TECHNICAL FIELD
[0001] The present invention relates to a display body that displays a plurality of pieces
of information and a method for observing the display body.
BACKGROUND ART
[0002] Objects such as securities, certificates, brand-name products, high-price products,
electronic devices, and identifications should be counterfeit-resistant to protect
their values and information from others. To this end, a counterfeit-resistant display
body or display section may be attached to or integrated into such objects.
[0003] An example of an object including a counterfeit-resistant display section is a banknote
having a paper carrier and motifs printed on the surface of the carrier. A plurality
of minute holes extends through the carrier. In reflected light observation of this
banknote, the image information formed by the motifs on the banknote is visible, while
the image information formed by the minute holes is invisible. In transmitted light
observation, however, the image information formed by the minute holes is visible
(see Patent Document 1, for example).
PRIOR ART DOCUMENT
Patent Document
[0004] Patent Document 1: Japanese Laid-Open Patent Publication No.
2000-501036
SUMMARY OF THE INVENTION
Problems that the Invention is to Solve
[0005] The motifs of the banknote are two-dimensional print on the surface of the carrier,
while the minute holes are three-dimensional structures extending through the entire
thickness of the carrier. Two-dimensional print like the motifs and three-dimensional
structures like the minute holes are formed on or in the carrier in different steps.
Typically, the motifs and the holes are positioned relative to the carrier at different
times with different methods due to their differences in the dimensions and the techniques
of processing. This may result in the positions of motifs relative to the holes shifted
from the predetermined positions or varied among banknotes.
[0006] Such a problem is not limited to a display body that limits counterfeiting of an
object and may occur in a display body for decorating an object and a display body
that is observed for its own quality.
[0007] It is an objective of the present invention to provide a display body that displays
a plurality of pieces of information in accurate positional relationship, and a method
for observing the display body.
Means for Solving the Problems
[0008] To achieve the foregoing objective and in accordance with one aspect of the present
invention, a display body is provided that includes a first surface, a second surface,
a first optical component, and a second optical component. The first surface includes
a first optical surface and a second optical surface. First light is incident on the
first surface from an observation side. The second surface is located opposite to
the observation side with respect to the first surface. Second light is incident on
the second surface from a side opposite to the observation side with respect to the
second surface. The first optical component includes the first optical surface. The
first optical component forms first information, which is displayed on the observation
side, from the first light received on the first optical surface. The second optical
component includes the second optical surface. The second optical component receives
the second light transmitted through the second surface, forms second information,
which is displayed on the observation side, from the second light, and emits the second
information from the second optical surface. The second optical component is an uneven
structure. The uneven structure includes an uneven structure portion including a dielectric
that transmits light, and a metal layer covering at least a part of the uneven structure
portion. A surface of the metal layer that is opposite to an interface between the
uneven structure portion and the metal layer is the second optical surface. The uneven
structure includes a plasmon structure that receives the second light on the interface
and excites surface plasmons on the metal layer so that the second optical surface
emits transmitted light that forms the second information and differs from the second
light in color.
[0009] To achieve the foregoing objective and in accordance with another aspect of the present
invention, a method for observing a display body is provided. The display body includes
a first surface, a second surface, a first optical component, and a second optical
component. The first surface includes a first optical surface and a second optical
surface. First light is incident on the first surface from an observation side. The
second surface is located opposite to the observation side with respect to the first
surface. Second light is incident on the second surface from a side opposite to the
observation side with respect to the second surface. The first optical component includes
the first optical surface. The first optical component forms first information, which
is displayed on the observation side, from the first light received on the first optical
surface. The second optical component includes the second optical surface. The second
optical component receives the second light transmitted through the second surface,
forms second information, which is displayed on the observation side, from the second
light, and emits the second information from the second optical surface. The second
optical component is an uneven structure. The uneven structure includes an uneven
structure portion including a dielectric that transmits light, and a metal layer covering
at least a part of the uneven structure portion. A surface of the metal layer that
is opposite to an interface between the uneven structure portion and the metal layer
is the second optical surface. The uneven structure includes a plasmon structure that
receives the second light on the interface and excites surface plasmons on the metal
layer so that the second optical surface emits transmitted light that forms the second
information and differs from the second light in color. The method includes: causing
the first light to be incident on the first surface; observing the first information
formed by the first optical component from the first light incident on the first surface;
causing the second light to be incident on the second surface; and observing the second
information formed by the second optical component from the second light incident
on the second surface.
[0010] Since both of the first optical component and the second optical component include
parts of the first surface as optical surfaces, the first optical component and the
second optical component may be positioned relative to each other by a common method.
Alternatively, the first optical component and the second optical component may be
formed using the same type of technique.
[0011] For example, the shape of an original plate including a die for shaping the first
optical component and a die for shaping the second optical component may be transferred
to a substrate, or a substrate may be etched using a single mask that includes a mask
for forming the first optical component and a mask for forming the second optical
component.
[0012] Alternatively, the shape of an original plate for forming the first optical component
may be transferred to a substrate, and then the shape of an original plate for forming
the second optical component may be transferred to the substrate, or a substrate may
be etched using a mask for forming the first optical component and then etched using
a mask for forming the second optical component.
[0013] Such a method increases the accuracy of the position of the second optical component
relative to the first optical component and thus the accuracy of the display position
of the second information relative to the display position of the first information.
Effect of the Invention
[0014] The present invention sets a plurality of pieces of information in accurate positional
relationship.
BRIEF DESCRIPTION OF THE DRAWINGS
[0015]
Fig. 1 is a perspective view showing the perspective structure of a display body according
to one embodiment of the present invention.
Fig. 2 is a partial enlarged view of a region 2 in Fig. 1, which is a part of the
display body.
Fig. 3 is an enlarged cross-sectional view showing a part of the cross-sectional structure
of a third component.
Fig. 4 is a partial perspective view showing a part of the structure of the third
component.
Fig. 5 is a partial perspective view showing a part of the perspective structure of
an example of a first component.
Fig. 6 is a partial perspective view showing a part of the perspective structure of
an example of a first component.
Fig. 7 is a partial perspective view showing a part of the perspective structure of
an example of a first component.
Fig. 8 is a partial perspective view showing a part of the perspective structure of
an example of a first component.
Fig. 9 is a partial perspective view showing a part of the perspective structure of
an example of a first component.
Fig. 10 is a partial cross-sectional view showing a part of the cross-sectional structure
of a display body.
Fig. 11 is a partial cross-sectional view showing a part of the cross-sectional structure
of a display body.
Fig. 12 is a diagram for illustrating the observation method and operation of the
display body.
Fig. 13 is a diagram for illustrating the observation method and operation of the
display body.
Fig. 14 is a diagram for illustrating the observation method and operation of the
display body.
Fig. 15 is a perspective view showing the perspective structure of a display body
of a modification.
Fig. 16 is a perspective view showing the perspective structure of a display body
of a modification.
Fig. 17 is a partial cross-sectional view showing a part of the cross-sectional structure
of a display body of a modification.
Fig. 18 is a partial cross-sectional view showing a part of the cross-sectional structure
of a display body of a modification.
Fig. 19 is a partial cross-sectional view showing a part of the cross-sectional structure
of a display body of a modification.
Fig. 20 is a partial cross-sectional view showing a part of the cross-sectional structure
of a display body of a modification.
Fig. 21 is a partial cross-sectional view showing a part of the cross-sectional structure
of a display body of a modification.
Fig. 22 is a partial cross-sectional view showing a part of the cross-sectional structure
of a display body of a modification.
Fig. 23 is a partial cross-sectional view showing a part of the cross-sectional structure
of a display body of a modification.
Fig. 24 is a partial cross-sectional view showing a part of the cross-sectional structure
of a display body of a modification.
Fig. 25 is a plan view showing the planar structure of a verification subject of a
modification.
Fig. 26 is a perspective view showing the perspective structure of a display body
of a modification.
Fig. 27 is a diagram for illustrating the operation of the display body of the modification.
Fig. 28 is a diagram for illustrating the operation of the display body of the modification.
MODES FOR CARRYING OUT THE INVENTION
[0016] Referring to Figs. 1 to 14, one embodiment of a display body and a method for observing
the display body according to the present invention is now described. In the following
descriptions, the overall structure of the display body, the structure of the optical
components of the display body, the structures of the front surface of the display
body, and the method for observing the display body are described in this order.
[Overall Structure of Display Body]
[0017] Referring to Figs. 1 and 2, the overall structure of a display body is now described.
Fig. 2 is an enlarged view of a part of the display body shown in Fig. 1.
[0018] As shown in Fig. 1, a display body 10 has the shape of a rectangular plate and includes
a front surface 10a, which is an example of the first surface. The front surface 10a
of the display body 10 is a surface on which first light is incident. The side from
which the first light is incident on the front surface 10a is an observation side.
The display body 10 includes a back surface 10b, which is an example of the second
surface located opposite to the observation side with respect to the front surface
10a. Second light is incident on the back surface 10b from the side opposite to the
observation side with respect to the back surface 10b.
[0019] The display body 10 may have the shape of a circular plate or a rectangular solid,
instead of a rectangular plate.
[0020] The display body 10 includes a plurality of optical components including first optical
components and second optical components. Each first optical component includes a
part of the front surface 10a that functions as a first optical surface for providing
optical effects. That is, the first optical component includes the first optical surface.
The first optical component forms first information from the first light received
on the first optical surface. The first information is displayed on the observation
side.
[0021] The display body 10 includes a first component 11 and a second component 12 as examples
of first optical components, but the display body 10 may include only one first optical
component or three or more first optical components.
[0022] The first component 11 includes a plurality of first display elements 11a defined
inside the first component 11. Each first display element 11a is a circular structure
in a plan view. The first display elements 11a are arranged at predetermined intervals
in the first component 11. The second component 12 includes a plurality of second
display elements 12a defined inside the second component 12. Each second display element
12a is a circular structure in a plan view. The second display elements 12a are arranged
at predetermined intervals in the second component 12.
[0023] Each of the first and second display elements 11a and 12a may be a structure having
a polygonal shape, such as a triangular or tetragonal shape, instead of a circular
shape. In addition, display elements may be arranged in contact with one another in
each component.
[0024] The first component 11 and the second component 12 form different pieces of information.
The first component 11 forms the letter A as first information, and the second component
12 forms the letter B as first information.
[0025] The first and second components 11 and 12 may form the same information. The first
information is not limited to a letter, such as the letter A or B, and may be a symbol,
a number, a graphic, such as an illustration or a pattern, and a combination of two
or more letters, symbols, numbers, and graphics.
