CROSS-REFERENCE TO RELATED APPLICATIONS AND PRIORITY
TECHNICAL FIELD
[0002] The disclosure herein generally relate to sensor data analysis, and, more particularly,
to systems and methods for identifying body joint locations based on sensor data analysis.
BACKGROUND
[0003] Joint motion analysis is an important aspect of health monitoring / rehabilitation
of patients suffering from neurological disorders, post stroke patients, and elderly
subjects. Joint movement data capture is traditionally done using clinical devices
such as Vicon, which is marker-based and extremely expensive and ill-suited for prolonged
rehabilitation therapy. Kinect® is a marker-less motion capture device that is being
used for its low cost, portability and ease of cost when compared to its expensive
counterpart. The accuracy of Kinect® as an alternative to Marker-based systems has
been widely studied and there are extensive reports on its validity and reliability
in comparison to Vicon. However, the reports indicate a lower accuracy of the human
body joint information provided by Kinect® skeletal data. The skeleton data provided
by Kinect® requires further optimization to improve its accuracy and allow effective
and reliable assessment.
SUMMARY
[0006] Embodiments of the present disclosure present technological improvements as solutions
to one or more of the above-mentioned technical problems recognized by the inventors
in conventional systems. For example, in an aspect, a hardware processor implemented
method according to claim 1 for identifying body joint locations is provided. The
method comprises obtaining, by one or more hardware processors, input data comprising
skeletal data, depth data, and red, green, and blue (RGB) data pertaining to at least
one user at one or more time stamps, wherein the one or more input data comprises
three dimensional (3D) coordinates pertaining to one or more skeleton joints. The
method further comprises estimating, using the one or more input data, by the one
or more hardware processors, one or more body joint locations and a body segment length
of one or more body segments connected to corresponding skeleton joints to obtain
(i) an estimate of one or more body joint locations and (ii) an estimate of one or
more body segment lengths. In an embodiment, the one or more body segment lengths
are based on a Euclidean distance between adjacent skeleton joints. One or more probable
correct body joint locations are identified in a bounded neighborhood around the one
or more body joint locations that are previously obtained in a previous frame, wherein
the one or more probable correct body joint locations are iteratively identified based
on the depth data and the RGB data. In an example embodiment, a search region is defined
for identifying the one or more probable correct body joint locations using a radius
equivalent to a displacement of a corresponding skeleton joint in a single frame.
The method further comprises performing, by the one or more hardware processors, a
comparison of (i) a body segment length associated with each of the one or more probable
correct body joint locations and (ii) a reference length. In an embodiment, the reference
length is derived based on the estimate of the one or more body segment lengths. A
subset of the one or more probable correct body joint locations are identified as
one or more candidate body joint locations based on the comparison. In an embodiment,
the subset of the one or more probable correct body joint locations are identified
as one or more candidate body joint locations based on the comparison resulting in
a minimal body segment length variation. A physical orientation of each body segment
pertaining to each of the one or more candidate body joint locations is determined
by segmenting one or more 3D coordinates of each body segment based on the depth data
and performing an analysis on each segmented 3D coordinate. A (corrected) body joint
location is identified from the one or more candidate body joint locations based on
a minimal deviation in direction from the physical orientation of a corresponding
body segment along with a feature descriptor of the RGB data and the depth data, wherein
the minimal deviation is based on the depth data, and, wherein the minimal deviation
is based on one or more actions performed by the user.
[0007] In another aspect, a system according to claim 6 for identifying a body joint location
is provided. The system comprises a memory storing instructions, one or more communication
interfaces, and one or more hardware processors coupled to the memory using the one
or more communication interfaces, wherein the one or more hardware processors are
configured by the instructions to: obtain one or more input data comprising skeletal
data, depth data and red, green, and blue (RGB) data pertaining to at least one user
at one or more time stamps, wherein the one or more input data comprising three dimensional
(3D) coordinates pertaining to one or more skeleton joints. The skeletal data, depth
data and red, green, and blue (RGB) data are captured by a sensor (e.g., Kinect® sensor).
The one or more hardware processors are further configured by the instructions to
estimate, using the one or more input data, one or more body joint locations and a
body segment length of one or more body segments connecting to corresponding skeleton
joints to obtain (i) an estimate of one or more body joint locations and (ii) an estimate
of one or more body segment lengths. In an embodiment, one or more body segment lengths
are based on a Euclidean distance between adjacent skeleton joints. In an embodiment,
the system is further configured to identify one or more probable correct body joint
locations in a bounded neighborhood around the one or more body joint locations that
are previously obtained from a previous frame, wherein the one or more probable correct
body joint locations are iteratively identified based on the depth data and the RGB
data. In an embodiment, a search region is defined to identify the one or more probable
correct body joint locations based on a radius equivalent to a displacement of a corresponding
skeleton joint in a single frame.
[0008] The system further performs a comparison of (i) a body segment length associated
with each of the one or more probable correct body joint locations and (ii) a reference
length. In an embodiment, the reference length is derived based on the estimate of
the one or more body segment lengths. The system further identifies a subset of the
one or more probable correct body joint locations as one or more candidate body joint
locations based on the comparison. In an embodiment, the subset of the one or more
probable correct body joint locations are identified as one or more candidate body
joint locations based on the comparison resulting in a minimal body segment length
variation. In other words, probable correct body joint locations having a minimal
body segment length variation with respect to the reference length are identified
as one or more candidate body joint locations.
[0009] The system is further configured to determine a physical orientation of each body
segment pertaining to each of the one or more candidate body joint locations by segmenting
one or more 3D coordinates of each body segment based on the depth data and performing
an analysis on each segmented 3D coordinate. The system is further configured to identify,
from the one or more candidate body joint locations, a (corrected) body joint location
based on a minimal deviation in direction from the physical orientation of a corresponding
body segment along with a feature descriptor of the RGB data and the depth data, wherein
the minimal deviation is based on the depth data, and wherein the minimal deviation
is based on one or more actions performed by the user. In an embodiment, a body joint
location having a minimal deviation in direction from the physical orientation of
a corresponding body segment is identified as a corrected joint body location along
with a feature descriptor of the RGB data and the depth data.
[0010] In yet another aspect, one or more non-transitory machine readable information storage
mediums according to claim 11 comprising one or more instructions is provided. The
one or more instructions which when executed by one or more hardware processors causes
obtaining input data comprising skeletal data, depth data and red, green, and blue
(RGB) data pertaining to at least one user at one or more time stamps, wherein the
input data comprises three dimensional (3D) coordinates pertaining to one or more
skeleton joints. The one or more instructions which when executed by one or more hardware
processors further causes estimating, using the one or more input data, one or more
body joint locations and a body segment length of one or more body segments connecting
to corresponding skeleton joints to obtain (i) an estimate of one or more body joint
locations and (ii) an estimate of one or more body segment lengths. In an embodiment,
the one or more body segment lengths are based on a Euclidean distance between adjacent
skeleton joints. The one or more instructions which when executed by one or more hardware
processors causes identifying one or more probable correct body joint locations in
a bounded neighborhood around the one or more body joint locations that are previously
obtained, wherein the one or more probable correct body joint locations are iteratively
identified based on the depth data and the RGB data. In an example embodiment, a search
region is defined for identifying the one or more probable correct body joint locations
using a radius equivalent to a displacement of a corresponding skeleton joint. The
one or more instructions which when executed by one or more hardware processors further
causes performing a comparison of (i) a body segment length associated with each of
the one or more probable correct body joint locations and (ii) a reference length.
In an embodiment, the reference length is derived based on the estimate of the one
or more estimated body segment lengths. The one or more instructions which when executed
by one or more hardware processors further causes identifying a subset of the one
or more probable correct body joint locations as one or more candidate body joint
locations based on the comparison. In an embodiment, identifying a subset of the one
or more probable correct body joint locations as one or more candidate body joint
locations is based on the comparison resulting in a minimal body segment length variation.
The one or more instructions which when executed by one or more hardware processors
further causes determining a physical orientation of each body segment pertaining
to each of the one or more candidate body joint locations by segmenting one or more
3D coordinates of each body segment based on the depth data and performing an analysis
on each segmented 3D coordinate. The one or more instructions which when executed
by one or more hardware processors further causes identifying, from the one or more
candidate body joint locations, a (corrected) body joint location based on a minimal
deviation in direction from the physical orientation of a corresponding body segment
along with a feature descriptor of the RGB data and the depth data, wherein said minimal
deviation is based on the depth data, and, wherein the minimal deviation is based
on one or more actions performed by the user.
[0011] It is to be understood that both the foregoing general description and the following
detailed description are exemplary and explanatory only and are not restrictive of
the invention, as claimed.
BRIEF DESCRIPTION OF THE DRAWINGS
[0012] The accompanying drawings, which are incorporated in and constitute a part of this
disclosure, illustrate exemplary embodiments and, together with the description, serve
to explain the disclosed principles:
FIG. 1 illustrates an exemplary block diagram of a system for identifying a body joint
location of a user in accordance with an embodiment of the present disclosure.
FIG. 2 illustrates an exemplary flow diagram of a method for identifying a body joint
location of a user using the system of FIG. 1 in accordance with an embodiment of
the present disclosure.
FIG. 3 illustrates an exemplary table indicating body segment length statistics for
ROM exercises for 10 subjects, according to an embodiment of the present disclosure.
FIG. 4 illustrates a graphical representation of variation in length of forearm joints
in accordance with an embodiment of the present disclosure.
FIG. 5 illustrates a graphical representation of variation in length of arm in accordance
with an embodiment of the present disclosure.
FIG. 6 illustrates a graphical representation of variation in forearm length for elbow
flexion in accordance with an embodiment of the present disclosure.
FIG. 7 depicts Body segment orientation correction by the system of FIG. 1 in accordance
with an embodiment of the present disclosure.
DETAILED DESCRIPTION OF EMBODIMENTS
[0013] Exemplary embodiments are described with reference to the accompanying drawings.
In the figures, the left-most digit(s) of a reference number identifies the figure
in which the reference number first appears. Wherever convenient, the same reference
