FIELD OF THE DEVICE
[0001] The device is in the field of laundry appliances, more specifically, a maintenance
free laundry appliance having a plurality of self-cleaning lint filters.
SUMMARY OF THE DISCLOSURE
[0002] In at least one aspect, a laundry appliance includes a rotating drum for processing
laundry. A blower directs process air through an air path that includes the rotating
drum. A heat exchanger is positioned within the air path that cools and dehumidifies
the process air. A plurality of air filters arranged sequentially captures lint from
the process air at respective positions upstream of the heat exchanger. A filter spray
system has a plurality of fluid sprayers that deliver fluid to a surface of each air
filter of the plurality of air filters. Each fluid sprayer of the plurality of fluid
sprayers directs captured lint away from a respective air filter of the plurality
of air filters.
[0003] In at least another aspect, a lint removal system for a laundry appliance includes
an air moving unit that directs process air through an air path for processing laundry.
A heat exchanger dehumidifies the process air within the air path. First and second
lint filters are positioned upstream of the heat exchanger for capturing lint particles
from the process air. A first fluid sprayer directs fluid to a surface of the first
lint filter for removing captured lint from the first lint filter. A second fluid
sprayer directs the fluid to a surface of the second lint filter for removing the
captured lint from the second lint filter. A diverter valve selectively apportions
the fluid between the first and second fluid sprayers, wherein the fluid from the
first and second fluid sprayers and the captured lint from the first and second lint
filters are directed to a common drain channel.
[0004] In at least another aspect, a lint removal system for a laundry appliance includes
a plurality of air filters that capture lint within an air path at a position upstream
of a heat exchanger. A plurality of fluid sprayers direct fluid onto the plurality
of air filters, respectively, to remove captured lint from the plurality of air filters.
A diverter valve apportions the fluid between the plurality of fluid sprayers. A drain
channel is positioned below the heat exchanger and below the plurality of air filters
to receive condensate from the heat exchanger and receive the fluid and captured lint
from the plurality of air filters.
[0005] These and other features, advantages, and objects of the present device will be further
understood and appreciated by those skilled in the art upon studying the following
specification, claims, and appended drawings.
BRIEF DESCRIPTION OF THE DRAWINGS
[0006] In the drawings:
FIG. 1 is a front elevational view of a laundry appliance incorporating an aspect
of the multi-filter lint removal system;
FIG. 2 is a cross-sectional view of the appliance of FIG. 1 taken along line II-II;
FIG. 3 is a schematic diagram illustrating an aspect of a laundry appliance incorporating
a heat pump system;
FIG. 4 is a schematic diagram illustrating an aspect of the multi-filter lint removal
system;
FIG. 5 is a partial cross-sectional view of the laundry appliance of FIG. 1, taken
along line V-V;
FIG. 6 is a detailed cross-sectional view of a laundry appliance incorporating an
aspect of the multi-filter lint removal system;
FIG. 7 is a schematic diagram illustrating a fluid flow system for delivering fluid
to the multi-filter lint removal system;
FIG. 8 is a schematic diagram illustrating an aspect of a diverter valve for delivering
fluid to multiple filters of an aspect of the lint removal system;
FIG. 9 is a perspective view of an aspect of a water inlet valve for delivering fluid
throughout an appliance incorporating an aspect of the multi-filter lint removal system;
FIG. 10 is a top perspective view of a diverter valve incorporated within an aspect
of the multi-filter lint removal system;
FIG. 11 is a partially exploded view of a fluid pump incorporated within an aspect
of the multi-filter lint removal system;
FIG. 12 is a top perspective view of an inlet valve for the fluid pump of FIG. 11;
FIG. 13 is a cross-sectional view of a laundry appliance incorporating an aspect of
the multi-filter lint removal system;
FIG. 14 is a partial cross-sectional view of the laundry appliance of FIG. 13, taken
along line XIV-XIV;
FIG. 15 is an enlarged cross-sectional view of the appliance of FIG. 14, taken at
area XV and exemplifying an aspect of an angled door air filter having an operable
bypass member;
FIG. 16 is a cross-sectional view of the door air filter of FIG. 15 showing operation
of a spray mechanism for cleaning lint from the door air filter; and
FIG. 17 is a cross-sectional view of the door air filter of FIG. 16 and showing the
bypass member being moved to the drain position.
DETAILED DESCRIPTION OF EMBODIMENTS
[0007] For purposes of description herein the terms "upper," "lower," "right," "left," "rear,"
"front," "vertical," "horizontal," and derivatives thereof shall relate to the device
as oriented in FIG. 1. However, it is to be understood that the device may assume
various alternative orientations and step sequences, except where expressly specified
to the contrary. It is also to be understood that the specific devices and processes
illustrated in the attached drawings, and described in the following specification
are simply exemplary embodiments of the inventive concepts defined in the appended
claims. Hence, specific dimensions and other physical characteristics relating to
the embodiments disclosed herein are not to be considered as limiting, unless the
claims expressly state otherwise.
[0008] As illustrated in FIGS. 1-8, reference numeral 10 generally refers to a lint removal
system for a laundry appliance 12, or other appliance incorporating a heat pump system
14 having a plurality of heat exchangers 16. It is contemplated that the laundry appliance
12 can include a rotating drum 18 and an air path 20 having an air moving unit 22
adapted to deliver air 24 through the air path 20 and through the rotating drum 18.
