Field
[0001] This specification relates to fastening tools, and more particularly to fastening
tools with fastener magazines, and having contact trips engageable with a work surface
to enable the fastening tools to fire a fastener.
Background
[0002] Fastening tools, such as concrete nailers, staplers, and other nailers, are normally
provided with fastener magazines. Typically, fasteners loaded in the magazine are
biased toward a drive track of the fastening tool, so that the fastening tool drive
system can drive a fastener into a work surface. However, if the supply of fasteners
in the magazine becomes exhausted or "dry" when the fastening tool is fired, the driver
of the drive system encounters no resistance as the driver is fired along the drive
track, until the driver ultimately engages some other portion of the fastening tool,
or even the work surface via the contact trip. This condition is called a "dry-fire",
and is highly destructive to fastening tool mechanisms.
[0003] To date, conventional attempts to solve the problem have been unsatisfactory for
several reasons. One reason is that many conventional dry-fire avoidance systems freeze
a lower contact trip so that the lower contact trip is unable to move even if the
lower contact trip is thrust against a work surface, an event which places additional
stresses on the contact trip system.
[0004] Another reason is that conventional dry-fire avoidance systems often position the
contact trip off-center from the fastening tool drive axis, which creates a moment
arm with the contact trip. Consequently, when an operator slams the contact trip against
a work surface, or drops the fastening tool, nose first, onto an unyielding surface,
like concrete, the shock is amplified and transmitted throughout the entire contact
trip system.
[0005] Conventional contact trip systems include three major elements: a contact trip, a
dry-fire avoidance system, and a fastener drive system arming device. The fastener
drive system arming device is linked to the contact trip so that, when the contact
trip moves to a firing position after having engaged the work surface, the fastener
drive system arming device assumes a firing condition enabling the fastener drive
system, which is now armed, to drive a fastener. Then, when an operator pulls a trigger
switch on the fastening tool, the fastening tool can fire a fastener. However, the
vulnerability of conventional contact trip systems to being slammed or dropped significantly
reduces the lifetimes of conventional arming devices.
[0006] Still another reason why conventional dry-fire avoidance systems have proven unsatisfactory
is that, in electrically-driven fastening tools, the fastener drive system arming
device often includes a relatively fragile contact trip switch, which is closed by
a linkage actuated by the contact trip when the contact trip moves to the firing position.
The contact trip switch is electrically connected to the fastener drive system so
that, when the contact trip closes the contact trip switch, the fastener drive system
arming device assumes the firing condition, and an operator can fire the fastening
tool. However, conventional fastening tools include no systems for limiting the force
exerted upon the contact trip switch when the contact trip is shoved against a work
surface, even during normal operating conditions when the magazine is loaded with
fasteners.
[0007] The problems enumerated above still exist in fastener drive system arming devices
connected mechanically or otherwise to other types of fastener-driving systems, such
as pneumatic, explosive-gas, or hydraulic. Impact forces exerted upon the lower portion
of a contact trip assembly are still directly transmitted to the fastener drive system
arming device.
[0008] Consequently, existing fastening tools are vulnerable both to dry-fire conditions
and to shocks caused by the operator slamming the tool against a work surface, or
dropping the tool nose-first onto an unyielding surface, like concrete. What is needed,
therefore, is a fastening tool that both handles dry-fire conditions, and insulates
an arming device from the forces exerted upon the arming device by a contact trip.
Summary
[0009] According to aspects of the present invention there are provided a method according
to claim 1, a method according to claim 5 and a fastening tool according to claim
9.
[0010] In one embodiment of a fastening tool according to the present disclosure, the contact
trip is moved to bypass a fastener drive system arming device. A biasing agent, such
as a coil spring, is placed between the upper portion of the contact trip and the
fastener drive system arming device. The coil spring allows the contact trip to move
the entire distance the contact trip normally travels to reach the firing position,
while taking up or absorbing the force that the contact trip would normally expend
on the arming device. This arrangement yields several benefits.
