

(11) **EP 3 260 797 A1**

(12)

EUROPÄISCHE PATENTANMELDUNG

(43) Veröffentlichungstag:

27.12.2017 Patentblatt 2017/52

(51) Int Cl.:

F25B 40/04 (2006.01) F24F 13/20 (2006.01) F24F 1/02 (2011.01)

(21) Anmeldenummer: 17176867.4

(22) Anmeldetag: 20.06.2017

(84) Benannte Vertragsstaaten:

AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

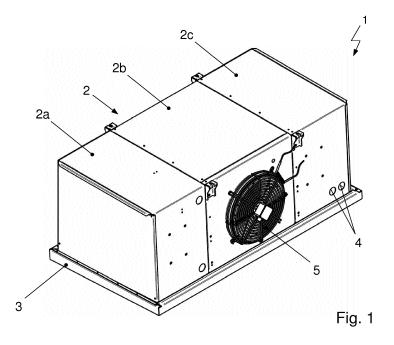
Benannte Erstreckungsstaaten:

BA ME

Benannte Validierungsstaaten:

MA MD

(30) Priorität: 21.06.2016 DE 102016111292


- (71) Anmelder: Futron GmbH 08491 Netzschkau (DE)
- (72) Erfinder: Fuhrmann, Jörg 08491 Netzschkau (DE)
- (74) Vertreter: Sperling, Thomas Sperling, Fischer & Heyner Patentanwälte Tolkewitzer Straße 22 01277 Dresden (DE)

(54) SYSTEM ZUM KONDITIONIEREN VON LUFT EINES RAUMES UND ANORDNUNG DES SYSTEMS

(57) Die Erfindung betrifft ein System (1) zum Konditionieren von Luft eines Raumes. Das System weist ein Grundelement (3), ein Gehäuse (2) mit einem Lüfter (5) zum Ansaugen der Luft des Raumes durch das Gehäuse (2) und einen Kältemittelkreislauf (20) mit folgenden Komponenten auf: ein Verdichter (21), ein als Enthitzer betriebener Wärmeübertrager (22), ein als Kondensator betriebener Wärmeübertrager (23), ein Expansionsorgan (26) und ein als Verdampfer betriebener Wärmeübertrager (27) zum Konditionieren der Luft des Raumes.

Der als Kondensator betriebene Wärmeübertrager

(23) ist dabei als ein Kältemittel-Kühlmittel-Wärmeübertrager mit Anschlüssen an einen Kühlmittelkreislauf (24) ausgebildet. Die Komponenten des Kältemittelkreislaufes (20) sind auf dem Grundelement (3) und vom Gehäuse (2) umschlossen derart angeordnet, dass das gesamte System (1) als eine zusammenhängende Einheit vollständig innerhalb des Raumes angeordnet ist. Die Erfindung betrifft des Weiteren die Anordnung des Systems (1) als Komponente eines Gesamtsystems in einem Raum zur Tiefkühlung.

Beschreibung

[0001] Die Erfindung betrifft ein System zum Konditionieren von Luft eines Raumes. Das System weist ein Grundelement, ein Gehäuse mit einem Lüfter zum Ansaugen der Luft des Raumes durch das Gehäuse und einen Kältemittelkreislauf mit einem Verdichter, einem als Enthitzer betriebenen Wärmeübertrager, einem als Kondensator betriebenen Wärmeübertrager, einem Expansionsorgan und einem als Verdampfer betriebenen Wärmeübertrager zum Konditionieren der Luft des Raumes auf.

[0002] Aus dem Stand der Technik bekannte Kälteanlagensysteme sind mit einem Kältemittelkreislauf mit jeweils mindestens einem Verdampfer, einem Verdichter, einem Kondensator und einem Expansionsorgan sowie diversen Sicherheitskomponenten und Peripherie ausgebildet. Dabei werden Kälteanlagen, beispielsweise für Supermärkte, in Anlagen für Normalkühlung bei Temperaturwerten im Bereich von größer etwa -5°C und Anlagen für Tiefkühlung bei Temperaturwerten im Bereich von kleinr etwa -5°C unterschieden. Die Kühlung erfolgt direkt oder indirekt.

[0003] Bei einer direkten Kühlung wird die Wärme von der zu konditionierenden Luft direkt an das Kältemittel übertragen. Der Wärmeübertrager zum Verdampfen des Kältemittels, kurz als Verdampfer bezeichnet, wird direkt mit dem Luftmassenstrom beaufschlagt. Bei einer indirekten Kühlung wird die Wärme von der zu konditionierenden Luft an ein Kühlmittel, welches innerhalb eines Kühlmittelkreislaufes zirkuliert, übertragen. Das erwärmte Kühlmittel wird anschließend kältemittelgekühlt, wobei der Verdampfer des Kältemittels mit dem zuvor erwärmten Kühlmittel beaufschlagt wird. Das Kältemittel verdampft unter Aufnahme der Wärme aus dem Kühlmittel, welches dabei abgekühlt wird. Sowohl bei der direkten als auch bei der indirekten Kühlung wird das Kältemittel nach der Aufnahme der Wärme innerhalb des Verdampfers vom Verdichter angesaugt und auf einen Hochdruck verdichtet. Das gasförmige Kältemittel wird anschließend beim Durchströmen des Wärmeübertragers zum Kondensieren des Kältemittels, kurz als Kondensator bezeichnet, enthitzt und kondensiert sowie gegebenenfalls unterkühlt. Die Wärme wird dabei vom Kältemittel meist an Umgebungsluft übertragen.

[0004] Des Weiteren sind Kaskaden-Kälteanlagen mit mindestens zwei Kältemittelkreisläufen bekannt, wobei der erste Kältemittelkreislauf eine untere Stufe und der zweite Kältemittelkreislauf eine obere Stufe bildet. Die Kaskaden-Kälteanlage wird bevorzugt zur Tiefkühlung eingesetzt, da die Temperaturunterschiede zwischen der Verdampfungstemperatur, welche zur Kühlung des Luftmassenstroms benötigt wird, und der Kondensationstemperatur zur Übertragung der Wärme, beispielsweise an die Umgebungsluft, sehr groß ist. Mit den extremen Temperaturunterschieden ergeben sich sehr große Druckunterschiede zwischen dem Eintritt und dem Austritt des Verdichters. Die großen Druckunterschiede be-

wirken eine sehr geringe Effizienz des Verdichters und damit der Kälteanlage oder sind nicht zu realisieren. Bei einer herkömmlichen Kaskaden-Kälteanlage wird die Wärme von der zu konditionierenden Luft direkt an das Kältemittel des ersten Kältemittelkreislaufes übertragen. Der Verdampfer des ersten Kältemittelkreislaufes wird direkt mit dem Luftmassenstrom beaufschlagt. Das nach der Verdichtung gasförmig vorliegende Kältemittel des ersten Kältemittelkreislaufes wird beim Durchströmen eines Kältemittel-Kältemittel-Wärmeübertragers enthitzt und kondensiert sowie gegebenenfalls unterkühlt. Der Kältemittel-Kältemittel-Wärmeübertrager wird innerhalb des ersten Kältemittelkreislaufes als Kondensator und innerhalb des zweiten Kältemittelkreislaufes als Verdampfer betrieben. Die Wärme wird dabei vom im ersten Kältemittelkreislauf zirkulierenden Kältemittel an das im zweiten Kältemittelkreislauf zirkulierende Kältemittel übertragen. Das nach der Verdichtung gasförmig vorliegende Kältemittel des zweiten Kältemittelkreislaufes wird beim Durchströmen eines Kältemittel-Luft-Wärmeübertragers enthitzt und kondensiert sowie gegebenenfalls unterkühlt. Die Wärme wird dabei vom Kältemittel meist an Umgebungsluft übertragen.

[0005] Der anthropogene Treibhauseffekt stellt derzeit eine große Herausforderung dar. Dabei tragen Kälteanlagen einerseits durch die direkten Emissionen von starken Treibhausgasen, wie FCKW, H-FCKW und HFKW, sowie andererseits durch indirekte Emissionen auf Grund des Energieverbrauchs zum Treibhauseffekt bei. Der Beitrag von Kälteanlagen, insbesondere von Supermarktkälteanlagen, zum Treibhauseffekt kann zum Beispiel verringert werden, indem die direkten Emissionen von Treibhausgasen durch minimale Kältemittelfüllmengen beziehungsweise den Einsatz von Kältemitteln ohne oder mit einem sehr niedrigen Treibhauspotential; kurz GWP für "Global warming potential", und/oder der Energieverbrauch der Kälteanlage reduziert werden.

