Server 450 in response to a request issued
by the computer device. Such requests can possibly in-
clude one or more of: details on the user (e.g. cookies,
IP address, user credentials), the device (user agent in-
formation, browser configuration, fonts installed, default
language, etc.) and context (URL, request parameters,
e.g. keywords, etc.).
[0047] Content Server 450 is operatively connected to
one or more data storage units implementing a content
database 452 for storing the relevant content. The stored
content can include any type of Internet content available
today such as web objects (text, graphics and scripts),
downloadable objects (media files, software, docu-
ments), applications (e-commerce, portals), etc. The
content provided by Content Server 450 is presented on
a display device of the receiving computer device, in a
formatted document such as a web page document, the
formats including for example: news website format,
email message format, newsletter format, etc. One ex-
ample of Content Server 450 is a web server configured
to process and respond to HTTP requests. Other exam-
ples of Content Server 120 include mail servers, video
streaming servers, etc. Herein below the term web page
is used by way of non-limiting example, however the pres-
ently disclosed subject matter contemplates other types
of formatted documents and therefore the term "web
page" should not be construed as limiting.
[0048] Content Model Server 460 represents one or
more server computer devices configured to provide con-
tent to other computer devices. In some examples, the
data received from Content Server 450 at a user device
410 includes instructions to the user device (e.g. via web
browser 420) to access Content Model Server 460, and
obtain therefrom additional content. In other examples,
Content Server 450 requests additional content from
Content Model Server 460 and provides a response to
user device 410, which includes the content received
from Content Model Server 460.
[0049] Additional content can include for example,
content which is displayed at the user device 410 in ad-
dition to the content provided by Content Server 450.
Additional content can include for example, recommen-
dations, advertisements or other content and in some
cases may be related to requested content, or to some
other characteristics of the viewer, user device or context.
[0050] When preparing the response (received from
either a user device or content server) Content Model
Server 460 can optionally use information from internal
or external databases (462 and 463) storing data char-
acterizing one or more of: the user, the user device and

11 12

EP 3 252 625 A1

8

5

10

15

20

25

30

35

40

45

50

55

the requested content, and generate a response which
is customized or personalized based on this information.
In some implementations Content Model Server 460
sends the response to Content Server 450, which in turn
sends content, optionally together with code and/or con-
figuration, to user device 410. In other implementations
Content Model Server 460 sends the response directly
to user device 410.
[0051] Browser 420 at user device 410 receives the
content originating from Content Server 450 and the ad-
ditional content originating from Content Model Server
460. The data received at the user device 410 includes,
in addition to the content, also auxiliary data such as web-
page formatting instructions (e.g. CSS, fonts, etc.) and
various JavaScript codes for execution by the browser.
Rendering Engine 440 processes the content and for-
matting information and renders the content according
to the formatting instructions e.g. in a webpage format.
Once rendered, user device 410 displays the rendered
content on the display device 490. As mentioned above,
a schematic illustration of a webpage layout is shown
with reference to Fig. 1.
[0052] Notably, any one of the computer devices de-
scribed above can be distributed over more than one
device. For example, Content Model Server 460 can be
distributed over a number of server devices all owned by
the same entity and/or different devices can be owned
by different entities, each providing different alternative
content. Furthermore, while in the example above Con-
tent Server 450 and Content Model Server 460 are de-
scribed as separate entities, in some cases both types
of content can be provided by the same entity.
[0053] Fig. 5 is schematic illustration of a more detailed
view of some of the components shown in Fig. 4, in ac-
cordance with some examples of the presently disclosed
subject matter. The functionality of some components is
described below with reference to operations described
in Fig. 6.
[0054] Fig. 6 is a flowchart of operations carried out
during a content rendering process, in accordance with
some examples of the presently disclosed subject matter.
Operations described with reference to Fig. 6 (as well as
8 below) can be executed for example by system 400
described above with reference to Fig. 4 and Fig. 5. How-
ever, it is noted that the specific configuration of elements
in system 400 (and specifically those depicted with re-
spect to user device 410) is merely a non-limiting exam-
ple and various modifications and alternatives to the sys-
tem can be applied for executing the described opera-
tions.
[0055] As mentioned above, data is transmitted to user
device 410 by Content Server 450 and possibly also by
Content Model Server 460. According to some examples,
the received data includes the primary content (e.g. con-
tent of a requested webpage) and additional content (e.g.
advertisements and/or recommendations of alternative
content) as well as auxiliary data as disclosed above.
[0056] According to the presently disclosed subject