[0026] Each second optical component includes a part of the front surface 10a that functions
as a second optical surface for providing optical effects. That is, the second optical
component includes the second optical surface. The second optical component receives
the second light transmitted through the back surface 10b, forms second information
displayed on the observation side from the second light, and emits the second information
from the second optical surface.
[0027] The display body 10 includes a third component 13, which functions as a second optical
component and is located in the front surface 10a independent of the first and second
components 11 and 12. The third component 13 includes a plurality of third display
elements 13a defined inside the third component 13. Each third display element 13a
is a circular structure in a plan view. The third display elements 13a are arranged
at predetermined intervals in the third component 13.
[0028] The third display element 13a may be a structure having a polygonal shape, such as
a triangular or tetragonal shape, instead of a circular shape. In addition, third
display elements 13a may be arranged in contact with one another in the third component
13.
[0029] The third component 13 forms the letter C as second information. However, the second
information is not limited to a letter, such as the letter C, and may be a symbol,
a number, a graphic, such as an illustration and a pattern, and a combination of two
or more letters, symbols, numbers, and graphics. In addition, the second information
formed by the third component 13 is not limited to a letter, a symbol, a number, or
a graphic and may be color information, such as the proportion of an area having a
certain color in the third component 13, coloration of the third component 13, or
presence or absence of a color, and positional information, such as the position of
a certain color or the position of a section of the third component 13 that has a
color.
[0030] As shown in Fig. 2, the display body 10 includes a plurality of fourth components
14, which function as second optical components. Each fourth component 14 is surrounded
by a first display element 11a. Each fourth component 14 includes a plurality of fourth
display elements 14a defined inside the fourth component 14. Each fourth display element
14a is a circular structure in a plan view. The fourth display elements 14a are arranged
at predetermined intervals in the fourth component 14.
[0031] Each fourth component 14 forms the letter A as second information. The information
formed by the fourth component 14 differs from the information formed by the second
component 12 and the information formed by the third component 13. Alternatively,
the information formed by the fourth component 14 may be the same as the information
formed by the second component 12 or the information formed by the third component
13 but differ from the information formed by the first component 11.
[0032] In the front surface 10a of the display body 10, when the area occupied by the first
component 11 is S1 and the area occupied by the fourth component 14 is S2, the relationship
between the areas S1 and S2 satisfies Expression (1) below.

[0033] When Expression (1) is satisfied, the size of the fourth component 14 relative to
the size of the first component 11 is small enough so that the fourth component 14
surrounded by the first component 11 is likely to be indiscernible when reflection
light from the front surface 10a of the display body 10 is observed as the effect
of the first component 11.
[0034] The area S1 is preferably between 0.16 mm
2 and 1 mm
2, inclusive, for example, and the area S2 is preferably between 100 µm
2 and 90,000 µm
2, inclusive. The area S1 is preferably large enough to be discernible to the observer
with the naked eye, while the area S2 is preferably small enough to be indiscernible
to the observer with the naked eye.
[0035] The display body 10 may include two or more second optical components that are independent
of the first optical components in the display body 10, like the third component 13
described above, or may include only one second optical component surrounded by a
first optical component, like the fourth component 14 described above. The display
body 10 may include only one of a second optical component that is independent of
a first optical component in the display body 10 and a second optical component surrounded
by a first optical component.
[Structure of Optical Component]
[0036] Referring to Figs. 3 to 9, the structures of the optical components of the display
body 10 are now described in detail. The structure of a second optical component is
described referring to Figs. 3 and 4, and the structures of first optical component
are described referring to Figs. 5 to 9. For the sake of the convenience of explanation,
the metal layer of the second optical component is omitted in Fig. 4.
[0037] The third component 13 and the fourth components 14, which are second optical components,
differ from each other in the positions in the display body 10 but have the same structure
as optical components. Thus, the structure of the third component 13 is described,
and the structure of the fourth component 14 is not described. In addition, the first
component 11 and the second component 12, which are first optical components, differ
from each other in the positions in the display body 10 but have the same structure
as optical components. Thus, the structure of the first component 11 is described,
and the structure of the second component 12 is not described.
[0038] As shown in Fig. 3, the third component 13, which is an example of the second uneven
structure, includes an uneven structure portion 21 and a metal layer 22 partially
covering the uneven structure portion 21. The uneven structure portion 21 is made
of a light-transmitting dielectric. The third component 13 includes a plasmon structure,
which includes an interface 23 between the uneven structure portion 21 and the metal
layer 22. The plasmon structure receives the second light on the interface 23 and
excites surface plasmons on the metal layer 22, thereby absorbing light of certain
wavelengths in the second light and converts the light into transmitted light that
differs from the second light in color.
[0039] The uneven structure portion 21 includes a plate portion 31, which has a base surface
31a serving as one surface, and a plurality of protrusions 32, which projects from
the base surface 31a. The base surface 31a is an example of the second base surface,
and the plate portion 31 is an example of the second plate portion. The protrusions
32 are examples of the second protrusions. Each protrusion 32 includes a top surface
32a, which is spaced apart from the base surface 31a, and two side surfaces 32b connected
to the base surface 31a. The top surfaces 32a are in a single imaginary plane S, which
is substantially parallel with the base surface 31a. The distance D between the base
surface 31a and the imaginary plane S is preferably between 30 nm and 500 nm, inclusive.
[0040] Each protrusion 32 has the shape of a rectangular prism, but the protrusion 32 may
have the shape of other polygonal prism, such as a triangular prism or a pentagonal
prism, a cylinder, an elliptical prism, a cone, or a pyramid. When the protrusion
32 has the shape of a polygonal prism, each corner of the polygonal prism may have
a curvature. Further, each protrusion 32 may include a plurality of steps in the side
surfaces 32b connecting the top surface 32a to the base surface 31a. When the protrusion
32 has steps in the side surfaces 32b and is shaped so that the dimensions in the
width direction increase in steps from the top surface 32a to the base surface 31a,
the metal layer 22 may be formed on each of the surfaces in the side surfaces 32b
that are substantially parallel with the imaginary plane S.
[0041] The metal layer 22 is formed on the top surfaces 32a of the protrusions 32 and the
entire section of the base surface 31a that is free of the protrusions 32. In the
third component 13, the side surfaces 32b of the protrusions 32, the front surface
22a of the metal layer 22 formed on the base surface 31a, and the front surface 22a
of the metal layer 22 formed on the top surface 32a of each protrusion 32 form a part
of the front surface 10a of the display body 10. The front surface 22a of the metal
layer 22 of the third component 13 forms the second optical surface.
[0042] The metal layer 22 may be formed only on the base surface 31a or only on the top
surfaces 32a. Alternatively, the metal layer 22 may be formed on a part of the base
surface 31a or only on some of the top surfaces 32a.
[0043] For example, the metal layer 22 has a predetermined thickness M of between 20 nm
and 100 nm, inclusive, preferably between 40 nm and 60 nm, inclusive. When the thickness
M of the metal layer 22 is greater than or equal to 40 nm, the difference between
the transmittance of the first optical component and the transmittance of the second
optical component will be more noticeable. The thickness M of the metal layer 22 that
is less than or equal to 60 nm allows the metal layer 22 to resist cracks.
[0044] The metal layer 22 preferably includes a material of which the real part of the complex
dielectric constant is negative over the ultraviolet to visible light range and thus
has a high reflectivity. Suitable materials for the metal layer 22 include aluminum,
gold, silver, and titanium nitride. Aluminum and silver, which have high reflectivity,
are particularly suitable for the metal layer 22. Of the possible materials for the
metal layer 22, silver has the highest reflectivity, and aluminum is less expensive.
When the complex dielectric constant of the material forming the metal layer 22 is
as described above, the light transmitted by excitation of surface plasmons is in
the visible light range. This allows the observer to recognize the second information
emitted by the display body 10.
[0045] The metal layer 22 may be formed by physical vapor deposition, such as vacuum deposition
or sputtering. The metal layer 22 that is formed by vacuum deposition includes a minute
uneven structure in the front surface 22a of the metal layer 22. However, such a minute
uneven structure formed by vacuum deposition is not large enough to affect excitation
of surface plasmons. Thus, the uneven structure formed by vacuum deposition, or surface
roughness, in the metal layer 22 is acceptable.
[0046] The third component 13 may include a protective layer, which transmits light and
covers the metal layer 22. The protective layer limits breaking of the minute uneven
structures of the third component 13. In addition, the protective layer allows at
least one of the selection of wavelengths that cause surface plasmon resonances, or
the selection of wavelength width, and the light absorption amount to differ from
those of a structure that does not include a protective layer.
[0047] The protective layer may be made of a light-transmitting plastic or a dielectric
material. The examples of plastic that may be used for the protective layer include
polyethylene, polypropylene, polytetrafluoroethylene, polymethyl methacrylate, and
polystyrene.
[0048] The examples of a dielectric material that may be used for the protective layer include
Sb
2O
3, Fe
2O
3, TiO
2, CdS, CeO
2, ZnS, PbCl
2, CdO, WO
3, SiO, Si
2O
3, ln
2O
3, PbO, Ta
2O
3, ZnO, ZrO
2, MgO, Si
2O
2, MgF
2, CeF
3, CaF
2, AlF
3, Al
2O
3, and GaO.
[0049] When the protective layer is made of a plastic, colorants may be added to the plastic.
Depending on the wavelengths the colorant absorbs, the protective layer allows at
least one of the selection of wavelengths that cause surface plasmon resonances, or
the selection of wavelength width, and the light absorption amount to differ from
those of a structure that does not include a protective layer. In addition, changing
the colorant in the protective layer to another colorant changes at least one of the
selection of wavelengths that cause surface plasmon resonances, or the selection of
wavelength width, and the light absorption amount, depending on the difference between
the wavelengths absorbed by the colorants.
[0050] As shown in Fig. 4, the protrusions 32 on the base surface 31a of the plate portion
31 are arranged at regular intervals in the X direction, which is one direction, and
also arranged at regular intervals in the Y direction, which is perpendicular to the
X direction. The interval between two protrusions 32 in the X direction is the same
as that in the Y direction. In other words, the protrusions 32 are arranged in a square
lattice pattern on the base surface 31a. The pitch P1, which is the interval between
two protrusions 32 in the X direction, is preferably between 100 nm and 600 nm, inclusive,
for example.
[0051] The height of the protrusions 32 is preferably between 50 nm and 600 nm, inclusive.
When the height of the protrusions 32 is greater than or equal to 50 nm, surface plasmons
are more likely to absorb certain wavelengths of the incident light and convert the
incident light into transmitted light that differs from the incident light in color.
The height of the protrusions 32 that is less than or equal to 600 nm facilitates
formation of the protrusions 32.