[0011] One benefit of moving the contact trip to bypass the fastener drive system arming
device is that the amount of force which is ultimately applied to an element of the
fastener drive system arming device, namely a contact trip switch, can be limited
by configuring the coil spring to be, in effect, a force take-up member. For example,
in an electrically-driven fastening tool of the present disclosure, it is desirable
that the contact trip switch survive hundreds of thousands of connections during the
lifetime of the fastening tool. By configuring the coil spring to limit the force
ultimately applied to the contact trip switch to two pounds or less, the contact trip
switch will survive hundreds of thousands of connections, no matter how hard the operator
slams the contact trip against a work surface, and no matter how many times the fastening
tool is dropped.
[0012] Another benefit of moving the contact trip to bypass the fastener drive system arming
device is that the coil spring acts as a distance take-up member, causing the contact
trip to bypass direct engagement with the contact trip switch in response to a "bypass
event". Such an event can include, for example, the fastener magazine reaching a dry-fire
condition, in which the coil spring can be compressed to take up or absorb the entire
distance that the contact trip travels to reach the firing position, without the contact
trip engaging the arming device.
[0013] Yet another benefit of the bypass system of the present disclosure is that the system
permits the contact trip to be disposed in the fastening tool housing coaxially with
the fastening tool drive axis. Therefore, a lower portion of the fastening tool housing
can now act as a "hard stop" against which a toe of the contact trip is driven if
the contact trip is ever slammed against the concrete, or the fastening tool is dropped
nose-first. Thus the inherently rugged fastening tool housing itself takes the shock,
rather than the more fragile elements of the contact trip switch, which are simultaneously
protected by the force-limiting action of the coil spring. The hard stop eliminates
the shock-amplifying arrangement of conventional dry-fire avoidance systems that position
the contact trip off-center from the drive axis.
[0014] The bypass system of the present disclosure is implemented by disposing the coil
spring in a biasing agent housing between a plate or appendage connected for joint
movement with an upper part of the contact trip, and an upper inner surface, or roof,
of the biasing agent housing. The coil spring also normally biases the biasing agent
housing in a direction to engage the fastener drive system arming device. Thus, as
the contact trip moves upwardly in response to having engaged a work surface, it carries
with it the appendage, which in turn pushes the coil spring upwardly in the biasing
agent housing, thereby pushing the biasing agent housing upwardly as well. When the
contact trip reaches the uppermost point in its travel (its firing position), the
biasing agent housing engages a switch lever, which pivots to close the contact trip
switch. The switch lever and contact trip switch collectively form the fastener drive
system arming device.
[0015] On the other hand, if a dry-fire condition were to occur in the fastener magazine,
a fastener pusher probe disposed in the fastener magazine blocks the biasing agent
housing from moving upwardly. If an operator nevertheless were to cause the contact
trip to engage a work surface, the contact trip will still move upwardly toward the
firing position. As the contact trip moves upwardly, the contact trip again carries
the appendage, which in turn pushes the coil spring upwardly. However, (inasmuch as
the biasing agent housing is configured to permit relative movement between the biasing
agent housing and the appendage, and inasmuch as upward movement of the biasing agent
housing has been blocked), the upward movement of the contact trip will not close
the contact trip switch. Instead, continued joint upward movement of the contact trip
- appendage combination results in the coil spring being compressed inside the biasing
agent housing, which still remains stationary. Thus, the coil spring takes up or absorbs
the distance that the contact trip would normally travel to reach the firing position,
thereby causing the upward movement of the contact trip to bypass the contact trip
switch, but allowing the contact trip to move the entire distance the contact trip
needs to travel to reach the firing position.
[0016] In another embodiment, the magazine fastener pusher probe pushes the biasing agent
housing laterally away from the line of vertical movement the biasing agent housing
would normally take to engage the switch lever, in response to the quantity of fasteners
in the magazine having reached a minimum. When the magazine is fully loaded, the pusher
is retracted and a return spring returns the biasing agent housing to a position in
which the biasing agent housing is engageable with the switch lever. If desired, a
force take-up member, such as another coil spring, may be operatively disposed between
the biasing agent housing and the appendage to limit the force applied by the biasing
agent housing against the switch lever.
Brief Description of the Drawings
[0017] Embodiments of the invention will now be described by way of non-limiting example
with reference to the accompanying drawings, in which:
FIG. 1 is a perspective view of a fastening tool according to an embodiment of the
present invention.