matter, Content Monitoring Engine 430 is also provided
to the user device (e.g. by Serving Module 461 in Content
Model Server 460). Content Monitoring Engine 430 in-
cludes additional processing instructions (e.g. in the form
of JavaScript code) which are executed (e.g. by the
browser) in real-time, as part of the web page rendering
process and enables to increase control over the manner
in which content is being rendered at the user device
410, in a performant, responsive and scalable manner.
In some cases where Content Monitoring Engine 430
has already been previously received at the user device,
updated instructions may be received from Content Mod-
el Server 460.
[0057] The content received at the user device is proc-
essed by the browser, which determines how to render
the content on the display device. Assuming the received
content (including either one of the primary content and
additional content) contains one or more textual content
items, according to some examples of the presently dis-
closed subject matter, a preprocessing stage is executed
on the textual content items (block 601). According to
one example, preprocessing is executed at the user de-
vice, e.g. by preprocessing module 431 in Content Mon-
itoring Engine. According to other examples, part or all
of the preprocessing can be executed at a different com-
puter device e.g. the Content Server 450 or Content Mod-
el Server 460, prior to sending it to the user device. The
phrase "textual content item" is used here to refer to tex-
tual content assigned to be displayed in a certain con-
tainer (e.g. in a recommendation widget) in a webpage
layout.
[0058] During the preprocessing stage (block 601) at
least one textual content item is processed to identify
individual sub-elements (e.g. textual sub-elements such
as words and/or characters) in the textual content item.
To this end Content Monitoring Engine 430 can be con-
figured to parse the textual content item, and tokenize
the text into individual sub-elements.
[0059] Further, as part of the preprocessing, the indi-
vidual sub-elements are tagged to obtain a plurality of
tagged sub-elements of the textual content item; wherein
the tagging of sub-elements enables to query the browser
in order to obtain display parameters characterizing a
specific tagged sub-element. For example, assuming a
tagged sub-element is a single word, the browser can be
queried (e.g. the browser’s Measurements Module 423,
by Content Monitoring Engine 430) to provide information
(display parameters) pertaining to the height of the word,
width of the word and position of the word relative to its
assigned container. In another example, measurements
may be obtained indirectly from a Controller Engine 421,
which may have direct or indirect access to obtaining
such measurements from Measurements Module 423.
For example, as mentioned above, in some embodi-
ments Rendering Engine 440, Controller Engine 421,
Display Adapter 422, Measurements Module 423 may
be centralized in one logical location or dispersed over
more than one logical location or even different computer

