(12)

EUROPEAN PATENT APPLICATION

(43) Date of publication:

07.02.2018 Bulletin 2018/06

(51) Int CI.:

H01L 21/768 (2006.01)

H01L 23/532 (2006.01)

(21) Application number: 17183708.1

(22) Date of filing: 28.07.2017

(84) Designated Contracting States:

AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

Designated Extension States:

BA ME

Designated Validation States:

MA MD

(30) Priority: 01.08.2016 CN 201610620762

(71) Applicants:

 Semiconductor Manufacturing International Corporation (Shanghai)
 Shanghai 201203 (CN)

- Semiconductor Manufacturing International Corporation (Beijing)
 Beijing 100176 (CN)
- (72) Inventor: ZHOU, Ming Shanghai, 201203 (CN)
- (74) Representative: Klunker IP Patentanwälte PartG mbB Destouchesstraße 68 80796 München (DE)

(54) METHOD FOR FABRICATING CU INTERCONNECTION USING GRAPHENE

(57) A method for manufacturing an interconnect structure includes providing a substrate structure comprising a substrate, a first dielectric layer on the substrate, and a metal interconnect line formed in the first dielectric layer and extending through to a surface of the substrate; removing a portion of the first dielectric layer on opposite sides of the metal interconnect line to expose a surface

of the metal interconnect line and to form a recess; forming a graphene layer on the exposed surface of the metal interconnect line; and forming a second dielectric layer filling the recess and covering the graphene layer. The interconnect structure can prevent metal atoms of the metal interconnect line from diffusion into the first and second dielectric layers.

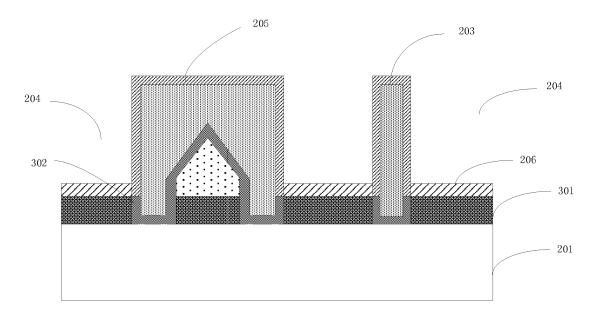


FIG. 3C

25

40

Description

CROSS-REFERENCES TO RELATED APPLICATIONS

1

[0001] The present application claims priority to Chinese patent application No. 201610620762.0, filed with the State Intellectual Property Office of People's Republic of China on August 01, 2016.

FIELD OF THE INVENTION

[0002] The present invention relates to semiconductor technology, and more particularly to a semiconductor interconnect structure and the method of forming the same.

BACKGROUND OF THE INVENTION

[0003] A gradual reduction in the dimension of interconnect structures may limit the speed of signal propagation in semiconductor devices. The use of copper and low-k dielectric materials may reduce the delay in signal propagation. However, the diffusion of copper into a dielectric material will affect the effective dielectric k constant value of the dielectric material, and that the diffusion effect becomes more significant with increasing diffusion severity that may cause the dielectric material to become conductive, thereby affecting the device reliability.

[0004] Further, after planarization, exposed copper is easily oxidized by air, resulting in a relatively short queue time (Q-time) of a chemical mechanical planarization (CMP) process, which is disadvantageous to the development of semiconductor manufacturing processes.

BRIEF SUMMARY OF THE INVENTION

[0005] It is an object of the present invention to provide a method of manufacturing a metal interconnect structure and a corresponding interconnect structure which can prevent the metal in the metal interconnection from diffusing into the dielectric layer or at least reduce diffusion of the metal interconnection into the dielectric layer.

[0006] The object is achieved by the features of the respective independent claims. Further embodiments are defined in the respective dependent claims.

[0007] According to a first aspect of the present invention, a method for manufacturing an interconnect structure includes: providing a substrate structure comprising a substrate, a first dielectric layer on the substrate, and a metal interconnect line extending through the first dielectric layer; removing a portion of the first dielectric layer on the metal interconnect line to form a recess exposing a surface of the metal interconnect line; forming a graphene layer on the exposed surface of the metal interconnect line; and forming a second dielectric layer filling the recess and covering the graphene layer.

[0008] Preferably, the substrate structure may further include a first barrier layer between the substrate and the first dielectric layer, the metal interconnect line extending through the first dielectric layer and the first barrier layer. [0009] Preferably, the first barrier layer is formed on the substrate prior to forming the first dielectric layer, and removing the portion of the first dielectric layer on the metal interconnect line also exposes a surface of the first barrier layer. The method further includes forming an amorphous carbon layer on the exposed surface of the first barrier layer.

[0010] Preferably, the substrate structure further includes a second barrier layer formed at a bottom and on a side surface of the metal interconnect line.

[0011] Preferably, removing the portion of the first dielectric layer on the metal interconnect line to form the recess includes exposing a portion of the second barrier layer on the side surface of the metal interconnect line; and removing the exposed portion of the second barrier layer on the side surface of the metal interconnect line to form the recess.

[0012] Preferably, providing the substrate structure may include providing the substrate; forming the first barrier layer on the substrate; forming the first dielectric layer on the first barrier layer; forming a patterned first hardmask on the first dielectric layer; sequentially etching the first dielectric layer and the first barrier layer using the patterned first hardmask as a mask to form a throughhole; forming the second barrier layer on a sidewall of the through-hole; forming a metal layer filling the throughhole; and performing a planarization process to remove the patterned first hardmask to expose a surface of the first dielectric layer.

[0013] Preferably, the through-hole is a through-hole having a damascene structure, and sequentially etching the first dielectric layer and the first barrier layer includes performing a first etching process on the first dielectric layer using the patterned first hardmask as a mask to form a first opening and a second opening; forming a patterned second hardmask on the first opening; performing a second etching process on the first dielectric layer using the patterned first hardmask and the patterned second hardmask as a mask to form a third opening; removing the patterned second hardmask; performing a third etching process on the first dielectric layer and the first barrier layer using the patterned first hardmask as a mask to form a first through-hole and a second through-hole extending to the substrate, the first throughhole including the first opening and the third opening, and the second through-hole including the second opening. [0014] Preferably, the graphene layer includes a layer of fluorinated graphene.

[0015] Preferably, forming the graphene layer includes a chemical vapor deposition process including supplying a reaction gas comprising methane, hydrogen, and a carrier gas, the chemical vapor deposition process being carried out at a temperature in a range between 600 °C and 1500 °C, a reaction time in a range between 5 minutes and 300 minutes, a flow rate of the carrier gas in a range between 50 sccm and 10,000 sccm, a ratio of a flow rate of the method to a flow rate of the carrier gas

in a range between 0.05% and 50%, and a ratio of a flow rate of the hydrogen to the flow rate of the carrier gas in a range between 0.05% and 50%.

[0016] Preferably, the method further includes performing a planarization process on the second dielectric layer.

[0017] Preferably, the method further includes forming a third dielectric layer on the second dielectric layer for a second interconnect structure.

[0018] Preferably, the method further includes forming a third barrier layer on the second dielectric layer, wherein the third dielectric layer is formed on the third barrier layer.

[0019] Preferably, the metal interconnect line includes copper, and the first and second dielectric layers each comprise silicon oxide or a low-k dielectric material.

[0020] Preferably, the first barrier layer includes SiCN, and the second barrier layer includes Ta, TaN, or stacked layers of Ta and TaN.

[0021] Preferably, the graphene layer includes 1 to 30 layers of monoatomic graphene layers.