[0052] In order for each third display element 13a forming the third component 13 to emit
transmitted light of a predetermined color, the plasmon structure of the third display
element 13a preferably includes two or more protrusions 32 and a metal layer 22 that
covers at least the top surface 32a of each protrusion 32.
[0053] The protrusions 32 may be arranged in a triangular lattice pattern or a hexagonal
lattice pattern on the base surface 31a. The protrusions 32 that are arranged in a
triangle or hexagonal lattice pattern differ from the protrusions 32 that are arranged
in a square lattice pattern in the number of pitches P1. Different arrangements of
the protrusions 32 result in different states of the surface plasmon excitation on
the metal layer 22.
[0054] When the protrusions 32 are arranged in a hexagonal lattice pattern, a protrusion
32 is spaced apart from the six protrusions 32 surrounding that protrusion 32 by the
same distance. That is, all of the protrusions 32 are arranged such that adjacent
ones of the protrusions 32 are located at regular intervals, that is, at the same
pitch P1. The protrusions 32 that are arranged in a hexagonal lattice pattern are
all arranged at regular intervals, resulting in substantially the same surface plasmon
state over the metal layer 22. This facilitates adjustment of the color of the light
transmitted through each third display element 13a as compared with a structure in
which the protrusions 32 are arranged in a square lattice pattern.
[0055] Provided that the material of the uneven structure portion 21 and the pitch P1 of
the protrusions 32 remain unchanged, a change in the fill factor, which is the ratio
of the dimension of the protrusions 32 in the X or Y direction to the pitch P1, changes
the color of light emitted by the plasmon structure.
[0056] The uneven structure portion 21 may be made of quartz, for example. The uneven structure
portion 21 may be made of other inorganic materials that transmit visible light, such
as titanium oxides or magnesium fluoride, or organic materials that transmit visible
light, such as acrylic resins including urethane-modified acrylic resin and epoxy-modified
acrylic resin, epoxy resins, and other resins.
[0057] When the uneven structure portion 21, which includes the plate portion 31 and the
protrusions 32, is made of an inorganic material, the uneven structure portion 21
may be formed by chemically or physically etching a substrate of the inorganic material.
When the uneven structure portion 21 is made of a resin, the plate portion 31 and
the protrusions 32 may be formed by transferring the shape of an original plate to
the resin before hardening.
[0058] Each third display element 13a in the third component 13 includes the interface 23
between the uneven structure portion 21 and the metal layer 22. The surface plasmons
excited on the metal layer 22 allow the third display element 13a to emit light that
differs from the irradiated light in color. All third display elements 13a emit light
of the same color. The third display elements 13a display second information by emitting
the light having a predetermined color resulting from the surface plasmon excitation.
The light of the predetermined color within the light emitted by the display body
10 allows the observer of the display body 10 to recognize the second information.
[0059] Referring to Figs. 5 to 9, five different examples of the structure of the first
component 11 are now described.
[0060] The first component 11 shown in Fig. 5 is an example of the first uneven structure.
The first component 11 may include a plate portion 41, which is shaped like a plate
and made of a dielectric, and a metal layer 42 formed on a base surface 41a, which
is one surface of the plate portion 41. The plate portion 41 is an example of the
first plate portion. The first component 11 is an uneven structure having unevenness
resulting from the step between the plate portion 41 and the metal layer 42. The front
surface 42a of the metal layer 42 and the section of the base surface 41a that is
free of the metal layer 42 form a part of the front surface 10a of the display body
10.
[0061] In this first component 11, the front surface 42a of the metal layer 42 functions
as a reflection surface, which is an example of the first optical surface. The first
component 11 forms first information, which is displayed on the observation side,
by reflecting the first light received on the front surface 42a of the metal layer
42.
[0062] As shown in Fig. 6, the first component 11 may be an uneven structure including a
plate portion 41 and a plurality of protrusions 43 projecting from the base surface
41a. The plate portion 41 is an example of the first plate portion, and the base surface
41a is an example of the first base surface. The protrusions 43 are examples of the
first protrusions. In this first component 11, the plate portion 41 and the protrusions
43 form an uneven structure portion 40. Each protrusion 43 is shaped like a rectangular
prism extending in the X direction. The protrusions 43 are arranged at regular intervals
in the Y direction at a predetermined pitch P2. The first component 11 has the shape
of a square wave in cross-section in the Z direction, which is parallel with the thickness
direction of the display body 10. The first component 11 is a laminar grating.
[0063] In this first component 11, the surface of each protrusion 43, which is a top surface
43a spaced apart from the base surface 41a, two side surfaces 43b of each protrusion
43, which are connected to the base surface 41a, and the section of the base surface
41a that is free of the protrusions 43 form a part of the front surface 10a of the
display body 10. In this first component 11, a plurality of top surfaces 43a functions
as a diffraction surface, which is an example of the first optical surface, and the
first component 11 forms first information on the observation side by diffracting
the first light received on the top surfaces 43a.
[0064] As shown in Fig. 7, when the first component 11 is a reflective diffraction grating,
the first component 11 may have a sinusoidal cross-section in the Z direction. That
is, each protrusion 44 extends in the X direction and substantially has the shape
of a triangular prism having curved side surfaces 44a extending in the X direction.
The protrusions 44 are arranged in the Y direction at a pitch P2.
[0065] In this first component 11, the surfaces of the protrusions 44 form a part of the
front surface 10a of the display body 10 and function as a diffraction surface, which
is an example of the first optical surface. The surfaces of the protrusions 44 are
side surfaces 44a on opposite sides of each of the tops 44b, which are located successively
in the Y direction.
[0066] When the first component 11 is a reflective diffraction grating, the first component
11 may have a sawtooth-shaped cross-section in the Z direction. That is, the first
component 11 may be a blazed grating. Further, when the first component 11 is a reflective
diffraction grating, the protrusions of the first component 11 may each have the shape
of a polygonal prism other than the triangular or rectangular prism described above.
[0067] The first component 11 may include multiple diffraction gratings having different
cross-sectional shapes in the Z direction. Such diffraction gratings differ from each
other in the intensity of diffraction light, forming first information using the multiple
intensities of diffraction light beams. The cross-section in the Z direction of the
first component 11 may be shaped such that interference occurs between two light beams
diffracted by the first component 11. Such a first component 11 forms first information
using the interference fringes caused by the light interference. Further, the first
component 11 may include multiple diffraction gratings having different cross-sectional
shapes in the Z direction and form first information using the multiple intensities
of diffraction light beams and the light interference.
[0068] When the first component 11 is a reflective diffraction grating, the pitch P2 is
preferably between 200 nm and 2,000 nm, inclusive, more preferably between 500 nm
and 1,000 nm, inclusive. The pitch P2 that is between 500 nm and 1,000 nm, inclusive
facilitates diffraction of visible wavelengths in the first light incident on the
first component 11, allowing for easier visual perception of the first information
formed by the first component 11.
[0069] When the first component 11 is a diffraction grating, the depth of the depressions
in the diffraction grating is preferably between 50 nm and 600 nm, inclusive. When
the depth of the depressions in the diffraction grating is greater than or equal to
50 nm, the diffraction grating effectively diffracts light. A depth of 600 nm or less
facilitates formation of the diffraction grating.
[0070] The depth of the depressions in the first component 11 is substantially equal to
the height of the protrusions 32 in the third component 13, which is the depth of
the depressions formed between the protrusions 32. This facilitates simultaneous formation
of the first and third components 11 and 13.
[0071] As shown in Fig. 8, the first component 11 may be an uneven structure including a
plate portion 41 and a plurality of protrusions 45 projecting from the base surface
41a. The protrusions 45 are arranged irregularly on the base surface 41a. In this
first component 11, the plate portion 41 and the protrusions 45 form an uneven structure
portion 40. Each protrusion 45 may be semielliptical and has a dimension in the Z
direction that is greater than the dimension in the X direction. The protrusions 45
have the same shape.
[0072] In this first component 11, the surface of each protrusion 45 and the section of
the base surface 41a that is free of the protrusions 45 form a part of the front surface
10a of the display body 10. In the first component 11, the surface of each protrusion
45 and the section of the base surface 41a that is free of the protrusions 45 function
as a scattering surface, which is an example of the first optical surface, and the
first component 11 forms first information, which is displayed on the observation
side, by scattering the first light received on the scattering surface.
[0073] When the first optical surface of the first component 11 is a light scattering surface,
the base surface 41a may include a plurality of depressions arranged irregularly.
The depressions may extend from the base surface 41a toward a non-base surface, which
is the surface of the plate portion 41 opposite to the base surface 41a. The non-base
surface may form a part of the back surface 10b of the display body 10. Alternatively,
the non-base surface may be adhered to an additional substrate, and the surface of
the additional substrate that is opposite to the non-base surface may serve as the
back surface 10b of the display body 10.
[0074] In addition, the protrusions 45 on the base surface 41a may differ from one another
in shape and the ratio between the dimension in the Z direction and the dimension
in the X direction. Further, the depressions in the base surface 41a may be identical
in shape, or may differ from one another in the ratio between the dimension in the
Z direction and the dimension in the X direction.
[0075] As shown in Fig. 9, the first component 11 may be an uneven structure including a
plate portion 41 and a plurality of protrusions 46 projecting from the base surface
41a. The plate portion 41 includes a plurality of depressions 47, which extends from
the base surface 41a toward a non-base surface 41b. The non-base surface 41 b may
be a part of the back surface 10b of the display body 10. Alternatively, the non-base
surface 41b of the plate portion 41 may be adhered to an additional substrate, and
the surface of the additional substrate that is opposite to the non-base surface 41b
may serve as the back surface 10b of the display body 10.
[0076] In this first component 11, the plate portion 41, the protrusions 46, and the depressions
47 form an uneven structure portion 40. Each protrusion 46 may be semielliptical and
have a dimension in the Z direction that is greater than the dimension in the X direction.
Each depression 47 is defined by a curved surface.
[0077] The protrusions 46 and the depressions 47 of the first component 11 are arranged
alternately in both X and Y directions. In the first component 11, the distance between
the tops of two protrusions 46 that are adjacent to each other in the X direction
is uniform, and the distance between the tops is a pitch P3. The protrusions 46 are
arranged at regular intervals in a direction intersecting the X direction, and the
depressions 47 are arranged at regular intervals in the direction intersecting the
X direction.
[0078] In this first component 11, the surface of each protrusion 46, the curved surface
defining each depression 47, and the section of the base surface 41a that is free
of the protrusions 46 and the depressions 47 form a part of the front surface 10a
of the display body 10. In the first component 11, the surfaces of the protrusions
46 and the curved surfaces defining the depressions 47 form the first optical surface.