At least a portion of the heat pump system 14 is positioned within the air path 20,
and, in particular, at least one of the heat exchangers 16 of the heat pump system
14. The heat pump system 14 serves to condition air 24 within the air path 20 for
heating and cooling the air 24 within the air path 20 and also extracting moisture
and humidity in the form of condensate 26 from air 24 delivered from the rotating
drum 18. The heat exchanger 16 of the heat pump system 14 is adapted to cool and dehumidify
air 24 within the air path 20. The heat exchanger 16 condenses moisture within the
air 24 into condensate 26 that is captured within a drain channel 28 positioned below
the heat exchanger 16. A plurality of air filters 30 are positioned upstream from
the heat exchanger 16. The plurality of air filters 30 serve to remove lint 32 from
the air 24 delivered to the heat exchangers 16 within the air path 20. Accordingly,
a plurality of air filters 30 serve to capture lint 32 within the air 24 of the air
path 20 so that the lint 32 does not adhere, or substantially does not adhere, to
the heat exchanger 16 of the heat pump system 14. A filter spray system 34 is disposed
in communication with the plurality of air filters 30. The filter spray system 34
includes a plurality of fluid sprayers 36 that deliver fluid 38 to each air filter
30 of the plurality of air filters 30. The fluid 38 sprayed onto the plurality of
air filters 30 is captured by the drain channel 28. Accordingly, lint 32 present on
any one or more of the plurality of air filters 30 is sprayed off by the plurality
of fluid sprayers 36 such that the fluid 38 from the sprayers and the lint 32 from
the plurality of air filters 30 is moved from the plurality of air filters 30 to the
drain channel 28. A fluid pump 40 is disposed in communication with the drain channel
28 and the fluid outlet 42. In this manner, the fluid pump 40 operates to deliver
fluid 38 and lint 32 from the drain channel 28 to the fluid outlet 42 and to the exterior
of the laundry appliance 12.
[0009] Referring again to FIGS. 2-8, the heat pump system 14 for the laundry appliance 12
can include a compressor 50, a first heat exchanger 52 in the form of an evaporator
54 that extracts heat 190 at least from air 24 moving through the air path 20 of the
laundry appliance 12 and a second heat exchanger 56 in the form of a condenser 58
that releases heat 190 for use in the laundry appliance 12. The heat pump system 14
also includes an expansion device 60 and a refrigerant 62 that moves through a refrigerant
line 64 that connects the various components of the heat pump system 14. The operation
of a refrigerant-powered heat pump within an appliance is generally known by those
having skill in the art.
[0010] Referring again to FIGS. 2-8, during operation of the laundry appliance 12, typically
in the form of a dryer for processing laundry, wet clothing is placed within the rotating
drum 18 to be dried. The air moving unit 22, typically in the form of a blower, moves
air 24 through the air path 20 and across the damp clothing placed within the drum
18. The blower moves air 24 across the condenser 58 or other heat source such that
the air 24 is heated before it moves into the drum 18. The heated air 24 moves across
the wet clothing within the drum 18 and extracts moisture from the clothing such that
the heated air 24 becomes heated and humid air 70. In addition to moisture, the heated
air 24 also collects lint 32 from the clothing disposed within the drum 18. The heated
and humid air 70 that also contains lint 32 is then moved through the plurality of
filters wherein the lint 32 carried within the heated and humid air 70 is captured
within the plurality of filters. The heated and humid air 70 moves from the plurality
of filters to the evaporator 54 or heat sink that extracts heat 190 from the heated
and humid air 70. The extraction of heat 190 also causes condensation of the humidity
within the heated and humid air 70 from the drum 18. This condensation precipitates
from the air 24 and is captured within the drain channel 28 positioned below the evaporator
54. The air 24 is then moved back to the condenser 58 and/or other heat source to
be cycled through the air path 20 and drum 18 once again.
[0011] Referring again to FIGS. 2-8, the lint removal system 10 can include a plurality
of air filters 30 for removing lint 32 from air 24 in the air path 20. The plurality
of air filters 30 can include first and second lint filters 80, 82 where the second
lint filter 82 has a second mesh size smaller than a first mesh size of the first
lint filter 80. Accordingly, the first lint filter 80 captures particles of lint 32
having a larger size, which typically accounts for the majority of lint 32 carried
within the heated and humid air 70 delivered from the drum 18. Smaller particles of
lint 32 not captured by the first lint filter 80 are then moved toward the second
lint filter 82 having the smaller second mesh size. Smaller particles of lint 32 are
then captured by the second lint filter 82. It is also contemplated, in various embodiments,
that the lint removal system 10 can also include a third lint filter 84 having a third
mesh size smaller than the second mesh size of the second lint filter 82. In such
an embodiment, even smaller particles of lint 32 that pass through the second lint
filter 82 may be captured by the third lint filter 84, such that the vast majority
of lint carried by the heated and humid air 70 emanating from the rotating drum 18
can be captured within the lint removal system 10. It is also contemplated that the
lint removal system 10 may include more than three air filters 30 where each successive
air filter 30 includes a mesh size that is smaller than the previous air filter 30
within the plurality of air filters 30.
[0012] Referring again to FIGS. 2-8, the filter spray system 34 includes a plurality of
filter sprayers that are paired with a corresponding air filter 30. In this manner,
a first fluid sprayer 90 is paired with the first lint filter 80, a second fluid sprayer
92 is paired with the second lint filter 82, and a third fluid sprayer 94 is paired
with a third lint filter 84, and so on for each air filter 30 within the lint removal
system 10. According to the various embodiments, each of the first, second and third
fluid sprayers 90, 92, 94 can include two or more subsprayers 96 that are adapted
to spray fluid 38 on corresponding filter portions 98 of the respective first, second
and third lint filters 80, 82, 84. In this manner, fluid 38 delivered to the first
fluid sprayer 90 can be separately apportioned between the subsprayers 96 of the first
and second fluid sprayer 90, 92. In this manner, different filter portions 98 of the
first lint filter 80 can be sprayed through use of the subsprayers 96 of the first
fluid sprayer 90, and so on for each air filter 30.
[0013] Referring again to FIGS. 2-8, the use of subsprayers 96 is incorporated such that
filter portions 98 of each air filter 30 of the plurality of air filters 30 can be
washed at different times. As each filter portion 98 of the various air filters 30
is washed, fluid 38 may adhere to the mesh openings of a particular filter portion
98. Air 24 moving through the particular filter portion 98 can, over time, dislodge,
remove, evaporate, or otherwise eliminate the adhered fluid 38 from within the particular
filter portion 98. However, while the fluid 38 is adhered to the particular filter
portion 98, the filter portion 98 may be temporarily blocked from allowing air 24
to pass through that filter portion 98.
