EP 3 276 494 A1

(19)

Europdisches
Patentamt

European

Patent Office

Office européen
des brevets

(12)

(43) Date of publication:
31.01.2018 Bulletin 2018/05

(21) Application number: 17175105.0

(22) Date of filing: 08.06.2017

(11) EP 3 276 494 A1

EUROPEAN PATENT APPLICATION

(51) IntCl.:
GO6F 12/02(2006.09

(84) Designated Contracting States:
AL AT BEBG CH CY CZDE DK EE ES FIFRGB
GRHRHUIEISITLILTLULVMC MKMT NL NO
PL PT RO RS SE SI SK SM TR
Designated Extension States:
BA ME
Designated Validation States:
MA MD

(30) Priority: 29.07.2016 US 201615223754
(71) Applicant: Hewlett Packard Enterprise

Development LP
Houston, TX 77070 (US)

(72) Inventors:

¢ |IYER, Shankar

Cupertino, California 94538 (US)
* NAZARI, Siamak

Cupertino, California 94538 (US)
¢ MURTHY, Srinivasa

Cupertino, California 94538 (US)
*« WANG, Jin

Cupertino, California 94538 (US)

(74) Representative: Barlocci, Anna et al
ZBM PATENTS
Zea, Barlocci & Markvardsen
Pl. Catalunya, 1
08002 Barcelona (ES)

(54) MEMORY SPACE MANAGEMENT

(67) Examples include a device for memory space
management. Some examples include receiving, from a
host, a space management request that identifies a vir-
tual page address. The virtual page address may be as-
sociated with a compressed page that includes a com-
pression metadata having a reference count that indi-
cates a number of virtual pages of data in the compressed
page. The virtual page table entry associated with the
virtual page address in a virtual page table may be looked
up. The virtual page table entry may identify the com-
pressed page. In such examples, the virtual page table
entry may be marked as invalid without updating the ref-
erence count in the compressed page. A determination
may be made as to whether each virtual page table entry
that identifies the compressed page is marked invalid.
Based on the determination that each virtual page table
entry that identifies the compressed page is invalid, a
free space bitmap entry for the compressed page may
be updated to indicate that the compressed page is free.

102
SPACE MANAGEMENT REQUEST |/

y [

DEVICE

110\‘ PROCESSING RESOURCE

120~ MACHINE-READABLE STORAGE MEDIUM
1227~]_[" RECEIVE SPACE MANAGEMENT REQUEST THAT IDENTIFIES
VIRTUAL PAGE ADDRESS ASSOCIATED WITH COMPRESSED
PAGE THAT INCLUDES A REFERENCE COUNT
124~ |

LOOK UP VIRTUAL PAGE TABLE ENTRY ASSOCIATED WITH
VIRTUAL PAGE ADDRESS IN VIRTUAL PAGE TABLE

1267~ MARK VIRTUAL PAGE TABLE ENTRY AS INVALID WITHOUT
UPDATING REFERENCE COUNT

128~ DETERMINE WHETHER EACH VIRTUAL PAGE TABLE ENTRY THAT
IDENTIFIES THE COMPRESSED PAGE IS INVALID
130—~J_| BASED ON DETERMINATION THAT EACH VIRTUAL PAGE TABLE

ENTRY IS INVALID, UPDATE FREE SPACE BITMAP ENTRY FOR
THE COMPRESSED PAGE TO INDICATE THE COMPRESSED PAGE
IS FREE

FIG. 1

Printed by Jouve, 75001 PARIS (FR)

1 EP 3 276 494 A1 2

Description
BACKGROUND

[0001] Storage solutions may be tasked with quickly
and efficiently storing and retrieving large amounts of da-
ta with a finite amount of processing power, bandwidth,
and memory. Virtualization of memory, in which virtual
memory addresses are mapped to physical memory ad-
dresses, may be used to improve memory efficiency.
Memory utilization may be improved by managing mem-
ory allocation and freeing up unused memory space.

BRIEF DESCRIPTION OF THE DRAWINGS

[0002] The following detailed description references
the drawings, wherein:

FIG. 1 is a block diagram of an example machine-
readable storage medium including instructions to
receive a space management request that identifies
avirtual page address associated with acompressed
page that includes a reference count and mark a
virtual page table entry associated with a virtual page
address as invalid without updating the reference
count;

FIG. 2 is a block diagram of an example machine-
readable storage medium including instructions to,
as a background task, determine whether each vir-
tual page table entry that identifies the compressed
page is marked invalid and if so, update a free space
bitmap entry to indicate the compressed page is free;
FIG. 3is a block diagram of instructions to determine
whether each virtual page table entry is invalid;
FIG. 4 is a block diagram of an example device hav-
ing a free space bitmap, a virtual page table, and a
machine-readable storage medium comprising in-
structions to determine whether each virtual page
table entry that identifies a compressed page is
invalid and if so, update a free space bitmap entry
to indicate the compressed page is free and if not,
leave the free space bitmap entry unaltered;

FIG. 5 is a block diagram of an example device hav-
ing a free space bitmap, a virtual page table, and a
machine-readable storage medium comprising in-
structions to send an acknowledgment to a host after
marking a virtual page table entry invalid without up-
dating a reference count;

FIG. 6 is a flowchart of an example method for freeing
memory space comprising determining if a request
to access a compressed page has been received
and if so, based on the request to access, decre-
menting a reference count, and determining if a
space management request that identifies a virtual
page address has been received, and if so, marking
a virtual page table entry associated with the virtual
page address as invalid without updating the refer-
ence count;

10

15

20

25

30

35

40

45

50

55

FIG. 7 a flowchart of an example method for deter-
mining whether each virtual page table entry is
invalid; and

FIG. 8 is a block diagram of an example virtual page
table having virtual page table entries with a com-
pression index, a page address, and a validity field.

DETAILED DESCRIPTION

[0003] As storage demand expands, memory systems
may be relied upon to quickly and efficiently store and
retrieve large amounts of data using a finite amount of
processing power, bandwidth, and memory. Virtual
memory systems may employ memory management
techniques that allow memory to appear as large, con-
tiguous address spaces to processes or tasks. Those
addresses (i.e., virtual memory addresses) may or may
not correspond to contiguous physical memory address-
es. Such techniques may involve memory that appears
to be allocated when requested. In actuality, however,
physical memory is allocated when necessary, for in-
stance when data is actually written to storage media.
[0004] In some examples, the virtual memory system
may compress data before it is written to memory to max-
imize memory utilization. Data compression may involve
transmitting or storing data of a certain number of bits in
a fewer number of bits via a compression algorithm. In
some examples, data compression may involve encod-
ing the data using fewer bits that the data’s original rep-
resentation. In other examples, data compression may
involve reducing the size of the data by eliminating re-
dundant or unnecessary bits. Such systems may involve
storing several virtual pages of compressed data in a
single memory page.

[0005] The use of such memory management tech-
nigues may involve overhead and/or data structures not
present in memory systems that do not utilize such tech-
niques. For instance, the virtual memory system may
translate virtual memory addresses to corresponding
physical memory addresses. In some examples, a page
table populated by one or more page table entries may
enable a virtual memory system to associate virtual mem-
ory addresses with physical memory addresses. Each
page table entry may include suitable metadata, i.e., data
that provides information about other data. For example,
the metadata may include a virtual page number and a
physical page number that can be used to generate a
physical memory address. In addition, compression
metadata may be generated to provide more information
aboutthe virtual pages stored within a compressed page.
For example, compression metadata may be stored with
the compressed data in the compressed page that indi-
cates the number of virtual pages of data stored in the
compressed page, the compression algorithm used, and
the order or location of virtual pages within the com-
pressed page. In such examples, compression metadata
may be located with the data to facilitate the discovery
and retrieval of data with relatively fewer memory access-

3 EP 3 276 494 A1 4

es and page table or other metadata look-ups.

[0006] For efficient memory management and utiliza-
tion, such virtual memory systems may also attempt to
reclaim or free up unused memory space. In some virtual
memory systems involving compression metadata
stored together with the compressed data, requests to
free up unused data may involve accessing, caching, and
decompressing each compressed page to update the
compression metadata and/or overwrite the compressed
data itself. Doing so, however, may involve numerous
large-scale write operations that may be computationally
intensive, inefficient, and time-consuming. In other ex-
amples, compression metadata may be stored separate-
ly such that freeing unused memory space need not in-
volve accessing the compressed page. But, as discussed
above, separately locating compression metadata may
resultin inefficient memory operationsinvolving a greater
number of memory accesses and table look-ups.
[0007] Examples described herein may improve the
fields of memory management and space allocation in
computer and memory systems by freeing memory
space without updating compression metadata stored
with a compressed page and without accessing or cach-
ing compressed pages. For instance, some examples
described herein may mark invalid a virtual page table
entry that identifies a compressed page in response to a
space managementrequest. The compressed page may
include compression metadata having a reference count
that indicates a number of virtual pages of data within
the compressed page. The virtual page table entry may
be marked invalid without updating the reference count.
Based (at least in part) on a determination that each vir-
tual page table entry that identifies the compressed page
is invalid, a free space bitmap entry for the compressed
page may be updated to indicate the compressed page
is free. In some examples described herein, compression
metadata may be selectively updated in response to a
memory access such that certain memory operations in-
volve fewer memory accesses and table look-ups. In ex-
amples described herein, a determination, action, etc.,
that is said to be "based on" a given condition may be
based on that condition alone or based on that condition
and other condition(s).