[0022] A second aspect of the present invention provides an interconnect structure, which includes a substrate; a metal interconnect line including an upper surface and a side surface on the substrate and; a graphene layer on the upper surface and the side surface of the metal interconnect line; and a dielectric layer on the substrate covering a portion of the graphene layer on the side surface of the metal interconnect line.

[0023] Preferably, the dielectric layer does not cover a portion of the graphene layer on the upper surface of the metal interconnect line.

[0024] Preferably, the dielectric layer further covers a portion of the graphene layer on the upper surface of the metal interconnect line.

[0025] Preferably, the interconnect structure further includes a first barrier layer between the substrate and the dielectric layer, wherein the graphene layer is formed on the upper surface and the side surface of the metal interconnect line and on a side portion of the first barrier layer.

[0026] Preferably, the interconnect structure further includes an amorphous carbon layer between the first barrier layer and the dielectric layer.

[0027] Preferably, the interconnect structure further includes a second barrier layer having a portion between the metal interconnect layer and the substrate and a portion between the metal interconnect layer and the first barrier layer.

[0028] Preferably, the interconnect structure further includes a second dielectric layer on the graphene layer for forming a second interconnect structure.

[0029] Preferably, the interconnect structure further includes a third barrier layer on the on the upper surface of the metal interconnect line and on the dielectric layer; and a third dielectric layer on the third barrier layer for forming a new interconnect structure.

[0030] Preferably, the interconnect structure further in-

cludes a next dielectric layer on the dielectric layer for forming a next interconnect structure. In one embodiment, the interconnect structure also includes a next barrier layer on the between the dielectric layer and the next dielectric layer.

[0031] Preferably, the graphene layer includes a layer of fluorinated graphene.

[0032] Preferably, the metal interconnect line includes a damascene structure.

[0033] Preferably, the metal interconnect line includes copper, and the dielectric layer includes silicon oxide or a low-k dielectric material.

[0034] Preferably, the first barrier layer includes SiCN, and the second barrier layer includes Ta, TaN, or stacked layers of Ta and TaN.

[0035] Preferably, the graphene layer includes 1 to 30 layers of monoatomic graphene layers.

[0036] A interconnect structure according to the second aspect of the present invention may be obtained by a method according to the fist aspect of the present invention.

[0037] The following detailed description together with the accompanying drawings will provide a better understanding of the nature and advantages of the present invention.

BRIEF DESCRIPTION OF THE DRAWINGS

[0038]

25

30

35

40

45

50

55

FIG. 1 is a flowchart illustrating a method for manufacturing an interconnect structure according to one embodiment of the present invention.

FIG. 2A is a cross-sectional view illustrating an intermediate stage of an interconnect structure according to one embodiment of the present invention.

FIG. 2B is a cross-sectional view illustrating an intermediate stage of an interconnect structure according to one embodiment of the present invention.

FIG. 2C is a cross-sectional view illustrating an intermediate stage of an interconnect structure according to one embodiment of the present invention.

FIG. 2D is a cross-sectional view illustrating an intermediate stage of an interconnect structure according to one embodiment of the present invention.

FIG. 2E is a cross-sectional view illustrating an intermediate stage of an interconnect structure according to one embodiment of the present invention.

FIG. 2F is a cross-sectional view illustrating an intermediate stage of an interconnect structure according to one embodiment of the present invention.

10

15

20

40

FIG. 3A is a cross-sectional view illustrating an intermediate stage of an interconnect structure according to another embodiment of the present invention.

FIG. 3B is a cross-sectional view illustrating an intermediate stage of an interconnect structure according to another embodiment of the present invention.

FIG. 3C is a cross-sectional view illustrating an intermediate stage of an interconnect structure according to another embodiment of the present invention.

FIG. 3D is a cross-sectional view illustrating an intermediate stage of an interconnect structure according to another embodiment of the present invention.

FIG. 3E is a cross-sectional view illustrating an intermediate stage of an interconnect structure according to another embodiment of the present invention.

FIG. 3F is a cross-sectional view illustrating an intermediate stage of an interconnect structure according to another embodiment of the present invention.

FIG. 3G is a cross-sectional view illustrating an intermediate stage of an interconnect structure according to another embodiment of the present invention.

FIG. 3H is a cross-sectional view illustrating an intermediate stage of an interconnect structure according to another embodiment of the present invention.

FIG. 4A is a cross-sectional view illustrating an intermediate stage of a substrate structure according to one embodiment of the present invention.

FIG. 4B is a cross-sectional view illustrating an intermediate stage of a substrate structure according to one embodiment of the present invention.

FIG. 4C is a cross-sectional view illustrating an intermediate stage of a substrate structure according to one embodiment of the present invention.

FIG. 4D is a cross-sectional view illustrating an intermediate stage of a substrate structure according to one embodiment of the present invention.

FIG. 4E is a cross-sectional view illustrating an intermediate stage of a substrate structure according

to one embodiment of the present invention.

FIG. 4F is a cross-sectional view illustrating an intermediate stage of a substrate structure according to one embodiment of the present invention.

FIG. 4G is a cross-sectional view illustrating an intermediate stage of a substrate structure according to one embodiment of the present invention.

DETAILED DESCRIPTION OF THE INVENTION

[0039] Embodiments of the present invention now will be described more fully hereinafter with reference to the accompanying drawings. The invention may, however, be embodied in many different forms and should not be construed as limited to the embodiments set forth herein. Rather, these embodiments are provided so that this disclosure will be thorough and complete, and will fully convey the invention to those skilled in the art. The features may not be drawn to scale, some details may be exaggerated relative to other elements for clarity. Like numbers refer to like elements throughout.

[0040] It will be understood that when an element such as a layer, region or substrate is referred to as being "on" or extending "onto" another element, it can be directly on or extend directly onto the other element or intervening elements may also be present. In contrast, when an element is referred to as being "directly on" or extending "directly onto" another element, there are no intervening elements present. It will also be understood that when an element is referred to as being "connected" or "coupled" to another element, it can be directly connected or coupled to the other element or intervening elements may be present. In contrast, when an element is referred to as being "directly connected" or "directly coupled" to another element. there are no intervening elements present.

[0041] Relative terms such as "below" or "above" or "upper" or "lower" or "horizontal" or "lateral" or "vertical" may be used herein to describe a relationship of one element, layer or region to another element, layer or region as illustrated in the figures. It will be understood that these terms are intended to encompass different orientations of the device in addition to the orientation depicted in the figures.

[0042] The terminology used herein is for the purpose of describing particular embodiments only and is not intended to be limiting of the invention. As used herein, the singular forms "a", "an", and "the" are intended to include the plural forms as well, unless the context clearly indicates otherwise. It will be further understood that the terms "comprise", "comprising", "includes", and/or "including" when used herein, specify the presence of stated features, integers, steps, operations, elements, and/or components, but do not preclude the presence or addition of one or more other features, integers, steps, operations, elements, components, and/or groups thereof.

[0043] Embodiments of the invention are described herein with reference to cross-sectional illustrations that are schematic illustrations of idealized embodiments (and intermediate structures) of the invention. The thickness of layers and regions in the drawings may be enlarged relative to other layers and regions for clarity. Additionally, variations from the shapes of the illustrations as a result, for example, of manufacturing techniques and/or tolerances, are to be expected. Thus, embodiments of the invention should not be construed as limited to the particular shapes of regions illustrated herein but are to include deviations in shapes that result, for example, from manufacturing. For example, an implanted region illustrated as a rectangle will, typically, have rounded or curved features and/or a gradient of implant concentration at its edges rather than a discrete change from implanted to non-implanted region. Likewise, a buried region formed by implantation may result in some implantation in the region between the buried region and the surface through which the implantation takes place. Thus, the regions illustrated in the figures are schematic in nature and their shapes are not intended to illustrate the actual shape of a region of a device and are not intended to limit the invention.