numbers are used throughout the drawings to refer to the same or like parts. While
examples and features of disclosed principles are described herein, modifications,
adaptations, and other implementations are possible without departing from the spirit
and scope of the disclosed embodiments. It is intended that the following detailed
description be considered as exemplary only, with the true scope and spirit being
indicated by the following claims.
[0014] Body joint movement analysis is extremely essential for health monitoring and treatment
of patients with neurological disorders and stroke. Chronic hemiparesis of the upper
extremity following a stroke causes major hand movement limitations. There is possibility
of permanent reduction in muscle co-activation and corresponding joint torque patterns
due to stroke. Several studies suggest that abnormal coupling of shoulder abductors
with elbow flexors, and shoulder adductors with elbow extensors often leads to some
stereotypical movement characteristics exhibited by severe stroke patients. Therefore
continuous and effective rehabilitation therapy is absolutely essential to monitor
and control such abnormalities. There is a substantial need for home-based rehabilitation
post-clinical therapy.
[0015] Marker-based systems for human body motion capture and analysis, (such as Vicon)
are popular in upper extremity rehabilitation for their clinically approved levels
of accuracy. But marker less systems for motion capture, such as Microsoft Kinect®,
are feasible for home-based rehabilitation due to their affordability and portability.
The accuracy, validity and test-retest reliability measures of Kinect have been studied
for range of motion, postural control and gait. The results reported indicate a disparity
between body joint locations observed by Kinect and that obtained by a clinical gold
standard stereophotogrammetry system such as Vicon. Body segment length variations
of the order of 6-8 centimeters (cms) for arm, and 2-5 cms for forearm were reported
while using Kinect® as it provides a non-anthropometric skeleton model. Moreover the
error was found to be lower for upper body than lower body joints. The performance
of Kinect® has also been studied for non-healthy subjects and elderly population Experimental
results showed that the accuracy of Kinect® for measuring gross spatial movement,
such as shoulder and elbow movement, was higher than that for fine movements (such
as hands). The disparity in body semantics such as body segment length and orientation
increases during movement. It is therefore essential to improve accuracy of Kinect®
in measurements related to clinical assessment and biomechanical modeling. For example,
accurate measurement of arm length is important for assessing performance of reaching
task for patients with impairments in the paretic arm. Prior work has been done on
categorizing patients from movement pattern using only bone length derived from Kinect®
skeleton data. Some had explicitly mentioned the need of further optimization of joint
positions and body segment length using additional depth information from Kinect®.
[0016] The embodiments of the present disclosure aims at improving accuracy of Kinect® in
rehabilitation for upper extremities such as shoulder and elbow joints by improving
joint center localization using additional Depth and RGB (RGBD) data, with constraints
on body segment length and orientation. More particularly, the embodiments of the
present disclosure implement systems and methods for sensor data analysis based identification
of a body joint location that enables minimizing temporal variation in body segment
length based on RGB and depth information obtained from Kinect® sensor, aligns connected
joint pairs in the direction of physical body segment orientation using Depth-based
segmentation and analysis (e.g., Principal Component Analysis (PCA)) on segmented
3D coordinates, and provides reliable range of motion analysis system based on corrected
joint information.
[0017] Referring now to the drawings, and more particularly to FIGS. 1 through 7, where
similar reference characters denote corresponding features consistently throughout
the figures, there are shown preferred embodiments and these embodiments are described
in the context of the following exemplary system and/or method.
[0018] FIG. 1 illustrates an exemplary block diagram of a system 100 for identifying a body
joint location of a user in accordance with an embodiment of the present disclosure.
In an embodiment, the system 100 includes one or more processors 104, communication
interface device(s) or input/output (I/O) interface(s) 106, and one or more data storage
devices or memory 102 operatively coupled to the one or more processors 104. The one
or more processors 104 that are hardware processors can be implemented as one or more
microprocessors, microcomputers, microcontrollers, digital signal processors, central
processing units, state machines, logic circuitries, and/or any devices that manipulate
signals based on operational instructions. Among other capabilities, the processor(s)
is configured to fetch and execute computer-readable instructions stored in the memory.
In an embodiment, the system 100 can be implemented in a variety of computing systems,
such as laptop computers, notebooks, hand-held devices, workstations, mainframe computers,
servers, a network cloud and the like.
[0019] The I/O interface device(s) 106 can include a variety of software and hardware interfaces,
for example, a web interface, a graphical user interface, and the like and can facilitate
multiple communications within a wide variety of networks N/W and protocol types,
including wired networks, for example, LAN, cable, etc., and wireless networks, such
as WLAN, cellular, or satellite. In an embodiment, the I/O interface device(s) can
include one or more ports for connecting a number of devices to one another or to
another server.
[0020] The memory 102 may include any computer-readable medium known in the art including,
for example, volatile memory, such as static random access memory (SRAM) and dynamic
random access memory (DRAM), and/or non-volatile memory, such as read only memory
(ROM), erasable programmable ROM, flash memories, hard disks, optical disks, and magnetic
tapes. In an embodiment, one or more modules (not shown) of the system 100 can be
stored in the memory 102.
[0021] FIG. 2 illustrates an exemplary flow diagram of a method for identifying a body joint
location of a user using the system 100 of FIG. 1 in accordance with an embodiment
of the present disclosure. In an embodiment, the system 100 comprises one or more
data storage devices or the memory 102 operatively coupled to the one or more hardware
processors 104 and is configured to store instructions for execution of steps of the
method by the one or more processors 104. The steps of the method of the present disclosure
will now be explained with reference to the components of the system 100 as depicted
in FIG. 1, and the flow diagram. In an embodiment of the present disclosure, at step
202, the one or more processors 104 obtain input data comprising skeletal data, depth
data and red, green, and blue (RGB) data pertaining to at least one user. In an example
embodiment, the input data may be captured at one or more time stamps. In an example
embodiment, the one or more input data comprises three dimensional (3D) coordinates
pertaining to one or more skeleton joints. In an example embodiment, the input data
comprising skeletal data, depth data and red, green, and blue (RGB) data is captured
by a sensor, for example, a Kinect® sensor. In an example embodiment, the skeletal
data, depth data and red, green, and blue (RGB) data is received from the Kinect®
sensor at a frame rate of approximately 25-30 frames per second The Kinect® sensor
may be integrated within the system 100, in one example embodiment. The Kinect® sensor
may be an external component that is connected to the system 100 via one or more communication
interfaces, in another example embodiment.
[0022] In an embodiment of the present disclosure, at step 204, the one or more processors
104 estimate (or compute) one or more body joint locations and a body segment length
of one or more body segments connected to corresponding skeleton joints to obtain
(i) an estimate of one or more estimated body joint locations and (ii) an estimate
of one or more estimated body segment lengths. In an embodiment, the one or more body
segment lengths are based on a Euclidean distance between adjacent skeleton joints
in the skeleton data input. In an example embodiment, the estimate of the body joint
locations and the body segment lengths are obtained using the input data.
[0023] In an embodiment of the present disclosure, at step 206, the one or more processors
104 iteratively identify one or more probable correct body joint locations in a bounded
neighborhood around the one or more body joint locations that are previously obtained
from a previous frame. In one embodiment of the present disclosure, the one or more
probable correct body joint locations are iteratively identified based on the depth
data and the RGB data. In an example embodiment of the present disclosure, a search
region is defined for identifying the one or more probable correct body joint locations
using a radius equivalent to a displacement of a corresponding skeleton joint in a
single frame. In an embodiment of the present disclosure, at step 208, the one or
more processors 104 perform a comparison of (i) a body segment length associated with
each of the one or more probable correct body joint locations and (ii) a reference
length. In an example embodiment, the reference length is computed or derived based
on the estimate of the one or more body segment lengths (e.g., true body segment lengths).
In other words, the reference length is computed or derived based on Euclidean distance
between body joint locations during system initialization. The initial estimates of
the body joint locations (e.g., true body joint locations) and the reference length
of body segment are computed by taking the average of input skeleton joint location
and Euclidean distance between adjacent input joint locations respectively, after
removing outliers, if any.
[0024] In an embodiment of the present disclosure, at step 210, the one or more processors
104 identify at least a subset of the one or more probable correct body joint locations
as one or more candidate body joint locations based on the comparison. In an example
of the present disclosure, the subset of the one or more probable correct body joint
locations are identified as one or more candidate body joint locations based on the
comparison resulting in a minimal body segment length variation. In other words, probable
correct body joint locations having a minimal body segment length variation with respect
to the reference length are identified as the one or more candidate body joint locations.
[0025] In an embodiment of the present disclosure, at step 212, the one or more processors
104 determine a physical orientation of each body segment pertaining to each of the
one or more candidate body joint locations by segmenting one or more 3D coordinates
of each body segment based on the depth data and performing an analysis on each segmented
3D coordinate. In one embodiment of the present disclosure, the system 100 performs
a principle component analysis on each segmented 3D coordinate, based on which the
physical orientation is determined. In an embodiment of the present disclosure, at
step 214, the one or more processors 104 identify a corrected body joint location
from the one or more candidate body joint locations based on a deviation in direction
from the physical orientation of a corresponding body segment along with a feature
descriptor of the RGB data and the depth data, wherein the minimal deviation is based
on the depth data. In an example embodiment of the present disclosure, the system
100 uses the RGB-D based feature descriptor to identify a corrected body joint location
having (or that has) a minimal deviation in direction from the physical orientation
of a corresponding body segment (as depicted in FIG. 7). In an embodiment, the minimal
deviation is based on, or subject to, one or more actions performed by the user.
Experimental setup
[0026] Ten healthy subjects (age: 21-65 years, weight: 45kg - 120kg and height: 1:42m -
1:96m) with no pre-existing symptoms of neurological diseases, major orthopedic lesions
or vestibular disorders, were chosen for the experiments. The Kinect® v1 device has
been used to capture Depth, RGB and Skeleton data (at 25fps approximately) along with
timestamp information. Participants/subjects stood at a distance of 2:1 meters - 2:4
meters from the Kinect® device (Kinect® sensor), which was placed 1 meter above the
ground. Each participant performs the following (active) Range of motion (ROM) exercises
- shoulder abduction and adduction, shoulder flexion and extension, elbow flexion
and extension. In all experiments for an initial 1-2 seconds the subjects were required
to stand completely stationary for initialization of the proposed methodology.
[0027] Joint movement analysis using Kinect® sensor is based on spatiotemporal variation
of three-dimensional coordinates of 20 skeleton joints given by:

[0028] Where

denotes the 3D coordinates of the
jth joint provided by the Kinect® sensor at time instance
t (corresponding to frame
ft). Let
Bi,j represent the body segment connecting joints
i and
j. The joint coordinates are subject to noise due to room lighting (or any other ambient
affecting conditions), infrared (IR) interferences, subject's distance from Kinect®
sensor, quantization errors introduced during computations etc. The errors in joint
center locations

and

causes variation in length of
Bi,j, as well as its orientation in 3D space.
[0029] Hence, in order to reliably measure parameters such as joint range of motion, correct
body joint locations are obtained that result in an accurate body segment length and
orientation. With (direct) utilization of the depth sensor values as well as RGB information,
it is possible to obtain the correct estimate of the joint's location that satisfies
body segment length and orientation constraints. The intuition is that the correct
location

of the
jth joint must lie in the vicinity of the 3-D coordinates

reported by the Kinect® sensor. A hierarchical searching technique is carried out,
as described in the steps of FIG. 2, for the body joint location that satisfies -
(1) maximum similarity in time-varying characteristics of depth and RGB, represented
by a proposed feature descriptor, (2) maximum alignment of
Bi,j towards true physical body segment orientation, (which is estimated from depth segmentation
and analysis such as principle component analysis), and (3) minimum deviation in ∥
Bi,j∥ from reference length estimated during the initialization phase.
[0030] During the initialization phase when the subject(s) is made to remain stationary
for 30 - 50 frames, an initial estimate of the body joint locations and the body segment
length is computed based on quartile measures of observations. For each joint, candidate
locations are searched in the vicinity of the Kinect® skeleton coordinates, which
satisfy the constraint of minimal variation in length of body segment. Then the search
is further refined by minimizing temporal variations in RGB-D based feature descriptor
weighted by the deviation in direction of
Bi,j from the physical orientation of the body segment.
Coordinate transformation:
[0031] In order to find depth and RGB value for a particular joint
j, the real world coordinates

are projected to two-dimensional depth map coordinates

using Kinect® IR camera intrinsic properties as shown in below expression (1) by
way of example. Further an affine transformation is used to find correspondence between
depth coordinates

and RGB image coordinates

as shown in below expression (2) by way of example:

Search for body joint location:
[0032] The corrected body joint location

at time
t is searched in a bounded neighborhood around

in projected depth and RGB space (coordinate transformation as described above).
The search region
S for
jth joint at the time
t is defined using a radius equivalent to the joint's displacement in a single frame.
Body segment length constraint:
[0033] The search is subject to the constraint that body segment length (the Euclidean distance
between 3D coordinates of two physically connected joints) should remain invariant
during movement of the corresponding joints. The search region
S is refined to
S1 by selecting candidate locations

that satisfy the length constraint, as shown in below expression by way of example:

[0034] Where

is the corrected 3D location of joint
i,

is the Euclidean distance between

and

is the physical length of the body segment joining joints
i and
j, which is estimated during initialization. In one example embodiment, the search
regions
S and
S1 may be defined by the system 100. In another example embodiment, one or more inputs
may be obtained (e.g., from a user) by the system to define the search regions
S and
S1.
Estimation of body segment orientation:
[0035] At each time instance
t, the vector
Bi,j is selected so that it exhibits maximum alignment towards the true body segment orientation.
It is possible to segment the human body from the background in Kinect® Depth space.
A bounded region around the body joint location of joints
i and
j is used to separate the coordinates of the body segment or limb from the rest of
the human (user) form. An analysis (e.g., but not limited to, principle component
analysis) is performed over segmented coordinates to get an Eigen vector
Ei,j whose direction represents the direction of maximum variation of coordinates representing
the body segment.
Ei,j provides an estimate of the physical orientation of the body orientation in each
instance of time.
Feature descriptor
[0036] The search region (or space)
S1 consists of candidate locations among which the joint's actual location lies. In
order to select the true body joint location (example, an exact or actual body joint
location amongst the one or more candidate body joint locations), a set of features
based on RGB and depth characteristics is used to uniquely identify the joint as it
makes it's trajectory over time.
[0037] During any ROM exercise, in-spite of variation of depth values for any joint, the
relative depth variation between a depth-pixel and its neighbors ought to remain unchanged
for any two consecutive frames. The RGB values in a pixel neighborhood demonstrate
similar properties. For a joint centre

feature descriptor consisting of elements related to depth differences and RGB values
is defined as
λ = {λ
D, λR}. λ
D is a (2
w + 1) × (2
w + 1) matrix where
w ∈
I+ centered at depth pixel
P = (
px,py)
T and is expressed as

Hereafter the notation λ
D |
Q̃ is used to denote λ
D centered at any arbitrary location
Q.

Where
Dx,y = (depth(px,py) - depth(x,y)) ∗ g(x, y)
depth(x,y) = depth value at coordinates (x,y)
g(x,y) represents a Gaussian window centered at P with variance σ2.
[0038] Similarly λ
R centered at

(for the same window) is expressed as

[0039] Finally the corrected location

for joint
j is obtained by the following equations:

where
α,
γ ∈ (0,1) are constants, whose values may be experimentally determined.
[0040] FIG. 3, with respect to FIGS. 1-2, illustrates an exemplary table indicating body
segment length statistics for ROM exercises for 10 subjects, according to an embodiment
of the present disclosure. More particularly, FIG. 3 depicts correction and/or percentage
(%) improvement in body segment length each ROM exercise with respect to mean (in
meter), standard deviation (in meter), range (in meter), co-efficient of variation
for input data obtained from a Kinect® sensor. As depicted in FIG. 3, for example,
for Shoulder ROM exercise (Abduction Adduction), the percentage (%) improvement in
body segment length is 73.8 and 74.3 respectively. Similarly, for Shoulder ROM exercise
(Flexion and Extension), the percentage (%) improvement in body segment length is
72.9 and 80.7 respectively. Likewise, for Elbow ROM exercise (Flexion and Extension)
the percentage (%) improvement in body segment length is 71.6 and 58.7 respectively.
[0041] FIG. 4, with reference to FIGS. 1 through 3, illustrates a graphical representation
of variation in length of forearm joints in accordance with an embodiment of the present
disclosure. More specifically, FIG. 4 depicts variation in length between elbow left
and wrist left joints. FIG. 5, with reference to FIGS. 1 through 4, illustrates a
graphical representation of variation in length of arm in accordance with an embodiment
of the present disclosure. More specifically, FIG. 5 depicts variation in length between
shoulder left and elbow left joints. The performance is evaluated by the system 100
both for stationary and dynamic joints. FIGS. 4 and 5 indicate a significant reduction
in temporal variation of arm and forearm length during shoulder abduction, with the
proposed methodology.
[0042] FIG. 6, with reference to FIGS. 1 through 5, illustrates a graphical representation
of variation in forearm length for elbow flexion in accordance with an embodiment
of the present disclosure. FIG. 6 clearly shows similar trend for elbow flexion and
extension. Performance comparison of length variation is carried out for all subjects
using the following metrics - mean, standard deviation, range and coefficient of variation
(CV) as depicted in the table of FIG. 3. The results reported in the table of FIG.
3 indicate a clear reduction in standard deviation of body segment length from the
order of 1-2 centimeters for Kinect skeleton data to a few millimeters for corrected
skeleton data. There is an average 72% improvement in CV over all ROM exercises and
all subjects.
Body segment orientation correction:
[0043] FIG. 7, with reference to FIGS. 1 through 6, depicts Body segment orientation correction
by the system 100 of FIG. 1 in accordance with an embodiment of the present disclosure.
More specifically, FIG. 7 depicts body segment orientation wherein dotted line denotes
Kinect® output 702, solid line denotes correction 704 by the system 100. The corrected
joint information not only helps achieve higher accuracy of measurements for joint
Range of Motion analysis, but also aids in improving reliability of other assessment
(e.g., clinical) of posture, gait, balance etc. from Kinect® skeleton information
(or Kinect® Skeletal data). The body segment orientation obtained from raw Kinect®
coordinates often suffers from inaccuracy during motion, an example of which is shown
in FIG. 7 where the 2D projection of the elbow and wrist skeletal coordinates is shown
to exceed physical boundaries of the hand while the hand is in motion. This situation
has been frequently observed during Range of Motion activities of multiple subjects.
By correcting the orientation and length of body segment it is evident that the accuracy
of dynamic measurement of joint angles is much higher. During range of motion exercise
the corrected length and orientation of the limb may reflect the actual trajectory
of the physical limb. It has been validated by the ROM measurement with a clinical
Goniometer. For shoulder abduction the deviation of angle computed from Kinect® skeleton
data is in the order of 6.39 degrees ± 5.06 degrees which eventually corresponds to
the fact reported by conventional systems and methods, whereas the proposed method
is able to reduce the deviation by 1.88 degrees ± 1.1 degrees. The proposed body segment
length and orientation correction also influences joint angle and range of motion
analysis.
[0044] The systems and methods of the present disclosure provide techniques to improve accuracy
of Kinect® skeletal joint coordinates for various applications (e.g., but are not
limited to, rehabilitation). The Kinect® skeleton being a non-anthropometric model,
there are body segment length and orientation variations over time. The proposed method
implemented by the system 100 achieves and improves accuracy in estimation of body
segment length as well as aligns the coordinates in the direction of the physical
body segment that helps reconstruct the dynamic trajectory and angle of the body segment
motion as accurately as possible. Although embodiments of the present disclosure describe
body joint location identification in a 3D space, the embodiments/method may be implemented
by the system 100 to identify body joint location in 2D space (or N-dimensions) as
well.
[0045] The written description describes the subject matter herein to enable any person
skilled in the art to make and use the embodiments. The scope of the subject matter
embodiments is defined by the claims and may include other modifications that occur
to those skilled in the art. Such other modifications are intended to be within the
scope of the claims if they have similar elements that do not differ from the literal
language of the claims or if they include equivalent elements with insubstantial differences
from the literal language of the claims.
[0046] It is to be understood that the scope of the protection is extended to such a program
and in addition to a computer-readable means having a message therein; such computer-readable
storage means contain program-code means for implementation of one or more steps of
the method, when the program runs on a server or mobile device or any suitable programmable
device. The hardware device can be any kind of device which can be programmed including
e.g. any kind of computer like a server or a personal computer, or the like, or any
combination thereof. The device may also include means which could be e.g. hardware
means like e.g. an application-specific integrated circuit (ASIC), a field-programmable
gate array (FPGA), or a combination of hardware and software means, e.g. an ASIC and
an FPGA, or at least one microprocessor and at least one memory with software modules
located therein. Thus, the means can include both hardware means and software means.
The method embodiments described herein could be implemented in hardware and software.
The device may also include software means. Alternatively, the embodiments may be
implemented on different hardware devices, e.g. using a plurality of CPUs.
[0047] The embodiments herein can comprise hardware and software elements. The embodiments
that are implemented in software include but are not limited to, firmware, resident
software, microcode, etc. The functions performed by various modules described herein
may be implemented in other modules or combinations of other modules. For the purposes
of this description, a computer-usable or computer readable medium can be any apparatus
that can comprise, store, communicate, propagate, or transport the program for use
by or in connection with the instruction execution system, apparatus, or device.
[0048] The illustrated steps are set out to explain the exemplary embodiments shown, and
it should be anticipated that ongoing technological development will change the manner
in which particular functions are performed. These examples are presented herein for
purposes of illustration, and not limitation. Further, the boundaries of the functional
building blocks have been arbitrarily defined herein for the convenience of the description.
Alternative boundaries can be defined so long as the specified functions and relationships
thereof are appropriately performed. Alternatives (including equivalents, extensions,
variations, deviations, etc., of those described herein) will be apparent to persons
skilled in the relevant art(s) based on the teachings contained herein. Such alternatives
fall within the scope and spirit of the disclosed embodiments. Also, the words "comprising,"
"having," "containing," and "including," and other similar forms are intended to be
equivalent in meaning and be open ended in that an item or items following any one
of these words is not meant to be an exhaustive listing of such item or items, or
meant to be limited to only the listed item or items. It must also be noted that as
used herein and in the appended claims, the singular forms "a," "an," and "the" include
plural references unless the context clearly dictates otherwise.
[0049] Furthermore, one or more computer-readable storage media may be utilized in implementing
embodiments consistent with the present disclosure. A computer-readable storage medium
refers to any type of physical memory on which information or data readable by a processor
may be stored. Thus, a computer-readable storage medium may store instructions for
execution by one or more processors, including instructions for causing the processor(s)
to perform steps or stages consistent with the embodiments described herein. The term
"computer-readable medium" should be understood to include tangible items and exclude