Mit dem Einsatz von Kälteanlagen mit indirekter Kühlung lässt sich die Kältemittelfüllmenge im Vergleich zu Di-40 rektverdampfungsanlagen reduzieren, da diese ein deutlich kleineres kältemittelseitiges Volumen aufweisen. Zudem können fabrikgefertigte Kälteanlagen mit hohem Qualitätsstandard und geringem Leckagepotenzial sowie geringeren Ölmengen eingesetzt werden. Der direk-45 te Beitrag einer Kälteanlage zum Treibhauseffekt kann auch durch die Verwendung von Kältemitteln mit vernachlässigbarem Treibhauspotential gesenkt werden, wobei das geringe Treibhauspotential nicht die einzige Anforderung an das Kältemittel ist. Andere wichtige Anforderungen sind beispielsweise kein Ozonabbaupotenzial, hohe energetische Effizienz, chemische Stabilität, unbrennbar und ungiftig, nicht korrosiv, preiswert sowie kompatibel zu Materialien des Kältemittelkreislaufes.

[0006] Bei aus dem Stand der Technik bekannten Kälteanlagen sind der Verdampfer des Kältemittelkreislaufes zum Konditionieren der Luft und der sogenannte Kältemaschinensatz, welcher sämtliche andere Komponenten des Kältemittelkreislaufes umfasst, getrennt vonein-

ander angeordnet und über Kältemittelleitungen miteinander verbunden. Dabei befindet sich der Verdampfer
innerhalb des zu kühlenden Raumes, während der Kältemaschinensatz innerhalb eines abgeschlossenen Maschinenraumes angeordnet ist. Die getrennte Anordnung
bewirkt ein großes Volumen des Kältemittelkreislaufes
und damit eine große Kältemittelfüllmenge. Die Kälteanlage ist durch kältetechnisches Fachpersonal aufwändig
zu installieren und muss gemäß der Druckgeräterichtlinie
am Einbauort geprüft und abgenommen werden. Der
Austritt von Kältemittel aus dem Kältemittelkreislauf, beispielsweise durch Leckage, in verschiedene Bereiche
des Aufstellungsortes ist möglich.

[0007] Die Aufgabe der Erfindung besteht nunmehr in der Bereitstellung eines Systems zum Konditionieren von Luft eines Raumes, insbesondere eines Tiefkühlraumes, welches die oben genannten Nachteile aus dem Stand der Technik ausräumt und speziell die Anforderungen an einen möglichst geringen Treibhauseffekt erfüllt. Die Herstellungs-, Wartungs- und Betriebskosten sowie der erforderliche Bauraum des Systems sollen minimal sein, dabei soll bereits vorhandene Peripherie am Einbauort nutzbar sein.

[0008] Die Aufgabe wird durch den Gegenstand mit den Merkmalen des selbstständigen Patentanspruchs gelöst. Weiterbildungen sind in den abhängigen Patentansprüchen angegeben.

[0009] Die Aufgabe wird durch ein erfindungsgemäßes System zum Konditionieren von Luft eines Raumes gelöst. Das System weist ein Grundelement, ein Gehäuse mit einem Lüfter zum Ansaugen der Luft des Raumes durch das Gehäuse und einen Kältemittelkreislauf mit mindestens folgenden Komponenten auf: ein Verdichter, ein als Enthitzer betriebener Wärmeübertrager, ein als Kondensator betriebener Wärmeübertrager, ein Expansionsorgan und ein als Verdampfer betriebener Wärmeübertrager zum Konditionieren der Luft des Raumes.

[0010] Nach der Konzeption der Erfindung ist der als Kondensator betriebene Wärmeübertrager als ein Kältemittel-Kühlmittel-Wärmeübertrager mit Anschlüssen an einen Kühlmittelkreislauf ausgebildet. Zudem sind sämtliche Komponenten des Kältemittelkreislaufes auf dem Grundelement und vom Gehäuse umschlossen derart angeordnet, dass das gesamte System als eine zusammenhängende Einheit vollständig innerhalb des Raumes angeordnet ist.

[0011] Unter der zusammenhängenden Einheit ist zu verstehen, dass das System mit dem Gehäuse sowie dem Grundelement, dem geschlossenen und bereits befüllten Kältemittelkreislauf sowie Schalteinrichtungen und Steuereinrichtungen vormontiert in den Raum eingebracht wird, sodass lediglich die Anschlüsse des Kühlmittelkreislaufs und elektrische Steuerleitungen beziehungsweise Versorgungsleitungen anzuschließen sind. [0012] Nach einer Weiterbildung der Erfindung ist das Gehäuse aus mindestens einem geschlossenen Gehäuseelement und mindestens einem luftdurchströmbaren Gehäuseelement geteilt ausgebildet. Die Gehäuseele-

mente sind dabei auf dem Grundelement abgestützt angeordnet.

Das Grundelement ist bevorzugt als eine Rahmenkonstruktion ausgebildet.

[0013] Das Gehäuse ist vorteilhaft aus mindestens einem ersten, äußeren Gehäuseelement, einem zweiten, mittleren Gehäuseelement und einem dritten, äußeren Gehäuseelement mindestens dreigeteilt ausgebildet. Die äußeren Gehäuseelemente sind jeweils geschlossen und seitlich neben dem mittleren, luftdurchströmbar ausgebildeten Gehäuseelement, das mittlere Gehäuseelement an gegenüberliegenden Seiten jeweils seitlich begrenzend angeordnet.

[0014] Nach einer bevorzugten Ausgestaltung der Erfindung ist das geschlossen ausgebildete Gehäuseelement gegen die Umgebung und gegen das luftdurchströmbare Gehäuseelement isoliert. Unter der Isolation ist insbesondere Wärmeisolation zu verstehen.

[0015] Nach einer vorteilhaften Ausgestaltung der Erfindung ist der als Verdampfer betriebene Kältemittel-Luft-Wärmeübertrager innerhalb des vom luftdurchströmbaren Gehäuseelement umschlossenen Volumens angeordnet.

[0016] Der als Verdampfer betriebene Wärmeübertrager ist zur direkten Kühlung der Luft konfiguriert. Unter der direkten Kühlung ist dabei eine Wärmeübertragung ohne Zwischenmedien, wie zusätzliche Kühlmittel oder Kältemittel als Kälteträgerfluid, zu verstehen. Die von der Luft aufzunehmende Wärme wird folglich direkt an das Kältemittel übertragen, welches innerhalb des Wärmeübertragers verdampft. Das Kältemittel steht über den Kältemittel-Luft-Wärmeübertrager in direktem Kontakt zur Luft, sodass die Wärme beispielsweise lediglich durch eine Wandung des Wärmeübertragers, insbesondere durch Wärmeübergang von der Luft an die Wandung, Wärmeleitung durch die Wandung und Wärmeübergang von der Wandung an das Kältemittel, übertragen wird.

[0017] Der Lüfter zum Ansaugen der Luft des Raumes durch das Gehäuse beziehungsweise zum Fördern des Massenstroms der zu konditionierenden Luft über die Wärmeübertragungsfläche des Kältemittel-Luft-Wärmeübertragers ist bevorzugt ebenfalls im Bereich des luftdurchströmbaren Gehäuseelements vorgesehen.

Das Gehäuse ist im Bereich des luftdurchströmbaren Gehäuseelements vorteilhaft zudem mit einer Abtauklappe zum Verschließen und Öffnen des luftdurchströmbaren Gehäuseelements ausgebildet. Die Abtauklappe ist dabei bevorzugt auf der Ansaugseite des Gehäuseelements angeordnet.

[0018] Nach einer Weiterbildung der Erfindung weist der Kältemittelkreislauf eine sich zwischen einer auf der Hochdruckseite ausgebildeten Abzweigstelle und einer auf der Niederdruckseite ausgebildeten Mündungsstelle erstreckende Druckausgleichsstrecke auf. Die Druckausgleichsstrecke ist mit einem Ausdehnungsgefäß, mindestens einem Kapillarrohr und mindestens einem Sicherheitsventil ausgebildet.

[0019] Eine vorteilhafte Ausgestaltung der Erfindung

25

40

45

besteht darin, dass die Abzweigstelle in Strömungsrichtung des Kältemittels zwischen dem als Enthitzer betriebenen Wärmeübertrager und dem als Kondensator betriebenen Wärmeübertrager ausgebildet ist, während die Mündungsstelle der Druckausgleichsstrecke am Eintritt in den Verdichter angeordnet ist.

[0020] Nach einer weiteren bevorzugten Ausgestaltung der Erfindung ist das mindestens eine Sicherheitsventil in Strömungsrichtung des Kältemittels innerhalb der Druckausgleichsstrecke nachfolgend zur Abzweigstelle und/oder vor der Mündungsstelle angeordnet. Bei einer Ausgestaltung der Erfindung mit zwei Sicherheitsventilen ist jeweils ein Sicherheitsventil auf der Niederdruckseite und auf der Hochdruckseite des Kältemittelkreislaufes ausgebildet. Die Bezeichnungen Niederdruckseite und Hochdruckseite beziehen sich dabei auf Zustände des Kältemittels während des Betriebs des Kältemittelkreislaufs.

