Technical Field
[0001] The present invention relates to methods for joining members.
Background Art
[0002] In order to achieve weight reduction and improved safety in automobiles, high-strength
steel sheets composed of so-called high-tensile steel are used. Although effective
for weight reduction and improved safety, such high-tensile steel is still heavy compared
with low specific gravity materials, such as aluminum. Moreover, high-tensile steel
is problematic in terms of low formability due to its high strength, increasing forming
load, and also low dimensional accuracy. In order to solve these problems, a multi-material
process that involves using a steel component together with an extruded product, a
molded product, or a press-formed product that use aluminum, which has lower specific
gravity than steel sheets, has been performed in recent years.
[0003] A problem with this multi-material process is in the joining of the steel component
and the aluminum component. In the welding technology typified by spot-welding, fragile
intermetallic compounds (IMC) occur at the interface between the steel sheet and the
aluminum sheet. Thus, joining techniques, such as an electromagnetic-forming joining
technique, a screw-fastening technique typified by bolts and nuts, a friction-stir-welding
(FSW) technique, a riveting technique, a self-piercing-riveting (SPR) technique, a
mechanical clinching technique, and a bonding technique, are put to practical use.
[0004] A clinching process based on electromagnetic forming involves inserting a solenoid
forming coil into a pipe-shaped component fitted to a counterpart component and causing
induced current to occur in the pipe serving as a conductor in accordance with a changing
magnetic field occurring as a result of applying impulse current to the coil. An electromagnetic
force is generated between the magnetic field caused by primary current in the coil
and the induced current flowing oppositely in the circumferential direction of the
pipe, and the pipe receives an outward force and thus expands, thereby becoming clinched
to the counterpart component. This joining method is suitable for copper and aluminum,
which have high electric conductivity, and is put to practical use in some techniques
for joining together automobile components.
[0005] Patent Literature 1 discloses a clinching technique based on electromagnetic forming
for performing a multi-material process. In Patent Literature 1, a bumper reinforcement
member formed of a metallic material that is hollow in cross section is caused to
expand by electromagnetic forming and is engaged with holes provided in a bumper stay
composed of an aluminum alloy so as to be joined thereto.
Citation List
Patent Literature
[0006] PTL 1: Japanese Unexamined Patent Application Publication No.
2007-284039
Summary of Invention
Technical Problem
[0007] As in Patent Literature 1, electromagnetic forming is suitable for clinching a hollow
component composed of copper or aluminum having high electric conductivity to a counterpart
component, and a circular shape is preferred due to this joining mechanism.
[0008] However, the joining technique based on electromagnetic forming requires that the
inner diameter of the solenoid coil to be used be smaller than that of the aluminum
component (i.e., aluminum pipe). When the diameter of a coil is to be reduced when
joining together small-diameter components, there are problems in terms of difficulties
in manufacturing of the coil, as well as performance and durability thereof. With
regard to difficulties in manufacturing, it is difficult to form a conductor into
the shape of a coil, leading to stricter limitations with respect to the material
and the cross-sectional shape of the conductor. In addition, the conductor cross-sectionally
deforms when being formed into the shape of a coil. Moreover, a new capital investment
becomes necessary, such as requiring a large-capacity high-voltage capacitor. Furthermore,
the joining is not possible if the aluminum component has an angular cross-sectional
shape, a hole, or a slit.
[0009] An object of the present invention is to provide a method for joining members, by
which two members can be joined together at low cost while reducing the load on the
members and increasing the joint strength.
Solution to Problem
[0010] The present invention provides a joining method including: preparing a first member
and a hollow second member, the first member having a first section provided with
a first hole; fitting the second member into the first hole in the first member so
as to cause the second member to extend through the first section; inserting an elastic
body into the second member; and compressing the elastic body in a direction of an
axis of the second member so as to cause the elastic body to expand from an inner
side toward an outer side, and thus causing at least a part of the second member fitted
in the first hole to expand so as to become clinched to the first section.
[0011] According to this method, the elastic body is caused to expand outward so that the
second member expands uniformly, thereby preventing local deformation and reducing
the load on the members. This is because the second member can be uniformly deformed
by utilizing the properties in which the elastic body compressed in the direction
of the axis expands uniformly from the inner side toward the outer side. Therefore,
fit accuracy can be improved, thereby achieving increased joint strength. Moreover,
this is an easier method, as compared with an electromagnetic forming method or other
machining methods. An electromagnetic forming method is usable only on electrically
conductive materials and has limitations with respect to cross-sectional shapes and
dimensions depending on coils to be used. In contrast, this method is not dependent
on materials and has no limitations related to cross-sectional shapes and dimensions.
Moreover, since the method is executable in a facility that applies a compressive
force to the elastic body, an electrical facility that requires a large-capacity capacitor
is not necessary. Consequently, the two members can be joined together at low cost.
[0012] Furthermore, a shape of the first hole in the first member may be analogous to a
cross-sectional shape of the part of the second member fitted in the first hole.
[0013] According to this method, the first member and the second member have shapes analogous
to each other so that the joining process can be performed by causing the second member
to expand uniformly, thereby preventing local load from occurring in the first member
and the second member.
[0014] Furthermore, an outer-frame mold may be disposed at the outer side of the second
member, and at least a part of the second member may be formed to extend along the
outer-frame mold so as to become clinched.
[0015] According to this method, the second member can be deformed to a freely-chosen shape
by using outer-frame molds with various inner-surface shapes. The deformation shape
can be appropriately selected in view of, for example, component performance and can
be set in accordance with the intended purpose.
[0016] Furthermore, an outer-frame mold may be disposed at the outer side of the second
member, and clinching may be performed while partially limiting expansion of the second
member by using the outer-frame mold.
[0017] According to this method, by disposing the outer-frame mold, an expanding region
of the second member is regulated, so that the expanding region can be controlled
with high accuracy. This expanding region refers to a region in which the second member
expands outward.
[0018] Furthermore, the second member may also be compressed in the direction of the axis
when the elastic body is compressed.
[0019] According to this method, the second member is also compressed in the direction of
the axis so as to assist with outward expansion of the second member. Specifically,
together with the expanding force applied by the elastic body from the inner side
of the second member, the second member can be expanded more reliably, thereby enabling
clinching.
[0020] Furthermore, an edge of the first hole may be burred.
[0021] According to this method, the edge of the hole in the first member is burred so that
the strength of the hole and the first section of the first member can be increased.
Consequently, the first member can be prevented from deforming, the second member
can be prevented from being damaged, and the joint strength between the two members
can be increased.
[0022] Furthermore, a surface different from a surface provided with the first hole may
have a bead section protruding in the direction of the axis, and clinching may be
performed by including the bead section.