[0079] When the pitch P3 of the first component 11 is greater than or equal to the visible
light range, the protrusions 46 arranged at regular intervals and the depressions
47 arranged at regular intervals diffract the light incident on the front surface
10a of the display body 10. The first component 11 thus emits diffraction light in
predetermined directions, which differ from the direction of the normal to the plate
portion 41, for example. When the pitch P3 is less than the visible light range, the
first component 11 absorbs the light incident on the first optical surface. Such absorption
by the first component 11 reduces the light reflectivity of the first component 11
as compared with a structure that does not have protrusions or depressions.
[0080] When the first light incident on the first optical surface enters the uneven structure
portion 40 having the pitch P3 that is less than the visible light range, the refractive
indices for visible light vary continuously over the first component 11, typically
providing impedance matching at the interface between the uneven structure portion
40 and the air. This reduces reflections of light. The reflectivity of the first light
is thus reduced.
[0081] In a similar manner as the third component 13, the first component 11 may include
a protective layer covering the uneven structure portion 40. The protective layer
may be made of a light-transmitting plastic or a dielectric material. Such a first
component 11 provides impedance matching at the interface between the uneven structure
portion 40 and the protective layer, reducing reflections of light. In addition, a
structure in which the display body 10 is adhered to another member using an adhesive
resin layer covering the first component 11 still provides impedance matching at the
interface between the uneven structure portion 40 and the adhesive layer, thereby
reducing reflections of light.
[0082] Accordingly, when the first light is incident on the front surface 10a of the display
body 10 and the first component 11 is viewed in the direction of the normal to the
plate portion 41, the first component 11 displays first information in black or dark
gray on the observation side. The first component 11 thus forms the first information
using the diffraction light and the absorption of the incident light.
[0083] The protrusions 46 and the depressions 47 are arranged alternately in both X and
Y directions, forming a square lattice. However, the protrusions 46 and the depressions
47 may be arranged to form a triangle or hexagonal lattice. For a structure that absorbs
the first light incident on the first optical surface but does not emit diffraction
light, the protrusions 46 and the depressions 47 may be arranged irregularly on the
base surface 41a.
[0084] The protrusions 46 of the uneven structure portion 40 are semielliptical. Alternatively,
the protrusions 46 may have the shape of a rectangular prism or other polygonal prism.
Further, the depressions 47 of the uneven structure portion 40 are defined by curved
surfaces but may be defined by circular or polygonal surfaces.
[0085] In order for the first component 11 to diffract or absorb the first light, the pitch
P3 is preferably between 200 nm and 2,000 nm, inclusive, more preferably between 200
nm and 600 nm, inclusive. The pitch P3 that is less than or equal to the visible light
region facilitates absorption of the first light by the first component 11. This allows
the section of the display body 10 including the first component 11 to have a lower
reflectivity than the section surrounding the first component 11, increasing the visibility
of the first information formed by the first component 11.
[0086] The first components 11 described referring to Figs. 6, 7 and 9 are uneven structures
having protrusions arranged at the predetermined pitch. However, as long as the average
value of the pitch P2 and the average value of the pitch P3 are within the respective
preferable ranges described above, the minute uneven structures do not have be strictly
uniform and may be irregular.
[0087] The plate portion 41 shown in Fig. 5 and the uneven structure portions 40 shown in
Figs. 6 to 9 may be made of quartz. However, other inorganic materials that transmit
visible light or organic materials that transmit visible light may be used. The inorganic
material may be titanium oxide or magnesium fluoride, and the organic material may
be acrylic resins including urethane-modified acrylic resin and epoxy-modified acrylic
resin, epoxy resins, and other resins. The plate portion 41 shown in Fig. 5, the uneven
structure portions 40 shown in Figs. 6 to 9, and the uneven structure portion 21 of
the third component 13 may be made of the same material or different materials.
[0088] When the uneven structure portion 40 is made of an inorganic material, the uneven
structure portion 40 may be formed by chemically or physically etching a substrate
of the inorganic material. When the uneven structure portion 40 is made of a resin,
the uneven structure portion 40 may be formed by transferring the shape of an original
plate to the resin before hardening. The plate portion 41 shown in Fig. 5 may be the
substrate itself, or may be formed by chemically or physically etching the substrate.
Alternatively, the plate portion 41 shown in Fig. 5 may be formed simply by applying
a resin, or may be formed by transferring the shape of an original plate to the applied
resin before hardening.
[0089] The first components 11 described referring to Figs. 6 to 9 may have a metal layer
that is entirely or partly formed on the section of the first component 11 that forms
the front surface 10a of the display body 10. For example, the first component 11
described referring to Fig. 6 may have a metal layer that at least partially covering
the section of the base surface 41a that is free of the protrusions 43, the top surfaces
43a of all protrusions 43, and the side surfaces 43b of all protrusions 43. The first
component 11 described referring to Fig. 7 may include a metal layer that at least
partially covers the surfaces of the protrusions 44.
[0090] The first component 11 described referring to Fig. 8 may have a metal layer that
at least partially covers the surfaces of the protrusions 45 and the section of the
base surface 41a that is free of the protrusions 45. The first component 11 described
referring to Fig. 9 may have a metal layer that at least partially covers the section
of the base surface 41a that is free of protrusions 46 and the depressions 47, the
surfaces of all protrusions 46, and all surfaces defining the depressions 47. When
the first components 11 described referring to Figs. 6 to 9 each include a metal layer,
the surface of the metal layer forms a part of the front surface 10a of the display
body 10.
[0091] Forming a metal layer increases the light reflectivity of the first optical surface,
allowing the first information formed by the first component 11 to be easily perceived
by the observer of the display body 10.
[0092] In order for the first component 11 to cause reflection, diffraction, scattering,
absorption, or interference of light, the thickness of the metal layer of the first
component 11 is preferably between 20 nm and 100 nm, inclusive, more preferably between
40 nm and 60 nm, inclusive. The metal layer may be made of aluminum, for example.
Further, the metal layer may be made of gold, silver, or titanium nitride.
[0093] The metal layer may be formed by physical vapor deposition, such as vacuum deposition
or sputtering. When the metal layer is made of the same material as the metal layer
22 of the third component 13, the metal layer 22 of the third component 13 and the
metal layer of the first component 11 may be formed simultaneously by physical vapor
deposition.
[0094] In a similar manner as the first component 11 described referring Fig. 9, the first
components 11 described referring to Figs. 6 to 8 may have a protective layer covering
the uneven structure portion 40.
[0095] The first component 11 may be an optical component that forms first information using
light reflection, an optical component that forms first information using light diffraction,
or an optical component that forms first information using scattering of light. Further,
the first component 11 may be an optical component that forms first information using
light absorption, or an optical component that forms first information using light
interference. In addition, the first component 11 may include two or more of such
optical components.
[0096] The first component 11 forms first information through reflection, diffraction, scattering,
absorption, or interference of the first light. Such reflection, diffraction, scattering,
absorption, or interference caused by the first component 11 converts the first light
into the light having modified intensity, wavelengths, and observation angle. The
difference between this light and the light that is created by the optical effect
of the other section allows the observer of the display body 10 to recognize the first
information. On the other hand, the third display elements 13a display second information
using the light having a certain color resulting from the surface plasmon excitation
caused by the second light. This facilitates recognizing the difference between the
first information and the second information, helping the observer of the display
body 10 to correctly recognize multiple pieces of information displayed by the display
body 10.
[Front Surface of Display Body]
[0097] Referring to Figs. 10 and 11, the front surface 10a of the display body 10 is now
described. An example of the display body 10 is described below in which the first
component 11 is the optical component described referring to Fig. 7, and the second
component 12 is the optical component described referring to Fig. 8. Fig. 10 shows
a part of the cross-sectional structure of the second component 12 and a part of the
cross-sectional structure of the third component 13 in the cross-sectional structure
of the display body 10. Fig. 11 shows the cross-sectional structure of a section of
the first component 11 that includes a fourth component 14 in the cross-sectional
structure of the display body 10.
[0098] As shown in Fig. 10, the second component 12 of the display body 10 includes a plate
portion 41 and protrusions 45 projecting from the base surface 41a of the plate portion
41.
[0099] The plate portion 41 and the protrusions 45 form an uneven structure portion 40.
The second component 12 also includes a metal layer 48 covering the surfaces of all
protrusions 45 and the section of the base surface 41a that is free of the protrusions
45. The front surface 48a of the metal layer 48 forms a part of the front surface
10a of the display body 10 and also forms the first optical surface of the second
component 12.
[0100] The third component 13 of the display body 10 includes an uneven structure portion
21 and a metal layer 22. The uneven structure portion 21 includes a plate portion
31 and a plurality of protrusions 32, and the metal layer 22 covers top surfaces 32a
of the protrusions 32 and the section of a base surface 31a of the plate portion 31
that is free of the protrusions 32. In the third component 13, the front surface 22a
of the metal layer 22 and the side surfaces 32b of the protrusions 32 form the front
surface 10a of the display body 10. The front surface 22a of the metal layer 22 on
the top surface 32a of each protrusion 32 and the front surface 22a of the metal layer
22 on the base surface 31a form the second optical surface that emits second information.
[0101] In the display body 10, the uneven structure portion 21 of the third component 13
and the uneven structure portion 40 of the second component 12 are formed by a single
substrate. In addition, the metal layer 22 of the third component 13 and the metal
layer 48 of the second component 12 are made of the same material.
[0102] Since the second component 12 and the third component 13 each include a part of the
front surface 10a of the display body 10 as the optical surface, the relative positioning
between the second component 12 and the third component 13 may be achieved by positioning
the second component 12 in the substrate and positioning the third component 13 in
the substrate using a common method. Alternatively, the second and third components
12 and 13 may be formed using the same type of technique.
[0103] For example, the shape of an original plate including a die for shaping the second
component 12 and a die for shaping the third component 13 may be transferred to a
substrate, or a substrate may be etched using a single mask that includes a mask for
forming the second component 12 and a mask for forming the third component 13.
[0104] Alternatively, the shape of an original plate for forming the second component 12
may be transferred to a substrate, and then the shape of an original plate for forming
the third component 13 may be transferred to the substrate, or a substrate may be
etched using a mask for forming the second component 12 and then etched using a mask
for forming the third component 13.
[0105] Such a method increases the accuracy of the position of the third component 13 relative
to the second component 12 and thus the accuracy of the display position of the second
information relative to the display position of the first information.
[0106] When the second component 12 and the third component 13 are formed simultaneously,
the number of steps required to manufacture the display body 10 including the second
and third components 12 and 13 is the same as the number of steps required to manufacture
a display body having only the second component 12. The display body 10 including
the second and third components 12 and 13 is manufactured without increasing the number
of manufacturing steps or the manufacturing costs.