[0021] Die Druckausgleichsstrecke weist vorteilhaft zwei Kapillarrohre auf. Dabei ist ein erstes Kapillarrohr in Strömungsrichtung des Kältemittels vor dem Ausdehnungsgefäß und ein zweites Kapillarrohr in Strömungsrichtung des Kältemittels nach dem Ausdehnungsgefäß angeordnet.

Das erste Kapillarrohr ist bevorzugt zwischen dem auf der Hochdruckseite angeordneten Sicherheitsventil und dem Ausdehnungsgefäß und das zweite Kapillarrohr ist bevorzugt zwischen dem Ausdehnungsgefäß und dem auf der Niederdruckseite angeordneten Sicherheitsventil ausgebildet.

[0022] Nach einer Weiterbildung der Erfindung ist mindestens zu einem Kapillarrohr ein Bypass mit einem Sicherheitsventil vorgesehen, welches bei einer Druckbegrenzung mit einem vorbestimmten Öffnungsdruck eingestellt ist. Der Bypass ist vorteilhaft um das erste Kapillarrohr angeordnet.

[0023] Eine weitere vorteilhafte Ausgestaltung der Erfindung besteht darin, dass der Verdichter, der als Kondensator betriebene Kältemittel-Kühlmittel-Wärmeübertrager, das Expansionsorgan und die die Druckausgleichsstrecke ausbildenden Komponenten innerhalb des vom mindestens einen geschlossenen Gehäuseelement umschlossenen Volumens angeordnet sind.

[0024] Nach einer weiteren bevorzugten Ausgestaltung der Erfindung ist das System auf der Unterseite mit einem Sammelelement zum Auffangen und Ableiten von Flüssigkeit ausgebildet.

Das Sammelelement ist vorteilhaft im Bereich des luftdurchströmbaren Gehäuseelements angeordnet, um die vom Kältemittel-Luft-Wärmeübertrager aus der Luft auskondensierte Feuchtigkeit, insbesondere Wasser, zu sammeln. Das Sammelelement ist dabei bevorzugt wannenförmig oder schalenförmig ausgebildet.

[0025] Nach einer Weiterbildung der Erfindung ist der als Enthitzer betriebene Wärmeübertrager innerhalb des vom luftdurchströmbaren Gehäuseelement umschlossenen Volumens und auf der in das Volumen hinein gerichteten Seite des Sammelelements zum Erwärmen der aus

der Luft auskondensierten und im Sammelelement gesammelten Flüssigkeit angeordnet. Damit wird die zur Enthitzung des gasförmigen Kältemittels vom Kältemittel abgeführte Wärme an die im Sammelelement gespeicherte Flüssigkeit übertragen, insbesondere um ein Gefrieren der Flüssigkeit zu vermeiden.

[0026] Eine weitere vorteilhafte Ausgestaltung der Erfindung besteht darin, dass der als Verdampfer betriebene Kältemittel-Luft-Wärmeübertrager auf einer zur Luft gerichteten Wärmeübertragungsfläche Lamellen aufweist, welche parallel zueinander ausgerichtet angeordnet sind. Die Lamellen weisen in einem Anströmbereich der Luft mit einem ersten Lamellenabstand und in einem vom Anströmbereich der Luft abweichenden Bereich mit einem zweiten Lamellenabstand eine unterschiedliche Lamellenteilung auf. Dabei ist der Wert des ersten Lamellenabstands größer als der Wert des zweiten Lamellenabstands. Im Anströmbereich der Luft an den Wärmeübertrager sind die Lamellen weiter beabstandet zueinander angeordnet als im übrigen Bereich, insbesondere im Abströmbereich und im mittleren Bereich der Wärmeübertragungsfläche.

Das Verhältnis von erstem Lamellenabstand zu zweitem Lamellenabstand beträgt bevorzugt 2/1. Der erste Lamellenabstand weist vorteilhaft einen Wert von 14 mm auf.

[0027] Nach einer weiteren bevorzugten Ausgestaltung der Erfindung ist der Verdichter mit einem wannenförmigen Sammelelement für Schmiermittel, einem Heizelement zum Erwärmen des im Sammelelement angesammelten Schmiermittels und einer Einrichtung zum Überwachen der Temperatur des im Sammelelement angesammelten Schmiermittels sowie zum Steuern des Heizelements ausgebildet.

Die Einrichtung zum Überwachen der Temperatur des im Sammelelement angesammelten Schmiermittels weist vorteilhaft mindestens einen Sensor zum Bestimmen der Temperatur des Schmiermittels auf.

[0028] Der Verdichter ist bevorzugt als ein Hubkolbenverdichter ausgebildet.

Das wannenförmige Sammelelement für das Schmiermittel des Verdichters, auch als Ölwanne bezeichnet, ist vorteilhaft isoliert, insbesondere wärmeisoliert, um die Wärmeübertragung vom Verdichter beziehungsweise vom Schmiermittel an die Umgebung zu minimieren.

[0029] Der als Kondensator betriebene Kältemittel-Kühlmittel-Wärmeübertrager ist bevorzugt als ein Plattenwärmeübertrager ausgebildet. Zudem ist der Kältemittel-Kühlmittel-Wärmeübertrager im Kühlmittelkreislauf derart eingebunden, dass das Kältemittel und das Kühlmittel im Kreuz-Gegenstrom zueinander durch den Wärmeübertrager strömen.

[0030] Das Expansionsorgan ist vorteilhaft als ein Expansionsventil, insbesondere als ein elektronisch gesteuertes Expansionsventil, ausgebildet.

[0031] Als Kältemittel wird bevorzugt Kohlenstoffdioxid, kurz als CO₂ bezeichnet, eingesetzt.

[0032] Die vorteilhafte Ausgestaltung der Erfindung er-

möglicht die Anordnung des Systems als Komponente eines Gesamtsystems in einem Raum zur Tiefkühlung, insbesondere innerhalb eines Supermarkts.

Der Kühlmittelkreislauf ist dabei bevorzugt zur Normalkühlung des Gesamtssystems konfiguriert.

[0033] Das erfindungsgemäße System weist zusammenfassend diverse Vorteile auf:

- kompaktes System, welches eine komplette Kälteanlage, umfassend einen Kältemittelkreislauf mit einem Verdichter, einem Kondensator, einem Expansionsorgan, insbesondere einem Expansionsventil, und einem Verdampfer sowie Sicherheitseinrichtungen in einer Anordnung vereint,
- minimaler Platzbedarf und Bauraum durch sehr kompakte Abmessungen in der Größe eines Verdampfers,
- einfaches und schnelles Auswechseln des kompletten Systems,
- für die Installation ist kein kältetechnisches Personal notwendig, da lediglich die Rohre des Kühlmittelkreislaufes anzuschließen sind, wobei der Kältemittelkreislauf weder verändert noch geöffnet wird, dadurch geringe Installationskosten,
- industriell- und fabrikgefertigtes sowie steckerfertiges System mit hohem Qualitätsstandard, geringem Leckagepotenzial sowie geringer Ölmenge, mit allen notwendigen Prüfungen und Dokumenten, wie CE-Zertifizierung beziehungsweise Abnahmeprüfung, welche nicht erst am Einbauort durchgeführt und erstellt werden,
- einfache Montage und Installation des kompakten Systems direkt am Einbauort, insbesondere in einem Tiefkühlraum,
- Kühlräume mit Solerohrverteilung, zum Beispiel bei der Anwendung in der Lebensmittelindustrie, können zu Tiefkühlräumen umfunktioniert werden,
- sehr kurze Verrohrung zwischen K\u00e4ltemaschinensatz und Verdampfer, damit minimale K\u00e4ltemittelf\u00fcllmengen, sodass in der Mehrzahl der Anwendungsf\u00e4lle keine Gaswarnanlage notwendig ist,
- Einsatz von natürlichem Kältemittel ohne Treibhauspotential, wie Kohlenstoffdioxid (R744), damit hohe energetische Effizienz, chemische Stabilität, unbrennbar und ungiftig, nicht korrosiv, preiswert sowie kompatibel zu Materialien des Kältemittelkreislaufes
- Anwendung bei Neubau und Nachrüstung von Kälteanlagen,
- Einsatz in diversen Bereichen der Kühlung von Warengut, insbesondere in der Lebensmittelindustrie, wie in Zentrallagern, in Märkten oder Ladengeschäften mit Tiefkühlzelle, sowie
- geringe Kosten bei der Herstellung und Wartung sowie während des Betriebs.