[0008] Insomeexamplesdescribed herein, anon-tran-
sitory machine-readable storage medium may comprise
instructions executable by a processing resource of a
device for memory space management to receive, from
a host, a space management request that identifies a
virtual page address, wherein the virtual page address
is associated with a compressed page that includes a
compression metadata having a reference count that in-
dicates a number of virtual pages of data in the com-
pressed page. The storage medium may further com-
prise instructions to look up a virtual page table entry
associated with the virtual page address in a virtual page
table and mark the virtual page table entry invalid without
updating the reference count. The virtual page table entry
may identify the compressed page. The storage medium

10

15

20

25

30

35

40

45

50

55

may also comprise instructions to determine whether
each virtual page table entry that identifies the com-
pressed page is marked invalid. Based (at least in part)
on the determination that each virtual page table entry
that identifies the compressed page is invalid, a free
space bitmap entry for the compressed page may be
updated to indicate the compressed page is free.
[0009] In some such examples described herein,
based (at least in part) on the determination that each
virtual page table entry associated with the compressed
page is not invalid, the free space bitmap entry for the
compressed page may be left unaltered. In other such
examples described herein, an acknowledgment mes-
sage may be sent to the host after marking the virtual
page table entry invalid. In some such examples, the in-
structions to determine whether each virtual page table
entry that identifies the compressed page is marked
invalid and the instructions to update the free space bit-
map entry may further comprise instructions to execute
as background tasks.

[0010] In some examples described herein, a device
for memory space management may comprise a
processing resource, a free space bitmap, a virtual page
table entry, and a machine-readable storage medium en-
coded with instructions executable by the processing re-
source. The instructions may receive, from a host, a
space management request that identifies a virtual page
address. The virtual page address may be associated
with a compressed page that includes a compression
metadata having a reference count that indicates a
number of virtual pages of data in the compressed page.
The instructions may further look up a virtual page table
entry associated with the virtual page address in the vir-
tual page table and mark the virtual page table entry as
invalid without updating the reference count. The virtual
page table entry may identify the compressed page. The
instructions may also determine whether each virtual
page table entry that identifies the compressed page is
marked invalid. Based (at least in part) on the determi-
nation that each virtual page table entry that identifies
the compressed page is invalid, a free space bitmap entry
for the compressed page in a free space bitmap may be
updated to indicate the compressed page is free. Based
(at least in part) on the determination that each virtual
page table entry that identifies the compressed page is
not invalid, the free space bitmap entry in the free space
bitmap may be left unaltered.

[0011] In other examples described herein, a method
of memory space management may involve determining,
via a processing resource, whether a request to access
a compressed page has been received, wherein a free
space bitmap entry associated with the compressed
page indicates the compressed page is in-use. The com-
pressed page may include a compression metadata hav-
ing a reference count that indicates a number of virtual
pages of data in the compressed page. Based (at least
in part) on the determination that the request to access
has been received and based (at least in part) on the

5 EP 3 276 494 A1 6

requestto access, the reference count may be selectively
decremented. The method further involves determining,
via the processing resource, whether a space manage-
mentrequest has beenreceived, wherein the space man-
agement request identifies a virtual page address asso-
ciated with the compressed page. Based (at least in part)
onthe determination thatthe space managementrequest
has been received, a virtual page table entry associated
with the virtual page address in the virtual page table that
identifies the compressed page may be looked up and
marked as invalid without updating the reference count.
The method may also involve determining, via the
processing resource, whether each virtual page table en-
try that identifies the compressed page is marked invalid.
Based (at least in part) on the determination that each
virtual page table entry associated with the compressed
page is invalid, a free space bitmap entry for the com-
pressed page in the free space bitmap may be updated
to indicate the compressed page is free. Based (at least
in part) on the determination that each virtual page table
entry associated with the compressed page is not invalid,
the free space bitmap entry may be left unaltered.
[0012] Referring now to the drawings, FIG. 1 is a block
diagram of an example machine-readable storage me-
dium 120 that includes instructions to receive a space
management request 102 from a host that identifies a
virtual page address associated with a compressed
page, the compressed page having a reference count
that indicates a number of virtual pages of data in the
compressed page. The instructions may be executable
by a processing resource 110 of a device 100 for memory
space management.

[0013] Device 100 includes a processingresource 110
and may be any networking or computing device suitable
for execution of the functionality described below. As
used herein, a device may be a desktop computer, laptop
(or notebook) computer, workstation, tablet computer,
mobile phone, smart device, switch, router, server, blade
enclosure, or any other processing device or equipment
including a processing resource.

[0014] As depicted in FIG. 1, device 100 may also in-
clude a machine-readable storage medium 120 compris-
ing (e.g., encoded with) instructions 122, 124, 126, 128,
and 130 executable by processing resource 110 to im-
plement functionalities described herein in relation to
FIG. 1. In some examples, storage medium 120 may in-
clude additional instructions. In other examples, the func-
tionalities described herein in relation to instructions 122,
124, 126, 128, 130, and any additional instructions de-
scribed herein in relation to storage medium 120, may
beimplemented at leastin partin electronic circuitry (e.g.,
viacomponents comprising any combination of hardware
and programming to implement the functionalities de-
scribed herein). In some examples, device 100 may be
acontroller node for a storage platform or may be located
within a controller node for a storage platform. In some
examples (not shown in FIG. 1), storage medium 120
may be located outside of device 100. In such examples,

10

15

20

25

30

35

40

45

50

55

device 100 may communicate via a computer network
(e.g., Internet, Local Area Network (LAN), Wide Area Net-
work (WAN), etc.) with storage medium 120.

[0015] As used herein, a machine-readable storage
medium may be any electronic, magnetic, optical, or oth-
er physical storage apparatus to contain or store infor-
mation such as executable instructions, data, and the
like. For example, any machine-readable storage medi-
um described herein may be any of Random Access
Memory (RAM), volatile memory, non-volatile memory,
flash memory, a storage drive (e.g., a hard drive), a solid
state drive, any type of storage disc (e.g., a compact disc,
aDVD, etc.), and the like, or a combination thereof. Fur-
ther, any machine-readable storage medium described
herein may be non-transitory.

[0016] In examples described herein, a processing re-
source may include, for example, one processor or mul-
tiple processors included in a single device or distributed
across multiple devices. As used herein, a processor may
be atleast one of a central processing unit (CPU), a sem-
iconductor-based microprocessor, a graphics process-
ing unit (GPU), a field-programmable gate array (FPGA)
configured to retrieve and execute instructions, other
electronic circuitry suitable for the retrieval and execution
instructions stored on a machine-readable storage me-
dium, or a combination thereof. Processing resource 110
may fetch, decode, and execute instructions stored on
storage medium 120 to perform the functionalities de-
scribed above in relation to instructions 122, 124, 126,
128, and 130. In other examples, the functionalities of
any of the instructions of storage medium 120 may be
implemented in the form of electronic circuitry, in the form
of executable instructions encoded on a machine-read-
able storage medium, or a combination thereof. In the
example of FIG. 1, storage medium 120 may be imple-
mented by one machine-readable storage medium, or
multiple machine-readable storage media.

[0017] In the example of FIG. 1, instructions 122 may
receive a space management request 102 from a host
that identifies a virtual page address. A space manage-
ment request, as described herein, may refer to a mes-
sage or command to manage memory space by freeing
unused memory. In some examples, space management
request 102 may comprise an unmap request that un-
maps a specific memory block (e.g., removes a pointer
from a virtual page address to a physical page address
to deallocate the physical page). In other examples,
space management request 102 may comprise a write
zero request or write same zero request to write all zeros
to a specific memory block. Space management request
102 may be received from a host. A host, as described
herein, may refer to a computer or other device running
an operating system that allows a user access to the
computer or device. In some examples, the host may be
connected via a network to a storage platform or other
memory system to store and retrieve data. In some such
examples, the host may also be connected to other com-
puters via a computer network (e.g., Internet, LAN, WAN,

7 EP 3 276 494 A1 8

etc.). In other examples, a host may be a mainframe com-
puter or server.