[0014] The use of subsprayers 96 for each of the first, second and third lint filters 80,
82, 84 allows for the passage of air 24 within the air path 20 through various filter
portions 98 that have not yet been sprayed. This passage of air 24 through the unsprayed
filter portions 100 of each air filter 30 also provides for a faster and more expedient
removal of the adhered fluid 38 from the sprayed filter portions 102 of the particular
air filter 30. Accordingly, the use of the subsprayers 96 within each of the first,
second and third fluid sprayers 90, 92, 94 can be sequenced during a particular washing
cycle to account for the removal of any adhered fluid 38 within the recently sprayed
filter portions 102 of the first, second and third lint filters 80, 82, 84. The subsprayers
96 or nozzles 160 of each of the first, second and third fluid sprayers 90, 92, 94
can be separated into two subsprayers 96, three subsprayers 96, or combinations thereof.
The exact number of subsprayers 96 or nozzles 160 for washing each air filter 30 can
vary depending upon the amount of lint 32 typically being captured/sprayed, the frequency
of spraying cycles, the position of the particular fluid sprayers 36/corresponding
air filter 30, combinations thereof, and other similar factors that can bear on the
amount of subsprayers 96 needed for a particular air filter 30 within the lint removal
system 10.
[0015] Referring again to FIGS. 2-10, fluid 38 used for the filter spray system 34 can be
obtained through an external fluid source 110, such as a wall spigot external to the
laundry appliance 12. According to various embodiments, it is contemplated that fluid
38 can be captured through a recycling of condensate 26 captured within the drain
channel 28 or other container during use of the heat pump system 14.
[0016] Referring again to FIGS. 2-12, the laundry appliance 12 can include an electrovalve
112 that regulates the flow of fluid 38, typically water, from the external fluid
source 110, or other source of fluid 38. The electrovalve 112 can be a solenoid, stepper
motor, servo motor, combinations thereof, or other similar electrically operated motor.
The electrovalve 112 for receiving fluid 38 from the external fluid source 110 can
include a single fluid valve 114 that is activated and deactivated for delivering
fluid 38 from the external fluid source 110 to the filter spray system 34. It is also
contemplated that the electrovalve 112 can include a plurality of fluid valves 114
for separately and independently delivering fluid 38 from the external fluid source
110 to various portions of the laundry appliance 12. Fluid valves 114 contained within
the electrovalve 112 can be used for delivering fluid 38 to a sprayer system that
disposes water within the rotating drum 18, or other similar uses not necessarily
related to the filter spray system 34. It is also contemplated that the electrovalve
112 can include a fluid valve 114 that is separately and independently operable and
in communication with each of the first, second and third fluid sprayers 90, 92, 94.
Accordingly, a first fluid valve 116 may be used for delivering fluid 38 to the first
fluid sprayer 90 for cleaning the first lint filter 80. A second fluid valve 118 can
be used for delivering fluid 38 to the second fluid sprayer 92 for cleaning the second
lint filter 82. Similarly, a third fluid valve 120 can be used for delivering fluid
38 to the third fluid sprayer 94 for cleaning the third lint filter 84. The various
fluid valves 114 can be sequenced to open and close separately, simultaneously, in
patterns, in combinations, or other sequences. It should be understood that the exact
configuration of the electrovalve 112 and the various fluid valves 114 can be modified
depending upon the particular design of the laundry appliance 12 and the configuration
of the lint removal system 10.
[0017] Referring again to FIGS. 2-10, downstream from the electrovalve 112 and the one or
more fluid valves 114, a diverter valve 130 is positioned for apportioning fluid 38
between the plurality of fluid sprayers 36, between the subsprayers 96 for each fluid
sprayer 36, or both. The diverter valve 130 can be in the form of a stepper motor,
solenoid, servo motor, or other similar electrically operated valve for apportioning
fluid 38 between the various subsprayers 96 and/or the first, second and third fluid
sprayers 90, 92, 94.
[0018] According to various embodiments, it is contemplated that a primary diverter valve
140 can be in communication with the electrovalve 112, where the primary diverter
valve 140 is operable between a plurality of positions, each corresponding to one
of the first, second or third fluid sprayer 90, 92, 94. In such an embodiment, each
position of the primary diverter valve 140 is in communication with a fluid line 142
that delivers fluid 38 to one of the first, second or third fluid sprayers 90, 92,
94. Each fluid line 142 connected to the first, second and third fluid sprayers 90,
92, 94, respectively, can include a dedicated diverter valve 144 that apportions fluid
38 between the various subsprayers 96 within each of the first, second and third fluid
sprayers 90, 92, 94, respectively.
[0019] Referring again to FIGS. 7-10, it is contemplated that the electrovalve 112 and one
or more diverter valves 130 can be operated through an algorithm that sequences the
operation of each of the first, second and third fluid sprayers 90, 92, 94 and the
subsprayers 96 for each of the air filters 30 according to a preset algorithm. This
preset algorithm serves to sequentially operate the spraying of filter portions 98
of the first, second and third lint filters 80, 82, 84 to maximize the spraying operation
of each of the fluid sprayers 36 and also minimize the obstruction that may be caused
by adhesion of the fluid 38 on the various filter portions 98 of the first, second
and third lint filters 80, 82, 84. It is contemplated that the spraying cycle for
cleaning the plurality of air filters 30 within the lint removal system 10 can occur
during each drying cycle of the laundry appliance 12. Accordingly, each of the first,
second and third lint filters 80, 82, 84 is sprayed at least once during each drying
cycle. As discussed above, the first lint filter 80 may capture more lint 32 during
each drying cycle. Accordingly, the first lint filter 80, in various embodiments,
may be sprayed multiple times during a particular drying cycle of the laundry appliance
12. The second and third lint filters 82, 84 may be sprayed less during a particular
drying cycle, and may be sprayed only at the conclusion of a particular drying cycle.