13 14

EP 3 252 625 A1

9

5

10

15

20

25

30

35

40

45

50

55

devices. In a distributed embodiment, a Controller Engine
421 may be used to consolidate communication between
different components, and Measurements Module 423
may have indirect access to the rendered output gener-
ated by Rendering Engine 440.
[0060] The obtained measurements, including display
parameters characterizing tagged sub-elements, may
contain valuable information related to the relation be-
tween the original content (e.g. textual content item) and
the exact manner in which the content is eventually dis-
played at the user device. In some examples, the user
device (e.g. reporting Module 433) may consolidate such
obtained measurements and send some or all of them,
possibly after some processing or summarizing, to Con-
tent Model Server 460. These measurements may be
sent as newly generated events from user device 410,
or optionally appended to existing user generated events
(e.g. mouse click, key stroke, mouse hover, etc.), thereby
"enriching" them with data related to the relation between
the content and the manner it was displayed. For exam-
ple, a user event indicating a user has clicked a recom-
mendation including textual description may be enriched
to include information on the manner the textual descrip-
tion was eventually displayed on the user device, e.g.
the area the textual description consumed, whether there
was a text "overflow" etc. This information can be further
used for improving user experience, e.g. selecting a more
desirable display of content based on click through rate
metrics.
[0061] In some examples, such reported measure-
ments may be consolidated at databases 462 and 463.
In some examples, reported measurements may be uti-
lized by Learning Engine 467 to better predict how to
customize content at the server-side to be displayed in
an intended manner. Customization Database 463 and
Content Database 462 may be adapted in time to include
data from Learning Engine 467.
[0062] In addition, specific and detailed characteristics
of the browser may be determined based on measure-
ments obtained from the browser. These characteristics
may be sent by Reporting Module 433 to Content Model
Server 460, to be stored in databases 462 and 463 in a
similar way to the manner described above.
[0063] According to one specific example, during pre-
processing sub-elements in the textual content item are
transformed into a distinctive Document Object Model
(DOM) elements. DOM elements are building blocks of
the webpage, and can be manipulated programmatically
by the browser. Visible changes occurring as a result of
this manipulation may then be reflected when the textual
content item is displayed. As explained above, by trans-
forming the sub-elements (e.g. words and/or characters)
in the text into DOM elements, it becomes possible to
obtain from the browser various display characteristics
of the sub-elements. Transformation of the text into DOM
elements includes wrapping each word (or possibly each
character) by some HTML Tag.
[0064] Figs. 7a, 7b and 7c show schematic illustrations

which demonstrate the operations of Content Monitoring
Engine 430 on a received textual content item, in accord-
ance with some examples of the presently disclosed sub-
ject matter. Text 701 is the original text of textual content
item received or otherwise generated at user device 410
and intended to be displayed in a web page layout. Text
710 shows the modified text after it has been tokenized
into individual sub-elements (in this case individual
words) and tagged with HTML tags to thereby transform
the words into DOM elements. Note that the modified
text 710, which originally included plain text, now includes
<ins> and </ins> HTML tags that wrap each word in the
text. It should be understood that any usage of <ins>
HTML tag, or any other HTML tag disclosed herein is
merely for the sake of illustration and is done so in a non-
limiting manner. In particular, other HTML tags may be
used, or alternatively any other tagging technique which
enables obtaining visual measurements for the tagged
sub-elements from a browser.
[0065] Reverting to Fig. 6, at block 603 the browser
(e.g. by the native rendering engine 440) executes the
rendering process and renders the content. This includes
inserting the modified textual content item in the respec-
tive container assigned for that purpose (e.g. in a recom-
mendations widget).
[0066] Fig. 7a schematically depicts container 722
within widget 720. Note, that the rendered text includes
a visible portion 723, which is the part fitted within the
area of the assigned container 722 and is visible to web-
page viewers, and non-visible portion 724, which is the
part overflowing outside the area of the container and is
not visible to webpage viewers.
[0067] At block 607 it is determined whether the text
overflows outside the area designated for text in the re-
spective container (e.g. by manipulation module 432 in
content monitoring engine 430). To this end display pa-
rameters characterizing the tagged sub-elements are ob-
tained from the browser (block 605). Various methods
can be used for determining text overflow.
[0068] According to one example, display parameters
including the height and width of the tagged sub-ele-
ments of a textual content item are determined. For ex-
ample, to this end manipulation module 432 can query
measurement module 423 and obtain the height and
width of each tagged sub-element. In a similar manner,
the height and width of the respective container assigned
for displaying the textual content item is determined.
From this data, the process of rendering of the sub-ele-
ments in the container can be emulated in memory (in
particular, the emulation process itself does not affect
the web page layout), to determine the precise position
of each of the sub-elements relative to the area of the
container. Accordingly it can be determined if one or more
sub-elements are located outside the boundaries of the
respective container, i.e. whether an "overflow" has oc-
curred.
[0069] According to a second example, position of a
tagged sub-element of a textual content item relative to