[0018] Inthe examples described herein, avirtual page
address may refer to a virtual memory address for a page
of memory. In some examples, the virtual address may
be a virtual page number from which a virtual page ad-
dress can be generated. In the examples described here-
in, a page may refer to a specific quantity of data. For
example, a page may be a sequence of N bytes, where
N is a power of 2. In examples involving virtual memory,
a page may be 4 Kilobytes (KB) to 64 KB or more.
[0019] A virtual page address may be associated with
a compressed page. In the examples herein, a com-
pressed page refers to a page that includes compressed
data and compression metadata. In some examples, the
compressed data may include several virtual pages of
data. In one example, a compressed page may include
up to eight virtual pages. In other examples, the com-
pressed page may include even more virtual pages de-
pending on the size of the page, the amount of compres-
sion achieved, available memory space, and other such
relevant variables. Compression metadata, as used
herein, may refer to data within the compressed page
that provides information about compressed data in the
compressed page. In some examples, the compression
metadata may include, among other things, a reference
count, a compressed page offset, and a virtual page ad-
dress. In some such examples, each of the reference
count, the compressed page offset, and the virtual page
address may represent separate fields made up of one
or more bits that provide information about the com-
pressed page and the compressed data within the com-
pressed page.

[0020] Inthe examples described herein, the reference
count may refer to the number of virtual pages within the
compressed page. For instance, for a compressed page
that includes two virtual pages, the reference count may
include the value "2" or may otherwise indicate that the
compressed page includes two virtual pages. Similarly,
for a compressed page that includes 8 virtual pages, the
reference count may include the value "8" or may other-
wise indicate that the compressed page includes eight
virtual pages. In some examples, the compressed page
offset may refer to an offset that specifies where the data
associated with each virtual page in a compressed page
is located within that compressed page.

[0021] Based (at least in part) on the virtual page ad-
dress identified in space management request 102, in-
structions 124 may look up a virtual page table entry as-
sociated with the virtual page address in a virtual page
table. As used in the examples herein, a virtual page
table may refer to a table or other suitable data structure
that includes one or more virtual page table entries. In
some examples, a virtual page table may comprise sev-
eral levels. For example, a multi-level virtual page table
may include a first level virtual page table and a second
level virtual page table, each of which are indexed or
searched using different bits or portions of a search term

10

15

20

25

30

35

40

45

50

55

such as a virtual page address or a previous level virtual
page table. In other examples, a multi-level virtual page
table may include more levels, as appropriate.

[0022] A virtual page table entry, as used in the exam-
ples herein, may refer to a row, a line, or other suitable
portion of a virtual page table that aids in associating a
virtual memory address with a physical memory address.
The data or information within the virtual page table entry
may be referred to as metadata and may be stored in
fields within the virtual page table entry. As used herein,
metadata may refer to data that provides information
about other data. The virtual page table may be searched
and the virtual page table entry looked up via the virtual
page address. The virtual page address may allow for
efficient look-up or search of a virtual page’s correspond-
ing virtual page table entry. In some examples, each vir-
tual page table entry may represent a virtual page of data.
[0023] FIG. 8 depicts an example virtual page table
800 that includes several virtual page table entries 810.
As depicted, each virtual page table entry includes a com-
pression index field, a page address field, and a validity
field. The compressionindex field may referto a particular
virtual page that contains data within acompressed page.
For example, a compression index of "0" may indicate
that the data associated with the virtual page is located
as the first virtual page within the compressed page. Sim-
ilarly, a compression index of "1" may indicate that the
datais located as the second virtual page within the com-
pressed page. In such an example, the first virtual page
may be occupied by other data. The page address field
may refer to the physical page at which the virtual page
of data is located, i.e., the address of the compressed
page. In some examples, virtual page table 800 may in-
clude additional metadata not shown in FIG. 8. For ex-
ample, virtual page table 800 may include a second valid
bit to indicate whether the page is in primary memory.
An indication that the page is not in primary memory may
correspond to a page fault and may involve an additional
memory access to determine a page address for the
physical page.

[0024] Returning to FIG. 1, instructions 126 may mark
the virtual page table entry as invalid. In some examples,
marking the virtual page table entry as invalid may involve
setting or resetting a validity field in the virtual page table
entry. In other examples, marking the virtual page table
entry as invalid may involve deleting or zeroing the con-
tents of the virtual page table entry. Instructions 126 may
mark the virtual page table entry as invalid without up-
dating or altering the reference count within the compres-
sion metadata of the compressed page. In such exam-
ples, the reference count of the compressed page may
be inaccurate. Marking the virtual page table entry as
invalid without updating the reference count, however,
enables the freeing of unused memory space without re-
source-intensive memory accesses involving the decom-
pression of compressed data.

[0025] In the example of FIG. 1, instructions 128 may
determine whether each virtual page table entry that

9 EP 3 276 494 A1 10

identifies the compressed page is marked invalid. In
some examples, apage address of the compressed page
may be identified from looking up the virtual page table
entry associated with the virtual page address. Based (at
least in part) on the page address of the compressed
page, instructions 128 may search the virtual page table
for any other virtual page table entries that identify the
compressed page and determine a state of the virtual
page table entry. In some examples, each virtual page
table entry may comprise a validity field that indicates
whether the virtual page table entry is valid or invalid.
[0026] Based (atleastin part) onthe determination that
each virtual page table entry that identifies the com-
pressed page is marked invalid, instructions 130 may
update a free space bitmap entry for the compressed
page in the free space bitmap to indicate that the com-
pressed page is free. As used in the examples herein, a
free space bitmap may refer to a table or other suitable
data structure that includes one or more free space bit-
map entries. A free space bitmap entry, as used herein,
may refer to a row, a line, or other suitable portion of a
free space bitmap table that indicates whether a com-
pressed page is free or not free. Each free space bitmap
entry may be associated with a compressed page. The
free space bitmap may be searched and the free space
bitmap entry looked up via the compressed page.Insome
such examples, the page address may allow for efficient
look-up or search of a compressed page’s corresponding
free space bitmap entry.

[0027] In some examples, a free space bitmap entry
may comprise a single bit that indicates whether the com-
pressed page is free. For instance, a "1" may indicate
the compressed page is in-use whereas a "0" may indi-
cate the compressed page is free. In such examples, the
free space bitmap entry may be updated to "0" based (at
least in part) on the determination that each virtual page
table entry that identifies the compressed page is invalid.
In other examples, the free space bitmap may comprise
separate fields made up of one or more bits that provide
information about the compressed page, including
whether the compressed page is in-use or free. Based
(at least in part) on the determination that each virtual
page table entry that identifies the compressed page is
marked invalid, the field may be updated to indicate the
compressed page is free.

[0028] In some examples, instructions 122, 124, 126,
128, and 130 may be part of an installation package that,
wheninstalled, may be executed by processing resource
110 to implement the functionalities described above. In
such examples, storage medium 120 may be a portable
medium, such as a CD, DVD, or flash drive, or a memory
maintained by a server from which the installation pack-
age can be downloaded and installed. In other examples,
instructions 122, 124, 126, 128, and 130 may be part of
an application, applications, or component(s) already in-
stalled on device 100 including processing resource 110.
In such examples, the storage medium 120 may include
memory such as a hard drive, solid state drive, or the

10

15

20

25

30

35

40

45

50

55

like. In some examples, functionalities described herein
in relation to FIG. 1 may be provided in combination with
functionalities described herein in relation to any of FIGS.
2-8.

[0029] Further examples are described herein in rela-
tion to FIG. 2, which is a block diagram of an example
machine-readable storage medium 220 that includes in-
structions to receive a space management request that
identifies a virtual page address and, among other things,
leave a free space bitmap entry for a compressed page
unaltered based (at least in part) on a determination that
each virtual page table entry associated with the com-
pressed page is not invalid. The example of FIG. 2 in-
cludes device 200 for memory space management,
processingresource 210, and machine-readable storage
medium 220 comprising instructions 222, 224, 226, 228,
and 230, as described above in relation to instructions
122, 124, 126, 128, and 130 of FIG. 1. The example of
FIG. 2 further includes the machine-readable storage
medium 220 comprising instructions 227, 229, 232, 234,
and 236 executable by processing resource 210 to im-
plement functionalities described herein in relation to
FIG. 2.