[0020] Referring again to FIGS. 2-6, it is contemplated that each air filter 30 within the
lint removal system 10 can be spaced apart from the other air filters 30 and can be
placed in a parallel configuration with each of the other air filters 30 of the lint
removal system 10. The spacing between each of the air filters 30 of the lint removal
system 10 allows for each respective fluid sprayer 36 to effectively deliver fluid
38 to a front surface 150 of each of the first, second and third lint filters 80,
82, 84 and without interfering with the operation of an adjacent air filter 30 by
spraying fluid 38 on the back surface 152 of an adjacent air filter 30. By way of
example, and not limitation, the second fluid sprayer 92 can be adapted to spray fluid
38 on the front surface 150 of the second lint filter 82. The second lint filter 82
is spaced sufficiently far enough from the first lint filter 80 such that operation
of the second fluid sprayer 92 can spray fluid 38 onto the front surface 150 of the
second lint filter 82 without depositing fluid 38 or depositing substantial amounts
of the fluid 38 on the back surface 152 of the first lint filter 80. It is contemplated
that the sequencing of activation and deactivation of the particular subsprayers 96
within the first, second and third fluid sprayers 90, 92, 94 can be configured to
minimize the effect of inadvertent spray from contacting a back surface 152 of the
first or second lint filters 80, 82 as a result of the operation of the second and
third fluid sprayers 92, 94.
[0021] In order to properly space each of the air filters 30 within the lint removal system
10, a gap of approximately 10 mm may be considered between each of the air filters
30 to avoid obstruction by lint 32 and also allows installation and operation of nozzles
160 for the subsprayers 96 during use of the laundry appliance 12. While 10 mm is
used as an example herein, the distance between the air filters 30 can vary to be
either greater than or less than 10 mm between adjacent air filters 30. The individual
spaces between the various air filters 30 within the lint removal system 10 can also
vary. As a non-limiting example, the space between the first and second lint filters
80, 82 may be greater than the space between the second and third lint filters 82,
84 where it is contemplated that less lint 32 will accumulate between the second and
third lint filters 82, 84 than between the first and second lint filters 80, 82.
[0022] The first, second and third fluid sprayers 90, 92, 94 can be positioned above or
within the air path 20 adjacent to the respective air filter 30. It is also contemplated
that the first, second and third fluid sprayers 90, 92, 94 can be incorporated within
a wall 170 of the air path 20 for delivering fluid 38 to the first, second and third
lint filters 80, 82, 84.
[0023] Referring again to FIGS. 2-8, the first, second and third fluid sprayers 90, 92,
94 can include a plurality of nozzles 160 that correspond to each of the subsprayers
96 for the first, second and third fluid sprayers 90, 92, 94. Each of the nozzles
160 can deliver fluid 38 in a predetermined fluid path 180 for cleaning the corresponding
filter portion 98 of the first, second or third lint filter 80, 82, 84. The fluid
path 180 emanating from each nozzle 160 can take any one of various shapes that can
include, but is not limited to, a fan spray, a cascade spray, a plurality of individual
spray jets, an angled spray path, various shaped or contoured spray patterns, combinations
thereof, and other similar fluid paths 180. The particular fluid path 180 can be based
upon various factors that may include the desired filter portion 98 of the particular
air filter 30 to be sprayed, the shape of the air filter 30, the spacing of the air
filters 30, and other similar considerations.
[0024] According to the various embodiments, the various fluid sprayers 36 can be adapted
to direct the fluid 38 in various configurations and directions with respect to the
respective air filter 30. It is contemplated that, in various embodiments, one or
more of the fluid sprayers 36 can direct fluid 38 toward the back surface 152 of the
respective air filter 30. In such an embodiment, any one or more of the fluid sprayers
36 can direct fluid 38 through the back surface 152 of the respective air filter 30
in order to push lint 32 off from and away from the front surface 150 of the respective
air filter 30. It is also contemplated, in various embodiments, that at least one
of the fluid sprayers 36 can be adapted to direct the fluid 38 toward the front surface
150 of a respective air filter 30 and at least one of the other fluid sprayers 36
can be adapted to direct fluid 38 toward the back surface 152 of the corresponding
air filter 30.
[0025] By way of example, and not limitation, the first fluid sprayer 90 can be configured
to direct fluid 38 to the back surface 152 of the first lint filter 80. The second
and third fluid sprayers 92, 94 can be configured to direct the flow of fluid 38 to
the front surface 150 of the second and third lint filters 82, 84, respectively. While
this exemplary embodiment is disclosed, it should be understood that various combinations
of front surface 150 fluid sprayers 36 and back surface 152 fluid sprayers 36 can
be included in a particular filter spray system 34 of a laundry appliance 12.
[0026] According to the various embodiments, it is contemplated that the spray sequence
for cleaning the two or more air filters 30 contained within the lint removal system
10 can be activated by various methods. One such method includes a timer that automatically
activates a spray sequence according to certain times within a particular drying cycle.
It is contemplated that each type of drying cycle may have a corresponding spray sequence
that accounts for the type of clothing being dried and various other parameters that
may be indicative of a particular drying cycle. By way of example, and not limitation,
a drying cycle for delicates may result in less accumulation of lint 32 within the
plurality of air filters 30 such that fewer spray sequences may need to be performed.
Conversely, a drying sequence for drying towels may require the performance of more
frequent spray cycles to clean the plurality of air filters 30 more times to remove
greater amounts of lint 32 that may be accumulated within the plurality of air filters
30.
