(11) EP 3 276 128 A1

(12) EUROPEAN PATENT APPLICATION

(43) Date of publication:

31.01.2018 Bulletin 2018/05

(51) Int Cl.: F01D 5/18 (2006.01) F23R 3/00 (2006.01)

F01D 25/12 (2006.01)

(21) Application number: 16180939.7

(22) Date of filing: 25.07.2016

(84) Designated Contracting States:

AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

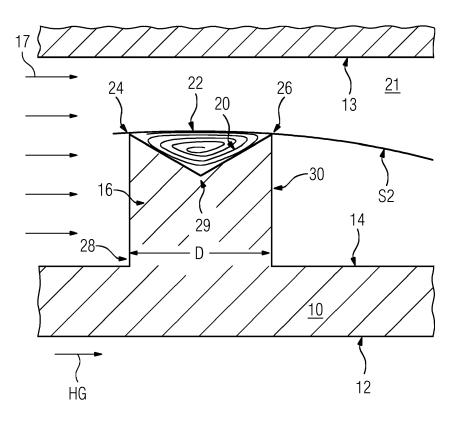
Designated Extension States:

BA ME

Designated Validation States:

MA MD

(71) Applicant: Siemens Aktiengesellschaft 80333 München (DE)


(72) Inventor: Scholl, Sebastian 45481 Mühlheim an der Ruhr (DE)

(54) COOLABLE WALL ELEMENT

(57) The invention relates to a coolable wall element (10) for gas turbines for a hot gas environment, comprising a first surface (12) subjectable to a hot gas and a second surface (14) subjectable to a cooling fluid (17), the first and second surface (12, 14) are arranged opposite to each other, where in the second surface (14) comprises at least one turbulence enhancing element (16)

which projects steplike from the second surface (14) to a free ending top (18) of the turbulence enhancing element (16), the top (18) comprises a top surface (20). To provide a coolable wall element (10) with enhanced cooling properties and fewer blockages inside of a cooling cannel, it is proposed that the top surface (20) comprises a depression (22).

FIG 2

15

25

35

40

50

55

Description

[0001] The invention relates to a coolable wall element for gas turbines, i.e. embodied as turbine blade or turbine vane, etc.

1

[0002] State-of-the-art internal cooling techniques for temperature loaded blades and vanes use roughened serpentine passages, in which the coolant passes through. Roughness elements, such as pin fins, dimples and most often ribs are usually used to meet the cooling requirements. However, one major problem of the required cooling is the needed coolant flow and the associated pressure drop of the coolant inside the cooling passages, which penalizes the overall efficiency of the gas turbine cycle. Major losses are created by the friction of the used cooling fluid and the blockage of the used turbulators. To date rib-roughened elements have the largest potential among the roughness elements.

[0003] Figure 1 shows a cooling channel 21 bordered by two opposing surfaces 13, 14, wherein from one of these surfaces 13 a rib 15 extends. The mean flow of said cooling fluid 17 around such a rib 15 is also shown. Characteristic for the flow field are the presence of four main vortical structures. On large vortical structure V1 is a large recirculation zone behind the rib 15, a smaller vortical structure V2 is between the rib downstream bottom corner and the large recirculation zone, one recirculation zone V4 in front of the rib 15 and one recirculation zone V3 on top 18 of the rib 15. Such a rib 15 is used as "turbulator" to enhance the turbulent intensity of the flow that promotes the heat transfer inside the cooling channel 21. The largest turbulence production occurs along a shear layer S1 where the shear stresses are very high. The functioning of the shear layer S1 depends on the rib height H as it impacts the size of the recirculation zone V1, where the flow has a low velocity, which increases the shear stress in contact with the high velocity of the mean flow. The vortical structure V3 on the rib top 18 increases the blockage of the rib, however, does not increase the turbulence production as the flow on the rib top 18 reattaches right before 25 the top downward corner 26 of the rib 15.

[0004] Hence, the object of the present invention is to provide a coolable wall element with improved cooling properties, especially with fewer blockages inside of the cooling channel.

[0005] The problem of the invention is solved with a coolable wall element according to the features mentioned in claim 1. Further preferred embodiments are described in the depending claims.