FIG. 2 is an elevational view of the fastening tool of FIG. 1, with portions of the
housing removed for clarity, and illustrating the contact trip in its fully-extended
position.
FIG. 3 is a view similar to that of FIG. 2, illustrating the contact trip in its fully-engaged
position against a work surface.
FIG. 4 is a view similar to that of FIG. 3, where a fastener pusher of a magazine
is shown blocking a biasing agent housing from engaging a switch lever.
FIGS. 5A-5D are partial perspective detail views of a contact trip assembly responding,
respectively, to three different vertical positions of the contact trip, and to a
dry-fire condition of the magazine.
FIGS. 6A and 6B are partial perspective detail views of the contact trip assembly
of FIGS. 5A-5D, taken from the rear, and illustrating the joint movement of the contact
trip and an appendage.
FIG. 7 is a partial elevational detail view, with parts removed for clarity, of the
fastening tool of FIG. 1, illustrating the contact trip in the FIG. 5B position.
FIG. 8 is a view similar to that of FIG. 7, illustrating the contact trip in the FIG.
5C position.
FIG. 9 is a view similar to that of FIG. 7, illustrating the contact trip in the FIG.
5D position.
FIG. 10 is a view similar to that of FIG. 8, illustrating another embodiment of the
fastening tool.
FIG. 11 is a view similar to that of FIG. 10, illustrating a fastener pusher causing
the biasing agent housing of the embodiment of FIG. 10 to bypass the switch lever.
Detailed Description
[0018] Referring now to the Drawings and particularly to FIGS. 1-4, a fastening tool 10
in accordance with an embodiment of the present invention includes a housing 12 and
a fastener drive system 14 disposed in the housing (FIGS. 2-4). The fastener drive
system 14 includes a driver 16 for driving fasteners 18 along a drive track 20 and
a drive axis 21, and into a work surface 22. The fastener drive system 14 also includes
a motor 24 powered by a battery 26 and operatively associated with the driver 16 to
drive the fasteners 18. A contact trip switch 28 and a trigger switch 30 are electrically
connected to the fastener drive system 14. Both the contact trip switch 28 and the
trigger switch 30 must be closed before the fastening tool 10 fires. The contact trip
switch 28, which is normally open, is closed in response to movement of a switch lever
32, which is pivotably mounted in the fastening tool housing 12 about a pivot 34.
The contact trip switch 28 and switch lever 32 constitute an arming device 36. The
arming device 36 is actuated in response to upward movement of a contact trip 38 when
the contact trip is pressed against a work surface 22. When the contact trip switch
28 is closed by movement of the contact trip 38, the contact trip switch assumes a
firing condition, thereby causing the fastener drive system 14 to be armed. The fastening
tool 10 can now drive a fastener 18 when an operator presses the trigger switch 30.
If the contact trip 38 does not engage the work surface 22, the contact trip switch
28 remains in a no-fire condition, and pressing the trigger switch 30 will not fire
the fastening tool 10.
[0019] At this point, it should be noted that, although the embodiments of the fastening
tool depicted in the drawings are shown as concrete nailers, it will be appreciated
that aspects and embodiments of the present invention can be incorporated in any fastening
tool, including, without limitation, staplers and other nailers. Furthermore, although
the embodiments of the dry-fire bypass system are shown being used in connection with
a fastening tool having an electric-powered drive system, it will again be appreciated
that the dry-fire bypass system may also be employed in fastening tools using pneumatic,
hydraulic, and gas/explosive drive systems, among others.
[0020] The main elements of the dry-fire bypass system include a contact trip assembly 40,
a biasing agent housing assembly 60 and a magazine 80.
[0021] Referring now to FIGS. 2, 3, 4, 5A-5D, 6A, 6B, and 7-9, the contact trip assembly
40 includes the contact trip 38, having a contact trip toe 42, which engages the work
surface 22. The contact trip 38 is movably disposed within a lower housing member
44, which in turn defines a lower portion 46, against which the contact trip toe 42
abuts when the contact trip reaches a firing position 48, as shown in FIGS. 3, 4,
5C, 5D, 6B, 8 and 9.