[0023] According to this method, because clinching is performed by including the bead section,
the two members can be fixed to each other more securely, and the joint strength therebetween
can be further increased. In particular, in a case where the second member has a circular
cross-sectional shape, the second member can be prevented from rotating relative to
the first member.
[0024] Furthermore, the first member may include a second section having a second hole and
may be clinched to the second member at the first hole and the second hole.
[0025] According to this method, clinching is performed at two locations so that the joint
strength can be further increased, as compared with the case where clinching is performed
at a single location.
[0026] Furthermore, the elastic body may be split at a joining section between the first
member and the second member.
[0027] According to this method, the elastic body is split at the joining section so that
deformation of the joining section of the first member can be prevented. Specifically,
the elastic body is split such that the elastic body is not disposed near the joining
section, whereby the second member does not receive an expanding force from the elastic
body near the joining section and thus does not expand near the joining section. Consequently,
the first member does not receive a force from the second member near the joining
section, so that the shape of the joining section can be maintained.
[0028] Furthermore, a plate may be inserted between split pieces of the elastic body.
[0029] According to this method, the plate exists in the joining section so that deformation
of the joining section of the first member can be prevented more reliably. Because
the plate does not expand even by receiving a compressive force in the direction of
the axis, an expanding force is not applied to the joining section, so that the joining
section can maintain its original shape more reliably.
[0030] Furthermore, the second member may include an outer wall provided with a partition
wall therein and extending in the direction of the axis, and clinching may be performed
by inserting a plurality of the elastic bodies in spaces partitioned by the partition
wall.
[0031] According to this method, because the clinching process is performed by using the
plurality of elastic bodies, concentration of stress caused by deformation can be
prevented, so that the load on the first member and the second member can be reduced.
[0032] Furthermore, the second member may include an end surface inclined relative to the
axis, and opposite end surfaces of the elastic body in the direction of the axis may
be parallel to the inclined surface.
[0033] Accordingly, this method can be used for clinching the first member and the second
member together in an inclined state, which is often seen from a practical standpoint.
In particular, opposite end surfaces of the elastic body are given the same angle
as the joining angle, so that the elastic body expands uniformly, whereby the second
member can be expanded uniformly.
[0034] Furthermore, the first member may include an upright wall parallel to the axis, and
clinching may be performed while restraining deformation of the upright wall by using
a fixation jig.
[0035] According to this method, deformation of the first member is restrained by the jig,
so that deformation of the first member caused by expansion of the second member can
be suppressed.
Advantageous Effects of Invention
[0036] According to the present invention, the second member is caused to expand uniformly
by causing the elastic body to expand from the inner side toward the outer side, thereby
preventing local deformation and reducing the load on the members. Therefore, fit
accuracy can be improved, thereby achieving increased joint strength. Moreover, since
this is an easier method, as compared with an electromagnetic forming method or other
machining methods, the two members can be joined together at low cost. Brief Description
of Drawings
[Fig. 1A] Fig. 1A is a perspective view of a channel-type steel component having a
circular hole and an aluminum pipe having a circular cross-sectional shape.
[Fig. 1B] Fig. 1B is a perspective view of the steel component and the aluminum pipe
in Fig. lAin a clinched state.
[Fig. 2A] Fig. 2A is a cross-sectional view illustrating a state before a clinching
process according to a first embodiment of the present invention.
[Fig. 2B] Fig. 2B is a cross-sectional view illustrating a state where the clinching
process according to the first embodiment of the present invention is being performed.
[Fig. 2C] Fig. 2C is a cross-sectional view illustrating a state after the clinching
process according to the first embodiment of the present invention.
[Fig. 2D] Fig. 2D is a cross-sectional view illustrating a state where a rubber piece
is being pulled out after the clinching process according to the first embodiment
of the present invention.
[Fig. 3A] Fig. 3A is a cross-sectional view illustrating a state before the clinching
process when a rubber piece according to a modification of the first embodiment of
the present invention is a fluid sealing member.
[Fig. 3B] Fig. 3B is a cross-sectional view illustrating a state after the clinching
process when the rubber piece according to the modification of the first embodiment
of the present invention is a fluid sealing member.
[Fig. 4A] Fig. 4A is a perspective view of a steel component having a circular hole
and an aluminum pipe having a rectangular cross-sectional shape.
[Fig. 4B] Fig. 4B is a perspective view of a steel component having a rectangular
hole and an aluminum pipe having a circular cross-sectional shape.
[Fig. 5A] Fig. 5A is a cross-sectional view of an example of a joining section of
a steel component having undergone a burring process.
[Fig. 5B] Fig. 5B is a cross-sectional view of another example of a joining section
of a steel component having undergone a burring process.
[Fig. 5C] Fig. 5C is a cross-sectional view of another example of a joining section
of a steel component having undergone a burring process.
[Fig. 6A] Fig. 6A is a perspective view of a joining section of a steel component
having a circular hole having undergone a burring process.
[Fig. 6B] Fig. 6B is a perspective view of a joining section of a steel component
having a rectangular hole having undergone a burring process.
[Fig. 7A] Fig. 7A is a cross-sectional view illustrating a state before a clinching
process performed by using an outer-frame mold according to a second embodiment of
the present invention.
[Fig. 7B] Fig. 7B is a cross-sectional view illustrating a state after the clinching
process performed by using the outer-frame mold according to the second embodiment
of the present invention.
[Fig. 8A] Fig. 8A is a perspective view of an aluminum pipe formed into a cylindrical
tube shape.
[Fig. 8B] Fig. 8B is a perspective view of an aluminum pipe formed into a hexagonal
tube shape.
[Fig. 8C] Fig. 8C is a perspective view of an aluminum pipe formed into a cross tube
shape.
[Fig. 9A] Fig. 9A is a cross-sectional view illustrating a state before a clinching
process performed by disposing a rubber piece only near a joining section in accordance
with a third embodiment of the present invention.
[Fig. 9B] Fig. 9B is a cross-sectional view illustrating a state after the clinching
process performed by disposing the rubber piece only near the joining section in accordance
with the third embodiment of the present invention.
[Fig. 10A] Fig. 10A is a cross-sectional view illustrating a state before a clinching
process in which an aluminum pipe is partially expanded by using an outer-frame mold
according to a modification of the third embodiment of the present invention.
[Fig. 10B] Fig. 10B is a cross-sectional view illustrating a state after the clinching
process in which the aluminum pipe is partially expanded by using the outer-frame
mold according to the modification of the third embodiment of the present invention.