carrier waves and transient signals, i.e., be non-transitory. Examples include random
access memory (RAM), read-only memory (ROM), volatile memory, nonvolatile memory,
hard drives, CD ROMs, DVDs, flash drives, disks, and any other known physical storage
media.
[0050] It is intended that the disclosure and examples be considered as exemplary only,
with a true scope of disclosed embodiments being indicated by the following claims.
1. A processor implemented method, comprising:
obtaining, by one or more hardware processors (104), one or more input data comprising
skeletal data, depth data and red, green, and blue, RGB, data pertaining to at least
one user at one or more time stamps, wherein said one or more input data comprises
three dimensional, 3D, coordinates pertaining to one or more skeleton joints;
estimating, using said one or more input data, by said one or more hardware processors
(104), in a first set of frames, one or more body joint locations and a body segment
length of one or more body segments connected to corresponding skeleton joints to
obtain i) an estimate of one or more body joint locations and ii) an estimate of one
or more body segment lengths;
iteratively identifying, by said one or more hardware processors, one or more probable
correct body joint locations in a bounded neighborhood around said estimate of one
or more body joint locations based on said depth data and said RGB data;
performing, by said one or more hardware processors, a comparison of i) each body
segment length from the estimate of one or more body segment length associated with
said one or more probable correct body joint locations and ii) a reference length;
identifying, by said one or more hardware processors, at least a subset of said one
or more probable correct body joint locations as one or more candidate body joint
locations based on said comparison;
determining a physical orientation of each body segment pertaining to each of said
one or more candidate body joint locations by segmenting one or more 3D coordinates
of each body segment based on said depth data and performing an analysis on each segmented
3D coordinate; and
identifying, from said one or more candidate body joint locations, a body joint location
based on a minimal deviation in direction from said physical orientation of a corresponding
body segment along with a feature descriptor of said RGB data and said depth data,
wherein said minimal deviation is based on said depth data, and wherein said minimal
deviation is based on range of motions performed by said user.
2. The processor implemented method of claim 1, wherein identifying, by said one or more
hardware processors (104), at least a subset of said one or more probable correct
body joint locations as one or more candidate body joint locations is based on said
comparison resulting in a minimal body segment length variation.
3. The processor implemented method of claim 1, wherein a search region is defined for
identifying said one or more probable correct body joint locations using a radius
equivalent to a displacement of a corresponding skeleton joint.
4. The processor implemented method of claim 1, wherein said estimate of said one or
more body segment lengths is based on a Euclidean distance between adjacent skeleton
joints.
5. The processor implemented method of claim 1, wherein said reference length is derived
from said estimate of said one or more body segment lengths.
6. A system comprising:
a memory storing instructions;
one or more communication interfaces; and
one or more hardware processors (104) coupled to said memory using said one or more
communication interfaces, wherein said one or more hardware processors (104) are configured
by said instructions to:
obtain one or more input data comprising skeletal data, depth data and red, green,
and blue RGB data pertaining to at least one user at one or more time stamps, wherein
said one or more input data comprising three dimensional, 3D, coordinates pertaining
to one or more skeleton joints,
estimate, using said one or more input data, one or more body joint locations and
a body segment length of one or more body segments connected to corresponding skeleton
joints to obtain i) an estimate of one or more body joint locations and ii) an estimate
of one or more body segment lengths,
iteratively identify one or more probable correct body joint locations in a bounded
neighborhood around said estimate of one or more body joint locations based on said
depth data and said RGB data,
perform a comparison of i) each body segment length from the estimate of one or more
body segment length associated with said one or more probable correct body joint locations
and ii) a reference length;
identify at least a subset of said one or more probable correct body joint locations
as one or more candidate body joint locations based on said comparison,
determine a physical orientation of each body segment pertaining to each of said one
or more candidate body joint locations by segmenting one or more 3D coordinates of
each body segment based on said depth data and performing an analysis on each segmented
3D coordinate, and
identify, from said one or more candidate body joint locations, a body joint location
based on a minimal deviation in direction from said physical orientation of a corresponding
body segment along with a feature descriptor of said RGB data and said depth data,
wherein said minimal deviation is based on said depth data and wherein said minimal
deviation is based on range of motions performed by said user.
7. The system of claim 6, wherein at least a subset of said one or more probable correct
body joint locations are identified as one or more candidate body joint locations
based on said comparison resulting in a minimal body segment length variation.
8. The system of claim 6, wherein a search region is defined for identifying said one
or more probable correct body joint locations based on a radius equivalent to a displacement
of a corresponding skeleton joint.
9. The system of claim 6, wherein said estimate of said one or more body segment lengths
is based on a Euclidean distance between adjacent skeleton joints.
10. The system of claim 6, wherein said reference length is derived from said estimate
of said one or more estimated body segment lengths.
11. One or more non-transitory machine readable information storage mediums comprising
one or more instructions which when executed by one or more hardware processors (104)
causes:
obtaining, by one or more hardware processors, one or more input data comprising skeletal
data, depth data and red, green, and blue, RGB, data pertaining to at least one user
at one or more time stamps, wherein said one or more input data comprises three dimensional,
3D, coordinates pertaining to one or more skeleton joints;
estimating, using said one or more input data, by said one or more hardware processors
(104), in a first set of frames, one or more body joint locations and a body segment
length of one or more body segments connected to corresponding skeleton joints to
obtain i) an estimate of one or more body joint locations and ii) an estimate of one
or more body segment lengths;
iteratively identifying, by said one or more hardware processors (104), one or more
probable correct body joint locations in a bounded neighborhood around said estimate
one or more body joint locations based on said depth data and said RGB data;
performing, by said one or more hardware processors (104), a comparison of i) each
body segment length from the estimate of one or more body segment length associated
with said one or more probable correct body joint locations and ii) a reference length;
identifying, by said one or more hardware processors (104), at least a subset of said
one or more probable correct body joint locations as one or more candidate body joint
locations based on said comparison;
determining a physical orientation of each body segment pertaining to each of said
one or more candidate body joint locations by segmenting one or more 3D coordinates
of each body segment based on said depth data and performing an analysis on each segmented
3D coordinate; and
identifying, from said one or more candidate body joint locations, a body joint location
based on a minimal deviation in direction from said physical orientation of a corresponding
body segment along with a feature descriptor of said RGB data and said depth data,
wherein said minimal deviation is based on said depth data, and wherein said minimal
deviation is based on range of motions performed by said user.
12. The one or more non-transitory machine readable information storage mediums of claim
11, wherein identifying, by said one or more hardware processors (104), at least a
subset of said one or more probable correct body joint locations as one or more candidate
body joint locations is based on said comparison resulting in a minimal body segment
length variation.
13. The one or more non-transitory machine readable information storage mediums claim
11, wherein a search region is defined for identifying said one or more probable correct
body joint locations using a radius equivalent to a displacement of a corresponding
skeleton joint.
14. The one or more non-transitory machine readable information storage mediums of claim
11, wherein said estimate of said one or more body segment lengths is based on a Euclidean
distance between adjacent skeleton joints.
15. The one or more non-transitory machine readable information storage mediums of claim
11, wherein said reference length is derived based on said estimate of said one or
more body segment lengths.