[0030] In some examples, storage medium 220 may
include additional instructions. In other examples, the
functionalities described herein in relation to instructions
222, 224, 226, 227, 228, 229, 230, 232, 234, and 236,
and any additional instructions described herein in rela-
tion to storage medium 220, may be implemented at least
in part in electronic circuitry (e.g., via components com-
prising any combination of hardware and programming
to implement the functionalities described herein). In
some examples, device 200 may be a controller node for
a storage platform or may be located within a controller
node for a storage platform. In some examples (not
shown in FIG. 1B), storage medium 220 may be located
outside of device 200. In such examples, device 200 may
communicate via a computer network (e.g., Internet,
LAN, WAN, etc.) with storage medium 220.

[0031] Processing resource 210 may fetch, decode,
and execute instructions stored on storage medium 220
to perform the functionalities described above in relation
to instructions 222, 224, 226, 228, 230, 232, 234, 236,
and 238. In other examples, the functionalities of any of
the instructions of storage medium 220 may be imple-
mented in the form of electronic circuitry, in the form of
executable instructions encoded on a machine-readable
storage medium, or a combination thereof. In the exam-
ple of FIG. 2, storage medium 220 may be implemented
by one machine-readable storage medium, or multiple
machine-readable storage media.

[0032] As described above, in relation to instructions
122 of FIG. 1, instructions 222 may receive a space man-
agement request 202 that identifies a virtual page ad-
dress associated with a compressed page. The com-
pressed page may include compression metadata hav-
ing a reference count that indicates a number of virtual
pages of data in the compressed page. Instructions 224,

11 EP 3 276 494 A1 12

as described above in relation to instructions 124 of FIG.
1, may look up a virtual page table entry associated with
the virtual page address in a virtual page table. Instruc-
tions 226, as described above in relation to instructions
126 of FIG. 1, may mark the virtual page table entry as
invalid without updating the reference count.

[0033] AsdepictedinFIG.2,instructions 227 may send
an acknowledgment message to the host after marking
the virtual page table entry as invalid. In some examples,
the acknowledgment message may indicate the comple-
tion of the space management request. In other exam-
ples, the sending of the acknowledgment message to the
host may trigger certain instructions to be executed in
the background as background tasks.

[0034] As described above in relation to instructions
128 of FIG. 1, Instructions 228 may determine whether
each virtual page table entry that identifies the com-
pressed page is marked invalid. In some examples, in-
structions 228 of FIG. 2 may further comprise instructions
such as those depicted in the example of FIG. 3. As
shown in FIG. 3, instructions 328 may determine whether
each virtual page table entry that identifies the com-
pressed page is marked invalid via instructions 340, 342,
344, 346, and 348. Instructions 340 may determine
whether another virtual page table entry identifies the
compressed page. In some examples, instructions 340
may look up or search a virtual page table for another
virtual page table entry that identifies the compressed
page. In such examples, instructions 340 may search the
virtual page table using the page address of the com-
pressed page. In other examples, instructions 340 may
search the virtual page table using another identifier of
the compressed page.

[0035] Based (atleastin part) onthe determination that
another virtual page table entry does not identify the com-
pressed page, instructions 342 determine that each vir-
tual page table entry that identifies the compressed page
is marked invalid. Instructions 342 may trigger the updat-
ing of the free space bitmap entry for the compressed
page such that the free space bitmap entry indicates that
the compressed page is free. Based (at least in part) on
the determination that another virtual page table entry
does identify the compressed page, instructions 344 may
determine the state of the other virtual page table entry.
As used herein, "the other" may be used to refer to "the
another". As discussed above in relation to FIG. 8, each
virtual page table entry may include a validity field that
indicates whether the virtual page table entry is valid (and
in-use) or not valid (and free). In some examples, instruc-
tions 344 may evaluate the validity field of the other virtual
page table entry to determine its state.

[0036] Based (atleastin part) onthe determination that
the other virtual page table entry is valid, instructions 346
determine that each virtual page table entry that identifies
the compressed page is not marked invalid. In response
to instructions 346, the free space entry for the com-
pressed page may be left unaltered such that it indicates
that the compressed page is in-use. Based (at least in

10

15

20

25

30

35

40

45

50

55

part) on the determination thatthe other virtual page table
entry is invalid, instructions 348 may return to instructions
340 to determine whether another virtual page table entry
identifies the compressed page. In some examples, the
instructions of FIG. 3 may iterate until it is determined
that no additional virtual page table entries identify the
compressed page or until it is determined that a virtual
page table entry that identifies the compressed page is
marked valid.

[0037] Returning to FIG. 2, based (at least in part) on
the determination that each virtual page table entry is
invalid, instructions 230, like instructions 130 of FIG. 1,
update a free space bitmap entry for the compressed
page to indicate the compressed page is free. In some
examples, based (at least in part) on the determination
that each virtual page table entry associated with the
compressed page is not invalid, instructions 232 of FIG.
2 may leave the free space bitmap entry for the com-
pressed page unaltered. Accordingly, the free space bit-
map entry will indicate that the compressed page is in-
use.

[0038] In some examples, instructions 228, 230, and
232 may further comprise instructions 229 to execute as
background tasks. As used in the examples herein, a
background task may refer to a task that runs or executes
in the background without user intervention. In some ex-
amples, a background task is executed periodically. In
other examples, a background task executes when CPU
or controller usage permits based (at least in part) on any
number of variables, including CPU or controller utiliza-
tion, queued tasks, priority of queued tasks, and the like.
In yet other examples, background tasks may run con-
tinually in the background.

[0039] As depictedin FIG. 2, instructions 234 may re-
ceive arequestto access the compressed page, wherein
the free space bitmap entry for the compressed page
indicates that it is in-use. In some examples, the request
to access the compressed page may comprise a write
operation, a read operation, a read-modify-write opera-
tion, or the like. Instructions 234 may receive the request
to access the compressed page from a user, a process
or task as part of a larger transaction or operation, an-
other controller node, and the like.

[0040] Based (atleastin part)onthe requestto access
the compressed page, instructions 236 may selectively
decrementthe reference count storedinthe compression
metadata of the compressed page. In one example, in-
structions 232 may receive a read-modify-write request
to modify the data stored in a virtual page of the com-
pressed page and re-write modified data. If a page-fit
process determines that the modified data will fit in the
original compressed page, the modified data may be writ-
ten and the reference count may remain unchanged. If,
however, a page-fit process determines that the modified
data will notfit in the original compressed page, the mod-
ified data may be written elsewhere and the reference
count of the compressed page may be decremented to
indicate that the compressed page stores one less virtual

13 EP 3 276 494 A1 14

page of data. In another example, instructions 232 may
receive a read request to read data stored in a com-
pressed page. In such examples, the reference count of
the compressed page may remain unaltered. Storing
compression metadata with the compressed page and
selectively updating the compression metadata when the
compressed page is accessed may allow for fewer mem-
ory accesses and table look-ups minimizing resource uti-
lization and increasing memory efficiency.

[0041] In some examples, instructions 222, 224, 226,
227,228, 229, 230, 232, 234, and 236 may be part of an
installation package that, when installed, may be execut-
ed by processing resource 210 to implement the func-
tionalities described above. In other examples, the instal-
lation package may further include instructions 340, 342,
344, 346, and 348 that, when installed, may be executed
by processing resource 210 to implement the function-
alities described above. In such examples, storage me-
dium 220 may be a portable medium, suchas aCD, DVD,
or flash drive, or a memory maintained by a server from
which the installation package can be downloaded and
installed. In other examples, instructions 222, 224, 226,
227, 228, 229, 230, 232, 234, 236 and/or instructions
340,342, 344,346, and 348 may be part of an application,
applications, or component(s) already installed on device
200 including processing resource 210. In such exam-
ples, the storage medium 220 may include memory such
as a hard drive, solid state drive, or the like. In some
examples, functionalities described herein in relation to
FIGS. 2 and 3 may be provided in combination with func-
tionalities described herein in relation to any of FIGS. 1
and 4-8.

[0042] FIG. 4 is a block diagram of an example device
400 for memory space management having a free space
bitmap 460 and a virtual page table 470. As described
above inrelationto FIGS. 1 and 2, free space bitmap 460
may refer to a table or other suitable data structure that
includes one or more free space bitmap entries. Each
free space bitmap entry indicates whether a compressed
page is free or not free. Virtual page table 470, as de-
scribed above in relation to FIG. 1, 2 and 8, may refer to
a table or other suitable data structure that includes one
or more virtual page table entries. The virtual page table
entries may aid in associating a virtual memory address
with a physical memory address. In some examples, vir-
tual page table 470 may organized similar to virtual page
table 800 of FIG. 8.