[0022] Referring to FIGS. 6A and 6B, the contact trip 38 moves upwardly within lower housing
member 44 from a position where the contact trip is not fully engaged, as shown in
FIG. 6A, to the contact trip firing position 48, shown in FIG 6B. A plate or appendage
50 is attached to the contact trip 38 for joint movement with the contact trip.
[0023] Returning to FIGS. 5A-5D, a main coil spring 52, grounded at an upper end of the
coil spring to the fastening tool housing 12, is connected to the appendage 50. Thus,
the main coil spring 52 normally biases the contact trip 38 toward engagement with
a work surface 22. It has been discovered that configuring the main coil spring 52
to exert of force of about 1.25 times the weight of the fastening tool 10 achieves
the best results. That means a ten-pound fastening tool would require a main coil
spring 52 capable of exerting 12.5 pounds of force against the appendage 50 and contact
trip 38 combination. Still referring to FIGS. 5A-5D, the appendage 50 is threaded
onto a bushing 54, which slides along a bushing rod 56. Thus the appendage 50, main
coil spring 52, bushing 54 and bushing rod 56 complete the contact trip assembly 40.
[0024] The biasing agent housing assembly 60 is shown, for example, in FIGS. 7-9, and includes
a biasing agent housing 62, a lever-engaging member 64 extending from the biasing
agent housing and engageable with the switch lever 32, a blocking member 66, and a
biasing agent 68. The biasing agent 68 is disposed in the biasing agent housing 62
between the appendage 50 and an upper surface 70 of the biasing agent housing (see
FIGS. 5A-5D). The appendage 50 is movable independently of the biasing agent housing
62 within a slot (not shown) formed on one side of the biasing agent housing. When
the appendage 50 moves upwardly in response to movement of the contact trip 38, the
appendage pushes the biasing agent 68 upwardly, as well. This in turn pushes the biasing
agent housing 62 toward engagement with the switch lever 32, unless movement of the
biasing agent housing is blocked. In the embodiment shown in the Drawings, the biasing
agent 68 is depicted as a coil spring. However it will be appreciated that the biasing
agent 68 may take on other forms and include multiple elements, all of which will
work satisfactorily provided they bias the biasing agent housing 62 in the direction
of the switch lever 32.
[0025] As will be later described in more detail, the biasing agent 68 also takes on the
function of a force-limiting or force take-up member, being configured to limit the
force that the lever-engaging member 64 exerts upon the switch 28 to two pounds or
less, even when an operator slams the contact trip 38 against an unyielding surface
like concrete, or when the fastening tool 10 is dropped, nose-first, onto a hard surface.
[0026] Moving now to the magazine 80, and again referring to FIGS. 7-9, the magazine contains
a supply of fasteners such as nails 18. A fastener pusher 82 is biased to push the
nails 18 toward the drive track 20, along which a nail can be driven into a work surface
22 when the fastening tool 10 is fired. As shown in FIG. 9, when the supply of nails
18 reaches a dry-fire condition, for example, when the supply of nails reaches a predetermined
minimum quantity, a pusher probe 84 extending from the fastener pusher 82 in the direction
of the biasing agent housing 62 engages the blocking member 66, thereby blocking movement
of the biasing agent housing 62 toward the lever 32, and thus preventing the fastening
tool 10 from firing. The cooperation of the pusher probe 84 and the blocking member
66 can be adjusted so that the movement of the biasing agent housing 62 can be blocked
when the remaining quantity of nails in the magazine 80 reaches any desired minimum,
for example, from one to three nails. Blocking the movement of the biasing agent housing
62 constitutes a "bypass event", as will be discussed below.
[0027] The operation of the dry-fire bypass system will be described with reference to FIGS.
5A-5D and 7-9. As shown in FIG. 5A, the contact trip 38 has touched the work surface
22, but no downward force has been exerted on the fastening tool 10 to fully depress
the contact trip. Consequently, the toe 42 of the contact trip 38 remains spaced a
distance D1 below the lower portion 46 of lower housing member 44. The distance D1
is precisely the amount of distance that the contact trip 38 travels when it moves
from the position shown in FIG. 5A to the firing position 48, shown in FIG. 5C. The
dry-fire bypass system will take up or absorb the entire distance D1, so that the
effect of an upward movement of the contact trip will not be expended upon the contact
trip switch 28. At the stage shown in FIG. 5A, the appendage 50 is located at its
lowermost position, as is the biasing agent housing 62, inasmuch as the appendage
50 has yet to move the coil spring 68 upwardly against the upper surface 70 of the
biasing agent housing.