[0107] The display body 10 does not include through-holes extending through the front surface
10a and the back surface 10b of the display body 10 to function as an optical component
for displaying information. The display body 10 thus has a higher mechanical strength
than a display body having through-holes.
[0108] The first component 11 and the third component 13 have similar advantages as the
second component 12 and the third component 13.
[0109] As shown in Fig. 11, the first component 11 of the display body 10 includes a plate
portion 41 and a plurality of protrusions 44 projecting from the base surface 41a
of the plate portion 41. The plate portion 41 and the protrusions 44 form an uneven
structure portion 40. The first component 11 includes a metal layer 49 covering the
surfaces of all protrusions 44. The front surface 49a of the metal layer 49 forms
a part of the front surface 10a of the display body 10 and also forms the first optical
surface of the first component 11.
[0110] Each fourth component 14 of the display body 10 includes an uneven structure portion
21 and a metal layer 22. The uneven structure portion 21 includes a plate portion
31 and a plurality of protrusions 32, and the metal layer 22 covers the top surfaces
32a of the protrusions 32 and the section of the base surface 31a of the plate portion
31 that is free of the protrusions 32. In the fourth component 14, the front surface
22a of the metal layer 22 and the side surfaces 32b of the protrusions 32 form the
front surface 10a of the display body 10. The front surface 22a of the metal layer
22 on the top surface 32a of each protrusion 32 and the front surface 22a of the metal
layer 22 on the base surface 31a form the second optical surface that emits second
information.
[0111] In the display body 10, the uneven structure portion 21 of the fourth component 14
and the uneven structure portion 40 of the first component 11 are formed by a single
substrate. In addition, the metal layer 22 of the fourth component 14 and the metal
layer 49 of the first component 11 are made of the same material.
[0112] The first component 11 and the fourth component 14 in the display body 10 have similar
advantages as the second component 12 and the third component 13 described above.
The first component 11 surrounds the fourth component 14, which is small enough to
be indiscernible to the observer of the display body 10 with the naked eye. Thus,
unless the observer of the display body 10 knows that the display body 10 has the
fourth component 14, the observer is unlikely to notice the fourth component 14 in
the display body 10.
[0113] Moreover, the first component 11 forms the first information on the observation side
by converting the light incident on the front surface 10a into diffraction light.
Such optical effect of the first component 11 helps to keep the observer who does
not know the presence of the fourth component 14 in the display body 10 from noticing
the fourth component 14 in the display body 10. The structure of the display body
10 increases the difficulty of counterfeiting the display body 10 for a person who
attempts to counterfeit, while allowing a person who knows the presence of the fourth
component 14 to easily authenticate the display body 10 by checking for the fourth
component 14.
[Display Body Observation Method]
[0114] Referring to Figs. 12 to 14, the method for observing the display body 10 is now
described. In the following example, the display body 10 to be observed is attached
to a verification subject of which the authenticity requires verification. The first
component 11 may be the optical component described referring to Fig. 7, and the second
component 12 may be the optical component described referring to Fig. 8.
[0115] As shown in Fig. 12, the display body 10 is attached to a verification subject 50.
The verification subject 50 may be a substrate through which light passes to the display
body 10. Alternatively, a section of the verification subject 50 including at least
the section to which the display body 10 is attached may be formed by a substrate
that transmits light to the display body 10. Further, the display body 10 may be attached
to the verification subject 50 such that light is directly incident on the display
body 10.
[0116] The method for observing the display body 10 includes a step of causing first light
to be incident on the front surface 10a of the display body 10 and a step of observing
first information formed by the first optical component from the first light incident
on the front surface 10a. The method for observing the display body 10 also includes
a step of causing second light to be incident on the back surface 10b of the display
body 10 and a step of observing second information formed by the second optical component
from the second light incident on the back surface 10b. The step of observing first
information and the step of observing second information are performed by an observer.
However, these steps may be performed by an apparatus that is capable of detecting
the first information and the second information formed by the display body 10.
[0117] In the step of causing the first light to be incident, a light source LS located
on the observation side emits white light as first light IL1. The first light IL1
is incident on the front surface 10a of the display body 10 from the observation side.
The first component 11 of the display body 10 diffracts the first light IL1 incident
on the front surface 10a of the display body 10 toward the observation side, thereby
emitting diffraction light as reflection light RL. That is, the first component 11
forms first information by diffracting the first light IL1. The second component 12
scatters the first light IL1 incident on the front surface 10a of the display body
10 toward the observation side, thereby emitting scattered light as reflection light
RL. That is, the second component 12 forms first information by scattering the first
light IL1.
[0118] In contrast, the third component 13 does not form predetermined second information
on the observation side when the first light IL1 is incident on the front surface
10a of the display body 10.
[0119] Consequently, in the step of observing first information, the observer OB visually
perceives the first information formed by the first component 11 and the first information
formed by the second component 12 but does not perceive the second information of
the third component 13.
[0120] As shown in Fig. 13, in the step of causing second light to be incident, the light
source LS is located on the side opposite to the observation side with respect to
the back surface 10b of the display body 10, and second light IL2 is incident on the
back surface 10b from the side opposite to the observation side with respect to the
back surface 10b. The second light IL2 transmitted through the back surface 10b excites
surface plasmons on the third component 13 so that the third component 13 emits transmitted
light TL having a predetermined color that differs from the color of the second light
IL2. In other words, the third component 13 forms second information by converting
the second light IL2 into the transmitted light TL that differs from the second light
IL2 in color.
[0121] The first component 11 includes the metal layer 48, which forms a part of the front
surface 10a of the display body 10, and the second component 12 includes the metal
layer 49, which forms a part of the front surface 10a of the display body 10. Thus,
the first and second components 11 and 12 do not transmit the second light IL2 incident
on the back surface 10b of the display body 10 to the front surface 10a of the display
body 10. Alternatively, the first and second components 11 and 12 may transmit part
of the second light IL2 but still do not form the predetermined first information.
[0122] Consequently, in the step of observing second information, the observer OB visually
perceives the second information formed by the third component 13 but does not perceive
the first information of the first component 11 or the first information of the second
component 12.
[0123] As shown in Fig. 14, in the step of observing second information, the display body
10 may be observed under magnification. The observer OB may observe the second information
formed by the display body 10 by magnifying the display body 10 using an optical microscope
LM. Of the pieces of second information formed by the display body 10, the piece of
second information formed by a fourth component 14 may be magnified to the size that
is visible by the observer OB. This allows the observer OB to observe the second information
formed by the fourth component 14.
[0124] The advantages of the embodiments described above are now described.
- (1) Since both the first and second optical components include parts of the front
surface 10a as optical surfaces, relative positioning between the first optical components
and the second optical components can be set by positioning the first components in
the substrate and positioning the second optical components in the substrate using
a common method. Alternatively, the first and second optical components can be formed
using the same type of technique. Such a structure increases the accuracy of the position
of the second optical components relative to the first optical components and thus
the accuracy of the display position of the second information relative to the display
position of the first information.
- (2) The size of each fourth component 14 relative to the size of the first component
11 is small enough so that the fourth component 14 is likely to be indiscernible when
the reflection light from the front surface 10a of the display body 10 is observed.
- (3) Since the third component 13 and the fourth components 14 each form second information
having a predetermined color, the difference between the light having the predetermined
color and the other section allows the observer OB of the display body 10 to recognize
the second information. Thus, the difference between the section of the second information
and the other section is easily recognized.
- (4) The protrusions of the first optical components and the protrusions of the second
optical components form parts of the front surface 10a of the display body 10. Thus,
even when the first and second optical components each have a complex structure of
protrusions, the display position of the second information relative to the display
position of the first information is set with high accuracy.
[0125] The embodiments described above may be modified as follows.
[Print Layer]
[0126] As will be described below referring to Figs. 15 to 20, the display body 10 may include
a print layer.
[0127] As shown in Fig. 15, the display body 10 may include a print layer 60, which has
a plurality of print portions 61 and forms third information displayed on the observation
side of the display body 10. Each print portion 61 is undulated and has at least one
curve. In a plan view of the front surface 10a of the display body 10, the print portions
61 are arranged at predetermined intervals in one direction.
[0128] In a plan view of the front surface 10a of the display body 10, the print portions
61 include print portions 61 that overlap with first display elements 11a of the first
component 11, print portions 61 that overlap with second display elements 12a of the
second component 12, and print portions 61 that overlap with third display elements
13a of the third component 13. In a plan view of the front surface 10a of the display
body 10, the print portions 61 that overlap with first display elements 11a may include
a section that overlaps with a fourth element surrounded by a first display element
11a.
[0129] In a plan view of the front surface 10a of the display body 10, the print portions
61 include print portions 61 that do not overlap with any of the first to third components
11 to 13. Alternatively, all of the print portions 61 may overlap with one of the
first to third components 11 to 13.
[0130] The print layer 60 forms a pattern of undulated shapes, which is an example of a
guilloche pattern. Alternatively, the print layer 60 may form a guilloche pattern
of arcuate shapes or a guilloche pattern of circular shapes. Further, the print layer
60 may form a guilloche pattern in which two or more of an undulated shape, an arcuate
shape, and a circular shape are combined. The print layer 60 may form a pattern of
geometric shapes other than undulated, arcuate, or circular shapes. That is, the image
displayed by the print layer 60 as third information may be any predetermined pattern.
[0131] As shown in Fig. 16, the display body 10 may include a print layer 70 that forms
information including at least a letter or a number, instead of the predetermined
pattern as described above. Such information may be identification information, such
as a card number or a lot number. That is, the print layer 70 displays information
as an image that includes at least a predetermined letter or a predetermined number.
[0132] The print layer 70 has a plurality of print portions 71 including a first section
71a, a second section 71b, and a third section 71c. In a plan view of the front surface
10a of the display body 10, the print portions 71 are arranged side by side in a predetermined
direction in the display body 10. Each print portion 71 may represent one number.
Of the print portions 71, the first section 71a represents the number 1, the second
section 71b represents the number 2, and the third section 71c represents the number
3.
[0133] In a plan view of the front surface 10a of the display body 10, of the three print
portions 71, the first section 71a overlaps with first display elements 11a of the
first component 11, the second section 71b overlaps with second display elements 12a
of the second component 12, and the third section 71c overlaps with third display
elements 13a of the third component 13. In a plan view of the front surface 10a of
the display body 10, the section of the first section 71a that overlaps with a first
display element 11a may overlap with a fourth component inside the first display element
11a.