[0044] Embodiments of the present invention now will be described more fully hereinafter with reference to the accompanying drawings, in which embodiments of the disclosure are shown. This disclosure may, however, be embodied in many different forms and should not be construed as limited to the embodiments set forth herein.

[0045] FIG. 1 is a flowchart illustrating a method for

[0045] FIG. 1 is a flowchart illustrating a method for manufacturing an interconnect structure according to one embodiment of the present invention. The method may include the following steps:

Step 102: providing a substrate structure including a substrate, a first dielectric layer on the substrate, and a metal interconnect line (wire) extending through the first dielectric layer.

Step 104: removing a portion of the first dielectric layer on the metal interconnect line to form a recess and expose a surface of the metal interconnection line.

Step 106: forming a graphene layer on the exposed surface of the metal interconnect line.

Step 108: forming a second dielectric layer filling the recess and covering the graphene layer.

[0046] The present inventor has discovered that the graphene atomic layer can insulate the metal interconnect line from contacting external active medium, and even under heating, there is no significant oxidation in the graphene atomic layer, and the graphene has good antioxidation performance.

[0047] In the method of manufacturing the interconnect

structure according to the present invention, the dielectric layer on the metal interconnect line is removed to expose a surface of the metal interconnect line, the graphene layer is formed on the exposed surface of the metal interconnect line, and a new (next) dielectric layer is formed. The graphene layer separates the metal interconnect line from the dielectric layer, so that metal atoms of the metal interconnect line can be prevented from diffusing into the dielectric layer. In addition, the high oxidation resistance of the graphene layer prevents the graphene layer from being oxidized even when the graphene layer is exposed to air, further preventing the metal interconnect line from being oxidized by the air, thereby improving the reliability of the device.

[0048] FIGS. 2A to 2F are simplified cross-sectional views of intermediated stages of an interconnect structure according to an embodiment of the present invention.

[0049] Referring to FIG. 2A, a substrate structure is provided. The substrate structure includes a substrate 201, a first dielectric layer 202 on substrate 201, and a metal interconnect line 203 extending through first dielectric layer 202.

[0050] It is to be understood that substrate 201 may include a semiconductor substrate, and a semiconductor device and a shallow trench isolation region (not shown) formed on the semiconductor substrate. In one embodiment, the metal interconnect line may be a damascene interconnect structure, i.e., metal interconnect line 203 may include a wide upper portion and a narrow lower portion, as shown in the left portion of metal interconnect line 203 in FIG. 2A. In one embodiment, the metal interconnect line may include, but not limited to, copper, and the first dielectric layer may include silicon oxide, a lowk dielectric material, or an ultra-low-k dielectric material. [0051] Next, referring to FIG. 2B, a portion of first dielectric layer 202 on metal interconnect line 203 is removed to form a recess 204 such that a surface of metal interconnect line 203 is exposed. As shown in FIG. 2B, the portion of the first dielectric layer on opposite sides of the metal interconnect line is removed, and recess 204 is formed adjacent to the opposite sides of the metal interconnect line to expose a surface of the metal interconnect line.

45 [0052] Wet or dry etching may be used to remove the portion of first dielectric layer 202 on the opposite sides of the metal interconnect line in accordance with the material of first dielectric layer 202. For example, in the case where the material of first dielectric layer 204 is a polyethylene oxide (PEOX), the PEOX may be removed using a dilute hydrofluoric acid. For example, in the case where the material of first dielectric layer 204 is a low-k or ultra-low-k silicon carbide (SiOCH), the SiOCH may be removed using a hydrogen-containing plasma.

[0053] Next, referring to FIG. 2C, a graphene layer 205 is formed on the exposed surface of metal interconnect line 203. In one embodiment, while graphene layer 205 is formed on the exposed surface of metal interconnect

25

30

40

45

50

line 203, an amorphous carbon layer 206 may also be formed on the exposed surface of substrate 201, which may serve as an insulating layer between the substrate and a subsequently formed dielectric layer.

[0054] In one embodiment, graphene layer 205 may be formed using a chemical vapor deposition (CVD) process. The CVD process conditions may include supplying a reaction gas including methane, hydrogen, and a carrier gas, which may be, for example, nitrogen or argon; at a reaction temperature in the range between 600 °C and 1500 °C; and a reaction time in the range between 5 minutes and 300 minutes. The flow rate of the carrier gas is in the range between 50 sccm and 10,000 sccm, the ratio of the flow rate of methane to the flow rate of the carrier gas is in the range between 0.05% and 50%, and the ratio of the flow rate of the hydrogen gas to the flow rate of the carrier gas is in the range between 0.05% and 50%. In one embodiment, graphene layer 205 may include 1 to 30 layers of monoatomic graphene layers, e.g., 5 layers, 10 layers, 25 layers, etc. In addition, graphene layer 205 may include a layer of fluorinated graphene, which is thermally stable and chemically more stable to allow a better insulation of the metal interconnect line from the dielectric layer.

[0055] Next, referring to FIG. 2D, a second dielectric layer 207 is formed filling recess 204 and covering graphene layer 205. Second dielectric layer 207 may be of the same material or a different material than first dielectric layer 201. For example, second dielectric layer 207 and first dielectric layer 201 may include a low-k or ultra lowk dielectric material, or one of second dielectric layer 207 and first dielectric layer 201 may include silicon oxide, and the other one may include a low-k dielectric material. [0056] Next, referring to FIG. 2E and FIG. 2F, a planarization (e.g., chemical mechanical polishing) process is performed on second dielectric layer 207. In one embodiment, as shown in FIG. 2E, after the planarization, the planarized second dielectric layer 207 has an upper surface that is substantially flush with the surface portion of graphene layer 205 on metal interconnect line 203. In another embodiment, as shown in FIG. 2F, after the planarization, the planarized second dielectric layer 207 may still cover graphene layer 205. As used herein, the term "substantially flush" means flushness between two surfaces within some tolerance under normal process variation.

[0057] An interconnect structure can thus be obtained according to the manufacturing method shown and described according to FIGS. 2A to 2F.

[0058] An interconnect structure according to an embodiment of the present invention will be described with reference to FIG. 2E.

[0059] Referring to FIG. 2E, the interconnect structure may include a substrate 201; a metal interconnect line 203 on substrate 201; a graphene layer 205 on the upper surface and sidewalls (side surface) of metal interconnect line 203; and a dielectric layer (corresponding to second dielectric layer 207) on a portion of graphene

layer 205 on the sidewalls of metal interconnect line 203. Second dielectric layer 207 does not cover the upper surface of metal interconnect line 203. In one embodiment, the upper surface of second dielectric layer 207 is substantially flush with the surface portion of graphene layer 205 on the upper surface of metal interconnect line 203.

10

[0060] An interconnect structure according to another embodiment of the present invention will be described with reference to FIG. 2F.

[0061] Referring to FIG. 2F, the interconnect structure may include a substrate 201; a metal interconnect line 203 on substrate 201; a graphene layer 205 on the upper surface and sidewalls of metal interconnect line 203; and a dielectric layer (corresponding to second dielectric layer 207) on graphene layer 205 on the upper surface and sidewalls of metal interconnect line 203.