15 16

EP 3 252 625 A1

10

5

10

15

20

25

30

35

40

45

50

55

the respective container is determined. For example, to
this end manipulation module 432 can query measure-
ment module 423 and obtain the position of one or more
sub-elements relative to the respective container. In ad-
dition, the height of the respective container assigned for
displaying the textual content item is determined. Based
on this information, the precise position of each sub-el-
ement relative to the container can be determined, and
accordingly it can be determined if one or more sub-el-
ements are located outside the boundaries of the respec-
tive container, i.e. whether an "overflow" has occurred.
For example, assuming it is determined that the top of
the last sub-element (e.g. last word) is positioned 80 pix-
els lower in the webpage in relation to the top of the re-
spective container, and also that the container’s height
is only 60 pixels, it can be deduced that at least the last
word is located outside the boundaries of the respective
container, i.e. an "overflow" has occurred.
[0070] Notably the examples above should not be con-
strued as limiting and other methods for determining
whether there is an overflowing sub-element can be al-
ternatively used.
[0071] If it is determined that there is at least one sub-
element overflowing outside the area designated for dis-
playing text in the respective container, the content item
is adapted so it fits within the container. Specific exam-
ples of methods for adapting the text of a textual content
item to make it fit a respective container according to a
predefined format are disclosed herein below.
[0072] At block 611, once the text is modified, at most
a single "reflow" operation is executed by the browser
(e.g. by the rendering engine 440 or by a Rendering Ad-
justments Engine 424) and the web page layout is dis-
played a second time showing the modifications.
[0073] According to one example, for the purpose of
adapting the textual content item as described above
(with reference to block 609), once it is determined that
at least one sub-element overflows outside the bounda-
ries of the respective container, the last line of the visible
portion of the rendered text within the container is iden-
tified (e.g. by manipulation module 432 in content mon-
itoring engine 420). Various approaches can be applied
for identifying the last line.
[0074] In some cases, this information is readily avail-
able from the previous stages. For example, the last line
can be identified based on the data that was used to
determine whether there was an overflow as described
above (with reference to block 607).
[0075] According to another example, the first sub-el-
ement (e.g. first word) in the last line (e.g. sub-element
725 in Fig. 7a) can be identified by traversing the tagged
sub-elements (e.g. DOM element by DOM element) and
finding the first tagged sub-element whose height offset
position, relative to the container, equals (NROWS-
1)*LINE_HEIGHT, where:

NROWS = number of visible rows in the container;
LINE_HEIGHT = the height of a tagged sub-element

(e.g. obtained from the measurements module 423);
NROWS can be determined by dividing the contain-
er’s height by LINE_HEIGHT.