[0043] Device400alsoincludesa processing resource
410 and may be any networking or computing device
suitable for execution of the functionality described be-
low. As depicted in FIG. 4, device 400 may also include
a machine-readable storage medium 420 comprising
(e.g., encoded with) instructions 422, 424, 426, 428, 430,
and 432 executable by processing resource 410 to im-
plement functionalities described herein in relation to
FIG. 4. In some examples, storage medium 420 may in-
clude additional instructions. In other examples, the func-
tionalities described herein in relation to instructions 422,

10

15

20

25

30

35

40

45

50

55

424,426, 428, 430, 432, and any additional instructions
described herein in relation to storage medium 420, may
be implemented atleastin partin electronic circuitry (e.g.,
viacomponents comprising any combination of hardware
and programming to implement the functionalities de-
scribed herein). In some examples, device 400 may be
a controller node for a storage platform or may be located
within a controller node for a storage platform.

[0044] Processing resource 410 may fetch, decode,
and execute instructions stored on storage medium 420
to perform the functionalities described above in relation
to instructions 422, 424, 426, 428, 430, and 432. In other
examples, the functionalities of any of the instructions of
storage medium 420 may be implemented in the form of
electronic circuitry, in the form of executable instructions
encoded on a machine-readable storage medium, or a
combination thereof. In the example of FIG. 4, storage
medium 420 may be implemented by one machine-read-
able storage medium, or multiple machine-readable stor-
age media.

[0045] Instructions 422 may receive a space manage-
ment request 402 from a host 480 that identifies a virtual
page address associated with a compressed page, as
described above in relation to instructions 122 in FIG. 1.
The compressed page may include compression meta-
data having a reference count that indicates a number
of virtual pages of data in the compressed page. Host
480 may be a computer or other device running an op-
erating system that allows a user access to the computer
or device.

[0046] Instructions 424 may look up a virtual page table
entry associated with the virtual page address in virtual
page table 470, as described above in relation to instruc-
tions 124 of FIG. 1. The virtual page table entry of virtual
page table 470 may identify the compressed page. In-
structions 426 may mark the virtual page table entry as
invalid without updating the reference count, as de-
scribed above in relation to instructions 126 in FIG. 1.
Instructions 428 may determine whether each virtual
page table entry that identifies the compressed page is
marked invalid, as described above in relation to instruc-
tions 128 of FIG. 1. In some examples, instructions 428
may further comprise instructions 340, 342, 344, 346,
and 348 of FIG. 3.

[0047] Based (atleastin part) onthe determination that
each virtual page table entry that identifies the com-
pressed page is marked invalid, instructions 430 may
update the free space bitmap entry for the compressed
page in the free space bitmap 460 to indicate the com-
pressed page is free, as described above in relation to
instructions 130 of FIG. 1. In some examples, updating
the free space bitmap entry may involve setting or reset-
ting the bit. For instance, setting the free space bitmap
entry to "1" may indicate the compressed page is in-use
whereas resetting the free space bitmap entry to "0" may
indicate the compressed page is free. Based (at least in
part) on the determination that each virtual page table
entry associated with the compressed page is notinvalid,

15 EP 3 276 494 A1 16

instructions 432 may leave the free space bitmap entry
for the compressed page unaltered, as described above
in relation to instructions 232 of FIG. 2. Accordingly the
free space bitmap entry will indicate that the compressed
page is in-use.

[0048] In some examples, instructions 422, 424, 426,
428,430, and 432 may be part of an installation package
that, when installed, may be executed by processing re-
source 410 of device 400 to implement the functionalities
described above. In such examples, storage medium 420
may be a portable medium, such as a CD, DVD, or flash
drive, or a memory maintained by a server from which
the installation package can be downloaded and in-
stalled. In other examples, instructions 422, 424, 426,
428, 430, and 432 may be part of an application, appli-
cations, or component(s) already installed on device 400
including processing resource 410. In such examples,
the storage medium 420 may include memory such as a
harddrive, solid state drive, or the like. In some examples,
functionalities described herein in relation to FIG. 4 may
be provided in combination with functionalities described
herein in relation to any of FIGS. 1-3 and 4-8.

[0049] Further examples are described herein in rela-
tion to FIG. 5. FIG. 5 is a block diagram of an example
device 500 for memory space management having a free
space bitmap 560 and a virtual page table 570. As de-
scribed above in relation to FIGS. 1 and 2, free space
bitmap 560 may refer to a table or other suitable data
structure that includes one or more free space bitmap
entries. Each free space bitmap entry indicates whether
a compressed page is free or not free. Virtual page table
570, as described above in relation to FIG. 1, 2 and 8,
may refer to a table or other suitable data structure that
includes one or more virtual page table entries. The vir-
tual page table entries may aid in associating a virtual
memory address with a physical memory address. In
some examples, virtual page table 570 may organized
similar to virtual page table 800 of FIG. 8.

[0050] Device500alsoincludesa processing resource
510 and may be any networking or computing device
suitable for execution of the functionality described be-
low. As depicted in FIG. 5, device 500 may also include
a machine-readable storage medium 520 comprising
(e.g., encoded with) instructions 522, 524, 526, 527, 528,
529, 530, 532, 534, and 536 executable by processing
resource 510 to implement functionalities described
herein in relation to FIG. 5. In some examples, storage
medium 520 may include additional instructions. In other
examples, the functionalities described herein in relation
to instructions 522, 524, 526, 527, 528, 529, 530, 532,
534,536, and any additional instructions described here-
in in relation to storage medium 520, may be implement-
ed at least in part in electronic circuitry (e.g., via compo-
nents comprising any combination of hardware and pro-
gramming to implement the functionalities described
herein). In some examples, device 500 may be a con-
troller node for a storage platform or may be located with-
in a controller node for a storage platform.

10

15

20

25

30

35

40

45

50

55

[0051] Processing resource 510 may fetch, decode,
and execute instructions stored on storage medium 520
to perform the functionalities described above in relation
to instructions 522, 524, 526, 527, 528, 529, 530, 532,
534, and 536. In other examples, the functionalities of
any of the instructions of storage medium 520 may be
implemented in the form of electronic circuitry, in the form
of executable instructions encoded on a machine-read-
able storage medium, or a combination thereof. In the
example of FIG. 5, storage medium 520 may be imple-
mented by one machine-readable storage medium, or
multiple machine-readable storage media.

[0052] Instructions 522 may receive a space manage-
ment request 502 from a host 580 that identifies a virtual
page address associated with a compressed page, as
described above in relation to instructions 122 in FIG. 1.
The compressed page may include compression meta-
data having a reference count that indicates a number
of virtual pages of data in the compressed page. Host
580 may be a computer or other device running an op-
erating system that allows a user access to the computer
or device.

[0053] Instructions 524 may look up a virtual page table
entry associated with the virtual page address in virtual
page table 570, as described above in relation to instruc-
tions 124 of FIG. 1. The virtual page table entry of virtual
page table 570 may identify the compressed page. In-
structions 526 may mark the virtual page table entry as
invalid without updating the reference count, as de-
scribed above in relation to instructions 126 in FIG. 1.
Instructions 527 may send an acknowledgment message
to host 580 after marking the virtual page table entry as
invalid, as described above in relation to instructions 227
of FIG. 2. In some examples, the sending of the acknowl-
edgment message to host 580 may trigger certain in-
structions to be executed in the background as back-
ground tasks.

[0054] Instructions 528 may determine whether each
virtual page table entry that identifies the compressed
page is marked invalid, as described above in relation to
instructions 128 of FIG. 1. In some examples, instructions
528 may further comprise instructions 340, 342, 344,
346, and 348 of FIG. 3. Based (at least in part) on the
determination that each virtual page table entry thatiden-
tifies the compressed page is marked invalid, instructions
530 may update the free space bitmap entry for the com-
pressed page in the free space bitmap 560 to indicate
the compressed page is free, as described above in re-
lation to instructions 130 of FIG. 1. In some examples,
updating the free space bitmap entry may involve setting
or resetting the bit. For instance, setting the free space
bitmap entry to "1" may indicate the compressed page is
in-use whereas resetting the free space bitmap entry to
"0" may indicate the compressed page is free. Based (at
least in part) on the determination that each virtual page
table entry associated with the compressed page is not
invalid, instructions 532 may leave the free space bitmap
entry for the compressed page unaltered, as described

17 EP 3 276 494 A1 18

above inrelation toinstructions 232 of FIG. 2. Accordingly
the free space bitmap entry will indicate that the com-
pressed page is in-use. In some examples, instructions
528, 530, and 532 may further comprise instructions 529
to execute as background tasks, as described above in
relation to instructions 229 of FIG. 2.