[0062] FIGS. 3A to 3H are simplified cross-sectional views of intermediated stages of an interconnect structure according to another embodiment of the present invention. It is noted that the manufacturing method of an interconnect structure has been described in detail above with reference to FIGS. 2A to 2F, only the differences from the above-described method associated with FIGS. 2A to 2F will the described in detail below.

[0063] Referring to FIG. 3A, a substrate structure is provided, which includes a substrate 201, a first barrier layer 301 on substrate 201, a first dielectric layer 202 on first barrier layer 301, and a metal interconnect line 203 extending through first dielectric layer 202 and first barrier layer 301. Comparing with the substrate structure in FIG. 2A, the substrate structure further includes first barrier layer 301 disposed between substrate 201 and first dielectric layer 202. First barrier layer 301 may include, but not limited to, SiCN. In addition, the substrate structure may further include a second barrier layer 302 disposed around metal interconnect line 203, i.e., metal interconnect line 203 is disposed on second barrier layer 302. In one embodiment, second barrier layer 302 may include Ta, TaN or stacked layers of Ta and TaN. However, embodiments of the present invention are not limited thereto. [0064] Next, referring to FIG. 3B, a portion of first dielectric layer 202 on opposite sides of metal interconnect line 203 is removed to form a recess 204, such that the side surface of metal interconnect line 203 is exposed. In one embodiment, a portion of first dielectric layer 202 on opposite sides of metal interconnect line 203 may be removed to expose a portion of second barrier layer 302 on the opposite sides of metal interconnect line 203, the exposed portion of second barrier layer 302 is then removed to form recess 204.

[0065] Next, referring to FIG. 3C, a graphene layer 205 is formed on the exposed surface of metal interconnect line 203. In one embodiment, while graphene layer 205 is formed on the exposed surface of metal interconnect line 203, an amorphous carbon layer 206 may also be formed on the exposed first barrier layer 301, which may serve as an insulating layer between a subsequently

40

45

50

formed dielectric layer and the substrate. The steps of forming graphene layer 205 can be referred to the above described sections, and will not be repeated herein.

[0066] Next, referring to FIG. 3D, a second dielectric layer 207 is formed filling recess 204 and covering graphene layer 205.

[0067] Next, referring to FIG. 3E and FIG. 3F, a planarization (e.g., chemical mechanical polishing) process is performed on second dielectric layer 207. In one embodiment, as shown in FIG. 3E, after the planarization, the planarized second dielectric layer 207 has an upper surface that is substantially flush with the surface portion of graphene layer 205 on metal interconnect line 203. In another embodiment, as shown in FIG. 3F, after the planarization, the planarized second dielectric layer 207 may still cover graphene layer 205.

[0068] An interconnect structure can thus be obtained according to the manufacturing method shown and described in FIGS. 3A to 3F.

[0069] An interconnect structure according to an embodiment of the present invention will be described with reference to FIG. 3E.

[0070] Referring to FIG. 3E, the interconnect structure may include a substrate 201; a metal interconnect line 203 on substrate 201; a graphene layer 205 on the upper surface and sidewalls (side surface) of metal interconnect line 203; a dielectric layer (corresponding to second dielectric layer 207) on a portion of graphene layer 205 on the sidewalls of metal interconnect line 203; and a barrier layer (corresponding to first barrier layer 301) disposed between the dielectric layer and substrate 201. Graphene layer 205 is formed on the upper surface of metal interconnect line 203 and on side surface of metal interconnect line 203 above first barrier layer 301; and the dielectric layer (corresponding to second dielectric layer 207) does not cover the portion of graphene layer 205 on the upper surface of metal interconnect line 203. Further, the interconnect structure may further include an amorphous carbon layer 206 between first barrier layer 206 and the dielectric layer (corresponding to second dielectric layer 207).

[0071] An interconnect structure according to another embodiment of the present invention will be described with reference to FIG. 3F. Comparing with the interconnect structure in FIG. 3E, the dielectric layer (corresponding to second dielectric layer 207) of the interconnect structure in FIG. 3F not only covers a portion of graphene layer 205 on the sidewalls of metal interconnect line 203, but also a portion of graphene layer 205 on the upper surface of metal interconnect line 203.

[0072] Further, the interconnect structures in FIGS. 3E and 3F may also include second barrier layer 302 disposed between metal interconnect layer 203 and substrate 201 and between metal interconnect layer 203 and first barrier layer 301.

[0073] Thereafter, a third barrier layer 208 may be formed on the interconnect structures in FIGS. 3E and 3F to form another interconnect structures. A third die-

lectric layer 209 is formed on third barrier layer 208 of the interconnect structures, as shown in FIGS. 3G and 3H. In one embodiment, third dielectric layer 209 may be formed directly on the interconnect structures in FIGS. 3E and 3F.

[0074] Comparing with the interconnect structure in FIG. 3E, the interconnect structure in FIG. 3G may further include a third barrier layer 208 on a portion of graphene layer 205 on the upper surface of metal interconnect line 203 and the dielectric layer (corresponding to second dielectric layer 207), and a third dielectric layer 209 on third barrier layer 208.

[0075] Comparing with the interconnect structure in FIG. 3F, the interconnect structure in FIG. 3H may further include a dielectric layer (corresponding to third dielectric layer 209) on the dielectric layer (corresponding to second dielectric layer 207). Preferably, the interconnect structure in FIG. 3H may further include a third barrier layer 208 between the second dielectric layer (207) and the third dielectric layer (209).

[0076] FIGS. 4A-4F are simplified cross-sectional views illustrating the intermediate stages of forming the interconnect structure shown in FIG. 3A.

[0077] Referring to FIG. 4A, a substrate 201 is provided. A first barrier layer 301 is formed on substrate 201; and a first dielectric layer 202 is formed on first barrier layer 301.

[0078] Next, referring to FIG. 4B, a patterned first hard-mask 401 is formed on first dielectric layer 202. Hard-mask 401 may include, for example, one or more of the following materials: titanium nitride (TiN), tetraethoxysilane (TEOS), and SiOCH.

[0079] Thereafter, first dielectric layer 202 and first barrier layer 301 are sequentially etched using patterned first hardmask 401 as a mask to form a through-hole extending to substrate 201.

[0080] In one embodiment, the through-hole is formed as a through-hole having a damascene structure. The formation of the through-hole will be described with reference to FIGS. 4C through 4E.

[0081] Referring to FIG. 4C, first dielectric layer 202 is etched using patterned first hardmask 401 as a mask to form a first opening 412 and second opening 422.

[0082] Referring to FIG. 4D, a patterned second hard-mask 403 is formed on first opening 412, and first dielectric layer 202 is etched using patterned first hardmask 401 and patterned second hardmask 403 as a mask to form a third opening 432. At the same time, the bottom surface of second opening 422 also continues to extend downwardly.

[0083] Referring to FIG. 4E, patterned second hard-mask 403 is removed, and the remaining first dielectric layer 202 and first barrier layer 301 are etched using patterned first hardmask 401 as a mask to form a first through-hole 402 and a second through-hole 422. First though-hole 402 includes a wider first opening 412 at the upper portion and a narrower third opening 432 at the lower portion. At the same time, the bottom of second

20

25

35

opening 422 extends to substrate 201 to form second through-hole 422. It should be noted that, after the remaining first dielectric layer 202 and first barrier layer 301 are etched with patterned first hardmask 401, a portion of first dielectric layer 201 between two third openings 422 includes two slopes as shown in FIG. 4E, but it is merely illustrative and should not be construed as limiting the present invention.