[0076] For example, for LINE_HEIGHT = 20 pixels and
container’s height of 60 pixels, NROWS = 60 / 20 = 3,
and the first word in the last visible line in the container
is the first tagged sub-element whose height offset posi-
tion, relative to the container, equals (3-1)*20 = 40 pixels.
[0077] One optional way of adapting the content item
to fit in the respective container includes modifying the
last visible line in the container to include a single DOM
element, e.g. a single "div" element. This DOM element
(referred to herein also as "special last line div") is con-
figured to cause the browser to display the DOM element
in a single line, truncated in case of a text overflow, pos-
sibly including a visual indication (e.g. an ellipsis "...") in
case such truncation has occurred.
[0078] For example, as demonstrated in Fig. 7a and
7b, all the words from the original text following the word
"several" 725, namely the words "several visual lines and
even overflow its allocated container" are taken together
and tagged to construct a "special last line div". The latter
is inserted into the text 710 before the first tagged sub-
element positioned in the last visible line, thereby "push-
ing" some of the tagged sub-elements to the non-visible
portion (see 743 of the container 742) resulting in the
adapted text 730 in Fig. 7b (where the "special last line
div" is the text wrapper with <div>...</div> tags). This
"special last line div" is styled using specific CSS styling
instructions (e.g. the CSS instructions "white-space:
nowrap; overflow: hidden; text-overflow: ellipsis;") that
are processed by the browser (e.g. by its rendering en-
gine 440), so it is eventually displayed as a single line,
possibly truncated, and terminated with the ellipsis char-
acter "..." in case such truncation occurred (see for ex-
ample 745 in Fig. 7b). In this way, the adapted text is
made to fit in the respective container.
[0079] In addition, such a process may include an aux-
iliary first step of removing any "special last line div" oc-
curring already in the text from previous executions of
the process, and only then proceeding with the other ex-
ecution steps described above. In this way, the process
is "idempotent", i.e. consecutive executions of the proc-
ess under the same circumstances will result in the same
visual outcome as the outcome after a single execution
of it. This may be useful in some situations, e.g. for en-
suring general stability of the process execution, or for
adapting the process to provide a responsive user expe-
rience.
[0080] Another way to adapt the content item to fit in
the respective container includes selectively removing
some of the tagged sub-elements from the content item
in case of an overflow, and possibly adding a visual in-
dication in case such removal has occurred. For exam-
ple, manipulation module 432 can query measurements
module 423 and obtain the height and width of each
tagged sub-element, as well as the height and width of

17 18

EP 3 252 625 A1

11

5

10

15

20

25

30

35

40

45

50

55

the respective container assigned for displaying the tex-
tual content item. From this data, in case it was deter-
mined that an "overflow" had occurred, the manipulation
module 432 may select a subset of the tagged sub-ele-
ments to retain in the content item, and remove the rest
of the tagged sub-elements that are not in this subset.
The subset will be determined based on the display pa-
rameters obtained from the measurements module 423,
while emulating in memory (in particular, the emulation
process itself does not affect the web page layout) the
process of rendering the tagged sub-elements in the con-
tainer, thereby ensuring the adapted result eventually fits
in the respective container. In addition, the emulation cal-
culation may also be configured to leave enough space
to add a visual indication (e.g. an ellipsis "...") based on
the displayed parameters obtained from the measure-
ments.
[0081] For example, the text 710 may be modified by
removing the tagged sub-elements corresponding to the
words "would", "fit", "several", "visual", "lines", "and",
"even", resulting with the modified text 750 in Fig. 7c, in
which there is also included a visual indication
(...) that an overflow has occurred, so that
it is eventually displayed as demonstrated in container
762. The removed sub-elements may be persisted (e.g.
stored in (browser-associated) computer memory) and
remain available without being visible in the display. This
allows to revert and use these sub-elements if needed
in the future (for example to provide responsiveness or
"idempotent" nature of the process).
[0082] An example of an approach for determining
such a subset of tagged sub-elements to retain in the
web page layout includes alternatingly selecting tagged
sub-elements from the beginning and the end of the text,
until the emulation calculation determines that there is
no more space for further tagged sub-elements to be
included. For example, if there are N tagged sub-ele-
ments, then the subset can include: the first (1st) tagged
sub-element, the last (Nth) tagged sub-element, the sec-
ond (2nd) tagged sub-element, the second-to-last ((N-
1)th) tagged sub-element, and so on including sub-ele-
ments in an alternating way from the beginning to the
end of the text, until the emulation calculation (without
affecting the web page layout during the emulation proc-
ess, e.g. as it is done in memory) determines that there
is no more space for further tagged sub-elements to be
included.
[0083] Another possible alternative to the approach
above, in order to maximize the number of words in the
subset in the method described above, is adapted to give
higher priority to shorter words over longer words to be
included in the subset instead of ensuring that the same
number of words from the beginning to the end of the
text are chosen.
[0084] Another approach for determining that a subset
of sub-elements fit in a respective container aims to in-
clude, in case an overflow has occurred, a visual indica-
tion (such as ellipsis "...") in a predetermined position