[0055] Instructions 534 may receive a request to ac-
cess the compressed page, wherein the free space bit-
map entry for the compressed page indicates that it is in-
use, as described above in relation to instructions 234 of
FIG. 2. In some examples, the requestto access the com-
pressed page may comprise a write operation, a read
operation, a read-modify-write operation, or the like.
Based (atleastin part) on the request to access the com-
pressed page, instructions 536 may selectively decre-
ment the reference count stored in the compression
metadata of the compressed page, as described above
in relation instructions 236 of FIG. 2.

[0056] In some examples, instructions 522, 524, 526,
527,528, 529, 530, 532, 534, and 536 may be part of an
installation package that, when installed, may be execut-
ed by processing resource 510 of device 500 to imple-
ment the functionalities described above. In such exam-
ples, storage medium 520 may be a portable medium,
such as a CD, DVD, or flash drive, or a memory main-
tained by a server from which the installation package
can be downloaded and installed. In other examples, in-
structions 522, 524, 526, 527, 528, 529, 530, 532, 534,
and 536 may be part of an application, applications, or
component(s) already installed on device 500 including
processing resource 510. In such examples, the storage
medium 420 may include memory such as a hard drive,
solid state drive, or the like. In some examples, function-
alities described herein in relation to FIG. 5 may be pro-
vided in combination with functionalities described herein
in relation to any of FIGS. 1-4 and 6-8.

[0057] FIG. 6is a flowchart of an example method 600
for memory space management including determining if
a request to access a compressed page has been re-
ceived and if so, based (at least in part) on the request
to access, decrementing a reference count, and deter-
mining if a space management request that identifies a
virtual page address has been received, and if so, mark-
ing a virtual page table entry associated with the virtual
page address as invalid without updating the reference
count. Although execution of method 600 is described
below with reference to device 200 of FIG. 2, other suit-
able systems for the execution of method 600 can be
utilized (e.g., device 500 of FIG. 5). Additionally, imple-
mentation of method 600 is not limited to such examples.
[0058] In the example of FIG. 6, method 600 may be
a method of device 200. At 605 of method 600, it may be
determined via a processing resource such as process-
ing resource 210 of device 200, whether a request to
access a compressed page has been received. A free
space bitmap entry associated with the compressed
page may indicate the compressed page is in-use and
the compressed page may include a compression meta-

10

15

20

25

30

35

40

45

50

55

10

data having a reference count that indicates a number
of virtual pates of data in the compressed page, as dis-
cussed above in relation to FIG. 2. In some examples,
determining whether a request has been received may
involve monitoring incoming requests, messages, and
commands by processing resource 210. In some such
examples, at 605, instructions 232 may receive a request
to access the compressed page at device 200, as de-
scribed above in relation to instructions 232 of FIG. 2. In
some examples, based (at least in part) on the determi-
nation that a request to access the compressed page
has not been received, method 600 may proceed to 615.
[0059] Based (atleastin part) onthe determination that
a request to access a compressed page has been re-
ceived, method 600 may proceed to 610. At 610, based
(atleastin part) on the request to access the compressed
page, instructions 236 may selectively decrementthe ref-
erence count stored in the compression metadata of the
compressed page, as described above in relation to in-
structions 236 of FIG. 2. For example, a read-modify-
write operation may involve decrementing of the refer-
ence count. A read operation, on the other hand, would
not involve decrementing the reference count.

[0060] At 615 of method 600, it may be determined,
via processing resource 210 of device 200, whether a
space management request has been received. The
space management request identifies a virtual address
associated with the compressed page. In some exam-
ples, determining whether a request has been received
may involve monitoring incoming requests, messages,
and commands by processing resource 210. In some
such examples, at 615, instructions 222 may receive a
space management request 202 at device 200, as de-
scribed above in relation to instructions 222 of FIG. 2. In
some examples, based (at least in part) on the determi-
nation that a space management request has not been
received, method 600 may proceed again to 605. Insome
such examples, 610 may iterate until a space manage-
ment request has been received.

[0061] Based (atleastin part) onthe determination that
the space management request has been received, at
620, instructions 224 may look up a virtual page table
entry in the virtual page table that is associated with the
virtual address in the virtual page table, as described
above in relation to instructions 224 of FIG. 2. The virtual
page table entry may identify the compressed page. In
some examples, the virtual page table entry may identify
the compressed page by its page address. At 625, in-
structions 226 may mark the virtual page table entry as
invalid without updating the reference count, as de-
scribed above in relation to instructions 226 of FIG. 2.
[0062] At 630, instructions 228 may determine, via
processingresource 210, whether each virtual page table
entry that identifies the compressed page is marked
invalid, as described above in relation to instructions 228
of FIG. 2. In some examples, step 630 may be described
in relation to method 730 of FIG. 7. Method 730 compris-
essteps 731,732,733,and 734. At step 731, instructions

19 EP 3 276 494 A1 20

340 may determine whether another virtual page table
entry identifies the compressed page, as described
above in relation to instructions 340 of FIG. 3. Based (at
least in part) on the determination that there are no ad-
ditional virtual page table entries that identify the com-
pressed page, method 730 may proceed to 732. At 732,
instructions 342 determine that each virtual page table
entry that identifies the compressed page is marked
invalid, as described above in relation to instructions 342
of FIG. 3. Based (at least in part) on the determination
that another virtual page table entry identifies the com-
pressed page, method 730 may proceed to 733. At 733,
instructions 344 determine the state of the other virtual
page table entry, as described above in relation to in-
structions 344 of FIG. 3.

[0063] Based (atleastin part) onthe determination that
the other virtual page table entry is valid, method 730
may proceed to 734. At step 734, instructions 346 deter-
mine that each virtual page table entry that identifies the
compressed page is not marked invalid, as described
above in relation to instructions 346 of FIG. 3. Based (at
least in part) on the determination that the other virtual
page table entry is invalid, method 730 may proceed to
731to determine whether another virtual page table entry
identifies the compressed page, as described above in
relation to instructions 348 of FIG. 3.

[0064] Returning to FIG. 6, based (at least in part) on
the determination that each virtual page table entry is
invalid, method 600 may proceed to 635. At 635, instruc-
tions 230 may update the free space bitmap entry for the
compressed page to indicate that the compressed page
is free, as described above in relation to instructions 230
of FIG. 2. Based (at least in part) on the determination
that each virtual page table entry is not invalid, method
600 may proceed to 640. At 640, instructions 232 may
leave the free space bitmap entry for the compressed
page unaltered, as described above in relation to instruc-
tions 232 of FIG. 2.

[0065] Although the flowchart of FIG. 6 shows a spe-
cific order of performance of certain functionalities, meth-
od 600 is not limited to that order. Likewise, although the
flowchart of FIG. 7 shows a specific order of performance
of certain functionalities, method 700 is not limited to that
order. For example, the functionalities shown in succes-
sion in the flowcharts may be performed in a different
order, may be executed concurrently or with partial con-
currence, or a combination thereof. In some examples,
functionalities described herein in relation to FIGS. 6 and
7 may be provided in combination with functionalities de-
scribed herein in relation to any of FIGS. 1-5 and 8.

Claims

1. Anarticle comprising at least one non-transitory ma-
chine-readable storage medium comprising instruc-
tions executable by a processing resource of a de-
vice for memory space management to:

10

15

20

25

30

35

40

45

50

55

1"

receive, from a host, a space management re-
quest that identifies a virtual page address,
wherein the virtual page address is associated
with a compressed page that includes a com-
pression metadata having areference countthat
indicates a number of virtual pages of data in
the compressed page;

look up a virtual page table entry associated with
the virtual page address in a virtual page table,
wherein the virtual page table entry identifies the
compressed page;

mark the virtual page table entry as invalid with-
out updating the reference count;

determine whether each virtual page table entry
that identifies the compressed page is marked
invalid;

based on the determination that each virtual
page table entry that identifies the compressed
page isinvalid, update a free space bitmap entry
for the compressed page to indicate the com-
pressed page is free.

The article of claim 1, further comprising instructions
executable by the processing resource of the device
to:

based on the determination that each virtual
page table entry associated with the com-
pressed page is not invalid, leave the free space
bitmap entry for the compressed page unal-
tered.

The article of claim 2, wherein the instructions to de-
termine whether each virtual page table entry that
identifies the compressed page is marked invalid fur-
ther comprise instructions to:

determine whether another virtual page table
entry identifies the compressed page;

based on the determination that another virtual
page table entry does not identify the com-
pressed page, determine that each virtual page
table entry that identifies the compressed page
is marked invalid;

based on the determination that another virtual
page table entry identifies the compressed
page, determine a state of the another virtual
page table entry;

based on the determination that the another vir-
tual page table entry is valid, determine that
each virtual page table entry that identifies the
compressed page is not marked invalid; and
based on the determination that the another vir-
tual page table entry is invalid, return to the in-
structions to determine whether another virtual
page table entry identifies the compressed

page.