[0027] According to various embodiments, the various spray cycles may also be initiated
through a temperature-related signal where an increase in temperature of the compressor
50 for the heat pump system 14 may initiate a spray sequence for cleaning the plurality
of air filters 30. As an example, as lint 32 accumulates within one or more of the
plurality of air filters 30, the movement of air 24 through the air path 20 may become
progressively blocked through the accumulation of lint 32. As the movement of air
24 within the air path 20 becomes blocked, the transfer of heat 190 from the heat
exchangers 16 to the air 24 within the air path 20 also becomes more inefficient.
Accordingly, the compressor 50 may have to operate at longer intervals to maintain
the desired parameters for operating the laundry appliance 12. The longer operation
of the compressor 50 increases the temperature in and around the compressor 50. This
increase in temperature can be communicated to the laundry appliance 12 through a
thermostat, thermocouple, thermistor, or other similar sensor. The sensor of the compressor
50 can communicate temperature readings to a control for the laundry appliance 12
indicating that the blockage of lint 32 is sufficient such that the increase in temperature
of the compressor 50 needs to be addressed and the spray sequence needs to be activated
to remove a build-up of lint 32 causing the temperature increase within the compressor
50.
[0028] Other mechanisms for activating a spray sequence can include, but are not limited
to, a lint detector, airflow monitors, and other similar monitors that serve to indicate
a build-up of lint 32 within the plurality of air filters 30.
[0029] Referring again to FIGS. 4-6, after the fluid sprayers 36 are activated, the fluid
38 from the first, second, and third fluid sprayers 90, 92, 94 as well as the lint
32 collected from the first, second and third lint filters 80, 82, 84, is moved to
the drain channel 28 positioned below the evaporator 54 of the heat pump system 14.
According to the various embodiments, it is contemplated that the condensed fluid
38 precipitated by the evaporator 54 drops into the same drain channel 28 as that
of the sprayed fluid 38 and lint 32 mixture. To promote the flow of lint 32 and fluid
38 within the drain channel 28 toward the fluid pump 40, the drain channel 28 can
be sloped or otherwise disposed at a particular angle. This angle can be any one of
various angles that promotes the flow of fluid 38, and potentially lint 32, from the
front portion 200 of the basement 202, where the air filters 30 and fluid sprayers
36 are located, to the rear portion 204 of the basement 202, where the fluid pump
40 is located. Additionally, the drain channel 28 can include a separate fluid sprayer
36 that can be activated to move fluid 38 and lint 32 within the drain channel 28
and toward the fluid pump 40. The volume of the drain channel 28 can also vary and
can be defined based upon an energy tradeoff. The size of a front opening can affect
the maximum amount of lint 32 drainable. By way of example, and as a conservative
approach, a 35 mm front opening section in the front portion 200 of the drain channel
28 and an approximately 65 mm rear opening section at the rear portion 204 of the
drain channel 28 can be used. It should be understood that other front and rear opening
sections can be modified depending upon the desired performance of the particular
laundry appliance 12.
[0030] Referring now to FIG. 6, because multiple air filters 30 are being used, the cross-sectional
thickness of the plurality of air filters 30 positioned below the door opening 210
and may alter the configuration of the air path 20 as it moves through the laundry
appliance 12. In order to direct the flow of air 24 through the air path 20, various
air diverters 212 may be implemented within the laundry appliance 12 and in the air
path 20 to direct the flow of air 24, such that the heated and humid air 70 from the
drum 18, which typically contains lint 32, can be directed through each of the plurality
of air filters 30 of the lint removal system 10. Accordingly, whether the lint removal
system 10 includes only first and second lint filters 80, 82 or includes first, second
and third lint filters 80, 82, 84 or includes additional lint filters, the various
air diverters 212 that at least partially define the air path 20 can be used to ensure
that the flow of air 24 through the air path 20 flows through each of the plurality
of air filters 30 within the lint removal system 10. Also, as discussed above, it
is contemplated that fewer spray sequences may be activated onto the third lint filter
84 as opposed to the second or first lint filters 82, 80.
[0031] According to the various embodiments, it is contemplated that the design of the lint
removal system 10 is such that maintenance of the various air filters 30 and fluid
sprayers 36 can be performed primarily by a service technician. Accordingly, the lint
removal system 10 may not be equipped with a convenient access panel on the exterior
of the laundry appliance 12. This is to deter an owner of the laundry appliance 12
who may not be knowledgeable as to the operation of the lint removal system 10 from
trying to maintain the lint removal system 10. The lint removal system 10 is adapted
to be substantially maintenance free, such that cleaning and/or maintenance of the
heat pump system 14 and the lint removal system 10 is necessary only at substantially
infrequent times, such as every six months, annually, bi-annually, every three years,
or at greater time intervals, or after a large number of drying cycles of the laundry
appliance 12.
[0032] Referring again to FIGS. 2-12, it is contemplated that all of the fluid 38 that is
received from the external source and moved through the various inlet electrovalves
112, water pipes, diverter valves 130, nozzles 160, filters, drain channels 28, and
other portions of the laundry appliance 12, is eventually moved through the fluid
pump 40 of the laundry appliance 12 and out to the external drain 220 for elimination
from the laundry appliance 12. It is contemplated that the fluid pump 40 can include
a pump inlet 222 that collects fluid 38 and lint 32 from the drain channel 28 and
moves the fluid 38 and lint 32 through an impeller chamber 224, where various impellers
226 draw in the fluid 38 and lint 32 and direct the fluid 38 and lint 32 to a drain
conduit 228 and out of the laundry appliance 12 to an external drain 220. The fluid
pump 40 can be positioned at a rear portion 204 of the basement 202 of the laundry
appliance 12 and the drain conduit 228 can extend upward from the fluid pump 40 such
that the fluid pump 40 moves the fluid 38 and lint 32 upward through the drain channel
28 and out through the external drain 220. Within typical residential laundry rooms,
the external fluid source 110 and external drains 220 are positioned adjacent to one
another such that the drain conduit 228 needs to be positioned near the inlet electrovalve
112. In this manner, the lint 32 and fluid 38 can be properly eliminated from the
laundry appliance 12.