[0084] Next, referring to FIG. 4F, after forming the through-holes (402, 422), a second barrier layer 302 is formed on sidewalls of the through-holes (including first through-hole 402 and second through-hole 422). Herein, second barrier layer 302 is also formed on first hardmask 401

[0085] Next, referring to FIG. 4G, a metal layer 203' is formed in the through-holes (including first through-hole 402 and second through-hole 422). In an exemplary embodiment, copper may be deposited as metal layer 203' using an electrochemical deposition (ECP) process. Preferably, a copper seed layer may also be formed on the surface of the through-holes prior to depositing copper by the ECP process.

[0086] Thereafter, a plararization process is performed to remove patterned first hardmask 401 and expose a surface of the remaining first dielectric layer 202, thereby forming the substrate structure shown in FIG. 3A. For example, a portion of the metal layer on first dielectric layer 202, a portion of second barrier layer 302, and first hardmask layer 401 may be removed through a planarization process. For example, metal layer 203' may be planarized using a planarization (e.g., chemical mechanical polishing) process to expose a portion of second barrier layer 302 on first hardmask 401, followed by an additional process to remove the portion of second barrier layer 302 on first hardmask 401 and first hardmask 401 to expose a surface of first dielectric layer 202. A specific implementation of the substrate structure shown in FIG. 3A is thus described. However, the present invention is not limited thereto, and the substrate structure may be formed by other conventional means. After forming the substrate structure shown in FIG. 3A, the subsequent steps may be continues according to the process flow shown and described with reference to FIGS. 3A through 3H.

[0087] In summary, embodiments of the present invention provide detailed description of a semiconductor device and method of manufacturing the same. In order not to obscure the concept of the present invention, some of the details known in the art are not described.

[0088] As used herein, the term "substrate" may include, but is not limited to, a substrate of a semiconductor material (e.g., a silicon substrate). In an example embodiment, the term "substrate" may also include a semiconductor device formed on a substrate of a semiconductor material. In another example embodiment, the term "substrate" may also include a metal contact formed on a substrate of a semiconductor material.

[0089] As used herein, the term "flush" may include,

but is not limited to, a substantially flat surface instead of absolute flat, that allows for some errors within the process tolerance and coplanar with another flat surface. In other words, the term "flush" is defined to include surfaces that are substantially disposed on the same plane, but may include minor differences with the process tolerance.

[0090] References in the specification to "one embodiment", "an embodiment", "an example embodiment", "some embodiments", etc., indicate that the embodiment described may include a particular feature, structure, or characteristic, but every embodiment may not necessarily include the particular feature, structure, or characteristic. Moreover, such phrases are not necessarily referring to the same embodiment. Further, when a particular feature, structure, or characteristic is described in connection with an embodiment, it is submitted that it is within the knowledge of one skilled in the art to affect such feature, structure, or characteristic in connection with other embodiments whether or not explicitly described.

Claims

1. A method for manufacturing an interconnect structure, the method comprising:

providing a substrate structure comprising a substrate, a first dielectric layer on the substrate, and a metal interconnect line extending through the first dielectric layer;

removing a portion of the first dielectric layer on the metal interconnect line to form a recess exposing a surface of the metal interconnect line; forming a graphene layer on the exposed surface of the metal interconnect line; and forming a second dielectric layer filling the recess and covering the graphene layer.

40 **2.** The method of claim 1, wherein the substrate structure further comprises:

a first barrier layer between the substrate and the first dielectric layer, the metal interconnect line extending through the first dielectric layer and the first barrier layer; and wherein preferably: the first barrier layer is formed on the substrate prior to forming the first dielectric layer, and removing the portion of the first dielectric layer on the metal interconnect line also exposes a surface of the first barrier layer, the method further comprising: forming an amorphous carbon layer on the exposed surface of the first barrier layer.

3. The method of claim 2, wherein the substrate structure further comprises:

10

15

20

25

40

45

50

55

a second barrier layer formed at a bottom and on a side surface of the metal interconnect line; and

wherein preferably, the first barrier layer comprises SiCN, and the second barrier layer comprises Ta, TaN, or stacked layers of Ta and TaN.

4. The method of claim 3, wherein removing the portion of the first dielectric layer on the metal interconnect line to form the recess comprises:

exposing a portion of the second barrier layer on the side surface of the metal interconnect line; and

removing the exposed portion of the second barrier layer on the side surface of the metal interconnect line to form the recess.

5. The method of claim 3, wherein providing the substrate structure comprises:

providing the substrate;

forming the first barrier layer on the substrate; forming the first dielectric layer on the first barrier layer;

forming a patterned first hardmask on the first dielectric layer;

sequentially etching the first dielectric layer and the first barrier layer using the patterned first hardmask as a mask to form a through-hole; forming the second barrier layer on a sidewall of the through-hole;

forming a metal layer filling the through-hole; performing a planarization process to remove the patterned first hardmask to expose a surface of the first dielectric layer; and

wherein preferably the through-hole is a through-hole having a damascene structure, and sequentially etching the first dielectric layer and the first barrier layer comprises:

performing a first etching process on the first dielectric layer using the patterned first hardmask as a mask to form a first opening and a second opening; forming a patterned second hardmask on the first opening; performing a second etching process on the first dielectric layer using the patterned first hardmask and the patterned second hardmask as a mask to form a third opening; removing the patterned second hardmask; performing a third etching process on the first dielectric layer and the first barrier layer using the patterned first hardmask as a mask to form a first through-hole and a second through-hole extending to the substrate, the first through-hole including the first opening and the third opening, and the

second through-hole including the second opening.

6. The method of anyone of the claims 1-5, wherein at least one of:

the graphene layer comprises a layer of fluorinated graphene;

the metal interconnect line comprises copper, and the first and second dielectric layers each comprise silicon oxide or a low-k dielectric material;

the graphene layer comprises 1 to 30 layers of monoatomic graphene layers; and

forming the graphene layer comprises a chemical vapor deposition process including supplying a reaction gas comprising methane, hydrogen, and a carrier gas, the chemical vapor deposition process being carried out at a temperature in a range between 600 oC and 1500 oC, a reaction time in a range between 5 minutes and 300 minutes, a flow rate of the carrier gas in a range between 50 sccm and 10,000 sccm, a ratio of a flow rate of the method to a flow rate of the carrier gas in a range between 0.05% and 50%, and a ratio of a flow rate of the hydrogen to the flow rate of the carrier gas in a range between 0.05% and 50%.

30 **7.** The method of anyone of the claims 1-6, further comprising at least one of:

performing a planarization process on the second dielectric layer;

forming a third dielectric layer on the second dielectric layer for a second interconnect structure;

forming a third barrier layer on the second dielectric layer, wherein the third dielectric layer is formed on the third barrier layer.

8. An interconnect structure, comprising:

a substrate;

a metal interconnect line including an upper surface and a side surface on the substrate and; a graphene layer on the upper surface and the side surface of the metal interconnect line; and a dielectric layer on the substrate covering a portion of the graphene layer on the side surface of the metal interconnect line.

- 9. The interconnect structure of claim 8, wherein the dielectric layer does not cover a portion of the graphene layer on the upper surface of the metal interconnect line.
- 10. The interconnect structure of claim 9, further com-

prising:

a second dielectric layer on the graphene layer for forming a second interconnect structure; and/or

a third barrier layer on the on the upper surface of the metal interconnect line and on the dielectric layer, and a third dielectric layer on the third barrier layer for forming a new interconnect structure.

10

11. The interconnect structure of claim 8, wherein the dielectric layer further covers a portion of the graphene layer on the upper surface of the metal interconnect line.