21 EP 3 276 494 A1

The article of claim 1, wherein the virtual page table
is a multi-level virtual page table.

The article of claim 1, wherein the space manage-
ment request is an unmap request or a write zero
request.

The article of claim 1, further comprising instructions
executable by the processing resource of the device
to:

send an acknowledgment message to the host
after marking the virtual page table entry as
invalid.

The article of claim 1, wherein the instructions to de-
termine whether each virtual page table entry that
identifies the compressed page is marked invalid and
the instructions to update the free space bitmap entry
further comprise instructions to execute as a back-
ground task.

The article of claim 1, further comprising instructions
executable by the processing resource of the device
to:

receive a request to access the compressed
page, wherein the free space bitmap entry indi-
cates the compressed page is in-use; and
based on the request to access the compressed
page, selectively decrement the reference
count.

9. A device for memory space management compris-

ing:

a processing resource;

a free space bitmap;

a virtual page table; and

a machine-readable storage medium encoded
with instructions executable by the processing
resource, the machine-readable storage medi-
um comprising instructions to:

receive, from a host, a space management
request that identifies a virtual page ad-
dress, wherein the virtual page address is
associated with a compressed page that in-
cludes a compression metadata having a
reference count that indicates a number of
virtual pages of data in the compressed
page;

look up a virtual page table entry associated
with the virtual page address in the virtual
page table, wherein the virtual page table
entry identifies the compressed page;
mark the virtual page table entry as invalid
without updating the reference count;

10

15

20

25

30

35

40

45

50

55

12

10.

1.

12.

13.

22

determine whether each virtual page table
entry that identifies the compressed page
is marked invalid;

based on the determination that each virtual
page table entry that identifies the com-
pressed page is invalid, update a free space
bitmap entry for the compressed page in a
free space bitmap to indicate the com-
pressed page is free; and

based on the determination that each virtual
page table entry associated with the com-
pressed page is not invalid, leave the free
space bitmap entry in the free space bitmap
unaltered.

The device of claim 9, wherein the machine-readable
storage medium further comprises instructions exe-
cutable by the processing resource to:

send an acknowledgment message to the host
after marking the virtual page table entry as
invalid.

The device of claim 10, wherein the instructions to
determine whether each virtual page table entry that
identifies the compressed page is marked invalid and
theinstructions to update the free space bitmap entry
further comprise instructions to execute as a back-
ground task.

The device of claim 9, wherein the machine-readable
storage medium further comprises instructions exe-
cutable by the processing resource to:

receive a request to access the compressed
page, wherein the free space bitmap entry indi-
cates the compressed page is in-use; and
based on the request to access the compressed
page, selectively decrement the reference
count.

A method of memory space management compris-
ing:

determining, via a processing resource, whether
a request to access a compressed page has
been received, wherein a free space bitmap en-
try associated with the compressed page indi-
cates the compressed page is in-use, and
wherein the compressed page includes a com-
pression metadata having areference countthat
indicates a number of virtual pages of data in
the compressed page;

based on the determination that the request to
access has been received and based on the re-
quest to access, selectively decrementing the
reference count;

determining, via the processing resource,

23 EP 3 276 494 A1

whethera space managementrequesthas been
received, wherein the space management re-
questidentifies a virtual address associated with
the compressed page;

based on the determination that the space man-
agement request has been received, looking up
a virtual page table entry associated with the
virtual address in the virtual page table, wherein
the virtual page table entry identifies the com-
pressed page;

marking the virtual page table entry as invalid
without updating the reference count;
determining, via the processing resource,
whether each virtual page table entry that iden-
tifies the compressed page is marked invalid;
based on the determination that each virtual
page table entry that identifies the compressed
page is invalid, updating a free space bitmap
entry for the compressed page in the free space
bitmap to indicate the compressed page is free;
and

based on the determination that each virtual
page table entry associated with the com-
pressed page is not invalid, leaving the free
space bitmap entry in the free space bitmap un-
altered.

14. The method of claim 13 wherein determining wheth-
er each virtual page table entry that identifies the
compressed page is marked invalid further compris-
es:

determining whether another virtual page table
entry identifies the compressed page;

based on the determination that another virtual
page table entry does not identify the com-
pressed page, determining that each virtual
page table entry that identifies the compressed
page is marked invalid;

based on the determination that another virtual
page table entry identifies the compressed
page, determining a state of the another virtual
page table entry;

based on the determination that the another vir-
tual page table entry is valid, determining that
each virtual page table entry that identifies the
compressed page is not marked invalid; and
based on the determination that the another vir-
tual page table entry is invalid, returning to the
determining whether another virtual page table
entry identifies the compressed page.

15. The method of claim 13 wherein the space manage-
ment request is an unmap request or a write zero
request.

10

15

20

25

30

35

40

45

50

55

13

24

EP 3 276 494 A1

102
SPACE MANAGEMENT REQUEST
100 l
/
DEVICE
110~J PROCESSING RESOURCE
120~ MACHINE-READABLE STORAGE MEDIUM

122~J_[RECEIVE SPACE MANAGEMENT REQUEST THAT IDENTIFIES
VIRTUAL PAGE ADDRESS ASSOCIATED WITH COMPRESSED
PAGE THAT INCLUDES A REFERENCE COUNT

124 LoOK UP VIRTUAL PAGE TABLE ENTRY ASSOCIATED WITH

VIRTUAL PAGE ADDRESS IN VIRTUAL PAGE TABLE

1267 MARK VIRTUAL PAGE TABLE ENTRY AS INVALID WITHOUT
UPDATING REFERENCE COUNT

1267 DETERMINE WHETHER EACH VIRTUAL PAGE TABLE ENTRY THAT

IDENTIFIES THE COMPRESSED PAGE IS INVALID

1307~J_| BASED ON DETERMINATION THAT EACH VIRTUAL PAGE TABLE
ENTRY IS INVALID, UPDATE FREE SPACE BITMAP ENTRY FOR
THE COMPRESSED PAGE TO INDICATE THE COMPRESSED PAGE
IS FREE

FIG. 1

14

EP 3 276 494 A1

220+

2227

224~

2267

2277

229~

228~

230~

232~

234

2367~

202
SPACE MANAGEMENT REQUEST
200 l
/
DEVICE

210~] PROCESSING RESOURCE

MACHINE-READABLE STORAGE MEDIUM

~ RECEIVE SPACE MANAGEMENT REQUEST THAT IDENTIFIES
VIRTUAL PAGE ADDRESS ASSOCIATED WITH COMPRESSED
PAGE WHICH INCLUDES A REFERENCE COUNT

~ LOOK UP VIRTUAL PAGE TABLE ENTRY ASSOCIATED WITH
VIRTUAL PAGE ADDRESS IN VIRTUAL PAGE TABLE

- MARK VIRTUAL PAGE TABLE ENTRY AS INVALID WITHOUT
UPDATING REFERENCE COUNT

[

SEND ACKNOWLEDGMENT MESSAGE TO HOST AFTER MARKING
VIRTUAL PAGE TABLE ENTRY AS INVALID

I EXECUTE AS BACKGROUND TASK

[T| DETERMINE WHETHER EACH VIRTUAL PAGE TABLE ENTRY THAT
IDENTIFIES THE COMPRESSED PAGE IS INVALID

I
1

IF EACH VIRTUAL PAGE TABLE ENTRY IS INVALID, UPDATE FREE
SPACE BITMAP ENTRY TO INDICATE THE COMPRESSED PAGE
IS FREE

1

IF EACH VIRTUAL PAGE TABLE ENTRY IS NOT INVALID, LEAVE
FREE SPACE BITMAP ENTRY UNALTERED

~ RECEIVE REQUEST TO ACCESS COMPRESSED PAGE THAT FREE
SPACE BITMAP ENTRY INDICATES IS IN-USE

] BASED ON REQUEST, SELECTIVELY DECREMENT
REFERENCE COUNT

FIG. 2

15

EP 3 276 494 A1

100
- pewvce
110\| PROCESSING RESOURCE |
120\| ———————— L ————————
MACHINE-READABLE STORAGE MEDIUM

| | DETERMINE WHETHER EACH VIRTUAL PAGE TABLE ENTRY IS

328
e INVALID

340|\\ DETERMINE WHETHER ANOTHER VIRTUAL PAGE TABLE
ENTRY IDENTIFIES THE COMPRESSED PAGE

342“1\\ BASED ON DETERMINATION THAT ANOTHER VIRTUAL
| PAGE TABLE ENTRY DOES NOT IDENTIFY THE

| COMPRESSED PAGE, DETERMINE THAT EACH VIRTUAL

PAGE TABLE ENTRY THAT IDENTIFIES THE

| COMPRESSED PAGE IS MARKED INVALID

|

|

|

|

|

|

|

|

|

|

|

|
344N BASED ON DETERMINATION THAT ANOTHER VIRTUAL |
| PAGE TABLE ENTRY IDENTIFIES THE COMPRESSED |
PAGE, DETERMINE STATE OF THE ANOTHER VIRTUAL |

| PAGE TABLE ENTRY |
|

|

|

|

|

|

|

|

|

|

|

346|\\ BASED ON DETERMINATION THAT THE ANOTHER
VIRTUAL PAGE TABLE ENTRY IS VALID, DETERMINE
THAT EACH VIRTUAL PAGE TABLE ENTRY IS NOT
MARKED INVALID