[0034] Weitere Einzelheiten, Merkmale und Vorteile von Ausgestaltungen der Erfindung ergeben sich aus der

nachfolgenden Beschreibung von Ausführungsbeispielen mit Bezugnahme auf die zugehörigen Zeichnungen. Es zeigen:

- Fig. 1: System zum Konditionieren von Luft eines Raumes, insbesondere eines Tiefkühlraumes, in zusammengebautem Zustand in perspektivischer Ansicht,
 - Fig. 2: schematische Darstellung eines Kältemittelkreislaufes des Systems,
 - Fig. 3: Ansicht des Systems aus Fig. 1 von hinten mit angedeuteter Anordnung des Verdichters des Kältemittelkreislaufes,
 - Fig. 4a: Seitenansicht des Systems aus Fig. 1 mit geöffnetem Bereich des Gehäuses und Verdichter des Kältemittelkreislaufes.
 - Fig. 4b: Detailansicht des Verdichters,
 - Fig. 5a: Draufsicht auf das System mit geöffneten Gehäuse und Verdampfer des Kältemittelkreislaufes sowie
 - Fig. 5b: Detailansicht des Verdampfers.

[0035] Fig. 1 zeigt das System 1 zum Konditionieren von Luft eines Raumes, insbesondere eines Tiefkühlraumes, in zusammengebautem Zustand. Das System 1 weist ein aus einem ersten Gehäuseelement 2a, einem zweiten Gehäuseelement 2b und einem dritten Gehäuseelement 2c ausgebildetes dreigeteiltes Gehäuse 2 sowie ein Grundelement 3 auf. Die Gehäuseelemente 2a, 2b, 2c sind auf dem als Rahmen ausgebildeten Grundelement 3 abgestützt angeordnet.

Das Gehäuse 2 ist im Bereich des dritten Gehäuseelements 2c mit Durchführungen 4 für Anschlüsse eines nicht dargstellten Kältemittel-Kühlmittel-Wärmeübertragers ausgebildet. Im Bereich des zweiten Gehäuseelements 2b weist das Gehäuse 2 eine Öffnung auf, in welcher ein Lüfter 5 zum Fördern des Massenstroms der zu konditionierenden Luft über die Wärmeübertragungsfläche eines nicht dargestellten Kältemittel-Luft-Wärmeübertragers des Systems 1 angeordnet ist.

[0036] Aus Fig. 2 geht eine schematische Darstellung eines Kältemittelkreislaufes 20 des Systems 1, insbesondere zur Kälteversorgung einer Kühlzelle beziehungsweise eines Tiefkühlraumes, mit einem Verdichter 21, einem als Enthitzer des gasförmigen Hochdruckkältemittels betriebenen Wärmeübertrager 22, dem Kältemittel-Kühlmittel-Wärmeübertrager 23, einem Expansionsorgan 26 sowie dem Kältemittel-Luft-Wärmeübertrager 27 hervor. Die Kälteversorgung basiert auf einer Kälteanlage mit Direktverdampfung.

[0037] Das aus dem Verdichter 21 auf dem Niveau des Hochdrucks als Heißgas ausströmende Kältemittel wird beim Durchströmen des Enthitzers 22 enthitzt und anschließend durch den als Kondensator betriebenen Kältemittel-Kühlmittel-Wärmeübertrager 23 geleitet. Während des Enthitzens wird das gasförmige Kältemittel bis in den Bereich der Taulinie abgekühlt.

Beim Durchströmen des Wärmeübertragers 23 wird das

40

Kältemittel kondensiert und gegebenenfalls unterkühlt. Die Wärme wird vom Kältemittel an ein in einem Kühlmittelkreislauf 24 zirkulierendes Kühlmittel, welches eine kälteresistente und somit auch bei Temperaturen im Bereich unterhalb von 0°C die Fließeigenschaften aufweisende Sole darstellt, übertragen. Dabei wird das im Kreuz-Gegenstrom zum Kältemittel durch den bevorzugt als Plattenwärmeübertrager ausgebildeten Kreuz-Gegenstrom-Wärmeübertrager strömende Kühlmittel erwärmt. Die Abwärme der Kälteanlage wird folglich an ein Solesystem abgegeben. Das Solesystem wird dabei bevorzugt mit einer Vorlauftemperatur von -2°C und einer Rücklauftemperatur von +3°C betrieben. Das Kühlmittel des Kühlmittelkreislaufes 24 dient dem Kältemittelkreislauf 20 als Wärmesenke. Unter dem Einsatz des natürlichen Kältemittels Kohlenstoffdioxid mit der kältetechnischen Kurzbezeichnung R744 wird das System 1 mit einer Kondensationstemperatur von etwa +2°C betrieben. Der Kühlmittelkreislauf 24 wird als Solesystem neben der Aufnahme der Wärme aus dem Kältemittelkreislauf 20 im Kältemittel-Kühlmittel-Wärmeübertrager 23 vorteilhaft auch zur Normalkühlung einer Kälteanlage einge-

[0038] Nach dem Austreten aus dem Kältemittel-Kühlmittel-Wärmeübertrager 23 wird das flüssige Kältemittel durch einen Filter 25 zum Expansionsorgan 26 geleitet. Beim Durchströmen des insbesondere als Expansionsventil, speziell als elektronisches Expansionsventil, ausgebildeten Expansionsorgans 26 wird das Kältemittel auf Verdampfungsdruck entspannt und zum Verdampfer 27 geführt. Beim Durchströmen des als Raumluftkühler ausgebildeten Verdampfers 27 wird das Kältemittel unter Wärmeaufnahme verdampft und überhitzt. Dabei wird die Wärme von der zu konditionierenden Raumluft an das Kältemittel übertragen. Die mittels des Lüfters 5 über die Wärmeübertragungsfläche des Verdampfers 27 gesaugte Luft wird abgekühlt. Unter dem Einsatz von Kohlenstoffdioxid wird das System 1 mit einer Verdampfungstemperatur von etwa -33°C bei einer Temperatur der Raumluft von etwa -24°C betrieben.

Das überhitzt und gasförmig aus dem Verdampfer 27 austretende Kältemittel wird vom bevorzugt als Hubkolbenverdichter ausgebildeten Verdichter 21 angesaugt. Der Kältemittelkreislauf 20 ist geschlossen.

[0039] Der Enthitzer 22, auch als Rohrverteilstrecke bezeichnet, ist im Bereich des zweiten Gehäuseelements 2b und damit im Bereich des Verdampfers 27 angeordnet. Neben der Enthitzung des Druckgases dient der Enthitzer 22 auch der Vermeidung von Pulsationen des Kältemittels und der Vermeidung von Wärmedehnungen im als Plattenwärmeübertrager ausgebildeten Kondensator 23. Die aus dem Kältemittel-Kühlmittel-Wärmeübertrager 23 ausgelagerte Enthitzung des Druckgases bewirkt wesentlich kleinere Temperaturdifferenzen innerhalb des Plattenwärmeübertragers, sodass die auf Grund von Wärmedehnungen auftretenden Spannungen vermieden oder zumindest minimiert werden.

[0040] Der Kältemittelkreislauf 20 des Systems 1 wird mit Kohlenstoffdioxid als Kältemittel auf der Hochdruckseite mit etwa 43 bar und auf der Niederdruckseite mit etwa 32 bar begrenzt und weist Sicherheitseinrichtungen auf, welche vorrangig in einer sich zwischen einer Abzweigstelle 28 und einer Mündungsstelle 33 erstreckenden Druckausgleichsstrecke angeordnet sind. Die Abzweigstelle 28 ist dabei in Strömungsrichtung des Kältemittels zwischen dem Enthitzer 22 und dem Kondensator 23 ausgebildet, während die Mündungsstelle 33 am Eintritt in den Verdichter 21 ausgebildet ist.

Die Sicherheitseinrichtungen, insbesondere die Druckbegrenzung, sind für den Fall eines längeren Stillstandes, beispielsweise bei einem Ausfall des Kühlmittelkreislaufes 24, ausgelegt und weisen ein ausreichend dimensioniertes Ausdehnungsgefäß 31 sowie jeweils ein Sicherheitsventil 29, 34 und ein Absperrventil 35 auf der Niederdruckseite und auf der Hochdruckseite des Kältemittelkreislaufes 20 auf. Die auf der Hochdruckseite im Bereich der Abzweigstelle 28 und auf der Niederdruckseite im Bereich der Mündungsstelle angeordneten Absperrventile 35 sind offen verplombt ausgebildet. Das auf der Niederdruckseite angeordnete selbsttätige und gegendruckunabhängige Sicherheitsventil 34 ist als Abblaseventil ausgebildet, welches bei Erreichen oder Überschreiten eines vorbestimmten Schwellenwertes, speziell 32 bar, öffnet und das Kältemittel aus dem Kältemittelkreislauf 20 entweichen lassen.

[0041] Innerhalb der Druckausgleichsstrecke ist zwischen den Absperrventilen 35 und dem Ausdehnungsgefäß 31 jeweils ein Kapillarrohr 30, 32 mit vorgeschalteten Filterelement angeordnet, sodass ein notwendiger Druckausgleich in jedem Fall ermöglicht ist. Durch den Einsatz der Kapillarrohre 30, 32 wird zudem die Installation von im Betrieb fehlerhaften oder ausfallenden Magnetventilen vermieden.