[0134] In a plan view of the front surface 10a of the display body 10, the print portions
71 may include a print portion 71 that does not overlap with any of the first to third
components 11 to 13.
[0135] The image displayed by the print layer 60 or 70 as third information is not limited
to the illustration, letter, or number described above, and may be a graphic, a symbol,
and a combination of at least two or more of an illustration, a letter, a number,
a graphic, and a symbol.
[0136] In the structure described above, the display body 10 includes the print layer, which
forms third information, and thus achieves intricate representation of the pieces
of information and overlapping between pieces of information.
[0137] Referring to Figs. 17 to 20, the cross-sectional structure of the display body 10
is now described.
[0138] The print layer of the display body 10 described referring to Fig. 15 and the print
layer of the display body 10 described referring to Fig. 16 display different images
but are located at the same position in the thickness direction in the display bodies
10.
[0139] Thus, the cross-sectional structure of the display body 10 of Fig. 15 is described
below, and the cross-sectional structure of the display body 10 of Fig. 16 is not
described. In the following example, the second component 12, which is an example
of the first optical component, is the reflective diffraction grating described referring
to Fig. 7.
[0140] Figs. 17 to 20 each show a cross-sectional structure in which the back surface 10b
of the display body 10 and the observation side of the display body 10 are located
on opposite sides of the front surface 10a. In the following description, the effects
of the display bodies 10 that are achieved when white light is incident on the display
bodies 10 are described.
[0141] As shown in Fig. 17, the second component 12 of the display body 10 includes an uneven
structure portion 40 formed by a plate portion 41 and a plurality of protrusions 44.
The second component 12 also includes a metal layer 81 covering the surfaces of all
protrusions 44. The front surface 81a of the metal layer 81 forms a part of the front
surface 10a of the display body 10 and also forms the first optical surface of the
second component 12.
[0142] The third component 13 of the display body 10 includes an uneven structure portion
21 and a metal layer 22. The uneven structure portion 21 includes a plate portion
31 and a plurality of protrusions 32, and the metal layer 22 covers the top surfaces
32a of the protrusions 32 and the section of the base surface 31a of the plate portion
31 that is free of the protrusions 32.
[0143] In the third component 13, the front surface 22a of the metal layer 22 and the side
surfaces 32b of the protrusions 32 form the front surface 10a of the display body
10. The front surface 22a of the metal layer 22 on the top surface 32a of each protrusion
32 and the front surface 22a of the metal layer 22 on the base surface 31a form the
second optical surface of the third component 13.
[0144] In the display body 10, the uneven structure portion 21 of the third component 13
and the uneven structure portion 40 of the second component 12 are formed by a single
substrate 10c. In the uneven structure portion 21 of the third component 13, the surface
opposite to the base surface 31a forms a part of the back surface 10b of the display
body 10. In the uneven structure portion 40 of the second component 12, the surface
opposite to the front surfaces of the protrusions 44 forms a part of the back surface
10b of the display body 10. The metal layer 22 of the third component 13 and the metal
layer 81 of the second component 12 are preferably made of the same material but may
be made of different materials.
[0145] A plurality of print portions 61, which forms a print layer 60, is formed on the
back surface 10b of the display body 10. That is, the print layer 60 is located on
the side of the back surface 10b of the display body 10 on which the second light
is incident. The print portions 61 do not transmit visible light and include print
portions 61 that overlap with the second component 12 and print portions 61 that overlap
with the third component 13 as viewed in the thickness direction of the display body
10.
[0146] The print layer 60 may be made of ink including predetermined pigment or dye and
formed using various printing methods, such as gravure printing, offset printing,
and screen printing.
[0147] In the section of the second component 12 that overlaps with the print portions 61
as viewed in the thickness direction of the display body 10, the print portion 61
limits transmission of the second light from the back surface 10b to the front surface
10a of the display body 10. Accordingly, when the metal layer 81 of the second component
12 transmits light, the section of the second component 12 that overlaps with the
print portions 61 and the section of the second component 12 that does not overlap
with the print portion 61 provide high contrast in the image perceived by the observer
of the display body 10 . This facilitates recognizing the information displayed by
the print portions 61 in the information displayed by the second component 12.
[0148] In the section of the third component 13 that overlaps with print portions 61 as
viewed in the thickness direction of the display body 10, the print portions 61 limit
transmission of the second light from the back surface 10b to the front surface 10a
of the display body 10. Thus, in the sections of the third component 13 that overlap
with the print portions 61, a lower amount of light is created by surface plasmon
excitation, reducing the likelihood of visual perception of the light from the third
component 13. Accordingly, the section of the third component 13 that overlaps with
the print portions 61 and the section of the third component 13 that does not overlap
with the print portions 61 provide high contrast in the image perceived by the observer
of the display body 10. This facilitates recognizing the information displayed by
the print portions 61 in the information displayed by the third component 13.
[0149] When the observer directly faces the front side of the display body 10, the section
that overlaps with the print portions 61 emits the smallest amount of light in the
third component 13, facilitating the visual perception of the print portions 61.
[0150] The print layer 60 may be located on the side of the front surface 10a of the display
body 10 on which the first light is incident. As shown in Fig. 18, the display body
10 may include a covered surface 10d, which corresponds to the front surface 10a of
the display body 10. A transparent plastic layer 82 is formed over the entire covered
surface 10d, covering the second component 12 and the third component 13. The transparent
plastic layer 82 is made of a plastic capable of transmitting light. The surface of
the transparent plastic layer 82 that is opposite to the surface in contact with the
covered surface 10d of the display body 10 is a front surface 82a, on which a plurality
of print portions 61 are formed.
[0151] The transparent plastic layer 82 may have adhesiveness for attaching the display
body 10 to an object such as a verification subject. When the transparent plastic
layer 82 does not have adhesiveness, another layer having adhesiveness may be formed
on the front surface 82a of the transparent plastic layer 82 or the back surface 10b
of the display body 10.
[0152] The print portions 61 include print portions 61 that overlap with the second component
12 and print portions 61 that overlap with the third component 13 as viewed in the
thickness direction of the display body 10.
[0153] In the sections of the second component 12 that extend under print portions 61 as
viewed in the thickness direction of the display body 10, the print portions 61 limit
the first light incident on the second component 12. In the diffraction light emitted
by the second component 12, the diffraction light directed toward the print portions
61 is less likely to be emitted to the observation side of the display body 10 due
to the print portions 61.
[0154] Such a structure reduces the area on the observation side to which the diffraction
light is emitted from the second component 12 as compared with a structure that does
not include print portions 61 overlapping with the second component 12 as viewed in
the thickness direction of the display body 10. This limits visual perception of the
diffraction light that is emitted at predetermined angles.
[0155] In the section of the third component 13 that overlaps with print portions 61 as
viewed in the thickness direction of the display body 10, the print portions 61 reduce
the likelihood that the light emitted from the third component 13 by surface plasmon
excitation will be emitted to the observation side. This reduces the amount of light
emitted from the section of the third component 13 extending under the print portions
61, hindering visual perception of the section extending under the print portions
61.
[0156] The print portions of the print layer 60 are not limited to the print portions that
do not transmit visible light as described above, and may be print portions that transmit
part of visible light.
[0157] As shown in Fig. 19, in the structure described referring to Fig. 17, the print layer
60 may include a plurality of print portions 62 that transmits part of visible light.
The print portions 62 include print portions 62 that overlap with the second component
12 and print portions 62 that overlap with the third component 13 as viewed in the
thickness direction of the display body 10.
[0158] When the metal layer 81 of the second component 12 transmits light, the sections
of the second component 12 that overlap with print portions 62 as viewed in the thickness
direction of the display body 10 emit the light that is transmitted through the print
portions 62 and has predetermined wavelengths and the diffraction light that is diffracted
by the second component 12. Consequently, the light transmitted through the print
portions 62 and the diffraction light are visually perceived. This structure allows
the pattern of the print portions 62 and the pattern of the diffraction light to be
viewed superimposed.
[0159] In the section of the third component 13 that overlaps with print portion 62 as viewed
in the thickness direction of the display body 10, part of the light transmitted through
the print portions 62 is used for plasmon excitation on the third component 13, and
the remaining part of the light is transmitted through the third component 13.
[0160] When the light transmitted through the print portions 62 differs in color from the
light emitted by plasmon excitation on the third component 13, the emitted light has
a mixed color of the color of the light transmitted through the print portions 62
and the color of the light transmitted through the third component 13.
[0161] Further, a print layer 60 including print portions 62 that transmit visible light
may be used in the structure described referring to Fig. 18. That is, as shown in
Fig. 20, a print layer 60 including a plurality of print portions 62 may be formed
on the front surface 82a of the transparent plastic layer 82. As viewed in the thickness
direction of the display body 10, the print portions 62 include print portions 62
that overlap with the second component 12 and print portions 62 that overlap with
the third component 13.
[0162] Part of the diffraction light emitted by the second component 12 is directed toward
print portions 62. When the diffraction light directed toward the print portions 62
has wavelengths that can pass through the print portions 62, the diffraction light
is transmitted through the print portions 62 and emitted to the observation side.
In contrast, when the diffraction light directed toward the print portions 62 has
wavelengths that cannot pass through the print portions 62, the diffraction light
is not emitted to the observation side.
[0163] In the sections of the third component 13 that overlaps with print portions 62 as
viewed in the thickness direction of the display body 10, part of the incident light
is used for surface plasmon excitation, and the remaining part of the light is transmitted
through the third component 13.
[0164] When the wavelength of the light that can pass through the print portions 62 is the
same as the wavelength of the light created by surface plasmon excitation on the third
component 13, the light created by surface plasmon excitation is not absorbed by the
print portions 62 and transmitted. Thus, the print portions 62 emit light having the
same wavelength as the light created by surface plasmon excitation. In contrast, when
the wavelength of the light that can pass through the print portions 62 differs from
the wavelength of the light created by surface plasmon excitation on the third component
13, the print portions 62 absorb certain wavelengths in the light incident on the
third component 13 and transmit the other wavelengths to the observation side.
[0165] The display body 10 of Fig. 16 that includes the print layer 70 has similar advantages
as the display body 10 that includes the print layer 60.
[0166] In a structure in which the display body 10 includes the transparent plastic layer
82, that is, the structure described referring to Fig. 18 and the structure described
referring to Fig. 20, print layers may be formed on both of the front surface 82a
of the transparent plastic layer 82 and the back surface 10b of the substrate 10c.
[0167] For the display body 10 described referring to Fig. 17, the side on the back surface
10b of the display body 10 that is opposite to the front surface 10a may serve as
the observation side of the display body 10.