1. Ein prozessorimplementiertes Verfahren, umfassend:
Erlangen, durch einen oder mehrere Hardware-Prozessoren (104), eines oder mehrerer
Eingabedaten, die Skelettdaten, Tiefendaten und Rot-, Grün- und Blau-Daten, RGB-Daten,
umfassen, die sich auf mindestens einen Benutzer bei einem oder mehreren Zeitstempeln
beziehen, wobei das oder die Eingabedaten dreidimensionale Koordinaten, 3D-Koordinaten,
umfassen, die sich auf eine oder mehrere Gelenke eines Skeletts beziehen;
Abschätzen in einem ersten Satz von Rahmen, unter Verwendung des oder der Eingabedaten,
einer oder mehrerer Körpergelenkstellen und einer Körpersegmentlänge eines oder mehrerer
Körpersegmente, die mit entsprechenden Gelenken eines Skeletts verbunden sind, durch
den oder die Hardware-Prozessoren (104), um i) eine Abschätzung einer oder mehrerer
Körpergelenkstellen und ii) eine Abschätzung einer oder mehrerer Körpersegmentlängen
zu erlangen;
iteratives Identifizieren, durch den oder die Hardware-Prozessoren, einer oder mehrerer
wahrscheinlicher korrekter Körpergelenkstellen in einer begrenzten Nachbarschaft um
die Abschätzung einer oder mehrerer Körpergelenkstellen auf der Grundlage der Tiefendaten
und der RGB-Daten;
Durchführung eines Vergleichs von i) jeder Körpersegmentlänge aus der Abschätzung
einer oder mehrerer Körpersegmentlängen, die der oder den wahrscheinlichen korrekten
Körpergelenkstellen zugeordnet sind, und ii) einer Referenzlänge durch den oder die
Hardware-Prozessoren;
Identifizieren, durch den oder die Hardware-Prozessoren, mindestens einer Teilmenge
der wahrscheinlichen korrekten Körpergelenkstelle oder -stellen als ein oder mehrere
Kandidaten für Körpergelenkstellen auf der Grundlage des Vergleichs;
Bestimmen einer physischen Orientierung jedes Körpersegments, zu jeder der besagten
Kandidaten für eine Körpergelenkstelle, indem eine oder mehrere 3D-Koordinaten jedes
Körpersegments auf der Grundlage der Tiefendaten segmentiert werden und eine Analyse
jeder segmentierten 3D-Koordinate durchgeführt wird; und
Identifizieren einer Körpergelenkstelle aus der oder den Kandidaten für eine Körpergelenkstelle
auf der Grundlage einer minimalen Richtungsabweichung von der physischen Orientierung
eines entsprechenden Körpersegments sowie eines Merkmalsdeskriptors der RGB-Daten
und der Tiefendaten, wobei die minimale Abweichung auf den besagten Tiefendaten basiert
und wobei die besagte minimale Abweichung auf dem Bereich der von dem Benutzer ausgeführten
Bewegungen basiert.
2. Das prozessorimplementierte Verfahren nach Anspruch 1, bei dem durch den oder die
Hardware-Prozessoren (104) mindestens eine Teilmenge der besagten wahrscheinlichen
korrekten Körpergelenkstelle oder -stellen als eine oder mehrere Kandidaten für eine
Körpergelenkstelle identifiziert wird, basierend auf dem Vergleich, der zu einer minimalen
Körpersegmentlängenvariation führt.
3. Das prozessorimplementierte Verfahren nach Anspruch 1, wobei ein Suchbereich zur Identifizierung
der wahrscheinlichen korrekten Körpergelenkstelle oder -stellen unter Verwendung eines
Radius, der einer Verlagerung eines entsprechenden Gelenks eines Skeletts entspricht,
definiert wird.
4. Das prozessorimplementierte Verfahren nach Anspruch 1, wobei die Abschätzung der Körpersegmentlänge
oder -längen auf einem euklidischen Abstand zwischen benachbarten Gelenken eines Skeletts
basiert.
5. Das prozessorimplementierte Verfahren nach Anspruch 1, wobei die Referenzlänge aus
der Abschätzung der Körpersegmentlänge oder -längen abgeleitet wird.
6. Ein System, welches umfasst:
einen Speicher, der Anweisungen speichert;
eine oder mehrere Kommunikationsschnittstellen; und
einen oder mehrere Hardware-Prozessoren (104), die unter Verwendung der einen oder
mehreren Kommunikationsschnittstellen mit dem Speicher gekoppelt sind, wobei der oder
die Hardware-Prozessoren (104) durch die Anweisungen konfiguriert werden, um
ein oder mehrere Eingabedaten zu erlangen, die Skelettdaten, Tiefendaten und Rot-,
Grün- und Blau-Daten, RGB-Daten, umfassen, die sich auf mindestens einen Benutzer
bei einem oder mehreren Zeitstempeln beziehen, wobei das oder die besagten Eingabedaten
dreidimensionale Koordinaten, 3D-Koordinaten, umfassen, die sich auf eine oder mehrere
Gelenke eines Skeletts beziehen,
unter Verwendung des oder der besagten Eingabedaten, ein oder mehrere Körpergelenkstellen
und eine Körpersegmentlänge eines oder mehrerer Körpersegmente abzuschätzen, die mit
entsprechenden Gelenken eines Skeletts verbunden sind, um i) eine Abschätzung einer
oder mehrerer Körpergelenkstellen und ii) eine Abschätzung einer oder mehrerer Körpersegmentlängen
zu erlangen,
iterativ eine oder mehrere wahrscheinliche korrekte Körpergelenkstellen in einer begrenzten
Nachbarschaft um die besagte Abschätzung einer oder mehrerer Körpergelenkstellen auf
der Grundlage der Tiefendaten und der RGB-Daten zu identifizieren,
einen Vergleich i) jeder Körpersegmentlänge aus der Abschätzung einer oder mehrerer
Körpersegmentlängen, die der oder den wahrscheinlichen korrekten Körpergelenkstellen
zugeordnet sind, und ii) einer Referenzlänge durchzuführen;
auf der Grundlage dieses Vergleichs mindestens eine Teilmenge der besagten wahrscheinlichen
korrekten Körpergelenkstelle oder -stellen als eine oder mehrere Kandidaten für Körpergelenkstellen
zu identifizieren,
eine physische Orientierung jedes Körpersegments zu jeder der besagten Kandidaten
für eine Körpergelenkstelle zu bestimmen, indem eine oder mehrere 3D-Koordinaten jedes
Körpersegments auf der Grundlage der Tiefendaten segmentiert werden und eine Analyse
jeder segmentierten 3D-Koordinate durchgeführt wird, und
aus der oder den Kandidaten für eine Körpergelenkstelle eine Körpergelenkstelle auf
der Grundlage einer minimalen Richtungsabweichung von der physischen Orientierung
eines entsprechenden Körpersegments sowie eines Merkmalsdeskriptors der RGB-Daten
und der Tiefendaten zu identifizieren, wobei die minimale Abweichung auf den Tiefendaten
basiert und wobei die minimale Abweichung auf dem Bereich der von dem Benutzer ausgeführten
Bewegungen basiert.
7. Das System nach Anspruch 6, bei dem mindestens eine Teilmenge der wahrscheinlichen
korrekten Körpergelenkstelle oder -stellen als eine oder mehrere Kandidaten für eine
Körpergelenkstelle auf der Grundlage des Vergleichs identifiziert werden, der zu einer
minimalen Körpersegmentlängenvariation führt.
8. Das System nach Anspruch 6, wobei ein Suchbereich zur Identifizierung der wahrscheinlichen
korrekten Körpergelenkstelle oder -stellen auf der Grundlage eines Radius definiert
wird, der einer Verlagerung eines entsprechenden Gelenks eines Skeletts entspricht.
9. Das System nach Anspruch 6, bei dem die Abschätzung der Körpersegmentlänge oder -
längen auf einem euklidischen Abstand zwischen benachbarten Gelenken eines Skeletts
basiert.
10. Das System nach Anspruch 6, wobei die Referenzlänge aus der Abschätzung der geschätzten
Körpersegmentlänge oder -längen abgeleitet wird.
11. Ein oder mehrere nicht transiente maschinenlesbare Informationsspeichermedien mit
einem oder mehreren Befehlen, die, wenn sie von einem oder mehreren Hardware-Prozessoren
(104) ausgeführt werden, Folgendes verursachen:
Erlangen, durch einen oder mehrere Hardware-Prozessoren, eines oder mehrerer Eingabedaten,
die Skelettdaten, Tiefendaten und Rot-, Grün- und Blau-Daten, RGB-Daten, umfassen,
die sich auf mindestens einen Benutzer bei einem oder mehreren Zeitstempeln beziehen,
wobei das oder die Eingabedaten dreidimensionale Koordinaten, 3D-Koordinaten, umfassen,
die sich auf eine oder mehrere Gelenke eines Skeletts beziehen;
Abschätzen in einem ersten Satz von Rahmen, unter Verwendung des oder der Eingabedaten,
einer oder mehrerer Körpergelenkstellen und einer Körpersegmentlänge eines oder mehrerer
Körpersegmente durch den oder die Hardware-Prozessoren, die mit entsprechenden Gelenken
eines Skeletts verbunden sind, um i) eine Abschätzung einer oder mehrerer Körpergelenkstellen
und ii) eine Abschätzung einer oder mehrerer Körpersegmentlängen zu erlangen;
iteratives Identifizieren, durch den oder die Hardware-Prozessoren, einer oder mehrerer
wahrscheinlicher korrekter Körpergelenkstellen in einer begrenzten Nachbarschaft um
die Abschätzung einer oder mehrerer Körpergelenkstellen auf der Grundlage der Tiefendaten
und der RGB-Daten;
Durchführen eines Vergleichs i) jeder Körpersegmentlänge aus der Abschätzung einer
oder mehrerer Körpersegmentlängen, die einer oder mehreren wahrscheinlichen korrekten
Körpergelenkstellen zugeordnet sind, und ii) einer Referenzlänge durch den oder die
Hardware-Prozessoren (104);
Identifizieren, durch den oder die Hardware-Prozessoren (104), mindestens einer Teilmenge
der wahrscheinlichen korrekten Körpergelenkstelle oder -stellen als ein oder mehrere
Kandidaten für Körpergelenkstellen auf der Grundlage des Vergleichs;
Bestimmen einer physischen Orientierung jedes Körpersegments zu jeder der besagten
einen oder mehreren Kandidaten für eine Körpergelenkstelle, indem eine oder mehrere
3D-Koordinaten jedes Körpersegments auf der Grundlage der Tiefendaten segmentiert
werden und eine Analyse an jeder segmentierten 3D-Koordinate durchgeführt wird; und
Identifizieren einer Körpergelenkstelle aus der oder den Kandidaten für eine Körpergelenkstelle
auf der Grundlage einer minimalen Richtungsabweichung von der physischen Orientierung
eines entsprechenden Körpersegments sowie eines Merkmalsdeskriptors der RGB-Daten
und der Tiefendaten, wobei die minimale Abweichung auf den Tiefendaten basiert und
wobei die minimale Abweichung auf dem Bereich der von dem Benutzer ausgeführten Bewegungen
basiert.