Beim Ansteigen des Druckes auf der Hochdruckseite des Kältemittelkreislaufes 20 strömt das Kältemittel zum Ausgleichen des Druckes mit sehr geringer Geschwindigkeit und unter Druckverlust durch das Kapillarrohr 30 in das Ausdehnungsgefäß 31. Beim Einschalten des Verdichters 21 strömt das Kältemittel aus dem Ausdehnungsgefäß 31 mit sehr geringer Geschwindigkeit durch das Kapillarrohr 32 zum Verdichter 21 und zirkuliert innerhalb des Kältemittelkreislaufes 20. Eine herkömmliche Ausbildung einer Kälteversorgung, auch als Notkälteversorgung bezeichnet, ist nicht notwendig. Das Ausdehnungsgefäß 31 ist derart konfiguriert, dass ein Stillstand und eine Erwärmung des Systems 1 auf eine Temperatur von 35°C ohne Abblasen des Kältemittels gewährleistet ist. [0042] Das Kapillarrohr 30 weist zudem einen Bypass mit dem als ein Überströmventil ausgebildeten Sicherheitsventil 29 auf, welches bei Erreichen oder Überschreiten eines vorbestimmten Schwellenwertes öffnet und somit bei einer Druckbegrenzung des mit Kohlenstoffdioxid befüllten Kältemittelkeislaufes 20 beispielsweise auf 43 bar mit einem Öffnungsdruck von 43 bar eingestellt ist. Beim Erreichen des Druckes von 43 bar

40

45

50

55

öffnet das Sicherheitsventil 29 zum Durchlassen des Kältemittels, insbesondere in das Ausdehnungsgefäß 31 als Ausgleich von der Hochdruckseite auf die Niederdruckseite des Kältemittelkreislaufes 20.

Die Sicherheitsventile 29, 34 dienen als Druckentlastungseinrichtungen, welche das Kältemittel von einem Bereich mit hohem Druck in einen Bereich geringeren Drucks durchlassen, wobei das Sicherheitsventil 34 als Abblaseventil das Kältemittel aus dem Bereich des Hochdrucks des Kältemittelkreislaufs 20 in die Umgebung und das Sicherheitsventil 29 als Überströmventil das Kältemittel aus dem Bereich des Hochdrucks in einen Bereich geringeren Drucks des Kältemittelkreislaufs 20 überströmen lässt.

[0043] In den Fig. 3, 4a und 5a sind verschiedene Ansichten des Systems 1 zum Konditionieren von Luft eines Raumes, insbesondere eines Tiefkühlraumes, aus Fig. 1 gezeigt. Aus Fig. 3 geht eine Ansicht des Systems 1 von hinten mit einer angedeuteten Anordnung des Verdichters 21 des Kältemittelkreislaufes 20 hervor. Fig. 4a zeigt eine Seitenansicht des Systems 1 mit einem geöffneten Bereich des Gehäuses 2 und dem Verdichter 21 des Kältemittelkreislaufes 20. In Fig. 5a ist eine Draufsicht auf das System 1 mit geöffnetem Gehäuse 2 und dem Verdampfer 27 des Kältemittelkreislaufes 20 dargestellt.

[0044] Im Bereich des ersten, äußeren Gehäuseelements 2a ist der Verdichter 21 des Kältemittelkreislaufes 20 angeordnet, während innerhalb des Bereichs des dritten, ebenfalls äußeren Gehäuseelements 2c das nicht dargestellte Ausdehnungsgefäß 31 und der ebenfalls nicht dargestellte, als Kondensator betriebene Kältemittel-Kühlmittel-Wärmeübertrager 23 des Kältemittelkreislaufes 20 angeordnet sind.

Die nicht dargestellten Anschlüsse des Kühlmittelkreislaufes 24 an den Wärmeübertrager 23 sind innerhalb des vom Gehäuseelement 2c umschlossenen Volumens ausgebildet. Die Verbindungsleitungen des Kühlmittelkreislaufes 24 zu den Anschlüssen am Kondensator 23 werden durch im Gehäuse 2 ausgebildete Durchführungen 4 hindurchgeführt.

[0045] Das insbesondere für eine Tiefkühlung konfigurierte System 1 ist mit dem gesamten Kältemittelkreislauf 20, das heißt mit dem Verdichter 21, dem Enthitzer 22, dem Kondensator 23, dem Expansionsorgan 26, dem Verdampfer 27 und den Sicherheitseinrichtungen, wie dem Ausdehnungsgefäß 31, den Kapillarrohren 30, 32 und den Sicherheitsventilen 29, 34, als eine kompakte, werksgefertigte Einheit zur Anordnung innerhalb des zu kühlenden Raumes ausgebildet. Sämtliche Komponenten des Systems 1 sind in einer kompakten Rahmenkonstruktion, das heißt auf dem als Rahmen ausgebildeten Grundelement 3, angeordnet.

Mit der sehr geringen Kältemittelfüllmenge des kompakten Systems 1 mit sehr kurzen Verbindungsleitungen zwischen den Komponenten des Kältemittelkreislaufes 20 sind die Anforderungen an die Sicherheit weiter reduziert. Die Kältemittelfüllmenge beträgt bevorzugt le-

diglich etwa 2,5 kg. Durch die vorteilhafte Verwendung eines natürlichen Kältemittels, wie Kohlenstoffdioxid, fällt das System des Weiteren nicht unter die sogenannte F-Gase-Verordnung, deren Anforderungen somit nicht relevant sind. Kohlenstoffdioxid ist ein nicht toxisches, nicht brennbares und kostengünstiges natürliches Kältemittel, ohne Ozonzerstörungspotential und einen im Vergleich zu fluorierten Gasen vernachlässigbaren Treibhauspotential von GWP = 1. Kohlenstoffdioxid ist chemisch sehr reaktionsträge und damit auch mit allen gängigen Werkstoffen verträglich sowie im Lebensmittelbereich zugelassen. Kohlenstoffdioxid weist bei unterkritischem Betrieb des Kältemittelkreislaufes 20 eine sehr hohe volumetrische Kälteleistung auf.

[0046] Zur Installation innerhalb des Raumes wird das System 1 komplett vormontiert und damit anbaufähig in den Raum eingebracht und am Aufstellort angeordnet. Anschließend werden die Vorlaufleitung und die Rücklaufleitung des Kühlmittelkreislaufes 24 mit den Anschlüssen des Kondensators 23 verbunden sowie die Elektroanschlüsse und die Steueranschlüsse für ein Gesamtsystem verkabelt.

Der Kältemittelkreislauf 20 wird bei der Montage im Werk mit Kältemittel befüllt, sodass am Einbauort des Systems 1 keine Befüllung des Kältemittelkreislaufes 20 mit Kältemittel erfolgt, was die Sicherheit des Systems 1 erhöht und den Einsatz eines ausgebildeten Kälteinstallateurs zur Montage des Systems 1 nicht zwingend erforderlich macht.

[0047] Im Bereich des zweiten, mittleren Gehäuseelements 2b ist der als Verdampfer betriebene Kältemittel-Luft-Wärmeübertrager 27 des Kältemittelkreislaufes 20 angeordnet. Die zu konditionierende Luft wird mittels des Lüfters 5 in Strömungsrichtung 7 durch den Bereich des zweiten Gehäuseelements 2b hindurchgesaugt und überströmt dabei die Wärmeübertragungsfläche des mit dem Kältemittel beaufschlagten Verdampfers 27.

Das gesamte System 1 ist in einem einzigen Gehäuse 2 mit dem Verdampfer 27 im zu kühlenden Raum angeordnet. Damit ist das System 1 als ein Verdampfergehäuse ausgebildet, welches seitlich zusätzliche Volumina für den Verdichter 21, den Kondensator 23, das Ausdehnungsgefäß 31, welches beispielsweise in einem Havariefall zusätzliches Ausdehnungsvolumen für das Kältemittel bereitstellt, und sämtliche weiteren Komponenten des Kältemittelkreislaufes 20 aufweist.

[0048] Das am Boden des Systems 1 ausgebildete Grundelement 3 weist ein Sammelelement 6 zum Auffangen und Ableiten von Flüssigkeit auf. Das sich beim Abkühlen der Luft hauptsächlich an der Wärmeübertragungsfläche des Verdampfers 27 niederschlagende und aus der Luft auskondensierende Wasser tropft nach unten ab und wird in dem als Tauwasserauffangschale ausgebildeten Sammelelement 6 aufgenommen und gespeichert

Wie insbesondere aus Fig. 5a hervorgeht, ist der als Rohrverteilstrecke ausgebildete Enthitzer 22 des gasförmigen Kältemittels im Bereich des zweiten Gehäuseelements 2b und damit im Bereich des Verdampfers 27 angeordnet. Die Rohrverteilstrecke verläuft dabei am Boden und an der Innenseite des Sammelelements 6. Die vom Heißgas abzuführende Wärme wird folglich zur Erwärmung des aus der Luft auskondensierenden und im Sammelelement 6 aufgefangenen Wassers genutzt. Mit dieser Anordnung des Enthitzers 22 kann auf die Anordnung eines zusätzlichen Heizelements zum Erwärmen und damit zum Verhindern des Gefrierens des aus der Luft auskondensierten Wassers verzichtet werden, was wiederum zum Verzicht auf zusätzliche Heizenergie führt.