[0028] As shown in FIGS. 5B and 7, the contact trip 38 has moved upwardly (see arrows in
FIG. 5A), causing the appendage 50 to move the coil spring 68 upwardly, which in turn
has caused the biasing agent housing 62 to move upwardly by the same amount, so that
the lever-engaging member 64 is almost touching the lever 32. At this point, the contact
trip toe 42 is only a small distance D2 from the lower portion 46 of the lower housing
member 44. However, when the contact trip 38 reaches the firing position 48 shown
in FIG. 5C, the incremental amount of upward movement D2 by the contact trip (and
therefore the appendage 50) to the FIG. 5C position now causes the biasing agent housing
62 to engage lever 64 to close the contact trip switch 28. The contact trip switch
28 has thus assumed the firing condition, and the fastener drive system 14 is now
armed.
[0029] FIGS. 5C and 8 show that, simultaneously with the upward movement of the contact
trip 38, the appendage 50 moves upwardly by the same incremental amount D2, thereby
slightly compressing the coil spring 68 within the biasing agent housing 62. The coil
spring 68 has therefore taken up or absorbed the incremental amount of distance traveled
by the contact trip 38 in ultimately reaching the firing position 48. In so doing,
the coil spring 68 has assumed the role of a distance take-up member, responding to
another type of bypass event, namely, the incremental movement of the contact trip
38 beyond a predetermined distance, which movement would otherwise exert a force greater
than two pounds on the contact trip switch 28. Thus, the coil spring 68 has also acted
to limit or take up the force exerted by the lever-engaging member 64 upon the fastener
drive system arming device (switch lever 32 and contact trip switch 28). As can now
be appreciated, the force-limiting action is consequently not limited to a dry-fire
condition, but protects the arming device 36 even when the magazine 80 is loaded with
fasteners 18.
[0030] The bypass arrangement, in contrast to conventional dry-fire avoidance systems, allows
the contact trip 38 to be disposed coaxially with the drive axis 21, thereby enabling
a hard stop for the contact trip 38 to be located right at the lower portion 46 or
base of the lower housing member 44. Accordingly, in the event the contact trip 38
is slammed against an unyielding surface, the hard stop dissipates the shock of the
impact of the contact trip toe 42 throughout the inherently rugged housing 12 of the
fastening tool 10, simultaneously with the coil spring 68 limiting the force which
is ultimately applied to the contact trip switch 28.
[0031] After the fastening tool 10 has been lifted from the work surface 22, and in the
absence of a dry-fire condition, the coil spring 68 returns to a relaxed condition,
inasmuch as the contact trip 38 is biased by the main spring 52 normally to extend
outwardly or downwardly from the fastening tool housing 12, thereby returning the
appendage 50 to the position shown in FIG. 5A.
[0032] An example of the bypass action (or distance and force take-up) of the coil spring
68 is exhibited in the case of a dry-fire bypass event. In response to the quantity
of remaining fasteners 18 in the magazine 80 having reached a minimum, the magazine
pusher probe 84 cooperates with the blocking member 66 to block upward movement of
the biasing agent housing 62, as shown in FIGS. 5D and 9. Here, although the biasing
agent housing 62 has been rendered immobile, the contact trip 38 is still allowed
to travel all of the way to the firing position 48. That is because the appendage
50, being movable independently of the biasing agent housing 62, is able to compress
the coil spring 68 within the biasing agent housing 62 by an amount D3 to the position
shown in FIGS. 5D and 9. The coil spring 68 thus takes up or absorbs all of the distance
traveled by contact trip 38 in reaching the firing position 48. Consequently, movement
of the contact trip 38 during the bypass event has effectively bypassed contact trip
switch 28, which remains in the no-fire condition.