[0168] That is, as shown in Fig. 21, the second component 12 may include a metal layer 81
having a back surface 81b, which is in contact with the substrate 10c, and a front
surface 81a, which is opposite to the back surface 81b. The back surface 81b of the
metal layer 81 forms a part of the first surface on which the first light is incident
and also forms the first optical surface of the second component 12.
[0169] The third component 13 includes a metal layer 22 having a back surface 22b, which
is in contact with the substrate 10c, and a front surface 22a, which is opposite to
the back surface 22b. The front surface 22a of the metal layer 22 forms a part of
the second surface on which the second light is incident, and the back surface 22b
of the metal layer 22 forms the second optical surface of the third component 13.
[0170] A plurality of print portions 63, which forms a print layer 60, is formed on the
back surface 10b of the display body 10. That is, the print layer 60 is located on
the side of the back surface 10b of the display body 10 on which the first light is
incident. The print portions 63 do not transmit visible light and include print portions
63 that overlap with the second component 12 and print portions 63 that overlap with
the third component 13 as viewed in the thickness direction of the display body 10.
[0171] Such a print layer 60 has similar advantages as the print layer 60 of the display
body 10 described referring to Fig. 18.
[0172] For the display body 10 described referring to Fig. 18, the side on the back surface
10b of the display body 10 that is opposite to the front surface 10a may serve as
the observation side of the display body 10.
[0173] That is, as shown in Fig. 22, the display body 10 may include a transparent plastic
layer 82 having a front surface 82a, on which a plurality of print portions 63 of
a print layer 60 is formed. In the same manner as the display body 10 described referring
to Fig. 21, the back surface 81b of the metal layer 81 of the display body 10 forms
a part of the first surface and also forms the first optical surface of the second
component 12. The front surface 22a of the metal layer 22 of the display body 10 forms
a part of the second surface, and the back surface 22b of the metal layer 22 forms
the second optical surface of the third component 13.
[0174] Such a print layer 60 has similar advantages as the print layer 60 of the display
body 10 described referring to Fig. 17.
[0175] In the display body 10 described referring to Fig. 21, the print portions of the
print layer 60 may transmit part of visible light.
[0176] That is, as shown in Fig. 23, the print layer 60 may include a plurality of print
portions 64, which transmits part of visible light and is formed on the back surface
10b of the display body 10. The print portions 64 include print portions 64 that overlap
with the second component 12 and print portions 64 that overlap with the third component
13 as viewed in the thickness direction of the display body 10.
[0177] Such a print layer 60 has similar advantages as the print layer 60 of the display
body 10 described referring to Fig. 20.
[0178] In the display body 10 described referring to Fig. 22, the print portions of print
layer 60 may transmit part of visible light.
[0179] That is, as shown in Fig. 24, the print layer 60 may include a plurality of print
portions 64, which transmits part of visible light and is formed on the front surface
82a of the transparent plastic layer 82. As viewed in the thickness direction of the
display body 10, the print portions 64 include print portions 64 that overlap with
the second component 12 and print portions 64 that overlap with the third component
13.
[0180] Such a print layer 60 has similar advantages as the print layer 60 of the display
body 10 described referring to Fig. 19.
[0181] In each structure having a print layer 60, the second component 12 is not limited
to the reflective diffraction grating described above, and may be one of the structures
described referring to Figs. 5, 6, 8 and 9.
[0182] The print portions forming one print layer 60 may include print portions that transmit
part of visible light and print portions that do not transmit visible light.
[0183] As shown in Fig. 25, when the display body 10 includes a print layer 60 that displays
a pattern of geometric shapes, such as a guilloche pattern described above, a verification
subject 50 to which the display body 10 is attached may include a print layer 51.
The print layer 51 includes a plurality of print portions 52, and in a plan view of
the front surface 10a of the display body 10, each print portion 52 is preferably
connected to one of the print portions formed on the display body 10. In this case,
the print layer 60 of the display body 10 and the print layer 51 of the verification
subject 50 form a common guilloche pattern. Alternatively, the print layer 60 of the
display body 10 and the print layer 51 of the verification subject 50 may display
a common guilloche pattern without being connected. Further, the print layer 60 of
the display body 10 and the print layer 51 of the verification subject 50 may be disconnected
and display different guilloche patterns.
[Other Modifications]
[0184] In the step of causing the first light to be incident, the light incident on the
display body 10 does not have to be white light as long as the light incident on the
display body 10 includes light that causes optical effects of the first component
11 and the second component 12.
[0185] In the step of causing the second light to be incident, the light incident on the
display body 10 does not have to be white light as long as the light incident on the
display body 10 includes light of which the color is changeable by the plasmon structures
of the third component 13 and the fourth component 14.
[0186] As long as the section of the first component 11 that forms the front surface 10a
of the display body 10 is capable of forming first information using the first light,
the pitch P2 may be a predetermined length that is less than 200 nm, or a predetermined
length that is greater than 2,000 nm.
[0187] As long as the section of the first component 11 that forms the front surface 10a
of the display body 10 is capable of forming first information using the first light,
the pitch P3 may be a predetermined length that is less than 200 nm, or a predetermined
length that is greater than 2,000 nm.
[0188] The first component 11 does not have to include an uneven structure. For example,
the first component 11 may consist only of a plate portion having a substantially
flat surface that reflects the first light toward the observation side. That is, the
first component 11 described referring to Fig. 5 may be a structure that includes
only the plate portion 41 and forms first information by reflecting the first light
received on the base surface 41a.
[0189] The third display elements 13a of the third component 13 may include two types of
display elements, first display elements and second display elements. The first display
elements differ from the second display elements in the color of transmitted light.
The color of transmitted light depends on the state of surface plasmons formed on
the plasmon structure in each display element. A change in at least one of the following
conditions changes the state of surface plasmons formed on the metal layer 22.
[0190] Each first display element includes a first plasmon structure, and each second display
element includes a second plasmon structure. The first plasmon structure differs from
the second plasmon structure in at least one of the pitch P1 of the protrusions 32
on the base surface 31a of the plate portion 31, the distance D between the base surface
31a and the imaginary plane S, the arrangement of the protrusions 32 on the base surface
31a, the thickness M of the metal layer 22, the refractive index of the transparent
plastic layer 82, and the material forming the metal layer 22. The difference causes
the state of the surface plasmons excited by the first plasmon structure to differ
from the state of the surface plasmons excited by the second plasmon structure.
[0191] The third component 13 including the first plasmon structures that emit light having
a first color and the second plasmon structures that emit light having a second color
has the following advantages.
(5) Since the third component 13 displays a mixed color of the first and second colors,
the third component 13 can display a wider variety of colors than a component that
includes either the first plasmon structures or the second plasmon structures. In
addition, the first display elements differ from the second display elements in the
state of surface plasmon excitation, allowing the second optical component to display
intricate second information as compared with a structure only including elements
that are identical in the state of surface plasmon excitation.
[0192] The third display elements 13a of the third component 13 may include three or more
types of display elements that differ from one another in the color of transmitted
light.
[0193] Further, each third display element 13a of the third component 13 may include two
or more sections that transmit light of different colors.
[0194] The third component 13 and the fourth components 14 may transmit white light. In
each of the third component 13 and the fourth components 14, when the protrusions
32 are at random pitches P1 or vary in height, for example, the state of surface plasmons
on an interface 23, which is the minimum unit of the plasmon structure, differs from
the state on another interface 23. Consequently, the light transmitted through the
third component 13 and the fourth components 14 will be white in color.
[0195] As compared with protrusions that are arranged regularly, protrusions 32 that are
arranged irregularly tend to provide various states of surface plasmon excitation
in each of the third component 13 and the fourth component 14. Each of the light transmitted
through the third component 13 and the light transmitted through the fourth component
14 tends to be a mixture of multiple light beams of different wavelengths.
[0196] As long as surface plasmon excitation occurs on the metal layer 22, the pitch P1
may be a predetermined length that is less than 100 nm, or a predetermined length
that is greater than 600 nm.
[0197] As long as surface plasmon excitation occurs on the metal layer 22, the thickness
of the metal layer 22 may be a predetermined thickness that is less than 20 nm, or
a predetermined thickness that is greater than 100 nm.
[0198] As long as surface plasmon excitation occurs on the metal layer 22, the distance
between the base surface 31a and the imaginary plane S may be a predetermined distance
that is less than 30 nm, or a predetermined distance that is greater than 500 nm.
[0199] As long as surface plasmon excitation occurs on the metal layer 22, the base surface
31a and the imaginary plane S may form a predetermined angle.
[0200] The third component 13 and the fourth components 14 may emit transmitted light to
the observation side. The transmitted light has substantially the same wavelengths
as the second light that is incident on the back surface 10b of the display body 10,
that is, the transmitted light has the same color as the second light. Further, each
of the third component 13 and the fourth components 14 may include a section that
transmits the second light incident on the back surface 10b of the display body 10,
such as a section in which the thickness of the metal layer 22 is small enough to
transmit the second light.
[0201] The uneven structure of the third component 13 and the fourth components 14 may include
a single plasmon structure or two or more plasmon structures.
[0202] As shown in Fig. 26, a display body 90 may include a first component 91 and a second
component 92, which is entirely surrounded by the first component 91. The second component
92 includes parts of the front surface 90a of the display body 90 as the second optical
surface, and the first component 91 includes the other part of the front surface 90a
of the display body 90 as the first optical surface.
[0203] The first component 91 is the optical component that is described referring to Fig.
9 and forms first information on the observation side by absorbing the first light
received on the first optical surface. The first component 91 forms first information
that is a black or dark gray section of a rectangular shape excluding the second component
92.
[0204] The second component 92 is the optical component described referring to Figs. 3 and
4 and includes plasmon structures. The second component 92 receives second light transmitted
through the back surface 90b of the display body 90, forms second information displayed
on the observation side from the second light, and emits the second information from
the second optical surface, which is a part of the front surface 90a. The second information
is the light transmitted through the back surface 90b of the display body 90 and differs
from the second light in color.
[0205] In addition, the second component 92 absorbs the first light received on the second
optical surface to emit the light that mimics the first information to the observation
side. The absorption by the second component 92 results in a reduction in the light
reflectivity of the second component 92 as compared with a structure that does not
include protrusions or depressions.
[0206] Accordingly, when the first light is incident on the front surface 90a of the display
body 90 and the second component 92 is viewed in the direction of the normal to the
plate portion 31, the first component 91 displays third information in black or dark
gray on the observation side.
[0207] The second component 92 includes a plurality of second display elements 92a. When
the second light is incident on the display body 90, the second display elements 92a
form information of a predetermined color as the second information, which is a combination
of the letters O and K. When the first light is incident on the display body 90, the
second component 92 emits light that has a black or dark gray color and mimics the
first information formed by the first component 91.