[0049] Das System 1 weist zum Erhöhen der Effizienz während der Abtauung des an der Wärmeübertragungsfläche des Verdampfers 27 angefrorenen Wassers zudem eine Abtauklappe 8 auf, was insbesondere aus den Fig. 4a und 5a hervorgeht. Beim Kühlbetrieb des Systems 1 ist die Abtauklappe 8 geöffnet, was in Fig. 4a anhand der gestrichelten Linien dargestellt ist. Die Abtauklappe 8 ist während des Abtaubetriebs des Systems 1 geschlossen, was in Fig. 5a gezeigt ist, um das Ansaugen von Luft aus dem Raum zu verhindern, dessen Luft zu kühlen ist. Die Abtauklappe 8 ist dabei auf der Ansaugseite der Luft des Verdampfers 27 angeordnet.

[0050] Die äußeren Gehäuseelemente 2a, 2c sind jeweils gegen die Umgebung und gegen das mittlere Gehäuseelement 2b isoliert ausgebildet. Die Wandungen der Gehäuseelemente 2a, 2c weisen dabei jeweils Isolationsschichten auf, um die innerhalb der Gehäuseelemente 2a, 2c beispielsweise durch den Verdichter 21 erzeugte und abgegebene Wärme an die zu konditionierende Luft zu minimieren. Mit der Isolierung der äußeren Gehäuseelemente 2a, 2c wird zudem die Bildung von Kondenswasser und das Gefrieren des Kondenswassers, insbesondere an Komponenten des Kältemittelkreislaufes 20, vermieden. Die vom Verdichter 21 erzeugte und abgegebene Wärme verbleibt innerhalb des erstes Gehäuseelements 2a und erwärmt die darin enthaltene Luft.

Wie in **Fig. 4b** in einer Detailansicht des sauggasgekühlten Verdichters 21 gezeigt ist, weist der Verdichter 21 ein Schauglas zum Beobachten des Kältemittel-Öl-Gemisches sowie ein Heizelement 10 auf, welches als Ölsumpfheizung zum Temperieren des Öls als Schmiermittel bewegter Komponenten des Verdichters 21 dient. Mit dem Beheizen des Öls wird eine Betriebstemperatur sichergestellt, bei welcher die Kondensation von Kältemittel verhindert wird und das Kältemittel-Öl-Gemisch, insbesondere nach einem Stillstand des Verdichters 21, auf eine geeignete Betriebstemperatur aufgeheizt werden kann, um einen sicheren Betrieb des Verdichters 21 zu gewährleisten.

[0051] Die Ölwanne des Verdichters 21 ist zudem mit einer Isolierung 11 versehen, um zum einen den Verdichter 21 vor zu starker Abkühlung zu schützen und zum anderen die Wärmeübertragung an die Luft des zu kühlenden Raumes weiter zu minimeren. Die Isolierung weist bevorzgt eine Dicke von 19 mm auf.

Die Ausbildung als sauggasgekühlter Verdichter 21 bewirkt ohnehin eine lediglich minimale Wärmeabgabe an die Umgebung. Die isolierte Ölwanne des Verdichters 21 weist auch eine Einrichtung zum Überwachen der Temperatur auf, um das Heizelement 10 zu steuern.

[0052] Fig. 5b zeigt eine Detailansicht des Verdampfers 27, insbesondere der Ausbildung von Lamellen zur Vergrößerung der Wärmeübertragungsfläche. Die hohe Standfestigkeit des Verdampfers 27, das heißt das Verhindern des Vereisens der Wärmeübertragungsfläche und damit eine lange Betriebsphase zwischen notwendigen Abtauvorgängen, wird mittels einer unterschiedlichen Lamellenteilung, insbesondere im Anströmbereich der Luft, erzielt.

Die jeweils parallel zueinander ausgerichteten Lamellen sind im Anströmbereich der Luft in einem ersten Lamellenabstand a beabstandet zueinander angeordnet, während die Lamellen im übrigen Bereich der Wärmeübertragungsfläche in einem zweiten Lamellenabstand b zueinander beabstandet angeordnet sind. Das Verhältnis von erstem Lamellenabstand a zu zweitem Lamellenabstand b beträgt dabei bevorzugt 2/1, wobei der erste Lamellenabstand a vorteilhaft 14 mm aufweist. Die Lamellen sind dann in vom Anströmbereich der Luft abweichenden Bereichen 7 mm beabstandet zueinander angeordnet. Der erste Lamellenabstand a verhindert selbst bei hohem Feuchtigkeitsgehalt der anströmenden Luft das Vereisen der Wärmeübertragungsfläche.

Bezugszeichenliste

densator

Kühlmittelkreislauf

Expansionsorgan

[0053]

1	System
2	Gehäuse
2a	erstes Gehäuseelement, äußeres Gehäuseelement
2b	zweites Gehäuseelement, mittleres Gehäuseelement
2c	drittes Gehäuseelement, äußeres Gehäuseelement
3	Grundelement
4	Durchführung Anschluss Wärmeübertrager 23
5	Lüfter Verdampfer 27
6	Sammelelement
7	Strömungsrichtung der Luft
8	Abtauklappe
9	Schauglas
10	Heizelement
11	Isolierung
20	Kältemittelkreislauf
21	Verdichter
22	Wärmeübertrager, Enthitzer
23	Kältemittel-Kühlmittel-Wärmeübertrager, Kon-