15

12. The interconnect structure of claim 11, further comprising:

a next dielectric layer on the dielectric layer for forming a next interconnect structure; and/or a next barrier layer on the between the dielectric layer and the next dielectric layer.

20

13. The interconnect structure of anyone of the claims 8-12, further comprising:

ns ²⁵

a first barrier layer between the substrate and the dielectric layer, wherein the graphene layer is formed on the upper surface and the side surface of the metal interconnect line and on a side portion of the first barrier layer.

35

14. The interconnect structure of claim 13, further comprising

an amorphous carbon layer between the first barrier layer and the dielectric layer; and/or a second barrier layer having a portion between the metal interconnect layer and the substrate and a portion between the metal interconnect layer and the first barrier layer, wherein preferably: the first barrier layer comprises SiCN, and the second barrier layer comprises Ta, TaN, or stacked layers of Ta and TaN.

40

15. The interconnect structure of anyone of the claims 8-14, wherein at least one of:

fluori-

the graphene layer comprises a layer of fluorinated graphene;

the metal interconnect line comprises a damascene structure;

the metal interconnect line comprises copper, and the dielectric layer comprises silicon oxide or a low-k dielectric material; and

the graphene layer comprises 1 to 30 layers of 55 monoatomic graphene layers.

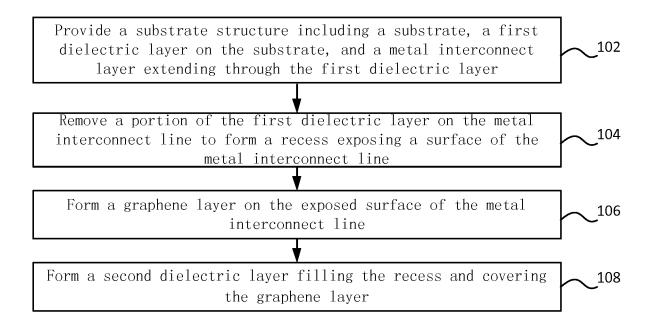


FIG. 1

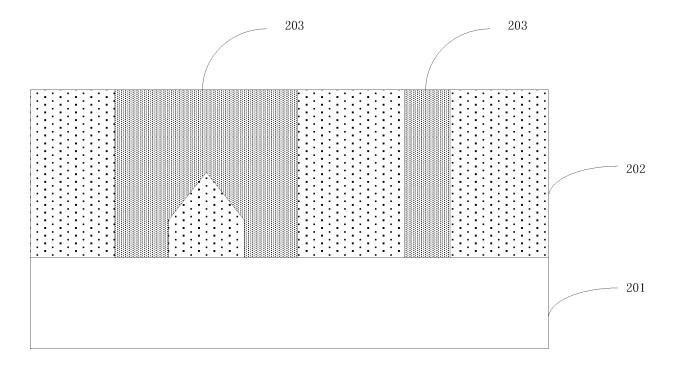


FIG. 2A

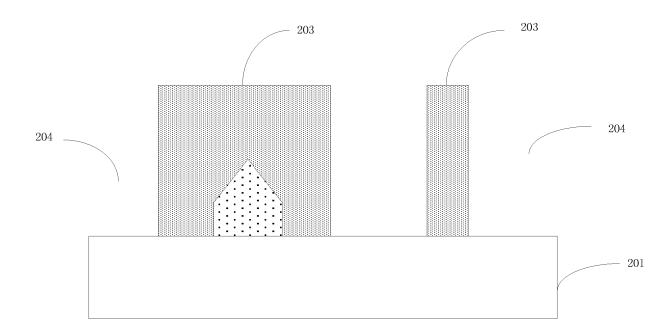


FIG. 2B

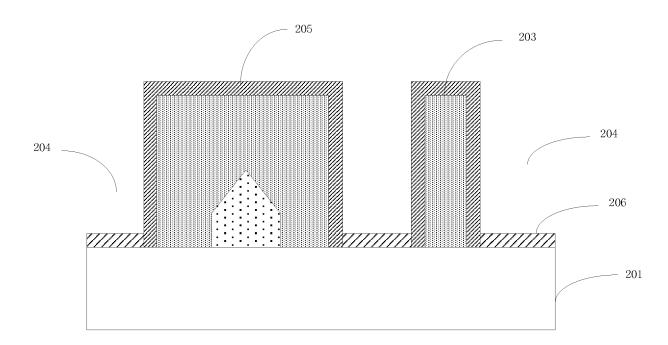


FIG. 2C

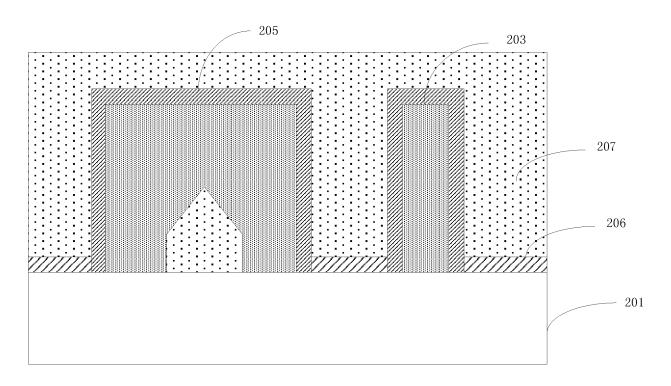


FIG. 2D

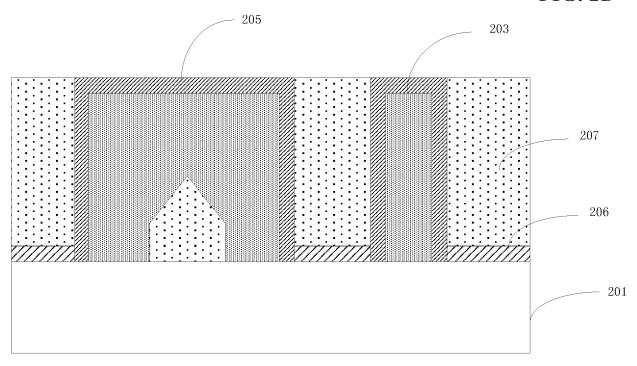
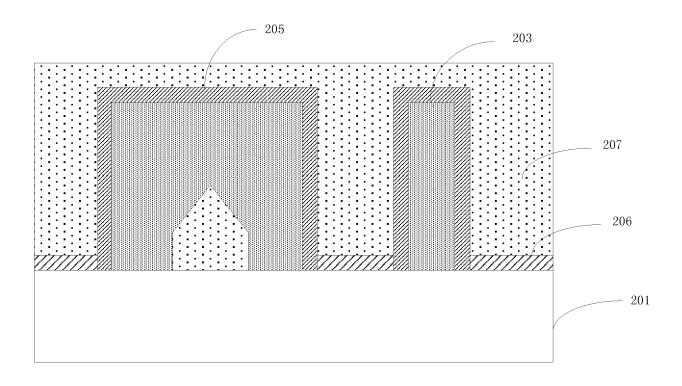