[Fig. 11A] Fig. 11A is a cross-sectional view illustrating a state before a clinching
process performed by using a truncated-cone-shaped indenter according to a fourth
embodiment of the present invention.
[Fig. 11B] Fig. 11B is a cross-sectional view illustrating a state after the clinching
process performed by using the truncated-cone-shaped indenter according to the fourth
embodiment of the present invention.
[Fig. 12A] Fig. 12A is a cross-sectional view illustrating a state before a clinching
process performed by compressing an aluminum pipe according to a fifth embodiment
of the present invention in an axial direction.
[Fig. 12B] Fig. 12B is a cross-sectional view illustrating a state after the clinching
process performed by compressing the aluminum pipe according to the fifth embodiment
of the present invention in the axial direction.
[Fig. 13A] Fig. 13A is a cross-sectional view illustrating a state before a clinching
process performed by using an indenter equipped with an outer frame in accordance
with a modification of the fifth embodiment of the present invention.
[Fig. 13B] Fig. 13B is a cross-sectional view illustrating a state after the clinching
process performed by using the indenter equipped with the outer frame in accordance
with the modification of the fifth embodiment of the present invention.
[Fig. 14A] Fig. 14A is a perspective view of a steel component having a circular hole
and an aluminum pipe having a circular cross-sectional shape when the two are clinched
together at two locations in accordance with a sixth embodiment of the present invention.
[Fig. 14B] Fig. 14B is a perspective view of a steel component having a rectangular
hole and an aluminum pipe having a rectangular cross-sectional shape when the two
are clinched together at two locations in accordance with the sixth embodiment of
the present invention.
[Fig. 15A] Fig. 15A is a perspective view of a hat-channel-type steel component having
a circular hole and an aluminum pipe having a circular cross-sectional shape when
the two are clinched together at two locations in accordance with a modification of
the sixth embodiment of the present invention.
[Fig. 15B] Fig. 15B is a perspective view of a hat-channel-type steel component having
a rectangular hole and an aluminum pipe having a rectangular cross-sectional shape
when the two are clinched together at two locations in accordance with a modification
of the sixth embodiment of the present invention.
[Fig. 16] Fig. 16 is a cross-sectional view illustrating a state where the clinching
process in Figs. 15A and 15B is being performed.
[Fig. 17A] Fig. 17A is a cross-sectional view illustrating a state after the clinching
process in Fig. 16A.
[Fig. 17B] Fig. 17B is a cross-sectional view illustrating a state after the clinching
process in Fig. 16A is performed by partial expansion.
[Fig. 18A] Fig. 18A is a cross-sectional view illustrating a state after a steel component
and an aluminum pipe are clinched together at surfaces having bead sections in accordance
with a modification of a seventh embodiment of the present invention.
[Fig. 18B] Fig. 18B is a cross-sectional view taken along line XVIII-XVIII in Fig.
18A.
[Fig. 19] Fig. 19 is a cross-sectional view illustrating a state after a clinching
process performed by using split rubber pieces according to an eighth embodiment of
the present invention.
[Fig. 20A] Fig. 20A is a cross-sectional view illustrating a state after a clinching
process performed by inserting a plate between split rubber pieces in accordance with
a modification of the eighth embodiment of the present invention.
[Fig. 20B] Fig. 20B is a cross-sectional view illustrating a state after a clinching
process performed by using a rubber piece with a different hardness at a joining section
in accordance with a modification of the eighth embodiment of the present invention.
[Fig. 21A] Fig. 21A is a perspective view illustrating a state before a resinous tube
component and an aluminum pipe according to a ninth embodiment of the present invention
are clinched together.
[Fig. 21B] Fig. 21B is a perspective view illustrating a state after the resinous
tube component and the aluminum pipe in Fig. 21A are clinched together.
[Fig. 22A] Fig. 22A is a cross-sectional view illustrating the state before the resinous
tube component and the aluminum pipe in Fig. 21A are clinched together.
[Fig. 22B] Fig. 22B is a cross-sectional view illustrating the state after the resinous
tube component and the aluminum pipe in Fig. 21A are clinched together.
[Fig. 23] Fig. 23 is a perspective view of a steel bumper beam and an aluminum stay
according to a tenth embodiment of the present invention.
[Fig. 24A] Fig. 24A is a cross-sectional view of a bulging jig according to the tenth
embodiment of the present invention.
[Fig. 24B] Fig. 24B is a cross-sectional view of a steel bumper beam and an aluminum
stay having the bulging jig inserted therein, according to the tenth embodiment of
the present invention.
[Fig. 25A] Fig. 25A is a cross-sectional view illustrating a state before a clinching
process according to the tenth embodiment of the present invention.
[Fig. 25B] Fig. 25B is a cross-sectional view illustrating a state after the clinching
process according to the tenth embodiment of the present invention.
[Fig. 26A] Fig. 26A is a cross-sectional view illustrating a state where the bulging
jig has been removed after the clinching process according to the tenth embodiment
of the present invention.
[Fig. 26B] Fig. 26B is a cross-sectional view taken along line XXVI-XXVI in Fig. 26A.
[Fig. 27A] Fig. 27A is a perspective view of an aluminum pipe according to an eleventh
embodiment of the present invention.
[Fig. 27B] Fig. 27B is a cross-sectional view illustrating a state before a clinching
process, taken along line XXVI-XXVI in Fig. 27A.
[Fig. 27C] Fig. 27C is a cross-sectional view illustrating a state after the clinching
process, taken along line XXVI-XXVI in Fig. 27A.
[Fig. 27D] Fig. 27D is a plan view of the aluminum pipe and rubber pieces according
to the eleventh embodiment of the present invention.
[Fig. 27E] Fig. 27E is a plan view of the aluminum pipe and rubber pieces with a different
shape, according to the eleventh embodiment of the present invention.
[Fig. 27F] Fig. 27F is a plan view of the aluminum pipe, rubber pieces, and L-shaped
angles according to the eleventh embodiment of the present invention.
[Fig. 28A] Fig. 28A is a cross-sectional view illustrating a state before a clinching
process according to a twelfth embodiment of the present invention.
[Fig. 28B] Fig. 28B is a cross-sectional view illustrating a state after the clinching
process according to the twelfth embodiment of the present invention.
[Fig. 29A] Fig. 29A is a plan view illustrating a state before and after a clinching
process according to a thirteenth embodiment of the present invention.
[Fig. 29B] Fig. 29B is a plan view illustrating a state before and after the clinching
process according to the thirteenth embodiment of the present invention.
[Fig. 29C] Fig. 29C is a front view illustrating a state before the clinching process
according to the thirteenth embodiment of the present invention.