45

50

24

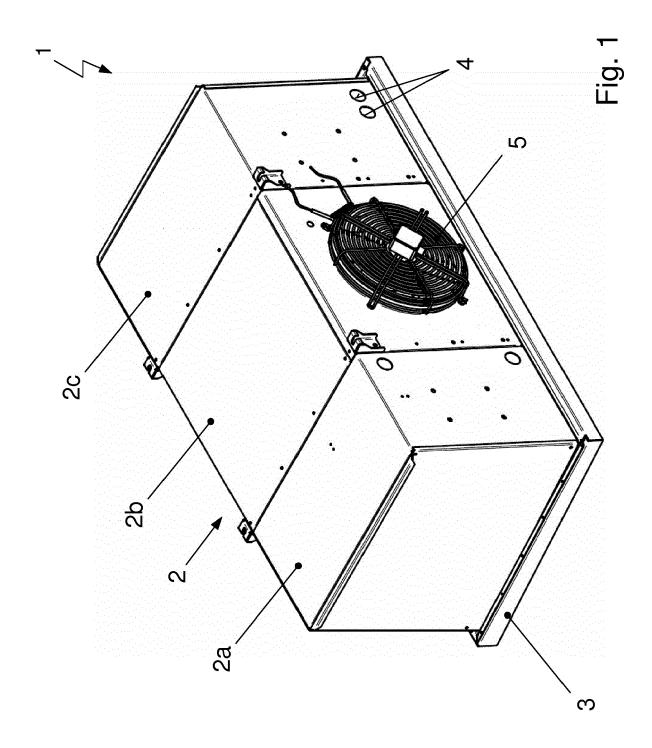
10

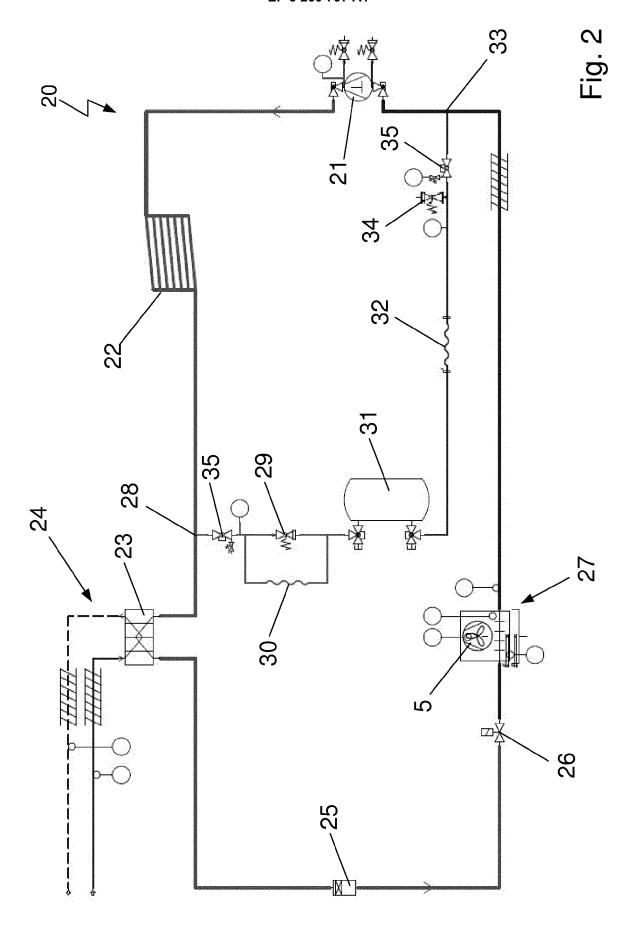
15

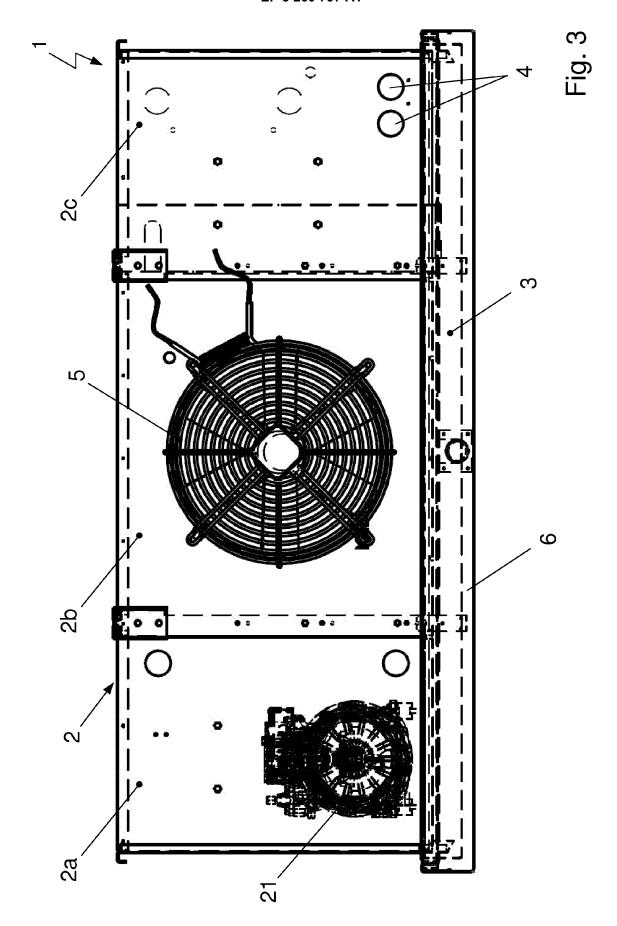
- 27 Kältemittel-Luft-Wärmeübertrager, Verdamp-28 Abzweigstelle 29 Sicherheitsventil 30,32 Kapillarrohr 31 Ausdehnungsgefäß 33 Mündungsstelle 34 Sicherheitsventil 35 Absperrventil
- a erster Lamellenabstand Anströmung
- b zweiter Lamellenabstand

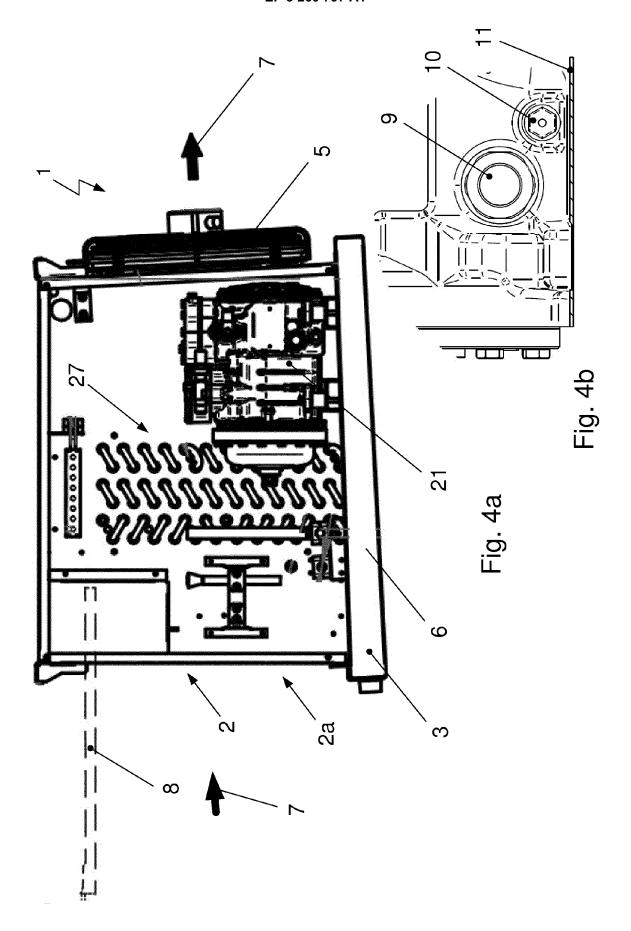
Patentansprüche

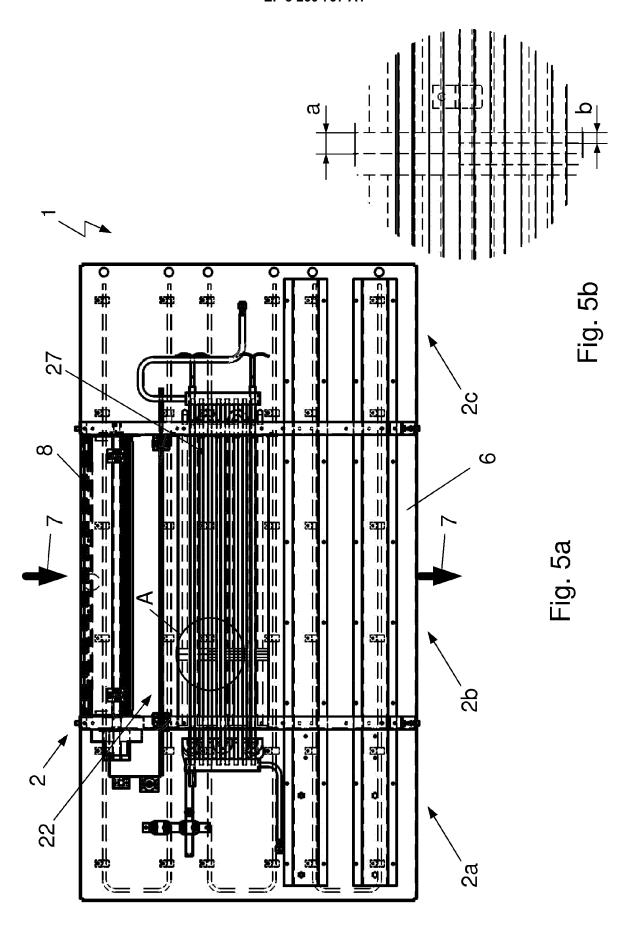
- System (1) zum Konditionieren von Luft eines Raumes, aufweisend
 - ein Grundelement (3),
 - ein Gehäuse (2) mit einem Lüfter (5) zum Ansaugen der Luft des Raumes durch das Gehäuse (2) und
 - einen Kältemittelkreislauf (20) mit folgenden Komponenten: ein Verdichter (21), ein als Enthitzer betriebener Wärmeübertrager (22), ein als Kondensator betriebener Wärmeübertrager (23), ein Expansionsorgan (26) und ein als Verdampfer betriebener Wärmeübertrager (27) zum Konditionieren der Luft des Raumes,


dadurch gekennzeichnet, dass


- der als Kondensator betriebene Wärmeübertrager (23) als ein Kältemittel-Kühlmittel-Wärmeübertrager mit Anschlüssen an einen Kühlmittelkreislauf (24) ausgebildet ist und
- die Komponenten des Kältemittelkreislaufes (20) auf dem Grundelement (3) und vom Gehäuse (2) umschlossen derart angeordnet sind, dass das gesamte System (1) als eine zusammenhängende Einheit vollständig innerhalb des Raumes angeordnet ist.
- System (1) nach Anspruch 1, dadurch gekennzeichnet, dass das Gehäuse (2) aus mindestens einem geschlossenen Gehäuseelement (2a, 2b) und mindestens einem luftdurchströmbaren Gehäuseelement (2b) geteilt ausgebildet ist, wobei die Gehäuseelemente (2a, 2b, 2c) auf dem Grundelement (3) abgestützt angeordnet sind.
- 3. System (1) nach Anspruch 2, dadurch gekennzeichnet, dass das Gehäuse (2) aus mindestens einem ersten, äußeren Gehäuseelement (2a), einem zweiten, mittleren Gehäuseelement (2b) und einem dritten, äußeren Gehäuseelement (2c) mindestens dreigeteilt ausgebildet ist, wobei die äuße-