[0006] The invention is based on the knowledge that on the top of the turbulence enhancing element as swirl appears that further blocks the remaining cross section in which the cooling fluid flows. To eliminate this effect of further reduced cross section the turbulence enhancing element comprises at its top surface a depression, preferably in the size, which is appropriate to house the top swirl between the remaining corners (upward and

downward) of the turbulence enhancing element while increasing the not disturbed cross section of the cooling air flow.

[0007] For this reason, a coolable wall element for a hot gas environment comprising a first surface subjectable to hot gas and a second surface subjectable to a cooling fluid, the first and second surfaces are arranged opposite to each other, wherein the second surface comprises at least one turbulence enhancing element, but preferred multiple turbulence enhancing elements, each of which projects steplike from the second surface to a free ending top of the turbulence enhancing element, the respective tops each comprises a top surface having a depression.

[0008] Besides the allocation of a space for housing the top swirl the overall area of the surface of the turbulence enhancing element is increased leading to an enhanced heat transfer.

[0009] Preferable the depression has in cross section a triangular shape or a concave shape. A triangular shape is ease to manufacture while a concave shape of the depression is better equipped to house the top swirl.

[0010] In a further preferred embodiment the top surface is free of a flat section being parallel to a second surface. This give the opportunity to house the swirl at least significantly between the first and second corners of the turbulence enhancing element.

[0011] In a further preferred embodiment the triangular shape is symmetrical. Of course the before mention wall element could be part of a turbine blade, a turbine vane, a ring segment, a combustor wall element or the like.

[0012] In summary the invention relates to a coolable wall element for gas turbines for a hot gas environment, comprising a first surface subjectable to hot gas and a second surface subjectable to a cooling fluid, the first and second surface are arranged opposite to each other, where in the second surface comprises at least one turbulence enhancing element which projects steplike from the second surface to a free ending top of the turbulence enhancing element, the top comprises a surface. To provide a coolable wall element with enhanced cooling properties and fewer blockages inside of a cooling cannel, it is proposed that the top surface comprises a depression.

[0013] The invention displayed in the accompanied drawing will be explained in the following description without limiting the scope of the invention. In the drawing and detailed description identical features are numbered with the same identifiers.

[0014] It shows:

- Fig. 1 a cross section through a coolable wall element according to the prior art,
- Fig. 2 a cross section through a coolable wall element according to a first preferred embodiment and
- Fig. 3 a cross section through a coolable wall element according to a second preferred embodiment.

[0015] Fig. 2 shows a not limiting first example of a coolable wall element 10. The wall element 10 could be part of a turbine vane, a turbine blade, a ring segment of the gas turbine or of a combustor wall, etc.

[0016] The coolable wall element comprises a first surface 12 which is subjectable directly or, when covered by a single or multiple layer coating, indirectly to a hot environment. Usually a hot gas HG streams parallel to first surface 12. To achieve a required lifetime of the wall element 10 it has to be cooled down to appropriate wall temperatures. Therefore on the second surface 14, which is arranged opposite of the first surface 12 of the wall, at least one, preferred multiple turbulence enhancing elements 16 are distributed in a regular or irregular pattern. During operation a cooling fluid 17, usually cooling air, flows along the second surface 14, tripping at the location of the turbulence enhancing element 16.

[0017] The displayed turbulence enhancing element 16 could be designed in rib form as trip strip having a longitudinal extension larger than 5 times of the distance D between the front surface 28 and the back surface 30. Usually the height H of the ribs 16 is similar to said distance D. Also, the turbulence enhancing element could have a pin shape (not shown). Then they are known as pedestals.

[0018] The turbulence enhancing element 16 projects out of the plane of the surface 14 in a stepwise manner, i.e. with an angle of 90°. Other angle values are possible, as long as the turbulence enhancing element urges the cooling fluid 17 to trip over them.

[0019] The turbulence enhancing element 16 ends at their free ending top 18. In other words, the turbulence enhancing elements do not merge into a third surface 13, which third surface 13 is arranged opposite of the second surface 14 for establishing there between a cooling channel 21 which cross section is locally restricted at the position of the turbulence enhancing element 16. [0020] The top 18 comprises a top surface 20. Contrary to the prior art, the top surface 20 is not flat, but comprises a depression 22. The depression 22 is located between an upward located corner 24 of the top 18 and a downward located corner 26 of the top 18

[0021] According to a first example of the invention, displayed in Fig. 2, the depression 22 has a corner 29, which in combination with the first and second corners 24, 26 define a virtual triangle shape. Usually, the depression 22 is as long as the turbulence enhancing element 16 as seen in a direction traverse to the global cooling fluid direction. In other words: the depression 22 extends along the complete longitudinal extension (not shown) of the turbulence enhancing element 16.