relative to the container e.g. a specific row number of the
container, for instance, always in the second-to-last row
in the container. This can be achieved in a similar manner
to that described above, by emulating the positioning of
individual sub-elements within the container, adding the
visual indication in the desired location, and continuing
to place sub-elements in the remaining space (e.g. al-
ways including a word from the beginning of the text, and
a word from the end of the text), until the emulation cal-
culation determines that there is no more space for further
tagged sub-elements to be included.
[0085] As mentioned above, changes made to the con-
tent of a webpage, such as adding a "special last line
div", or otherwise adapting the content item to fit in the
respective container, are likely to invoke at most a single
"reflow" computation by the browser, ultimately resulting
in the web page layout displayed a second time where
the textual content fits into the container in a desirable
and visually appealing manner.
[0086] Notably, based on measurements of tagged
sub-elements obtained from the browser, the presently
disclosed subject matter allows adapting the content
items in a controlled manner, before any reflow operation
is executed. Accordingly at most a single "reflow" com-
putation (or none, in case no "overflow" occurred on the
web page layout) is invoked, regardless of the number
of overflowing sub-elements. In particular, this provides
a scalable solution, as the approaches disclosed herein
will require at most a single "reflow" computation (e.g.
step 611), regardless of the length of the content items
or the number of overflowing sub-elements.
[0087] According to examples of the presently dis-
closed subject matter, the steps 605 and 607 are done
together as a single processing stage (620) for all con-
tainers in all widgets in the web page, e.g. together for
all the instances of "multiline clamping problem" that need
to be handled.
[0088] Only upon completion of processing stage 620
on all containers in all widgets in the web page, the next
processing stage 630 is executed, in which step 609 is
applied on all containers for which an overflow was de-
termined in its respective step 607.
[0089] In case there was an overflow in one or more
of the containers, step 609 is performed across all those
overflowing containers. As described above, this will lead
to a one time change in the web page layout, adapting
all content items in the overflowing containers so they
eventually fit their respective containers. Once all chang-
es to the containers in the web page are made, a single
reflow operation 611 is executed. In case there was no
overflow in any of the containers in the web page, step
609 may be skipped, and the reflow at 611 will not be
invoked as there was no change to the web page layout.
[0090] This ensures that the reflow 611 is invoked only
at most once per page, regardless of the number of sub-
elements overflowing in each container, and regardless
of the number of containers which include one or more
overflowing sub-elements in the page. Notably the

19 20

EP 3 252 625 A1

12

5

10

15

20

25

30

35

40

45

50

55

number of containers in a single page that include over-
flowing sub-elements can in some cases be large, thus
potentially causing a significant performance setback if
dealt with separately. The presently disclosed approach
is therefore scalable, allowing to handle an increasing
number of instances of the "multiline clamping problem"
without essentially affecting the performance.
[0091] According to some examples of the presently
disclosed subject matter, the operations described above
with reference to Fig. 6 can be repeated when desired.
For example, in response to changes in the size or di-
mensions of a display (e.g. switching from horizontal view
to a vertical view), a window (e.g. resizing or maximizing
a window) or a container (e.g. in case other elements in
the web page changed their size or dimensions), it may
be desired to adapt the web page layout in order to main-
tain its appealing and aesthetic appearance in the new
circumstances, providing a responsive user experience.
For example, when a window size is changed, the area
of a container assigned to display specific textual content
item may change as well. Thus, it may be required to
repeat the rendering process disclosed hereinabove in
order to fit the text within the newly sized container ac-
cording to the predefined requirements.
[0092] To this end, responsive monitoring module 434
is configured to receive an indication from the browser
of changes in size or dimensions of a display, window or
container as mentioned above and invoke the execution
of the content rendering process in response to such an
indication.
[0093] Alternatively or additionally, responsive moni-
toring module 434 can be configured to independently
determine when changes in size or dimensions of a dis-
play, window or container occur, and invoke the execu-
tion of the content rendering process if such changes are
indeed determined. For example, responsive monitoring
module 434 can be configured to periodically query
measurements module 423 to obtain the sizes of con-
tainers, store the obtained measurements (e.g. in com-
puter memory 412), and compare the currently obtained
measurements with previously stored measurements,
and determine, based on the comparison, whether
changes in the size of containers has occurred.