FIG. 2E

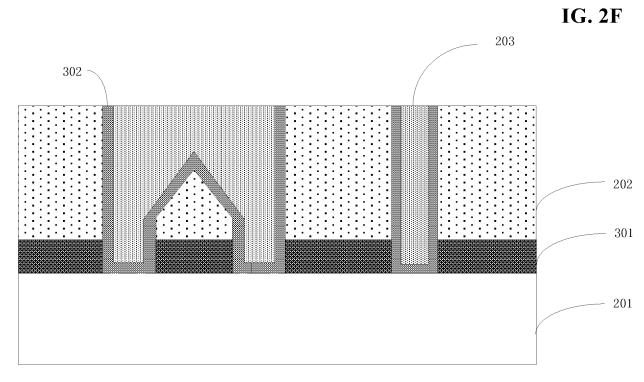


FIG. 3A

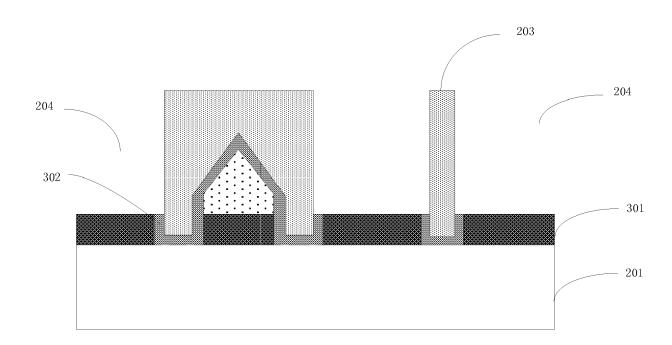


FIG. 3B

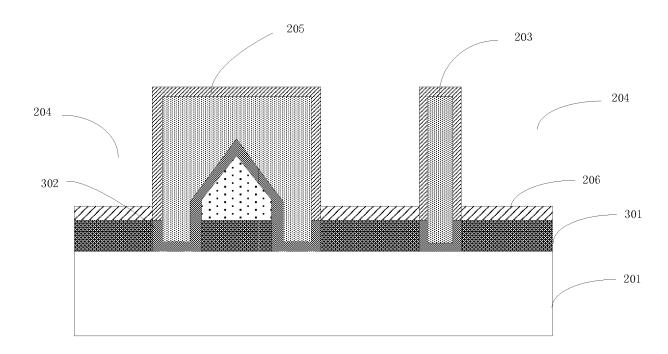


FIG. 3C

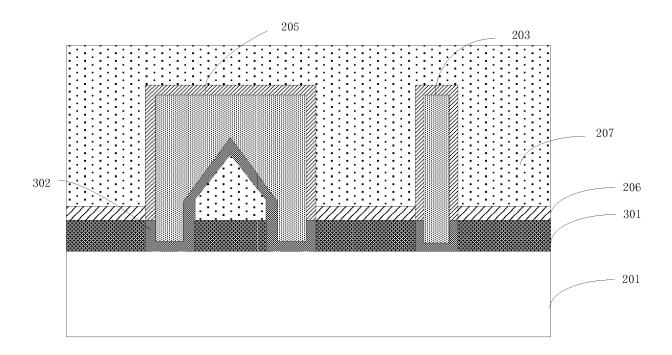


FIG. 3D

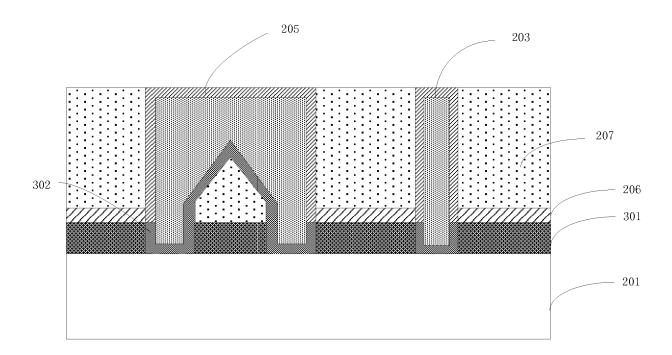


FIG. 3E

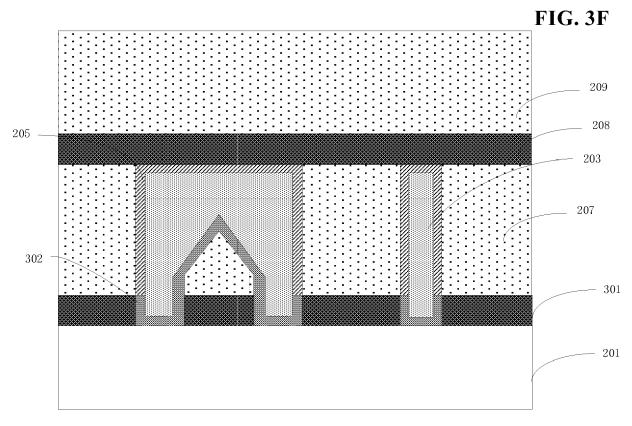


FIG. 3G

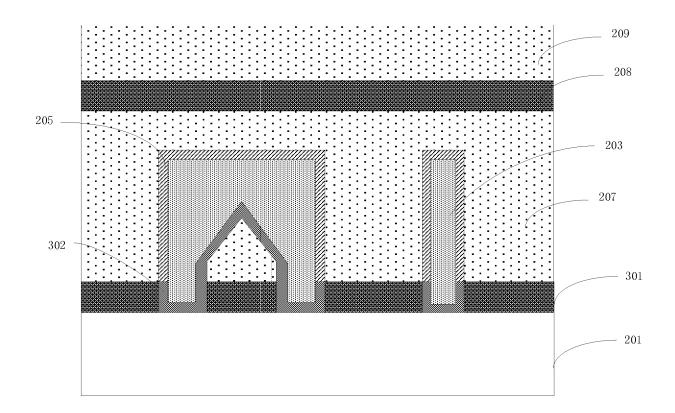


FIG. 3H

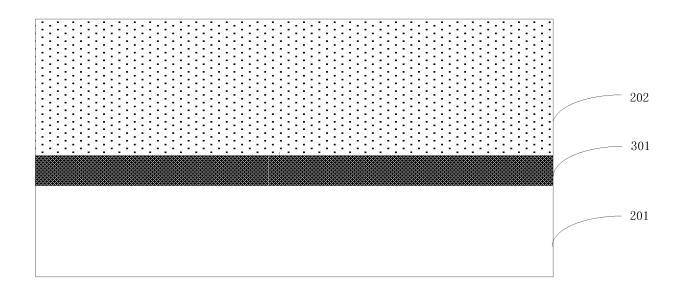


FIG. 4A

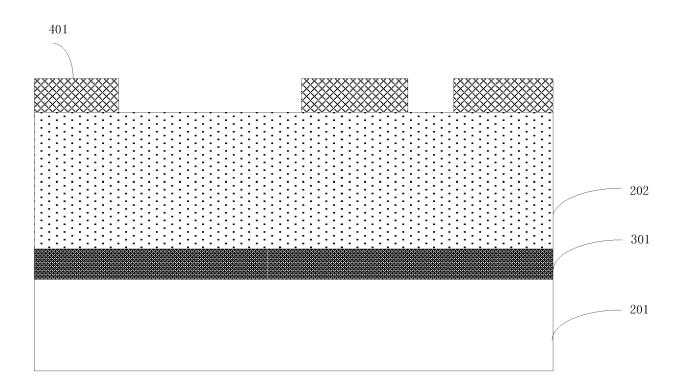


FIG. 4B

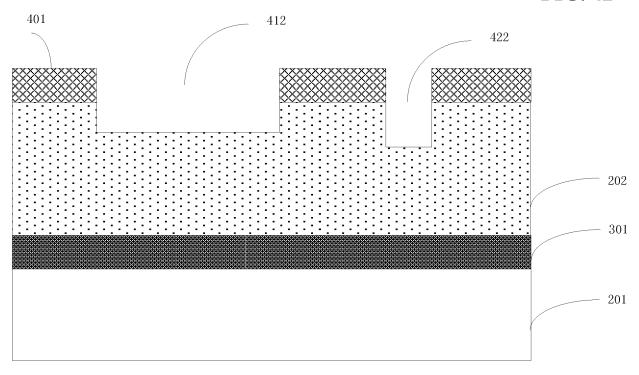


FIG. 4C

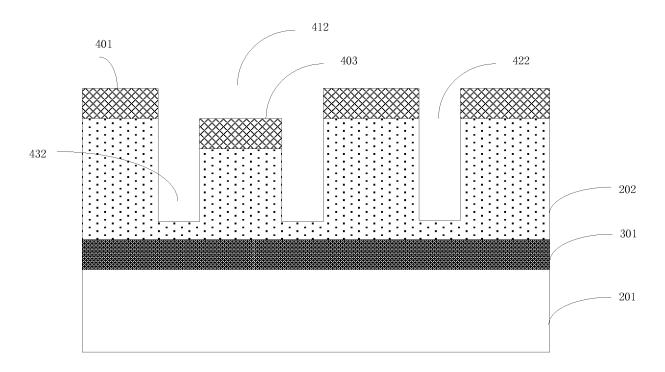


FIG. 4D

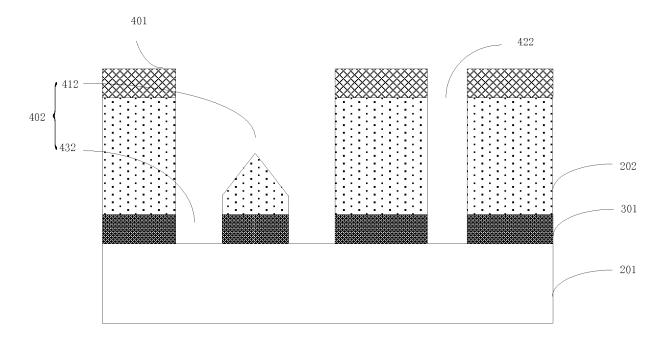


FIG. 4E

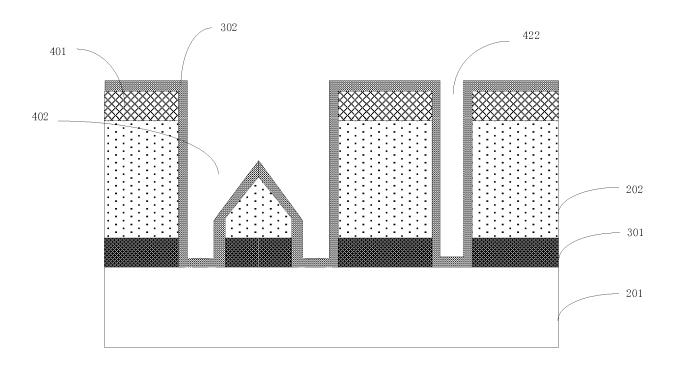


FIG. 4F

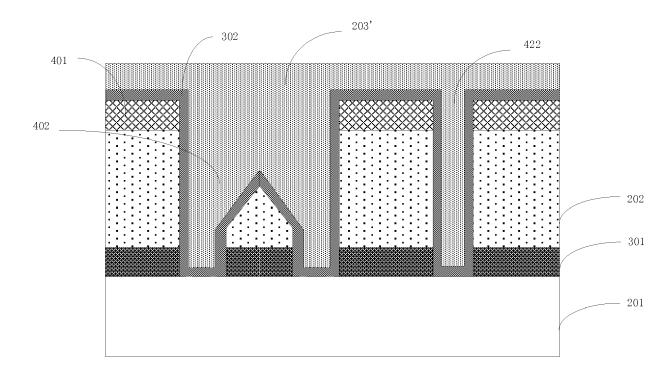


FIG. 4G

EUROPEAN SEARCH REPORT

Application Number EP 17 18 3708

5						
		DOCUMENTS CONSID				
	Category	Citation of document with in of relevant passa	ndication, where appropriate, ages	Relevant to claim	CLASSIFICATION OF THE APPLICATION (IPC)	
10	X	17 December 2013 (2	T JOHN A [US] ET AL) 013-12-17) - column 9, line 65;	1,6-12, 15 2,3,5	INV. H01L21/768 H01L23/532	
15	X Y	US 2014/291819 A1 ([DE]) 2 October 201 * paragraphs [0041] [0072], [0086]; fi	4 (2014-10-02) - [0058], [0068] -	8,11-13, 15 14		
20	Y	AL) 2 October 2003	NOGUCHI JUNJI [JP] ET (2003-10-02) - [0079]; figures 3-5,	2,3,5		
25	X Y A	US 2013/299988 A1 (ET AL) 14 November * paragraphs [0046] [0058] - [0065]; fi	- [0050], [0055],	8,9,13, 15 14 1-7		
30					TECHNICAL FIELDS SEARCHED (IPC)	
35						
40						
45						
1		The present search report has l	peen drawn up for all claims			
		Place of search	Date of completion of the search		Examiner	
50	0.24	The Hague	29 November 2017	P1o	ner, Guido	
Ç	A 0	ATEGORY OF CITED DOCUMENTS		T: theory or principle underlying the i		
9	X:par	ticularly relevant if taken alone	after the filing da	E : earlier patent document, but publis after the filing date		