[0022] According to a second example of the invention, displayed in Fig. 3, the top surface 20 is concavely shaped between the upward and downward corners 24, 26 for creating said depression 22. Preferred, the shape is of parabolic form, preferred broader than deep.

[0023] The blockage ratio of the turbulence enhancing element 16 remains the same as the rib described in the

prior art, thus creating the same magnitude of shear stresses. A front surface 28 and back surface 30 of the turbulence enhancing element remains straight to keep a larger wetted surface area and as the downstream recirculation zone is needed to create a large magnitude of shear flow.

[0024] The inventive step lies in the shape of the top surface of the turbulence enhancing element, which is shaped as a groove either with corners or with a parabolic profile.

The advantages of the proposed configuration are a reduction of the top recirculation zone and thus a reduction of the pressure drop by decreasing the blocked cooling fluid flow and an increase of the wetted surface area in comparison with a straight top surface.

Claims

15

20

35

40

45

- 1. A coolable wall element (10) for a hot environment comprising a first surface subjectable (12) to a hot gas and an second surface (14) subjectable to a cooling fluid (17), the first and second surfaces (12, 14) are arranged opposite to each other,
- wherein the second surface (14) comprises at least one turbulence enhancing element (16), which projects steplike from the second surface (14) to a free ending top (18) of the turbulence enhancing element (16), the top (18) comprises a top surface (20), characterized in that the top surface (20) comprises a depression.
 - 2. Wall element (10) according to claim 1, wherein the depression (22) has in cross section a triangular or a concave shape.
 - 3. Wall element (10) according to claim 1 or 2, wherein the top surface (20) is free of a flat section being parallel to the second surface (14).
 - Wall element (10) according to claim 2 or 3, wherein the triangular shape is symmetrical.
 - 5. Wall element (10) according to one of the claims 1 to 4, embodied as a turbine blade, turbine vane, a ring segment or combustor wall element.

FIG 1

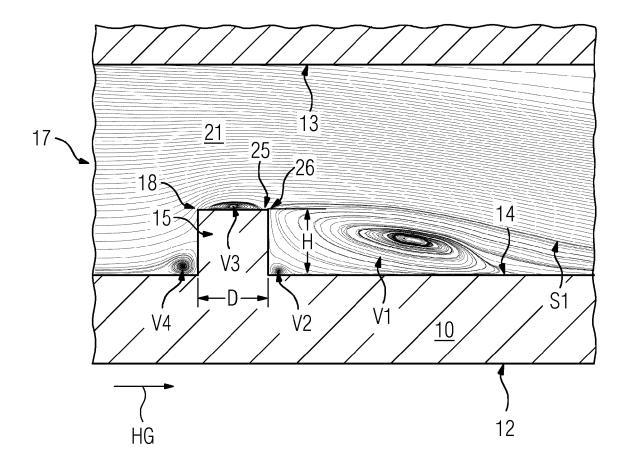


FIG 2

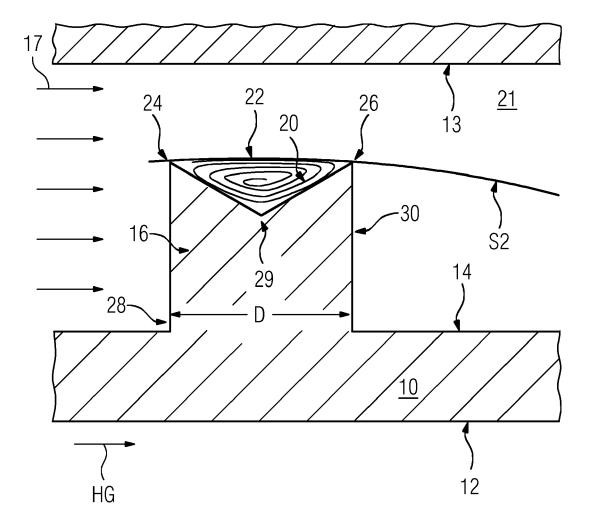
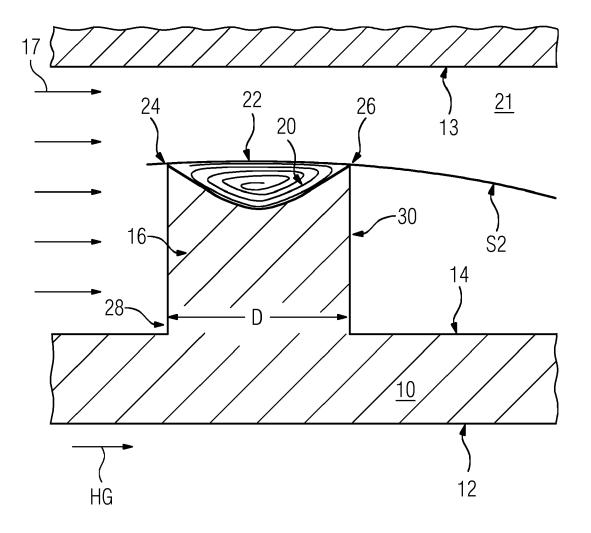