Claims

1. A computer-implemented method for dynamically
adapting display of content within a container of a
formatted document, the container defining a re-
stricted area within the formatted document desig-
nated for displaying the content, the method com-
prising:

using one or more computer processors for ex-
ecuting a content rendering process, compris-
ing:

identifying sub-elements within at least one
content item, the at least one content item
is assigned to be displayed within a respec-
tive container in a formatted document;
tagging at least part of the sub-elements to
thereby obtain a plurality of tagged sub-el-
ements of the at least one content item;
wherein the tagging enables to obtain dis-
play parameters of tagged sub-elements;
displaying at least part of the tagged sub-
elements of the content item in the respec-
tive container in the formatted document;
determining display parameters of at least
part of the tagged sub-elements;
calculating, based on at least the display
parameters, whether at least one sub-ele-
ment overflows from an area designated for
displaying content in the respective contain-
er;
in case at least one sub-element overflows
the respective container:

adapting the at least one content item
to fit in the area; and
displaying the adapted at least one con-
tent item within the area of the container
in the formatted document.

2. The method of claim 1, wherein, in case at least one
sub-element overflows the respective container, an
increase in the number of overflowing sub-elements
does not require an increase in the number of dis-
playing operations.

3. The method of any one of claims 1 to 2, wherein the
at least one content item includes textual content
and the tagged sub-elements include tagged textual
sub-elements.

4. The method of any one of claims 1 to 3, wherein the
calculating whether at least one sub-element over-
flows the respective container comprises:

determining, based on the display parameters,
position of at least one tagged sub-element with
respect to the area designated for displaying
content in the respective container; and deter-
mining whether the position is indicative of an
overflow of the at least one sub-element outside
the boundaries of the area.

5. The method of any one of claims 1 to 4, wherein the
calculating whether at least one sub-element over-
flows the respective container comprises one or
more of (i) and (ii):

i)

21 22

EP 3 252 625 A1

13

5

10

15

20

25

30

35

40

45

50

55

(a) determining the height and width of the
tagged textual sub-element;
(b) determining the height and width of the
respective container;
(c) determining based on (a) and (b) wheth-
er at least one sub-element overflows the
respective container;

ii)

(a) determining the offset of at least one
tagged textual sub-element relative to the
respective container;
(b) determining the height of the respective
container;
(c) determining based on (a) and (b) wheth-
er at least one sub-element overflows the
respective container.

6. The method of any one of claims 1 to 5, wherein the
adapting the at least one content item to fit in the
respective container, comprises:

identifying last visible line of the at least one con-
tent item; and
modifying the last visible line in the container to
include a new textual element; the new textual
element is configured to be displayed in a single
line, such that it is truncated in case of a text
overflow.

7. The method of any one of claims 1 to 6, wherein the
adapting the at least one content item to fit in the
respective container, comprises:

removing a plurality of tagged textual sub-ele-
ments such that the remaining textual sub-ele-
ments fit within area; and
adding a visual indication that the plurality of
tagged textual sub-elements were removed.

8. The method of any one of claims 1 to 7, wherein the
at least one content item includes a plurality of con-
tent items each assigned to be displayed in a plurality
of respective containers in the formatted document
and wherein, in case at least one content item over-
flowed the respective container, an increase in the
number of content items does not require an in-
crease in the number of displaying operations.

9. The method of any one of claims 1 to 8, further com-
prising:

in response to a change in one or more display
environment characteristic, automatically re-
peating the content rendering process to there-
by adapt the content item to fit within the respec-
tive container.