[Fig. 29D] Fig. 29D is a front view illustrating a state after the clinching process
when a fixation jig according to the thirteenth embodiment of the present invention
is not used.
[Fig. 29E] Fig. 29E is a front view illustrating a state after the clinching process
when the fixation jig according to the thirteenth embodiment of the present invention
is used.
Description of Embodiments
[0037] Embodiments of the present invention will be described below with reference to the
appended drawings. In the following description, terms that express directions and
positions (such as "upper side" and "lower side") are sometimes used, but these terms
are used for providing an easier understanding of the present invention and are not
to limit the technical scope of the invention. Furthermore, the following description
merely relates to examples of embodiments of the present invention and is not intended
to limit the application or the purpose of the invention.
[0038] Although materials of individual components are exemplified in the embodiments described
below, the materials of the components in all of the embodiments are particularly
not limited to the exemplified materials, and the present invention is applicable
to arbitrary materials.
(First Embodiment)
[0039] A method for joining a steel component (first member) 10 and an aluminum pipe (second
member) 20 together by clinching will be described with reference to Figs. 1A to 2D.
[0040] As shown in Fig. 1A, the steel component 10 is composed of high-tensile steel and
has a shape of a channel. The steel component 10 includes a bottom wall (first section)
11, two side walls 12 and 13 extending vertically upward from the base wall 11, and
upper walls 14 extending horizontally outward from the two side walls 12 and 13. The
bottom wall 11 is provided with a hole (first hole) 15 in which the aluminum pipe
20 is fittable. The aluminum pipe 20 is composed of an aluminum alloy, has a hollow
and circular cross-sectional shape, and extends along an axis L. The axis L extends
through the center of the aluminum pipe 20 and through the center of the hole 15 in
the steel component 10.
[0041] As shown in Fig. 1B, with regard to the aluminum pipe 20 and the steel component
10, the aluminum pipe 20 expands from the inner side toward the outer side so that
an upper edge 21 thereof in the drawing is pressed and bent, whereby the aluminum
pipe 20 becomes clinched to the hole 15 in the steel component 10. The hole 15 in
the steel component 10 preferably has a shape analogous to the cross-sectional shape
of the aluminum pipe 20 and a size that is as small as possible within a range in
which the aluminum pipe 20 is fittable therein.
[0042] The steel component 10 and the aluminum pipe 20 are clinched together in accordance
with the following procedure.
[0043] As shown in Figs. 2A to 2D, the steel component 10 and the aluminum pipe 20 are clinched
together by using a rubber piece (elastic body) 30.
[0044] First, as shown in Fig. 2A, the aluminum pipe 20 is fitted into the hole 15 in the
steel component 10, the rubber piece 30 is inserted into the aluminum pipe 20, and
the components are set in a pressing device 40. Alternatively, the aluminum pipe 20
may be fitted into the hole 15 in a state where the rubber piece 30 is inserted in
the aluminum pipe 20. The pressing device 40 includes an indenter 43 and a strike
plate 42. The indenter 43 has a flat lower surface and uses the lower surface to press
against the steel component 10 or the rubber piece 30. The strike plate 42 has a flat
upper surface, and the steel component 10 and the rubber piece 30 are placed on the
upper surface. The rubber piece 30 has a columnar shape with a diameter that allows
it to be insertable into the aluminum pipe 20, and has an overall length that is larger
than that of the aluminum pipe 20. Therefore, when in the set state, the rubber piece
30 partially protrudes from the upper end of the aluminum pipe 20. Thus, when the
pressing device 40 begins pressing such that the strike plate 42 and the indenter
43 relatively approach each other, the rubber piece 30 is pressed first. However,
the rubber piece 30 does not necessarily have to protrude from the upper end of the
aluminum pipe 20, and may alternatively be flush with the upper end of the aluminum
pipe 20 or be accommodated therein.
[0045] Next, as shown in Fig. 2B, the pressing device 40 applies a compressive external
force to the rubber piece 30 along the axis L. The rubber piece 30 dimensionally enlarges
in the diameter direction as its size decreases along the axis L. Accordingly, the
rubber piece 30 is caused to elastically deform (expand) outward from the axis L,
thereby causing the aluminum pipe 20 to expand. Then, as shown in Fig. 2C, the aluminum
pipe 20 is further expanded by being further compressed by the pressing device 40.
At the same time, the upper edge 21 in the drawing is pressed and bent toward the
steel component 10, so that the aluminum pipe 20 becomes clinched to the steel component
10.
[0046] After the clinching process, the rubber piece 30 from which the compressive force
of the pressing device 40 has been removed restores its original shape with its own
elastic force, as shown in Fig. 2D, so that the rubber piece 30 can be readily removed
from the aluminum pipe 20.
[0047] According to this method, the rubber piece 30 is expanded outward so that the aluminum
pipe 20 expands uniformly, thereby preventing local deformation and reducing the load
on the members 10 and 20. This is because the aluminum pipe 20 can be uniformly deformed
by utilizing the properties in which the rubber piece 30 compressed along the axis
L expands uniformly from the inner side toward the outer side. Therefore, fit accuracy
can be improved, thereby achieving increased joint strength. Moreover, this is an
easier method, as compared with an electromagnetic forming method or other machining
methods.
[0048] An electromagnetic forming method is usable only on electrically conductive materials
and has limitations with respect to cross-sectional shapes and dimensions depending
on coils to be used. In contrast, this method is not dependent on materials and has
no limitations related to cross-sectional shapes and dimensions. Moreover, since the
method is executable in a facility that applies a compressive force to the rubber
piece 30, an electrical facility that requires a large-capacity capacitor, as in the
electromagnetic forming method, is not necessary.
[0049] According to this method, two members can be joined together, so that a multi-material
process can be readily executed at low cost. Therefore, as described above, this method
can be used on members composed of various materials other than the two components
composed of high-tensile steel and an aluminum alloy. The same applies to the subsequent
embodiments.
[0050] The material used as the rubber piece 30 to be inserted into the aluminum pipe 20
is preferably, for example, urethane rubber, chloroprene rubber, CNR rubber (chloroprene
rubber + nitrile rubber), or silicon rubber. Moreover, it is preferable that the rubber
piece 30 have a Shore A hardness of 30 or higher.
[0051] A member to be inserted into the aluminum pipe 20 is not limited to the rubber piece
30. For example, as shown in Figs. 3A and 3B, a fluid sealing member 32 having gas
or liquid sealed therein may be used in place of the rubber piece 30. Other members
that expand outward in accordance with a compressive force so as to expand the aluminum
pipe 20 are also usable. It is preferable that the member deforms uniformly like the
rubber piece 30 when expanding outward in response to a compressive force.