[0033] Another embodiment of the present invention 100 is shown in FIGS. 10 and 11. In this
embodiment, a fastening tool 100 is disclosed. All of the elements of the fastening
tool 10 remain the same, except for a biasing agent housing 160, which is disposed
on the appendage 50 for movement generally transverse to the direction of the movement
of the appendage (which still moves vertically with the movement of the contact trip
38). The biasing agent housing 160 includes a vertical arm 162, which is aligned with
the switch lever 32 so that upward movement of the biasing agent housing 160 will
cause the vertical arm 162 to engage the switch lever. A biasing agent housing return
spring 172 connected between the appendage 50 and the biasing agent housing 160 normally
biases the biasing agent housing to the position shown in FIG. 10. If desired, a force
take-up member or coil spring 174 (shown in phantom in FIGS. 10 and 11) may be operatively
disposed between the biasing agent housing 160 and the appendage 52 to limit the force
applied to the contact trip switch 28 to two pounds or less, as is similarly performed
by the coil spring 68 in the first embodiment of the fastening tool 10. In operation,
as shown in FIG. 10, when the contact trip 38 reaches the firing position 48, the
appendage 50 moves the biasing agent housing 160 upwardly (as shown by the arrow)
so that the biasing agent housing directly engages the lever 32 to close the contact
trip switch 28, thereby placing the contact trip switch in the firing condition.
[0034] When a dry-fire bypass event occurs, as shown in FIG. 11, the pusher probe 84 pushes
the vertical arm 162 of the biasing agent housing 160 horizontally away from alignment
with the switch lever 32, as indicated by the arrows. Consequently, even if the contact
trip 38 is pushed to the firing position 48, thereby moving the appendage 58 vertically
a distance that would normally engage the switch lever 32 and close the contact trip
switch 28, the vertical arm 162 of the biasing agent housing 160 completely misses
or bypasses the switch lever 32, and the contact trip switch remains in the no-fire
condition.
[0035] It can now be seen that the two embodiments of the fastening tool 10, 100 provide
a method both for bypassing the fastener drive system arming device 36 during a dry-fire
condition, and for limiting the force applied to the contact trip switch 28 as the
contact trip 38 reaches the firing position 48, even when the magazine 80 is loaded
with fasteners 18.
[0036] While aspects and embodiments of the present invention have been described with respect
to a concrete nailer, aspects and embodiments of the present invention may be further
modified within the spirit and scope of this disclosure to apply to other products
as well. Furthermore it will be appreciated that whilst various aspects and embodiments
of the present invention have heretofore been described, the scope of the present
invention is not limited to the embodiments set out herein and instead extends to
encompass all methods, arrangements, and modifications and alterations thereto, which
fall within the spirit and scope of the appended claims.
1. A method of bypassing an arming device of a fastener drive system disposed in a housing
of a fastening tool, the arming device normally being responsive to movement of a
fastening tool contact trip to a firing position to enable the fastener drive system
to drive a fastener, comprising:
taking up the distance traveled by the contact trip when the contact trip moves toward
the firing position so that the arming device remains in a no-fire condition.
2. The method claimed in Claim 1, wherein the distance traveled by the contact trip is
taken up in response to a bypass event, optionally wherein the bypass event includes
the contact trip having moved a distance exceeding a predetermined amount.
3. The method claimed in Claim 2, further comprising:
providing a biasing agent housing engageable with the arming device;
providing a biasing agent operatively connected to the contact trip; and
engaging the biasing agent with the biasing agent housing.
4. The method claimed in Claim 3, wherein the biasing agent housing is engageable with
the fastener drive system arming device, is responsive to movement of the contact
trip, and enables the fastener drive system to drive a fastener,
wherein the biasing agent housing is movable independently of the contact trip in
response to the bypass event, and
wherein the bypass event prevents the biasing agent housing from engaging the fastener
drive system arming device,
optionally further comprising:
providing a fastener magazine having a pusher, the fastener magazine being connected
to the fastening tool housing; and
blocking the biasing agent housing with the pusher when fasteners in the fastener
magazine having reached a minimum quantity.
5. A method of limiting the force applied to a contact trip switch by a contact trip
of a fastening tool as the contact trip moves toward a firing position closing the
switch, comprising:
transmitting the force applied by the contact trip to the contact trip switch via
a biasing agent.