[0033] Referring again to FIGS. 5 and 6, the incorporation of the lint removal system 10
is meant to make removal of lint 32 from the laundry appliance 12 a substantially
maintenance-free operation. Accordingly, the laundry appliance 12 can be designed
without a removable door-mounted lint filter as is present in conventional laundry
dryers. While a removable lint filter is typically not installed within the door,
a fence or similar blocking member 240 can be installed within the door opening 210
to prevent larger objects such as coins, Legos, pens, toys, and other similar objects
from coming into contact with the first lint filter 80 of the lint removal system
10. This blocking member 240 can include a concave shape for capturing and retaining
such items. It is also contemplated that the fence or blocking member 240 can have
a convex shape such that larger items can simply roll or slide off the blocking member
240 or can be captured within a collection area adjacent to the blocking member 240.
[0034] While the inclusion of first, second and third lint filters 80, 82, 84 are discussed
within various embodiments of the lint removal system 10, it is contemplated that
the plurality of air filters 30 may include only first and second lint filters 80,
82. Various embodiments may also include first, second and third lint filters 80,
82, 84 and can also include a third lint filter 84. It is also contemplated that the
lint removal system 10 disclosed herein can be positioned in the basement 202 of the
laundry appliance 12, or can be positioned in another location of the laundry appliance
12 to provide space for various operational mechanisms of the laundry appliance 12.
The lint removal system 10 described herein can also be included within a laundry
appliance 12 that includes both washing and drying functions to be an all-in-one laundry
appliance 12. It is contemplated that the lint removal system 10 can also be included
within laundry appliances 12 of varying sizes, such as a small apartment-type laundry
unit as well as a larger commercial-type laundry unit.
[0035] It is also contemplated that the lint removal system 10 can be incorporated within
various types of appliances that incorporate a heat pump system 14 or other similar
refrigerant systems. Such appliances can include, but are not limited to, dryers,
refrigerators, freezers, chillers, and other similar appliances that incorporate a
heat exchange mechanism.
[0036] As exemplified in FIGS. 13-17, the lint removal system 10 can include an angled lint
filter 260 that is typically positioned upstream of the first, second and third lint
filters 80, 82, 84. The angled lint filter 260 can also be positioned below the door
opening 210 and within the air path 20, where the angled lint filter 260 is positioned
therein to separate lint 32 from process air 24 moving through the air path 20. A
portion of the filter spray system 34 in the form of an angled spray mechanism 262
is connected to a fluid source 264. The angled spray mechanism 262 is positioned at
a first edge 266 of the angled lint filter 260 to spray fluid 38 onto a portion of
the angled lint filter 260 in order to remove and capture lint 32 that has been entrapped
by a surface of the angled lint filter 260. As the angled spray mechanism 262 projects
a stream of fluid 38 along a surface of the angled lint filter 260, captured lint
270 from the upstream surface 268 of the angled lint filter 260 is moved to a lint
drain 272 that extends from a second edge 274 of the angled lint filter 260 down to
an area near the drain channel 28. The lint drain 272 is typically positioned to allow
for movement of the fluid 38 and captured lint 270 from the angled lint filter 260
to be delivered to the drain channel 28 in substantially the same manner as captured
lint 270 is removed from the first, second and third lint filters 80, 82, 84 toward
the common drain channel 28. The angled lint filter 260 can be used in conjunction
with any number of the typically vertically oriented first, second and third lint
filters 80, 82, 84. Accordingly, the lint removal system 10 may include the angled
lint filter 260 along with only the first lint filter 80. The angled lint filter 260
may also be accompanied by additional vertically oriented filters that make up the
first, second and third lint filters 80, 82, 84.
[0037] Referring again to FIGS. 14-17, a bypass member 280 can be positioned at or near
the second edge 274 of the angled lint filter 260. The bypass member 280 is selectively
operable to a blocking position 282 that directs process air 24 through the angled
lint filter 260 and toward the first, second and third lint filters 80, 82, 84 for
further removal of lint 32 from the air 24 moving through the air path 20. The bypass
member 280 is also operable to a drain position 284 that allows for movement of material
from the upstream surface 268 of the angled lint filter 260 and into the lint drain
272 for disposal into the drain channel 28.
[0038] As exemplified in FIGS. 16-17, when the bypass member 280 is in the drain position
284, fluid 38 from the angled spray mechanism 262, along with captured lint 270 that
is pushed by the fluid 38 from the angled spray mechanism 262, can be moved along
the upstream surface 268 of the angled lint filter 260 and into the lint drain 272.
Typically, the back pressure of the fluid 38 emanating from the angled spray mechanism
262 will have a force 286 sufficient to move the bypass member 280 from the blocking
position 282 and into the drain position 284. The bypass member 280 includes a biasing
mechanism 290 that applies a biasing force 292 upon the bypass member 280 in the direction
of the blocking position 282. When the fluid 38 is sprayed from the angled spray mechanism
262, the force 286 of the fluid 38 overcomes this biasing force 292 applied by the
biasing mechanism 290 to move the bypass member 280 from the blocking position 282
to the drain position 284. Accordingly, the force 286 of the fluid 38 moves the bypass
member 280 to open an access aperture 294 to the lint drain 272 to allow for movement
of the fluid 38 and captured lint 270 into and through the lint drain 272 and to the
drain channel 28.
[0039] Referring again to FIGS. 14-16, when the angled spray mechanism 262 is deactivated,
and the force 286 of the fluid 38 is no longer present, the biasing mechanism 290
biases the bypass member 280 back into the blocking position 282. In various embodiments,
the bypass member 280 may include one or more drain holes 302 or weep holes. These
drain holes 302 allow excess fluid 38 to move or flow past the bypass member 280 and
into the lint drain 272 when the opposing biasing force 296 of the fluid 38 is not
present. These drain holes 302 are sized and positioned to allow the excess fluid
38 to drain without impeding the flow of air 24 through the air path 20 when the blocking
member 240 is in the blocking position 282. The drain holes 302 are also configured
to prevent whistling or other air-related noise. The drain holes 302 may also be positioned
within the second edge 274 of the angled lint filter 260. The excess fluid 38 may
also drain through the filtering material 312 and fall to the drain channel 28.