[0052] Furthermore, as shown in Figs. 4A and 4B, the shape and size of the hole 15 provided
in the bottom wall 11 of the steel component 10 do not have to be analogous to the
cross-sectional shape of the aluminum pipe 20 to be fitted thereto. Specifically,
a steel component 10 having a circular hole 15 and an aluminum pipe 20 having a rectangular
cross-sectional shape may be clinched together as in Fig. 4A, or a steel component
10 having a rectangular hole 15 and an aluminum pipe 20 having a circular cross-sectional
shape may be clinched together as in Fig. 4B.
[0053] Furthermore, as shown in Figs. 5A to 5C, a burring process (flange-up process) may
be performed on the hole 15 for preventing deformation of the steel component 10,
for reducing damages to the aluminum pipe 20, and for increasing the clinching strength.
Conceivable shapes obtained as a result of the burring process include, for example,
various cross-sectional shapes shown in Figs. 5A to 5C. In Fig. 5A, a shoulder section
15a has a large radius. In Fig. 5B, the shoulder section 15a is chamfered. In Fig.
5C, a rolling process is employed. Accordingly, even in a case where the steel component
10 has high strength, cracking of the steel component 10 as a result of machining
can be effectively prevented.
[0054] The burring process may be performed in the upward direction or the downward direction
in the drawings. Preferably, as indicated by a two-dot chain line in Fig. 2A, the
burring process is performed in the downward direction in the drawing such that a
part that is bent as a result of the burring process does not appear on the top surface
of the steel component 10.
[0055] As shown in Figs. 6A and 6B, there are various conceivable shapes, such as a circular
shape (see Fig. 6A) or a rectangular shape (see Fig. 6B), for the hole 15 that is
to undergo the burring process. In particular, in a case where the hole 15 is polygonal,
corner sections 15b may be cut out, and only straight side sections 15c may be bent
upward, as shown in Fig. 6B, so that the corner sections 15b can be prevented from
cracking.
(Second Embodiment)
[0056] A joining method according to this embodiment shown in Figs. 7A and 7B is similar
to that in the first embodiment in Figs. 2A to 2D except for a feature related to
an outer-frame mold 41. Therefore, parts identical to those in the configuration shown
in Figs. 2A to 2D will be given the same reference signs, and descriptions thereof
will be omitted.
[0057] As shown in Fig. 7A, in this embodiment, the steel component 10 and the aluminum
pipe 20 are clinched together by using the outer-frame mold 41. The outer-frame mold
41 has a cylindrical shape concentric with the aluminum pipe 20. The outer-frame mold
41 is disposed between the strike plate 42 and the steel component 10 and at the outer
side of the aluminum pipe 20. When set in the pressing device 40, the aluminum pipe
20 and the outer-frame mold 41 have a gap therebetween. By applying pressure using
the indenter 43 in this state, the aluminum pipe 20 can conform to the shape of the
inner surface of the outer-frame mold 41 when the aluminum pipe 20 expands, as shown
in Fig. 7B.
[0058] According to this method, as shown in Figs. 8A to 8C, the inner surface of the outer-frame
mold 41 may have various polygonal shapes, such as a hexagonal shape (see Fig. 8B)
or a cross shape (see Fig. 8C), in addition to the cylindrical shape (see Fig. 8A).
With regard to these shapes, an appropriate shape can be selected in view of, for
example, component performance. For example, if the aluminum pipe 20 is a bumper stay,
which is one of automobile components, the inner surface of the outer-frame mold 41
may be given small recesses and protrusions so that these small recesses and protrusions
are transferred onto the aluminum pipe 20, thereby achieving enhanced performance
for absorbing impact energy in the event of a collision.
(Third Embodiment)
[0059] A joining method according to this embodiment shown in Figs. 9A to 10B is similar
to that in the first embodiment in Figs. 2A to 2D except for a feature related to
an expanding region 22 of the aluminum pipe 20. Therefore, parts identical to those
in the configuration shown in Figs. 2A to 2D will be given the same reference signs,
and descriptions thereof will be omitted.
[0060] As shown in Fig. 9A, in this embodiment, the rubber piece 30 to be inserted into
the aluminum pipe 20 is reduced in length, such that the rubber piece 30 is disposed
only near the joining section of the aluminum pipe 20. Moreover, the strike plate
42 has a columnar protrusion 42a extending upward. The protrusion 42a is inserted
into the aluminum pipe 20 and supports the rubber piece 30. In other words, the lower
end of the rubber piece 30 is in contact with the upper end of the protrusion 42a,
and the upper end of the rubber piece 30 is in contact with the lower end of the indenter.
[0061] According to this method, an outward expanding force does not act on the part where
the rubber piece 30 is not disposed. Thus, as shown in Fig. 9B, the expanding region
22 of the aluminum pipe 20 is limited, so that the aluminum pipe 20 and the steel
component 10 can be clinched together by causing only the region near the joining
section of the aluminum pipe 20 to expand. Selection of whether the aluminum pipe
20 is to be substantially entirely deformed as in the first and second embodiments
described above or whether the aluminum pipe 20 is to be partially deformed as in
this embodiment may be made, as appropriate, based on, for example, the relationship
with the component performance.
[0062] As shown in Figs. 10A and 10B, a cylindrical outer-frame mold 44 that regulates expansion
of the aluminum pipe 20 may be disposed therearound. The outer-frame mold 44 has,
at the upper end thereof, a large-diameter section 44a with a large inner diameter
near the joining section so as to expand only near the joining section. The inner
diameter excluding that of the large-diameter section 44a is substantially equal to
the outer diameter of the aluminum pipe 20. Therefore, by using the outer-frame mold
44, the expanding region 22 can be controlled with high accuracy such that the aluminum
pipe 20 expands only near the joining section.
(Fourth Embodiment)
[0063] A joining method according to this embodiment shown in Figs. 11A and 11B is similar
to that in the third embodiment in Figs. 10A and 10B except for a feature related
to the shape of the indenter 43. Therefore, parts identical to those in the configuration
shown in Figs. 10A and 10B will be given the same reference signs, and descriptions
thereof will be omitted.
[0064] As shown in Fig. 11A, the indenter 43 included in the pressing device 40 according
to this embodiment has a downwardly-tapered truncated-cone shape and has a protrusion
43a and a brim 43b. Sometimes, a high forming force is required for expanding the
edge 21 of the aluminum pipe 20 protruding upward from the steel component 10, and
there are cases where the clinching is insufficient with the deformation of the rubber
piece 30 alone or the durability of the rubber piece 30 may become a problem due to
large deformation thereof. In such cases, the method according to this embodiment
is effective.