6. The method claimed in Claim 5, wherein the biasing agent is disposed in a biasing
agent housing between the contact trip and a surface of the biasing agent housing,
wherein the biasing agent biases the biasing agent housing toward engagement with
a lever operatively associated with contact trip switch, and
wherein the biasing agent housing closes the contact trip switch when the contact
trip reaches the firing position.
7. The method claimed in Claim 6, wherein the biasing agent housing is movable independently
of the contact trip, and
wherein the biasing agent takes up at least a portion of the force exerted by the
contact trip upon the contact trip switch as the contact trip moves toward the firing
position.
8. The method claimed in Claim 7, wherein the biasing agent includes a coil spring configured
to limit the maximum force exerted upon the contact trip switch to two pounds.
9. A fastening tool, comprising:
a housing;
a fastener drive system disposed in the housing and including a driver for driving
fasteners into a work surface;
an arming device connected to the fastener drive system and having a no-fire condition
preventing the drive system from firing and having a firing condition enabling the
drive system to be fired;
a contact trip movably connected to the housing and engageable with the work surface;
a biasing agent housing movably disposed in the housing and operatively associated
with the contact trip and the arming device, the biasing agent housing biased to be
engageable with the arming device;
a main spring connected to the housing and biasing the contact trip into engagement
with the work surface,
wherein the contact trip is movable to a firing position in response to engagement
with the work surface,
wherein the biasing agent housing is engageable with the arming device to cause the
arming device to assume the firing condition when the contact trip reaches the firing
position, and
wherein the biasing agent housing is movable independently of the contact trip, responsive
to a bypass event, to permit the contact trip to move to the firing position without
placing the arming device in the firing condition.
10. The fastening tool claimed in Claim 9, wherein the bypass event is a predetermined
number of fasteners in the magazine.
11. The fastening tool claimed in Claim 9 or 10, further comprising:
an appendage connected to the contact trip; and
a biasing agent disposed in the biasing agent housing between the appendage and a
surface of the biasing agent housing, the biasing agent biasing the biasing agent
housing toward engagement with the arming device,
wherein the biasing agent is movable toward the arming device in response to movement
of the appendage,and
wherein the biasing agent housing places the arming device in the firing condition,
responsive to movement of the biasing agent.
12. The fastening tool claimed in Claim 11, wherein the biasing agent includes a coil
spring, wherein the bypass event blocks movement of the biasing agent housing,
wherein the appendage compresses the coil spring, and
wherein the contact trip can thereby move to the firing position without the contact
trip causing the arming device to be placed in the firing condition.
13. The fastening tool claimed in Claim 12, wherein, in response to the bypass event,
the coil spring takes up the distance traveled by the contact trip in reaching the
firing position,
wherein the arming device includes a switch lever and a contact trip switch disposed
in the fastening tool housing,
wherein the switch lever is engageable by the biasing agent housing and is pivotably
mounted on the fastening tool housing, and
wherein the contact trip switch is closed when the biasing agent housing engages the
switch lever.
14. The fastening tool claimed in Claim 13, further comprising:
a fastener magazine connected to the fastening tool housing, the fastener magazine
including a pusher to push fasteners toward the drive system,
wherein the pusher includes a probe engageable with the biasing agent housing to block
movement of the biasing agent housing in response to the bypass event, and
wherein the bypass event includes a supply of fasteners in the fastener magazine having
reached a minimum quantity.
15. The fastening tool claimed in Claim 9, further comprising:
an appendage connected to the contact trip,
wherein the biasing agent housing is movable on the appendage in a direction generally
transverse to the direction of movement of the appendage in response to a bypass event,
and
wherein the biasing agent housing bypasses the arming device.
16. The fastening tool claimed in Claim 15, further comprising:
a fastener magazine connected to the fastening tool housing and including a fastener
pusher disposed in the magazine, the fastener pusher engageable with the biasing agent
housing,
wherein the bypass event includes the supply of fasteners in the fastener magazine
having reached a minimum quantity, and
wherein the fastener pusher prevents the biasing agent housing from engaging the arming
device,
optionally further comprising:
a force take-up member operatively associated with the biasing agent housing and the
appendage to limit the force applied to the arming device as the contact trip moves
toward the firing position.