	ਨੂੰ Y∶par doc	ticularly relevant if combined with anoth ument of the same category	ner D : document cited in the applicat L : document cited for other reaso			
55	ନୁ O∶nor	nnological background n-written disclosure rmediate document	& : member of the s document	, corresponding		

EP 3 279 931 A1

ANNEX TO THE EUROPEAN SEARCH REPORT ON EUROPEAN PATENT APPLICATION NO.

EP 17 18 3708

5

This annex lists the patent family members relating to the patent documents cited in the above-mentioned European search report. The members are as contained in the European Patent Office EDP file on The European Patent Office is in no way liable for these particulars which are merely given for the purpose of information.

29-11-2017

10	Patent document cited in search report	Publication date		
15		B1 17-12-2013	CN 103579097 A US 8610278 B1 US 2014024211 A1 US 2014175656 A1	12-02-2014 17-12-2013 23-01-2014 26-06-2014
20	US 2014291819	A1 02-10-2014	CN 104103626 A KR 20140119652 A TW 201507079 A TW 201639098 A US 2014291819 A1 US 2016056384 A1 US 2017271594 A1	15-10-2014 10-10-2014 16-02-2015 01-11-2016 02-10-2014 25-02-2016 21-09-2017
25	US 2003183940	A1 02-10-2003	KR 20030078750 A TW 200404353 A US 2003183940 A1	08-10-2003 16-03-2004 02-10-2003
30	US 2013299988	A1 14-11-2013	CN 104428893 A EP 2847792 A1 JP 2015519749 A KR 20150012251 A US 2013299988 A1 US 2013302978 A1 US 2014127896 A1	18-03-2015 18-03-2015 09-07-2015 03-02-2015 14-11-2013 14-11-2013 08-05-2014
35			W0 2013169424 A1	14-11-2013
40				
45				
50				
55 09				

For more details about this annex : see Official Journal of the European Patent Office, No. 12/82

EP 3 279 931 A1

REFERENCES CITED IN THE DESCRIPTION

This list of references cited by the applicant is for the reader's convenience only. It does not form part of the European patent document. Even though great care has been taken in compiling the references, errors or omissions cannot be excluded and the EPO disclaims all liability in this regard.

Patent documents cited in the description

• CN 201610620762 [0001]