[0208] The reflectivity of the second optical surface of the second component 92 is substantially
equal to the reflectivity of the first optical surface of the first component 91.
The reflectivities are considered to be substantially equal when the reflectivity
of the second optical surface is equal to the reflectivity of the first optical surface
and also when the difference between the reflectivity of the second optical surface
and the reflectivity of the first optical surface is such that the first information
and the light emitted by the second optical component are recognized as a single piece
of information when the reflected light from the front surface 90a is viewed.
[0209] As shown in Fig. 27, the display body 90 is attached to a verification subject 100.
The verification subject 100 includes a substrate through which light passes to the
display body 90. Alternatively, a section of the verification subject 100 including
at least the section to which the display body 90 is attached may be formed by a substrate
that transmits light to the display body 90. Further, the display body 90 may be attached
to the verification subject 100 such that light is directly incident on the display
body 90.
[0210] In the step of causing the first light to be incident on the display body 90, a light
source LS located on the observation side emits white light as first light IL1. The
first light IL1 is incident on the front surface 90a of the display body 90 from the
observation side. Part of the first light IL1 incident on the front surface 90a of
the display body 90 is received on the first optical surface and absorbed by the first
component 91 of the display body 90. Other part of the first light IL1 incident on
the front surface 90a of the display body 90 is received on the second optical surface
and absorbed by the second component 92.
[0211] Consequently, in the step of observing first information, the observer OB visually
perceives, in reflection light RL, one piece of information that is formed by the
first information displayed by the first component 91 and the light emitted by the
second component 92. The light emitted by the second component 92 is indistinguishable
by itself to the observer OB. In addition, since the light emitted by the second component
92 mimics the first information formed by the first component 91, the light emitted
by the second component 92 is unlikely to hinder the perception of the first information.
[0212] As shown in Fig. 28, in the step of causing the second light to be incident on the
display body 90, the light source LS is located on the side opposite to the observation
side with respect to the back surface 90b of the display body 90, and second light
IL2 is incident on the back surface 90b of the display body 90 from the side opposite
to the observation side with respect to the back surface 90b. The second light IL2
transmitted through the back surface 90b excites surface plasmons so that the second
component 92 emits transmitted light TL that differs from the second light IL2 in
color. In other words, the second component 92 forms transmitted light as second information
from the second light IL2 and emits the transmitted light to the observation side.
[0213] The first component 91 does not display the first information on the observation
side when the second light IL2 is incident on the back surface 90b of the display
body 90.
[0214] Consequently, in the step of observing second information, the observer OB visually
perceives the second information formed by the second component 92 but does not perceive
the first information of the first component 91.
[0215] The display body 90 displays a single piece of information formed by the first information
and the light emitted by the second component 92 when the first light IL1 is incident,
and displays the second information when the second light IL2 is incident. This allows
the observer OB to authenticate the verification subject 100 by determining whether
the display body 90 has the second information, for example.
[0216] The structure described above has the following advantages.
(6) When the second optical surface receives the first light, the second component
92 emits the light that mimics the first information to the observation side. Thus,
the light emitted by the second component 92 is unlikely to hinder the perception
of the first information.
[0217] In each of the embodiments described above, the section of the front surface 10a
of the display body 10 other than the first component 11, the second component 12,
and the third component 13 preferably functions as a fifth component, in a similar
manner as the display body 90 described referring to Fig. 26. The fifth component
forms first information, and the light emitted by the third component 13 when the
third component 13 receives the first light preferably mimics the first information.
[0218] The display body 90 may be structured such that, when the first light is incident
on the front surface 90a of the display body 90, the color of the light emitted by
the first component 91 is substantially the same as the color of the light emitted
by the second component 92. Such a structure still allows the light emitted by the
second component 92 to mimic the first information. The display body 90 may have any
structure as long as the color of the diffraction light emitted by the first component
91 is substantially the same as the color of the diffraction light emitted by the
second component 92, for example.
[0219] The surface of the display body may include the first optical surface, the second
optical surface, and a surface other than the first and second optical surfaces, as
is the case in the display body 10 of the embodiments. Alternatively, the surface
of the display body may include only the first optical surface and the second optical
surface, as is the case in the display body 90 of the modification.
[0220] When a first optical component surrounds a second optical component in the front
surface 10a of the display body 10, the relationship between the area S1 and the area
S2 may satisfy one of Expressions (2) and (3) below.

[0221] A first optical component may surround only a part of a second optical component
in the front surface 10a of the display body 10.
[0222] The display body described above does not have to be a display body that limits counterfeiting
of a verification subject by allowing authentication of the verification subject,
and may be a display body that is attached to an object for decoration and a display
body that is appreciated as an art piece on its own.
Amended claims under Art. 19.1 PCT
1. (amended) A display body comprising:
a first surface including a first optical surface and a second optical surface, wherein
first light is incident on the first surface from an observation side;
a second surface located opposite to the observation side with respect to the first
surface, wherein second light is incident on the second surface from a side opposite
to the observation side with respect to the second surface;
a first optical component including the first optical surface, wherein the first optical
component forms first information, which is displayed on the observation side, from
the first light received on the first optical surface; and
a second optical component including the second optical surface, wherein the second
optical component receives the second light transmitted through the second surface,
forms second information, which is displayed on the observation side, from the second
light, and emits the second information from the second optical surface, wherein
the second optical component is an uneven structure,
the uneven structure includes
an uneven structure portion including a dielectric that transmits light, and
a metal layer covering at least a part of the uneven structure portion,
one of an interface between the uneven structure portion and the metal layer and a surface of the metal layer that is opposite to the interface is the second optical
surface, and
the uneven structure includes a plasmon structure that receives the second light on
the interface and excites surface plasmons on the metal layer so that the second optical
surface emits transmitted light that forms the second information and differs from
the second light in color.
2. The display body according to claim 1, wherein the first optical component surrounds
the second optical component in the first surface, and
the first surface is described by Expression (1):

where S1 represents an area of the first surface that is occupied by the first optical
component, and S2 represents an area of the first surface that is occupied by the
second optical component.
3. The display body according to claim 1, wherein the second optical component is configured
to receive the first light on the second optical surface and emit light that mimics
the first information.
4. The display body according to any one of claims 1 to 3, wherein
the second optical component includes
a first plasmon structure that emits the transmitted light in a first color, and
a second plasmon structure that emits the transmitted light in a second color that
differs from the first color.
5. The display body according to any one of claims 1 to 4, wherein
the uneven structure portion includes a plate portion, which has a base surface serving
as one surface, and a plurality of protrusions, which projects from the base surface,
and
the base surface is substantially parallel with an imaginary plane including top surfaces
of the protrusions.
6. The display body according to claim 5, wherein a distance between the base surface
and the imaginary plane of the uneven structure portion is between 30 nm and 500 nm,
inclusive.
7. The display body according to any one of claims 1 to 6, wherein
the metal layer has a thickness of between 20 nm and 100 nm, inclusive, and
the metal layer includes a material of which the real part of the complex dielectric
constant is negative in a visible light range.
8. The display body according to claim 5, wherein
the protrusions are arranged in one of a triangular lattice pattern, a square lattice
pattern, and a hexagonal lattice pattern on the base surface, and
the protrusions arranged on the base surface have a pitch of between 100 nm and 600
nm, inclusive.
9. The display body according to claim 5, wherein the protrusions are arranged irregularly
on the base surface.
10. The display body according to claim 5, wherein
the second optical component includes a first display element and a second display
element,
the first display element and the second display element each include a part of the
plate portion and at least one of the protrusions, and
the first display element differs from the second display element in at least one
of a pitch of the protrusions arranged on the base surface, a distance between the
base surface and the imaginary plane, an arrangement state of the protrusions on the
base surface, a thickness of the metal layer, and a material forming the metal layer.
11. The display body according to claim 5, wherein
the uneven structure is a second uneven structure,
the base surface is a second base surface,
the plate portion is a second plate portion,
the protrusions are second protrusions,
the first optical component is a first uneven structure, and
the first uneven structure includes:
a first plate portion including a first base surface serving as one surface; and
a plurality of first protrusions projecting from the first base surface.
12. The display body according to claim 11, wherein the first protrusions arranged on
the first base surface have an average pitch of between 200 nm and 2000 nm, inclusive.
13. The display body according to claim 11 or 12, wherein
surfaces of the first protrusions and a section of the first base surface that is
free of the first protrusions form the first optical surface,
the first optical surface is a reflection surface that reflects the first light to
the observation side, and
the first protrusions are arranged irregularly on the first base surface.
14. The display body according to any one of claims 1 to 13, further comprising a print
layer located on at least one of a side of the first surface on which the first light
is incident and a side of the second surface on which the second light is incident,
wherein the print layer does not transmit at least part of visible light such that
the print layer forms third information on the observation side,
wherein, in a plan view of the first surface, the print layer overlaps with at least
one of a part of the first optical component and a part of the second optical component.
15. (amended) A method for observing a display body, wherein
the display body includes:
a first surface including a first optical surface and a second optical surface, wherein
first light is incident on the first surface from an observation side;
a second surface located opposite to the observation side with respect to the first
surface, wherein second light is incident on the second surface from a side opposite
to the observation side with respect to the second surface;
a first optical component including the first optical surface, wherein the first optical
component forms first information, which is displayed on the observation side, from
the first light received on the first optical surface; and
a second optical component including the second optical surface, wherein the second
optical component receives the second light transmitted through the second surface,
forms second information, which is displayed on the observation side, from the second
light, and emits the second information from the second optical surface,
the second optical component is an uneven structure,
the uneven structure includes
an uneven structure portion including a dielectric that transmits light, and
a metal layer covering at least a part of the uneven structure portion,
one of an interface between the uneven structure portion and the metal layer and a surface of the metal layer that is opposite to the interface is the second optical
surface, and
the uneven structure includes a plasmon structure that receives the second light on
the interface and excites surface plasmons on the metal layer so that the second optical
surface emits transmitted light that forms the second information and differs from
the second light in color,
the method comprising:
causing the first light to be incident on the first surface;
observing the first information formed by the first optical component from the first
light incident on the first surface;
causing the second light to be incident on the second surface; and
observing the second information formed by the second optical component from the second
light incident on the second surface.
16. The method for observing a display body according to claim 15, wherein
the first optical component surrounds the second optical component in the first surface,
the first surface is described as 0.01 ≤ S2/S1 ≤ 0.4, where S1 represents an area
of the first surface that is occupied by the first optical component, and S2 represents
an area of the first surface that is occupied by the second optical component, and
the observing the second information includes observing the second information with
the display body magnified.