- ren Gehäuseelemente (2a, 2c) jeweils geschlossen ausgebildet sind und seitlich neben dem mittleren, luftdurchströmbar ausgebildeten Gehäuseelement (2b), das mittlere Gehäuseelement (2b) jeweils seitlich begrenzend angeordnet sind.
- 4. System (1) nach Anspruch 2 oder 3, dadurch gekennzeichnet, dass das geschlossen ausgebildete Gehäuseelement (2a, 2c) gegen die Umgebung und gegen das luftdurchströmbare Gehäuseelement (2b) isoliert ausgebildet ist.
- 5. System (1) nach einem der Ansprüche 2 bis 4, dadurch gekennzeichnet, dass der als Verdampfer betriebene Kältemittel-Luft-Wärmeübertrager (27) innerhalb des vom luftdurchströmbaren Gehäuseelement (2b) umschlossenen Volumens angeordnet ist
- 6. System (1) nach einem der Ansprüche 1 bis 5, dadurch gekennzeichnet, dass der Kältemittelkreislauf (20) eine sich zwischen einer auf der Hochdruckseite ausgebildeten Abzweigstelle (28) und einer auf der Niederdruckseite ausgebildeten Mündungsstelle (33) erstreckende Druckausgleichsstrecke aufweist, welche mit einem Ausdehnungsgefäß (31), mindestens einem Kapillarrohr (30, 32) und mindestens einem Sicherheitsventil (29, 34) ausgebildet ist.
- System (1) nach Anspruch 6, dadurch gekennzeichnet, dass das mindestens eine Sicherheitsventil (29, 34) in Strömungsrichtung des Kältemittels nachfolgend zur Abzweigstelle (28) und/oder vor der Mündungsstelle (33) angeordnet ist.
 - 8. System (1) nach Anspruch 6 oder 7, dadurch gekennzeichnet, dass die Druckausgleichsstrecke zwei Kapillarrohre (30, 32) aufweist, wobei ein erstes Kapillarrohr (30) in Strömungsrichtung des Kältemittels vor dem Ausdehnungsgefäß (31) und ein zweites Kapillarrohr (32) in Strömungsrichtung des Kältemittels nach dem Ausdehnungsgefäß (31) angeordnet ist.
- 45 9. System (1) nach einem der Ansprüche 6 bis 8, dadurch gekennzeichnet, dass der Verdichter (21), der als Kondensator betriebene Kältemittel-Kühlmittel-Wärmeübertrager (23), das Expansionsorgan (26) und die die Druckausgleichsstrecke ausbildenden Komponenten innerhalb des vom mindestens einen geschlossenen Gehäuseelement (2a, 2c) umschlossenen Volumens angeordnet sind.
 - 10. System (1) nach einem der Ansprüche 1 bis 9, dadurch gekennzeichnet, dass auf der Unterseite ein Sammelelement (6) zum Auffangen und Ableiten von Flüssigkeit ausgebildet ist.


55


- 11. System (1) nach Anspruch 10, dadurch gekennzeichnet, dass der als Enthitzer betriebene Wärme-übertrager (22) innerhalb des vom luftdurchströmbaren Gehäuseelement (2b) umschlossenen Volumens und auf der in das Volumen hinein gerichteten Seite des Sammelelements (6) angeordnet ist.
- 12. System (1) nach einem der Ansprüche 1 bis 11, dadurch gekennzeichnet, dass der als Verdampfer betriebene Kältemittel-Luft-Wärmeübertrager (27) auf einer zur Luft gerichteten Wärmeübertragungsfläche Lamellen aufweist, welche parallel zueinander ausgerichtet angeordnet sind, wobei die Lamellen in einem Anströmbereich der Luft mit einem ersten Lamellenabstand (a) und in einem vom Anströmbereich der Luft abweichenden Bereich mit einem zweiten Lamellenabstand (b) eine unterschiedliche Lamellenteilung aufweisen, wobei der Wert des ersten Lamellenabstands (a) größer ist als der Wert des zweiten Lamellenabstands (b).
- 13. System (1) nach einem der Ansprüche 1 bis 12, dadurch gekennzeichnet, dass der Verdichter (21) mit einem wannenförmigen Sammelelement für Schmiermittel, einem Heizelement (10) zum Erwärmen des im Sammelelement angesammelten Schmiermittels und einer Einrichtung zum Überwachen der Temperatur des im Sammelelement angesammelten Schmiermittels sowie zum Steuern des Heizelements (10) ausgebildet ist.
- **14.** Anordnung des Systems (1) nach einem der Ansprüche 1 bis 13 als Komponente eines Gesamtsystems in einem Raum zur Tiefkühlung.

EUROPÄISCHER RECHERCHENBERICHT

Nummer der Anmeldung EP 17 17 6867

		EINSCHLÄGIGE D			
	Kategorie	Konnzeighnung des Dekument	ts mit Angabe, soweit erforderlich,	Betrifft Anspruch	KLASSIFIKATION DER ANMELDUNG (IPC)
10	X	GB 720 779 A (V C PAT INC) 29. Dezember 195 * Seite 1, Zeile 60 - Abbildung 1 *	TERSON & ASSOCIATES 64 (1954-12-29)	1-14	INV. F25B40/04 F24F1/02 F24F13/20
15	A	WO 2008/094152 A1 (CO CORP; JAGUSZTYN TADEU 7. August 2008 (2008- * Seite 7 - Seite 8;	JSZ FRANK [US]) ∙08-07)	1-14	
20	A	GB 2 458 901 A (POWRM 7. Oktober 2009 (2009 * Seite 3; Abbildung	9-10-07)	1-14	
25	A	WO 2015/186850 A1 (SA LTD [KR]) 10. Dezembe * Abbildung 3 *		1-14	
	A	DE 21 65 638 A1 (TAKA ENGINEERING) 13. Juli * Seite 12; Abbildung	1972 (1972-07-13)	1-14	RECHERCHIERTE SACHGEBIETE (IPC)
30	A	DE 195 02 153 A1 (HUM 1. August 1996 (1996- * Spalte 3 - Spalte 4	·08-01)	1-14	F25B F24F
35	A	US 6 385 985 B1 (BUSS AL) 14. Mai 2002 (200 * Spalte 2 - Spalte 3 -		1-14	
40					
45					
1	Der vo	orliegende Recherchenbericht wurde			
50 g		Recherchenort München	Abschlußdatum der Recherche 11. Oktober 2017	Abschlußdatum der Recherche Prüfer 11. Oktober 2017 Amous, Moez	
90 G)	K	ATEGORIE DER GENANNTEN DOKUME	runde liegende T	heorien oder Grundsätze	
50 RECEPTED AS EX EXPLANATION OF STATE	X : von Y : von and A : tech O : nicl P : Zwi	besonderer Bedeutung allein betrachtet besonderer Bedeutung in Verbindung mit eren Veröffentlichung derselben Kategorie nologischer Hintergrund ntschriftliche Offenbarung schenliteratur	ch erst am oder tlicht worden ist kument Dokument , übereinstimmendes		

EP 3 260 797 A1

ANHANG ZUM EUROPÄISCHEN RECHERCHENBERICHT ÜBER DIE EUROPÄISCHE PATENTANMELDUNG NR.

5

10

15

20

25

30

35

40

45

50

55

EP 17 17 6867

In diesem Anhang sind die Mitglieder der Patentfamilien der im obengenannten europäischen Recherchenbericht angeführten Patentdokumente angegeben.

Patentdokumente angegeben.
Die Angaben über die Familienmitglieder entsprechen dem Stand der Datei des Europäischen Patentamts am Diese Angaben dienen nur zur Unterrichtung und erfolgen ohne Gewähr.

11-10-2017

	lm Recherchenbericht angeführtes Patentdokument		Datum der Veröffentlichung	Mitglied(er) der Datum der Patentfamilie Veröffentlichung	
	GB	720779	Α	29-12-1954	KEINE
	WO	2008094152	A1	07-08-2008	EP 2118574 A1 18-11-2009 WO 2008094152 A1 07-08-2008
	GB	2458901	Α	07-10-2009	KEINE
	WO	2015186850	A1	10-12-2015	CN 106461238 A 22-02-2017 EP 3153782 A1 12-04-2017 US 2017167737 A1 15-06-2017 WO 2015186850 A1 10-12-2015
	DE	2165638	A1	13-07-1972	KEINE
	DE	19502153	A1	01-08-1996	KEINE
	US	6385985	B1	14-05-2002	AU 736221 B2 26-07-2001 EP 0846923 A2 10-06-1998 ES 2217381 T3 01-11-2004 JP 3065975 B2 17-07-2000 JP H10227485 A 25-08-1998 MY 119057 A 31-03-2005 US 6385985 B1 14-05-2002
EPO FORM P0461					

Für nähere Einzelheiten zu diesem Anhang : siehe Amtsblatt des Europäischen Patentamts, Nr.12/82