10. A computer-implemented system comprising:

at least one computer device configured for re-
ceiving content from another computer device
and dynamically adapting display of the re-
ceived content within a container of a formatted
document, the container defining a restricted ar-
ea within the formatted document designated for
displaying the content, the computer device
comprising a processing circuitry configured to:

identifying sub-elements within at least one
content item, the at least one content item
is assigned to be displayed within a respec-
tive container in a formatted document;
tagging at least part of the sub-elements to
thereby obtain a plurality of tagged sub-el-
ements of the at least one content item;
wherein the tagging enables to obtain dis-
play parameters of tagged sub-elements;
displaying at least part of the tagged sub-
elements of the content item in the respec-
tive container in the formatted document;
determining display parameters of at least
part of the tagged sub-elements;
calculating, based on at least the display
parameters, whether at least one sub-ele-
ment overflows from an area designated for
displaying content in the respective contain-
er;
in case at least one sub-element overflows
the respective container:

adapting the at least one content item
to fit in the area; and
displaying the adapted at least one con-
tent item within the area of the container
in the formatted document.

11. The system of claim 10, wherein, in case at least one
sub-element overflows the respective container, an
increase in the number of overflowing sub-elements
does not require an increase in the number of dis-
playing operations.

12. The method of any one of claim 10 to 11, wherein
the calculating whether at least one sub-element
overflows the respective container comprises:

determining, based on the display parameters,
position of at least one tagged sub-element with
respect to the area designated for displaying
content in the respective container; and deter-
mining whether the position is indicative of an
overflow of the at least one sub-element outside
the boundaries of the area.

13. The method of any one of claim 10 to 12, wherein

23 24

EP 3 252 625 A1

14

5

10

15

20

25

30

35

40

45

50

55

the at least one content item includes a plurality of
content items each assigned to be displayed in a
plurality of respective containers in the formatted
document and wherein, in case at least one content
item overflowed the respective container, an in-
crease in the number of content items does not re-
quire an increase in the number of displaying oper-
ations.

14. The method of any one of claim 10 to 13, further
comprising:

in response to a change in one or more display
environment characteristic, automatically re-
peating the content rendering process to there-
by adapt the content item to fit within the respec-
tive container.

15. A program storage device readable by a computer,
tangibly embodying computer readable instructions
executable by the computer to perform a computer-
implemented method for dynamically adapting dis-
play of content within a container of a formatted doc-
ument, the container defining a restricted area within
the formatted document designated for displaying
the content, the method comprising:

obtaining data indicative of sub-elements within
at least one content item, the at least one content
item is assigned to be displayed within a respec-
tive container in a formatted document, the sub-
elements comprising a plurality of tagged sub-
elements; wherein tagging of sub-elements en-
ables to obtain display parameters of tagged
sub-elements;
displaying at least part of the tagged sub-ele-
ments of the content item in the respective con-
tainer in the formatted document;
determining display parameters of at least part
of the tagged sub-elements;
calculating, based on at least the display param-
eters, whether at least one sub-element over-
flows from an area designated for displaying
content in the respective container;
in case at least one sub-element overflows the
respective container:

adapting the at least one content item to fit
in the area; and
displaying the adapted at least one content
item within the area of the container in the
formatted document.

25 26

EP 3 252 625 A1

15

EP 3 252 625 A1

16

EP 3 252 625 A1

17

EP 3 252 625 A1

18

EP 3 252 625 A1

19

EP 3 252 625 A1

20

EP 3 252 625 A1

21

EP 3 252 625 A1

22

EP 3 252 625 A1

23

EP 3 252 625 A1

24

5

10

15

20

25

30

35

40

45

50

55

EP 3 252 625 A1

25

5

10

15

20

25

30

35

40

45

50

55

EP 3 252 625 A1

26

REFERENCES CITED IN THE DESCRIPTION

This list of references cited by the applicant is for the reader’s convenience only. It does not form part of the European
patent document. Even though great care has been taken in compiling the references, errors or omissions cannot be
excluded and the EPO disclaims all liability in this regard.

Patent documents cited in the description

• WO 62344077 A [0001]

	bibliography
	abstract
	description
	claims
	drawings
	search report
	cited references