FIG 3

EUROPEAN SEARCH REPORT

Application Number EP 16 18 0939

5

	DOCUMENTS CONSIDERED TO BE RELEVANT										
	Category		dication, where appropriate,	Relevant to claim	CLASSIFICATION OF THE APPLICATION (IPC)						
10	X	EP 2 518 429 A1 (SI 31 October 2012 (20 * paragraphs [0021] [0041], [0042]; fi	EMENS AG [DE]) 12-10-31) , [0028], [0035],	1-5	INV. F01D5/18 F01D25/12 F23R3/00						
15	X	[CH]) 11 July 2001	STOM POWER SCHWEIZ AG (2001-07-11) figures 1b,2,4a,4b,4d	1-3,5							
20	X	WO 2015/050592 A2 (CORP [US]) 9 April * paragraphs [0054]		1-3,5							
25	X	23 July 1996 (1996-	MATA ASAKO [JP] ET AL) 07-23) 24-38; figures 12,18 *	1,2,4,5							
30	X	AL) 10 February 201		1,2,5	TECHNICAL FIELDS SEARCHED (IPC) F01D F23R						
35	X	9 December 1997 (19	CHER DAVID MAX [US]) 97-12-09) - column 6, line 14;	1-3,5	1238						
40											
45											
1		The present search report has b									
88 89 (P040001)	<u> </u>	Place of search Munich	Date of completion of the search 19 December 2016	Examiner Teusch, Reinhold							
		ATEGORY OF CITED DOCUMENTS									
55 CG	Y:par doc A:teol	ticularly relevant if taken alone ticularly relevant if combined with anoth ument of the same category hnological background n-written disclosure umediate document	E : earlier patent doc after the filing date ner D : document cited in L : document cited fo	T: theory or principle underlying the invention E: earlier patent document, but published on, or after the filing date D: document cited in the application L: document cited for other reasons							

EP 3 276 128 A1

ANNEX TO THE EUROPEAN SEARCH REPORT ON EUROPEAN PATENT APPLICATION NO.

EP 16 18 0939

This annex lists the patent family members relating to the patent documents cited in the above-mentioned European search report. The members are as contained in the European Patent Office EDP file on The European Patent Office is in no way liable for these particulars which are merely given for the purpose of information.

19-12-2016

	document earch report		Publication date	Patent family member(s)			Publication date	
EP 251	8429	A1	31-10-2012	EP WO	2518429 2012146480		31-10-203 01-11-203	
EP 111	4976	A2	11-07-2001	DE EP US	19963374 1114976 2002005274	A2	12-07-200 11-07-200 17-01-200	
WO 201	5050592	A2	09-04-2015	EP US WO	3008388 2016123592 2015050592	A1	20-04-201 05-05-201 09-04-201	
US 553	8394	A	23-07-1996	DE DE DE DE EP EP JP JP US	69412056 69412056 69433749 69433749 0661414 0845580 3192854 H07189603 5538394	T2 D1 T2 A1 A2 B2 A	03-09-199 28-01-199 03-06-200 07-10-200 05-07-199 03-06-199 30-07-200 28-07-199	
US 201	1033312	A1	10-02-2011	EP US US WO	2616642 2011033312 2015078898 2012036965	A1 A1	24-07-201 10-02-201 19-03-201 22-03-201	
US 569	5321	Α	09-12-1997	NONE				
US 569 	5321 	A 	09-12-1997 	NONE				

For more details about this annex : see Official Journal of the European Patent Office, No. 12/82