VIRTUAL PAGE TABLE ENTRY IS INVALID, RETURN TO
INSTRUCTIONS TO DETERMINE WHETHER ANOTHER
VIRTUAL PAGE TABLE ENTRY IDENTIFIES THE
COMPRESSED PAGE

|
|
|
3467 BASED ON DETERMINATION THAT THE ANOTHER
|
|
|
|
|
|

16

EP 3 276 494 A1

v OIA

d343LTIVNN
76— AYLNT dYILIE 3OVdS 3344 IAVIT AITYANI LON HOV3 I
3344 S1 39VYd 3SSIYANOD FLVYIIANI
oy —— OL AYLNT dYLIE 3OVdS 3344 3LVAdN "AITYANI HOV3 4 0Ly 09y
319vL 39vd TYNLAIA dYINLI9 3OVdS 334

AIMYANI SI 39Vd 3ISSTHAINOD STIHILNIA! LYHL AYINT

8Zr—rT| 319vL 3IOVd WNLYIA HOVI ¥3HLIHM ININYTLIA H H
1INNOD FONFHI43H ONILYAdN
927 —T| LNOHLIM QITYANI SV AYLNT 319VL 39V TYNLAIA YHYIN
319Y1 39Vd TYNLYIA NI SSTHAAY IOV TYNLHIA —> Oy

vz —T1 HLIM @3LVIO0SSY AHLNT 319VL 39Vd TYNLHIA dN MO0 334N0S3d ONISSI00Ud

INNOJ JONTH343d ONIAVH 3OVd
d3SS3™dINOD 40 SSTJAAY 39Vd VNLHIA SAIHILNTA

2zv—T1 LVHL 1S3NDIY LNIWIOYNVIN 3OVdS FAIZ03Y
02— WNIQIW 3OVHOLS F18YavYIy-INIHOVIN
00— 30IA3a

17

%

1S3N03Y INJFWIOVYNYIN 3OVdS _
0y _

08y
1SOH

EP 3 276 494 A1

9€G

145

€G-

0€G

824

6297

L85~

926

¢G

A

02—
006—"

—t

INNOJ FONFHI43Y
ININTFYIIA ATIAILITTAS '1SANDIY NO a3svd

|1

ASN-NI SI 39Yd A3SSTHHNOD NIFHIHM
"39Vd d3SSTAdINOD SSFJJV OL LSINDIH FAIFITY

@343L7%NN
AYLIN3 dVINLIE 3OVdS 3344 FAVAT ‘AITVANI LON HOV3A 4|

3344 SI 39Vd A3SSTHdNOD LVIIANI
OL AYLN3 dVYINLIE 3OVdS 3344 3LvAdN ‘AIYANI HOV3A 4|

| 4+—]

AIMvYANI SI 39Vd @3SS3AdNOD SAIAILNIAI LYHL A4LINT
318V1L 39Vd TVNLYIA HOYE d3HL3HM ININY313d

MSVYL ANNOYOMOVE SY 31N03X3

1SOH 01 3OVSSIN LNIWOATTMONMIY AN3S

INNOJ FONIFHI43Y ONILYAdN
LNOHLIM AITYANI AMLN3 378VL 3OVd TVNLAIAMHVIA

378v1 39vd VN LAIA
NI AHIN3T 318VL 39Vd TYNLHIA dN MOOT

| —

$5S34Aav 39vd TVNLAIA S3IHILN3AI
1VH1 1S3N03Y LINFWIDVYNYIN 30VdS JAIFOTS

WNIdIW 3OVHOLS F1avAVYIY-INIHOVIN

301A3d

S OIA

028 09
378YL3OVd WNLYIA | | dYWLIE 30VdS 3344
153N03
ol INIWIOYNYIN 30VdS
— F0¥N0S3Y ONISSIV0Yd 205~
08¢
LSOH

18

EP 3 276 494 A1

p
(-l
-l

-

— <605
/ \

— REQUESTTOACCESS\ NO

COMPRESSED PAGE
~_ RECEIVED?
\ /

T{Es

SELECTIVELY DECREMENT REFERENCE
COUNT

—610

F

615
NO_— SPACE MANAGEMENT \>
?
<\ REQUESTRECEVED? -

N "
\/

YES

4

LOOK UP VIRTUAL PAGE TABLE ENTRY |—620

MARK VIRTUAL PAGE TABLE ENTRY INVALID
WITHOUT UPDATING REFERENCE COUNT

J& —630

N
/ \

/ \
< EACHVIRTUALPAGETABLE ~NO

—625

~_ENTRYINVALID? _

~—640

\ /

LEAVE FREE SPACE BITMAP
ENTRY UNALTERED

TYES

UPDATE FREE SPACE BITMAP ENTRY TO | —635
INDICATE COMPRESSED PAGE IS FREE

FIG. 6

19

EP 3 276 494 A1

~J
-]

—132

ANOTHER VIRTUAL PAG
TABLE ENTRY THAT IDENTIFIES
COMPRESSED PAGE?

NO DETERMINE THAT EACH VIRTUAL PAGE
TABLE ENTRY IS MARKED INVALID

—134

DETERMINE THAT EACH VIRTUAL PAGE
TABLE ENTRY IS NOT MARKED INVALID

STATE OF VIRTUAL PAGE
TABLE ENTRY?

INVALID

FIG. 7

20

800

EP 3 276 494 A1

VIRTUAL PAGE TABLE

et

et

Compression Index Page Address Validity
Compression Index Page Address Validity
Compression Index Page Address Validity
Compression Index Page Address Validity
Compression Index Page Address Validity

L— 810
L— 810
L— 810
L— 810
L— 810

FIG. 8

21

10

15

20

25

30

35

40

45

50

55

EP 3 276 494 A1

des

Européisches
Patentamt

European

Patent Office

ce européen
brevets

[

EPO FORM 1503 03.82 (P04C01)

EUROPEAN SEARCH REPORT

DOCUMENTS CONSIDERED TO BE RELEVANT

Application Number

EP 17 17 5105

Categor Citation of document with indication, where appropriate, Relevant CLASSIFICATION OF THE
gory of relevant passages to claim APPLICATION (IPC)
Y US 2013/185488 Al (TALAGALA NISHA [US] ET [1-15 INV.
AL) 18 July 2013 (2013-07-18) GO6F12/02
* figures 1,5 *
* paragraph [0161] - paragraph [0166] *
* paragraph [0044] - paragraph [0051] *
Y US 2012/017027 Al (BASKAKOV YURY [US] ET |1-15

AL) 19 January 2012 (2012-01-19)
* paragraph [0029] *
* figures 2-3 *

The present search report has been drawn up for all claims

TECHNICAL FIELDS
SEARCHED (IPC)

GO6F

Place of search

The Hague

Date of completion of the search

20 November 2017

Examiner

Nguyen Xuan Hiep, C

CATEGORY OF CITED DOCUMENTS

X : particularly relevant if taken alone

Y : particularly relevant if combined with another
document of the same category

A : technological background

O : non-written disclosure

P : intermediate document

T : theory or principle underlying the invention

E : earlier patent document, but published on, or
after the filing date

D : document cited in the application

L : document cited for other reasons

& : member of the same patent family, corresponding
document

22

10

15

20

25

30

35

40

45

50

55

EPO FORM P0459

EP 3 276 494 A1

ANNEX TO THE EUROPEAN SEARCH REPORT
ON EUROPEAN PATENT APPLICATION NO. EP 17 17 5105

This annex lists the patent family members relating to the patent documents cited in the above-mentioned European search report.
The members are as contained in the European Patent Office EDP file on
The European Patent Office is in no way liable for these particulars which are merely given for the purpose of information.

20-11-2017
Patent document Publication Patent family Publication
cited in search report date member(s) date

US 2013185488 Al 18-07-2013 NONE

For more details about this annex : see Official Journal of the European Patent Office, No. 12/82

23

	bibliography
	abstract
	description
	claims
	drawings
	search report