[0040] The angled lint filter 260 is typically positioned at an angle such that gravity
may at least partially assist in the movement of fluid 38 and captured lint 270 from
the upstream surface 268 of the angled lint filter 260 toward the bypass member 280.
Typically, the gravitational force 286 of the fluid 38 and captured lint 270, by itself,
is insufficient to manipulate the bypass member 280 from the blocking position 282
to the drain position 284. The fluid pressure of the fluid 38 projected from the angled
spray mechanism 262 generates an opposing biasing force 296 that engages the bypass
member 280 to manipulate the bypass member 280 from the blocking position 282 to the
drain position 284 for disposal of the captured lint 270 to the drain channel 28.
[0041] As exemplified in FIGS. 14-17, the angled position of the angled lint filter 260
is such that the first edge 266 of the angled lint filter 260 is typically positioned
toward the front portion 200 of the cabinet and the lower second edge 274 is positioned
rearward of the first edge 266. Through this configuration, the angled spray mechanism
262 projects fluid 38 in a predetermined spray pattern or fluid path 180 away from
the front portion 200 of the cabinet and toward the drain channel 28 of the lint removal
system 10. The angled spray mechanism 262 can direct a stream of fluid 38 onto the
upstream surface 268 of the angled lint filter 260 to push the captured lint 270 toward
the bypass member 280 and bias the bypass member 280 into the drain position 284.
[0042] The angled spray mechanism 262 can also be positioned to spray fluid 38 onto a downstream
surface 310 or back side of the angled lint filter 260 such that fluid 38 is directed
through the filtering material 312 of the angled lint filter 260 for directing captured
lint 270 toward the bypass member 280. In such an embodiment, a portion of the bypass
member 280 may extend past the angled lint filter 260 and adjacent the downstream
surface 310. In this manner, fluid 38 sprayed toward a downstream surface 310 of the
angled lint filter 260 can also be directed to this extended portion of the bypass
member 280 to bias the bypass member 280 from the blocking position 282 to the drain
position 284 for disposal of the captured lint 270.
[0043] Referring again to FIGS. 13-17, when the bypass member 280 is in the blocking position
282, the bypass member 280 covers the access aperture 294 proximate a top end 320
of the lint drain 272. When the angled spray mechanism 262 is activated and fluid
38 is directed to bias the bypass member 280 to the drain position 284, the bypass
member 280 moves to the drain position 284 and opens the access aperture 294 at the
top end 320 of the lint drain 272. The lint drain 272 can be a tube, shaft, interstitial
space, or other conduit that extends from the top end 320 proximate the bypass member
280 to a bottom end 322 that is positioned over or at least near the drain channel
28 so that captured lint 270 can be disposed into the drain channel 28. The lint drain
272 can also be at least partially defined by a wall 170 of the air path 20 and can
be entirely contained within the air path 20.
[0044] As exemplified in FIG. 15, when the bypass member 280 is in the blocking position
282, the bypass member 280 may act as an aspect of the air diverter 212 that manipulates
the flow of air 24 through the air path 20 for efficient movement through the angled
lint filter 260 as well as the first, second and third lint filters 80, 82, 84 of
the lint removal system 10. The bypass member 280 can include the biasing mechanism
290 in the form of a spring or other biasing mechanism 290.
[0045] The bypass member 280 may also be in the form of an elastomeric member having a shape
that tends toward the blocking position 282. In such an embodiment, the biasing force
292 of the fluid 38 directed from the angled spray mechanism 262 serves to deflect
a portion of the elastomeric bypass member 280 toward the drain position 284 to open
the lint drain 272 and allow for movement of the fluid 38 and captured lint 270 into
the lint drain 272. After the angled spray mechanism 262 is deactivated, the elastomeric
nature of the bypass member 280 serves to return the bypass member 280 to its original
shape that defines the blocking position 282.
[0046] Referring again to FIGS. 13 and 14, the angled spray mechanism 262 for the angled
lint filter 260 can include a secondary fluid line 330 connected with the diverter
valve 130, or in some instances, the primary diverter valve 140. Because the angled
lint filter 260 is typically positioned as the initial lint filtering member of the
lint removal system 10, lint 32 will collect on the angled lint filter 260 more rapidly
during operation of the appliance 12. Accordingly, activation of the angled spray
mechanism 262 corresponding to the angled lint filter 260 may be operated more frequently
to remove the captured lint 270 from the angled lint filter 260. In this instance,
the diverter valve 130 can be operated to allow for the more frequent flow of fluid
38 through the secondary fluid line 330 and to the angled spray mechanism 262 for
the angled lint filter 260. Fluid 38 from the angled spray mechanism 262 may also
be directed through the lint drain 272 and toward one or more of the first, second
and third lint filters 80, 82, 84 to assist in removing lint 32 from these lint filters.
[0047] The angled lint filter 260 and the first, second and third lint filters 80, 82, 84
can include filtering material 312 having gradually decreasing mesh sizes or gradually
decreasing pore size. In this manner, each successive filter of the lint removal system
10 can be adapted to capture smaller sized particles of lint 32. In such a configuration,
the angled lint filter 260 will typically have the largest mesh size or pore size
for capturing the largest lint particles and also the largest amount of lint 32. The
next filter in line, the first lint filter 80, will typically have a slightly smaller
mesh or pore size for capturing smaller lint particles. The first lint filter 80 will
also typically capture less lint 32 than the angled lint filter 260. Where the lint
removal system 10 includes additional lint filters, such as the second lint filter
82, third lint filter 84, or subsequent lint filters, each successive lint filter
can typically be configured to capture smaller sized particles of lint 32 and also
smaller amounts of lint 32.