[0065] As shown in Fig. 11B, at the final stage of the forming process, the upper edge 21
of the aluminum pipe 20 protruding upward from the steel component 10 is pressed and
expanded outward directly by the protrusion 43a of the indenter 43 without the intervention
of the rubber piece 30, and is further bent toward the steel component 10. This enables
more secure clinching. Moreover, the durability of the rubber piece 30 is improved
since excessive load does not act on the rubber piece 30.
(Fifth Embodiment)
[0066] A joining method according to this embodiment shown in Figs. 12A and 12B is similar
to that in the first embodiment in Figs. 2A to 2D except for a feature related to
the shapes of the indenter 43 and the strike plate 42. Therefore, parts identical
to those in the configuration shown in Figs. 2A to 2D will be given the same reference
signs, and descriptions thereof will be omitted.
[0067] As shown in Fig. 12A, in this embodiment, the strike plate 42 includes a columnar
protrusion 42a extending upward and a brim 42b provided around the protrusion 42a.
The indenter 43 includes a columnar protrusion 43a extending downward and a brim 43b
provided around the protrusion 43a. The protrusions 42a and 43a are inserted in the
aluminum pipe 20.
[0068] As shown in Fig. 12B, when performing pressing, the brims 42b and 43b come into contact
with the respective ends of the aluminum pipe 20. Thus, the brims 42b and 43b apply
compressive forces along the axis L onto the aluminum pipe 20.
[0069] According to this method, the aluminum pipe 20 is also compressed along the axis
L so as to assist with outward expansion of the aluminum pipe 20. Specifically, together
with the expanding force applied by the rubber piece 30 from the inner side of the
aluminum pipe 20, the aluminum pipe 20 can be expanded more reliably, thereby enabling
clinching.
[0070] As shown in Figs. 13A and 13B, it is also effective to dispose an outer frame 45
at the outer side of a part of the aluminum pipe 20 that is not to be expanded (i.e.,
the edge 21 in this embodiment). The outer frame 45 is cylindrical and is disposed
around the edge 21 of the aluminum pipe 20. By disposing the outer frame 45, deformation
of the edge 21 of the aluminum pipe 20 is regulated, so that a shape according to
the intended use can be obtained.
(Sixth Embodiment)
[0071] A joining method according to this embodiment shown in Figs. 14A to 17B is similar
to that in the first embodiment in Figs. 2A to 2D except for a feature related to
the number of joining sections. Therefore, parts identical to those in the configuration
shown in Figs. 2A to 2D will be given the same reference signs, and descriptions thereof
will be omitted.
[0072] As shown in Fig. 14A, in this embodiment, the steel component 10 and the aluminum
pipe 20 are clinched together at two locations. The steel component 10 includes a
bottom wall 11, an upper wall (second section) 14 disposed parallel to the bottom
wall 11, and two side walls 12 and 13 connecting these walls, all of which constitute
a closed cross section. The bottom wall 11 is provided with a hole 15 (first hole).
The upper wall 14 is provided with a hole 17 (second hole). As shown in Fig. 14B,
the aluminum pipe 20 is clinched to these two holes 15 and 17.
[0073] Fig. 16 is a cross-sectional view during a clinching process. In the clinching process
performed on the two holes 15 and 17, the indenter 43 is used to press and bend the
edge 21 of the aluminum pipe 20 toward the steel component 10 as in the first embodiment,
and the aluminum pipe 20 is further expanded so as to be clinched to the upper hole
17 in the drawing. The aluminum pipe 20 is clinched to the lower hole 15 in the drawing
by being simply expanded.
[0074] By performing clinching at two locations as in this embodiment, the joint strength
can be further increased, as compared with the case where clinching is performed at
a single location. In particular, the clinching method using the rubber piece 30 is
the same as the case where clinching is performed at a single location in terms of
the facility used, and is thus effective since the method can easily be used when
performing clinching at a plurality of locations.
[0075] The shape of the steel component 10 or the aluminum pipe 20 when performing clinching
at two locations is not limited to the above. For example, the steel component 10
may have a hat-channel shape, as shown in Figs. 15A and 15B, or another shape.
[0076] Furthermore, as shown in Fig. 17A, the entire aluminum pipe 20 may be freely expanded
when performing the clinching process. By using the outer-frame mold 44 described
with reference to Figs. 7A and 7B, only the regions of the aluminum pipe 20 near the
joining sections may be clinched by being expanded, as shown in Fig. 17B.
(Seventh Embodiment)
[0077] A joining method according to this embodiment shown in Figs. 18A and 18B is similar
to that in the sixth embodiment in Fig. 16 except for features related to joining
locations and bead sections 12a and 13a. Therefore, parts identical to those in the
configuration shown in Fig. 16 will be given the same reference signs, and descriptions
thereof will be omitted.
[0078] As shown in Figs. 18A and 18B, in the steel component 10 according to this embodiment,
the two side walls 12 and 13 are respectively provided with the bead sections 12a
and 13a. The bead sections 12a and 13a are inward protrusions and extend along the
axis L. The aluminum pipe 20 is entirely clinched to the hole 15 in the bottom wall
11 and to the bead sections 12a and 13a of the two side walls 12 and 13.
[0079] As shown in Fig. 18B, the aluminum pipe 20 and the steel component 10 are clinched
together by including the bead sections 12a and 13a of the side walls 12 and 13 so
that the joint strength can be further increased. Moreover, because the aluminum pipe
20 and the steel component 10 are clinched together by including the bead sections
12a and 13a, rotation of the aluminum pipe 20 relative to the steel component 10 can
be regulated. Accordingly, the bead sections 12a and 13a are effective for preventing
the aluminum pipe 20 from rotating. Alternatively, for preventing the aluminum pipe
20 from rotating, it is also effective to give the edge of the hole 15 a cutout shape
or a shape other than the circular shape.
(Eighth Embodiment)
[0080] A joining method according to this embodiment shown in Fig. 19 is similar to that
in the seventh embodiment in Fig. 18A except for a feature related to split rubber
pieces 30. Therefore, parts identical to those in the configuration shown in Fig.
18A will be given the same reference signs, and descriptions thereof will be omitted.
[0081] As shown in Fig. 19, in this embodiment, the rubber piece 30 is split near the hole
15. According to this method, the rubber piece 30 is split at the hole 15, that is,
at the joining section, so that deformation of the hole 15 and the bottom wall 11
of the steel component 10 can be prevented. Specifically, because the rubber piece
30 is split, an expanding force is not applied to the hole 15, so that the hole 15
and the bottom wall 11 can maintain their original shapes.