[0048] In various embodiments, the angled lint filter 260 may include multiple spray nozzles
160, where each spray nozzle 160 is operated independently through operation of dedicated
diverter valves 130. It is also contemplated that the angled spray mechanism 262 for
the angled lint filter 260 may be a single spray nozzle 160 that is adapted to direct
a flow of fluid 38 across the entire upstream surface 268 of the angled lint filter
260. In configurations where the angled spray mechanism 262 includes multiple spray
nozzles 160, the bypass member 280 can be adapted to be manipulated from the blocking
position 282 to the drain position 284 by either of the multiple spray nozzles 160
of the angled spray mechanism 262. The bypass member 280 may also be configured as
two separate bypass members 280 that correspond to each spray nozzle 160 of the angled
spray mechanism 262 serving the angled lint filter 260.
[0049] The fluid 38 directed through the secondary fluid line 330 into the angled spray
mechanism 262 can be directed from an external fluid source 110 such as a household
spigot or faucet. Fluid 38 may also be directed to the secondary fluid line 330 through
a dedicated pump that may move fluid 38 from a fluid source 264 within the appliance
12. The internal source of fluid 38 may be captured condensate 26 that may be collected
through operation of a heat exchange or heat pump system 14 of the appliance 12.
[0050] While the angled lint filter 260 is shown as having a particular angled configuration,
it should be understood that the exact angle of the angled lint filter 260 can vary
depending upon the design of the appliance 12. It should also be understood that the
angled lint filter 260 may be configured to be angled in the opposite direction, or
may be angled from the left side of the appliance 12 toward the right side of the
appliance 12, or vice versa. The exact configuration of the angled lint filter 260
as well as the positioning of the angled spray mechanism 262 may vary depending upon
the exact design of the appliance 12 that incorporates the lint removal system 10.
1. A laundry appliance (12) comprising:
a rotating drum (18) for processing laundry;
a blower that directs process air (24) through an air path (20) that includes the
rotating drum (18);
a heat exchanger (56) positioned within the air path (20) that cools and dehumidifies
the process air (24);
a plurality of air filters (30) arranged sequentially that capture lint (32) from
the process air (24) at respective positions upstream of the heat exchanger (56);
a filter spray system (34) having a plurality of fluid sprayers (36) that deliver
fluid (38) to a surface of each air filter (30) of the plurality of air filters (30),
wherein each fluid sprayer (36) of the plurality of fluid sprayers (36) directs captured
lint (270) away from a respective air filter (30) of the plurality of air filters
(30).
2. The laundry appliance (12) of claim 1, wherein the filter spray system (34) includes
a diverter valve (130) that selectively apportions the fluid (38) between the plurality
of fluid sprayers (36).
3. The laundry appliance (12) of any one or more of claims 1-2, wherein:
the plurality of air filters (30) includes first and second lint filters (80, 82)
that are positioned in a parallel arrangement adjacent to the heat exchanger (56);
and
the filter spray system (34) includes first and second fluid sprayers (90, 92) that
deliver the fluid (38) to the first and second air filters (80, 82), respectively.
4. The laundry appliance (12) of any one or more of claims 2-3, wherein each fluid sprayer
(36) of the plurality of fluid sprayers (36) includes a plurality of spray nozzles
(160).
5. The laundry appliance (12) of claim 4, wherein each air filter (30) includes two spray
nozzles (160) that are operated sequentially and to direct water to different portions
of the respective air filter (30).
6. The laundry appliance (12) of any one or more of claims 4-5, wherein the plurality
of spray nozzles (160) are configured to direct a spray of the fluid (38) into an
upstream surface (268) of the respective air filter (30) of the plurality of air filters
(30).
7. The laundry appliance (12) of any one or more of claims 4-6, wherein the diverter
valve (130) apportions the fluid (38) between the plurality of spray nozzles (160).
8. The laundry appliance (12) of any one or more of claims 1-7, further comprising:
a drain channel (28) positioned below the plurality of air filters (30), wherein the
plurality of fluid sprayers (36) directs the fluid (38) across the plurality of air
filters (30) and into the drain channel (28).
9. The laundry appliance (12) of claim 8, wherein the drain channel (28) also receives
condensate (26) from the heat exchanger (56).
10. The laundry appliance (12) of claim 9, wherein the drain channel (28) is sloped to
direct the condensate (26) and the fluid (38) to a fluid pump (40).
11. The laundry appliance (12) of any one or more of claims 3-10, wherein:
the first lint filter (80) is positioned upstream of the heat exchanger (56) and the
second lint filter (82) is positioned between the first lint filter (80) and the heat
exchanger (56); and
the first and second lint filters (80, 82) each include a mesh that captures the lint
(32), the first lint filter (80) having a first mesh size and the second lint filter
(82) having a second mesh size that is smaller than the first mesh size.
12. The laundry appliance (12) of any one or more of claims 1-11, further comprising:
a blocking member (240) that is positioned upstream of the plurality of air filters
(30).
13. The laundry appliance (12) of any one or more of claims 3-12, further comprising:
a third lint filter (84) for capturing lint particles from the process air (24); and
a third fluid sprayer (94) that directs the fluid (38) to a surface of the third lint
filter (84) for removing the captured lint (270) from the third lint filter (84),
wherein the diverter valve (130) selectively apportions the fluid (38) between the
first, second and third fluid sprayers (90, 92,94).
14. The laundry appliance (12) of any one or more of claims 9-13, wherein the fluid (38)
delivered to the plurality of fluid sprayers (36) is in the form of the condensate
(26) received from the heat exchanger (56).
15. The laundry appliance (12) of any one or more of claims 10-14, wherein the fluid pump
(40) directs the condensate (26) and fluid (38) to a fluid outlet (42).