[0082] Furthermore, as shown in Figs. 20A and 20B, it is preferable that a tabular plate
31 be inserted between the rubber pieces 30 split at the joining section and inserted
in the aluminum pipe 20. The plate 31 may be composed of metal or resin so long as
it is strong enough not to deform in response to a compressive force received from
the rubber piece 30, and preferably has a thickness of 15 mm or smaller.
[0083] According to this method, the plate 31 exists in the joining section so that deformation
of the hole 15 and the bottom wall 11 of the steel component 10 can be prevented more
reliably. Because the plate 31 does not expand, an expanding force is not applied
to the hole 15, so that the hole 15 and the bottom wall 11 can maintain their original
shapes.
[0084] As an alternative to Fig. 20A in which the rubber piece 30 is split and the plate
31 is disposed between the split pieces, a rubber piece 30 partially composed of a
different material may be used, as in Fig. 20B. In Fig. 20B, the rubber piece is a
non-split single piece but has a high-hardness section 30a near the joining section.
Specifically, the rubber piece 30 has a high hardness only in a part thereof near
the joining section. Thus, this high-hardness section 30a has a function similar to
that of the plate 31, so that the hole 15 and the bottom wall 11 can maintain their
original shapes.
(Ninth Embodiment)
[0085] A joining method according to this embodiment shown in Figs. 21A to 22B is similar
to that in the fifth embodiment in Figs. 9A and 9B except that the steel component
10 is replaced with a cylindrical resinous tube component 50. Therefore, parts identical
to those in the configuration shown in Figs. 9A and 9B will be given the same reference
signs, and descriptions thereof will be omitted.
[0086] As shown in Figs. 21A and 21B, in this embodiment, the cylindrical resinous tube
component 50 having a flange at the upper end thereof and the aluminum pipe 20 are
clinched together. Like the resinous tube component 50, the target member does not
have to be tabular or be composed of metal. As mentioned above, the aluminum pipe
20 deforms outward in response to a compressive force applied along the axis L from
the rubber piece 30 so as to expand. Therefore, this method is not limited to be used
on electrically conductive materials, as in the electromagnetic forming method, and
can also be used on resin materials, and the shape is not limited to the tabular shape.
[0087] Figs. 22A and 22B are cross-sectional views illustrating states before and after
the resinous tube component and the aluminum pipe in Fig. 21A are clinched together.
As shown in Figs. 22A and 22B, the aluminum pipe 20 is clinched to the cylindrical
resinous tube component 50 by being expanded at the opposite ends thereof.
(Tenth Embodiment)
[0088] An example in which the present invention is applied to a bumper, which is one of
automobile components, will now be described.
[0089] As shown in Fig. 23, a cylindrical aluminum stay (second member) 120 is clinched
to a closed-cross-section steel bumper beam (first member) 110 having a partition
111 in the middle. The steel bumper beam 110 has openings 113 and 113 at opposite
sides thereof. The openings 113 and 113 are separated from each other by the partition
111. For illustrative purposes, a top plate 114 (see Fig. 26A) of the steel bumper
beam 110 is shown in a removed state in Fig. 23. As shown in Fig. 24A, for the implementation,
a bulging jig 150 including a round-rod-shaped rubber piece 130, a tabular steel plate
131, and a narrow round rod 140 composed of steel is used. A through-hole 112 into
which the narrow round rod 140 is insertable is provided in the middle of the rubber
piece (elastic body) 130 and the tabular plate 131. One end of the round rod 140 is
provided with a brim 141 for preventing the rubber piece 130 from falling out. The
rubber piece 130 is split into two, one of which is provided with a countersunk hole
132 to which the brim 141 of the round rod 140 is fittable. The tabular plate 131
is placed on the rubber piece 130 with the countersunk hole 132 facing downward, the
other rubber piece 130 is placed thereon, and the round rod 140 is subsequently inserted
from below. The plate 131 has a circular shape with an outer diameter of φ83.5 mm
and a thickness of 10 mm. The rubber pieces 130 used are composed of urethane rubber
and have a circular shape with an outer diameter of φ83.5 mm, a length of 50 mm, and
a Shore A hardness of 90.
[0090] Fig. 24B illustrates a state where the aluminum stay 120 is fitted in the hole (hole)
112 (see Fig. 23) provided in the steel bumper beam 110, and the aforementioned bulging
jig 150 is inserted in the aluminum stay 120. As shown in Fig. 23, the steel bumper
beam 110 is processed into a closed-cross-sectional shape having a partition 111 in
the middle by roll-forming a 1470-MPa-class cold-rolled steel plate having a thickness
of 1.4 mm and has a circular hole 112 having an outer diameter of φ90.2 mm formed
in the joining section with the aluminum stay 120. In this case, the partition 111
in the middle is partially removed. The aluminum stay 120 is formed of a circular
pipe composed of an aluminum alloy A6063 and having a thickness of 3 mm, an outer
diameter of φ90 mm, and a length of 150 mm.
[0091] Next, a clinching process shown in Figs. 25A and 25B will be described. Fig. 25A
illustrates a state where the steel bumper beam 110, the aluminum stay 120, and the
bulging jig 150 are set on a lower mold 152, and a presser jig 151 is disposed thereon.
This state is set in the pressing device 40 (see Figs. 2A to 2D), and a slide having
the presser jig 151 set thereon is lowered so as to apply a compressive force to the
rubber pieces 130. In this case, pressure along the axis L of the aluminum pipe 20
is not applied, as shown in Figs. 9A and 9B.
[0092] Fig. 25B illustrates a state where the slide is at the bottom dead center. The rubber
pieces 130 are compressed by the presser jig 151 so as to expand in the horizontal
direction, thereby bulge-forming the aluminum stay 120. Because the tabular plate
131 is inserted, the joint surface of the steel bumper beam 110 does not receive an
excessive force so that undesired deformation is suppressed, whereby a clinching process
with high fit accuracy is completed.
[0093] Figs. 26A and 26B illustrate the steel bumper beam 110 and the aluminum stay 120
upon completion of the clinching process. Fig. 26A is a cross-sectional view of the
steel bumper beam 110 and the aluminum stay 120 in a clinched state, and Fig. 26B
is a cross-sectional view taken along line XXVI-XXVI. This embodiment is characterized
in that the joint strength is high since clinching can be achieved at the middle partition
111 in addition to clinching at the hole 112 provided in the steel bumper beam 110
due to expansion of the aluminum stay 120 caused by the rubber pieces 130 shown in
Fig. 26B.
(Eleventh Embodiment)
[0094] A joining method according to this embodiment shown in Figs. 27A to 27F is similar
to that in the fifth embodiment in Figs. 9A and 9B except that the aluminum pipe 20
has a partition wall 23 therein and a plurality of rubber pieces 30 are inserted in
the aluminum pipe 20. Therefore, parts identical to those in the configuration shown
in Figs. 9A and 9B will be given the same reference signs, and descriptions thereof
will be omitted.
[0095] As shown in Fig. 27A, the aluminum pipe 20 according to this embodiment has outer
walls 24 extending along the axis L and having a rectangular shape in cross section
and the partition wall 23 provided inside the outer walls 24. The space inside the
aluminum pipe 20 is divided into four spaces by the partition wall 23 having a cross
shape in plan view. By providing the partition wall 23 in this manner, the strength
of the aluminum pipe 20 can be increased. The cross-sectional shape is not limited
to the rectangular shape and may be a freely-chosen shape.
[0096] As shown in Figs. 27B and 27C, the indenter 43 according to this embodiment is provided
with a cutout 43c in conformity to the shape of the partition wall 23. By providing
the cutout 43c, the clinching process can be completed without interference with the
aluminum pipe 20 even when the rubber pieces 30 are pressed.
[0097] Accordingly, because the clinching process is performed by using the plurality of
rubber pieces 30 (i.e., four in this embodiment), concentration of stress caused by
deformation can be prevented, so that the load on the steel component 10 and the aluminum
pipe 20 can be reduced.
[0098] The shape of each rubber piece 30 according to this embodiment is not limited in
particular. For example, as shown in Fig. 27D, the corners of the four inserted rubber
pieces 30 may be round-chamfered so as to reduce the load on the corners of the aluminum
pipe 20, thereby preventing cracking and damaging. As shown in Fig. 27E, C-chamfering
may be performed, similarly to round-chamfering. As shown in Fig. 27F, although the
shape of the four inserted rubber pieces 30 is columnar, steel L-shaped angles 46
may be disposed along the partition wall 23 within the aluminum pipe 20. Consequently,
the load on the partition wall 23 can be reduced, thereby suppressing deformation.
(Twelfth Embodiment)
[0099] A joining method according to this embodiment shown in Figs. 28A and 28B is similar
to that in the fifth embodiment in Figs. 9A and 9B except that the steel component
10 and the aluminum pipe 20 are joined together in an inclined state. Therefore, parts
identical to those in the configuration shown in Figs. 9A and 9B will be given the
same reference signs, and descriptions thereof will be omitted.
[0100] As shown in Figs. 28A and 28B, the aluminum pipe 20 according to this embodiment
has an end surface 25 inclined relative to the axis L. The steel component 10 is bent
and is placed on an inclined surface 42c. The aluminum pipe 20 is placed on the inclined
surface 42c in a state where the inclined end surface 25 is in contact therewith,
and is clinched to the steel component 10. Therefore, the steel component 10 and the
aluminum pipe 20 are clinched together in an inclined state. Opposite end surfaces
30b and 30c of the rubber piece 30 according to this embodiment are formed and disposed
parallel to the inclined end surface 25 of the aluminum pipe 20. A pressing surface
43d of the indenter 43 is also formed parallel to the end surfaces 30b and 30c of
the rubber piece 30.
[0101] Accordingly, this method can be used for clinching the steel component 10 and the
aluminum pipe 20 together in an inclined state, which is often seen from a practical
standpoint. Specifically, the opposite end surfaces 30b and 30c of the rubber piece
30 are given the same angle as the joining angle, so that the rubber piece 30 expands
uniformly, whereby the aluminum pipe 20 can be expanded uniformly.
(Thirteenth Embodiment)
[0102] A joining method according to this embodiment shown in Figs. 29A to 29D is similar
to that in the fifth embodiment in Figs. 9A and 9B except that the steel component
10 is joined in a state where deformation thereof is restrained by a fixation jig
47. Therefore, parts identical to those in the configuration shown in Figs. 9A and
9B will be given the same reference signs, and descriptions thereof will be omitted.
[0103] As shown in Figs. 29A and 29B, the steel component 10 according to this embodiment
has a bottom wall 11 and an upright wall 18 extending along the axis L from the bottom
wall 11. The cross-sectional shape of the aluminum pipe 20 before the clinching process
is not particularly limited and may be circular (see the dashed line in Fig. 29A)
or rectangular (see the dashed line in Fig. 29B). The fixation jig 47 for suppressing
deformation is provided at the outer side of the steel component 10. The fixation
jig 47 is disposed along the upright wall 18 and is fixed from the directions of the
arrows in the drawings so as not to move outward. Although the fixation jig 47 used
in this embodiment is tabular, the shape of the fixation jig 47 is not limited to
this shape and may alternatively be a freely-chosen shape that can suppress deformation.
[0104] As shown in Figs. 29C to 29E, in a case where the fixation jig 47 is not provided,
the steel component 10 may deform in a warping manner when clinching is performed
(see Fig. 29D). However, with the fixation jig 47, deformation of the steel component
10 is restrained, so that deformation, such as warping, of the steel component 10
caused by expansion of the aluminum pipe 20 can be suppressed (see Fig. 29E). Reference
Signs List
- 10
- steel component (first member)
- 11
- bottom wall (first section)
- 12, 13
- side wall
- 12a, 13a
- bead section
- 14
- upper wall (second section)
- 15
- hole (first hole)
- 15a
- shoulder section
- 15b
- corner section
- 15c
- straight side section
- 17
- hole (second hole)
- 18
- upright wall
- 20
- aluminum pipe (second member)
- 21
- edge
- 22
- expanding region
- 23
- partition wall
- 24
- outer wall
- 25
- end surface
- 30
- rubber piece (elastic body)
- 30a
- high-hardness section
- 30b, 30c
- end surface
- 31
- plate
- 32
- fluid sealing member
- 40
- pressing device
- 41
- outer-frame mold
- 42
- strike plate
- 42a
- protrusion
- 42b
- brim
- 42c
- inclined surface
- 43
- indenter
- 43a
- protrusion
- 43b
- brim
- 43c
- cutout
- 43d
- pressing surface
- 44
- outer-frame mold
- 44a
- large-diameter section
- 45
- outer frame
- 46
- L-shaped angle
- 47
- fixation jig
- 50
- resinous tube component
- 110
- steel bumper beam (first member)
- 111
- partition
- 112
- hole (hole)
- 113
- opening
- 114
- top plate
- 120
- aluminum stay (second member)
- 130
- rubber piece (elastic body)
- 131
- plate
- 132
- countersunk hole
- 140
- round rod
- 141
- brim
- 150
- bulging jig
- 151
- presser jig
- 152
- lower mold