12. Das oder die nicht transienten maschinenlesbaren Informationsspeichermedien nach Anspruch
11, wobei das Identifizieren von mindestens einer Teilmenge der wahrscheinlichen korrekten
Körpergelenkstelle oder -stellen durch den oder die Hardware-Prozessoren (104) als
eine oder mehrere Kandidaten für eine Körpergelenkstelle auf dem Vergleich basiert,
der zu einer minimalen Körpersegmentlängenvariation führt.
13. Das oder die nicht transienten maschinenlesbaren Informationsspeichermedien nach Anspruch
11, wobei ein Suchbereich zur Identifizierung der wahrscheinlichen korrekten Körpergelenkstelle
oder -stellen unter Verwendung eines Radius definiert wird, der einer Verlagerung
eines entsprechenden Gelenks eines Skeletts entspricht.
14. Das oder die nicht transienten maschinenlesbaren Informationsspeichermedien nach Anspruch
11, wobei die Abschätzung der Körpersegmentlänge oder -längen auf einem euklidischen
Abstand zwischen benachbarten Gelenken eines Skeletts basiert.
15. Das oder die nicht transienten maschinenlesbaren Informationsspeichermedien nach Anspruch
11, wobei die Referenzlänge auf der Grundlage der Abschätzung der Körpersegmentlänge
oder -längen abgeleitet wird.
1. Procédé mis en œuvre par processeur, comprenant les étapes ci-dessous consistant à
:
obtenir, par le biais d'un ou plusieurs processeurs matériels (104), une ou plusieurs
données d'entrée comprenant des données de squelette, des données de profondeur et
des données rouges, vertes et bleues, RGB, se rapportant à au moins un utilisateur,
à une ou plusieurs estampilles temporelles, dans lequel ladite une ou lesdites plusieurs
données d'entrée comprennent des coordonnées tridimensionnelles, 3D, se rapportant
à une ou plusieurs articulations de squelette ;
estimer, en utilisant ladite une ou lesdites plusieurs données d'entrée, par le biais
dudit un ou desdits plusieurs processeurs matériels (104), dans un premier ensemble
de trames, un ou plusieurs emplacements d'articulations de corps et une longueur de
segment de corps d'un ou plusieurs segments de corps connectés à des articulations
de squelette correspondantes, en vue d'obtenir i) une estimation d'un ou plusieurs
emplacements d'articulations de corps et ii) une estimation d'une ou plusieurs longueurs
de segments de corps ;
identifier de manière itérative, par le biais dudit un ou desdits plusieurs processeurs
matériels, un ou plusieurs emplacements d'articulations de corps corrects probables
dans un voisinage délimité autour de ladite estimation d'un ou plusieurs emplacements
d'articulations de corps, sur la base desdites données de profondeur et desdites données
RGB ;
mettre en œuvre, par le biais dudit un ou desdits plusieurs processeurs matériels,
une comparaison entre i) chaque longueur de segment de corps provenant de l'estimation
d'une ou plusieurs longueurs de segments de corps associées audit un ou auxdits plusieurs
emplacements d'articulations de corps corrects probables et ii) une longueur de référence
;
identifier, par le biais dudit un ou desdits plusieurs processeurs matériels, au moins
un sous-ensemble dudit un ou desdits plusieurs emplacements d'articulations de corps
corrects probables, en tant qu'un ou plusieurs emplacements d'articulations de corps
candidats, sur la base de ladite comparaison ;
déterminer une orientation physique de chaque segment de corps se rapportant à chaque
emplacement parmi ledit un ou lesdits plusieurs emplacements d'articulations de corps
candidats, en segmentant une ou plusieurs coordonnées 3D de chaque segment de corps
sur la base desdites données de profondeur, et en mettant en œuvre une analyse sur
chaque coordonnée 3D segmentée ; et
identifier, à partir dudit un ou desdits plusieurs emplacements d'articulations de
corps candidats, un emplacement d'articulation de corps, sur la base d'un écart minimal
de direction par rapport à ladite orientation physique d'un segment de corps correspondant,
avec un descripteur de caractéristiques desdites données RGB et desdites données de
profondeur, dans lequel ledit écart minimal est basé sur lesdites données de profondeur,
et dans lequel ledit écart minimal est basé sur une série de mouvements réalisés par
ledit utilisateur.
2. Procédé mis en œuvre par processeur selon la revendication 1, dans lequel l'étape
d'identification, par le biais dudit un ou desdits plusieurs processeurs matériels
(104), d'au moins un sous-ensemble dudit un ou desdits plusieurs emplacements d'articulations
de corps corrects probables, en tant qu'un ou plusieurs emplacements d'articulations
de corps candidats, est basée sur le fait que ladite comparaison se traduit par une
variation de longueur de segment de corps minimale.
3. Procédé mis en œuvre par processeur selon la revendication 1, dans lequel une région
de recherche est définie en vue d'identifier ledit un ou lesdits plusieurs emplacements
d'articulations de corps corrects probables en utilisant un rayon équivalent à un
déplacement d'une articulation de squelette correspondante.
4. Procédé mis en œuvre par processeur selon la revendication 1, dans lequel ladite estimation
de ladite une ou desdites plusieurs longueurs de segments de corps est basée sur une
distance euclidienne entre des articulations de squelette adjacentes.
5. Procédé mis en œuvre par processeur selon la revendication 1, dans lequel ladite longueur
de référence est dérivée de ladite estimation de ladite une ou desdites plusieurs
longueurs de segments de corps.
6. Système comprenant :
une mémoire stockant des instructions ;
une ou plusieurs interfaces de communication ; et
un ou plusieurs processeurs matériels (104), couplés à ladite mémoire, en utilisant
ladite une ou lesdites plusieurs interfaces de communication, dans lequel ledit un
ou lesdits plusieurs processeurs matériels (104) sont configurés par lesdites instructions
de manière à :
obtenir une ou plusieurs données d'entrée comprenant des données de squelette, des
données de profondeur et des données rouges, vertes et bleues, RGB, se rapportant
à au moins un utilisateur, à une ou plusieurs estampilles temporelles, dans lequel
ladite une ou lesdites plusieurs données d'entrée comprennent des coordonnées tridimensionnelles,
3D, se rapportant à une ou plusieurs articulations de squelette ;
estimer, en utilisant ladite une ou lesdites plusieurs données d'entrée, un ou plusieurs
emplacements d'articulations de corps et une longueur de segment de corps d'un ou
plusieurs segments de corps connectés à des articulations de squelette correspondantes,
en vue d'obtenir i) une estimation d'un ou plusieurs emplacements d'articulations
de corps et ii) une estimation d'une ou plusieurs longueurs de segments de corps ;
identifier de manière itérative un ou plusieurs emplacements d'articulations de corps
corrects probables dans un voisinage délimité autour de ladite estimation d'un ou
plusieurs emplacements d'articulations de corps, sur la base desdites données de profondeur
et desdites données RGB ;
mettre en œuvre une comparaison entre i) chaque longueur de segment de corps provenant
de l'estimation d'une ou plusieurs longueurs de segments de corps associées audit
un ou auxdits plusieurs emplacements d'articulations de corps corrects probables et
ii) une longueur de référence ;
identifier au moins un sous-ensemble dudit un ou desdits plusieurs emplacements d'articulations
de corps corrects probables, en tant qu'un ou plusieurs emplacements d'articulations
de corps candidats, sur la base de ladite comparaison ;
déterminer une orientation physique de chaque segment de corps se rapportant à chaque
emplacement parmi ledit un ou lesdits plusieurs emplacements d'articulations de corps
candidats, en segmentant une ou plusieurs coordonnées 3D de chaque segment de corps
sur la base desdites données de profondeur, et en mettant en œuvre une analyse sur
chaque coordonnée 3D segmentée ; et
identifier, à partir dudit un ou desdits plusieurs emplacements d'articulations de
corps candidats, un emplacement d'articulation de corps, sur la base d'un écart minimal
de direction par rapport à ladite orientation physique d'un segment de corps correspondant,
avec un descripteur de caractéristiques desdites données RGB et desdites données de
profondeur, dans lequel ledit écart minimal est basé sur lesdites données de profondeur,
et dans lequel ledit écart minimal est basé sur une série de mouvements réalisés par
ledit utilisateur.
7. Système selon la revendication 6, dans lequel au moins un sous-ensemble dudit un ou
desdits plusieurs emplacements d'articulations de corps corrects probables est identifié
en tant qu'un ou plusieurs emplacements d'articulations de corps candidats, selon
que ladite comparaison se traduit par une variation de longueur de segment de corps
minimale.
8. Système selon la revendication 6, dans lequel une région de recherche est définie
en vue d'identifier ledit un ou lesdits plusieurs emplacements d'articulations de
corps corrects probables sur la base d'un rayon équivalent à un déplacement d'une
articulation de squelette correspondante.
9. Système selon la revendication 6, dans lequel ladite estimation de ladite une ou desdites
plusieurs longueurs de segments de corps est basée sur une distance euclidienne entre
des articulations de squelette adjacentes.
10. Système selon la revendication 6, dans lequel ladite longueur de référence est dérivée
de ladite estimation de ladite une ou desdites plusieurs longueurs de segments de
corps estimées.
11. Un ou plusieurs supports non transitoires de stockage d'informations lisibles par
machine comprenant une ou plusieurs instructions qui, lorsqu'elles sont exécutées
par un ou plusieurs processeurs matériels (104), occasionnent la mise en œuvre des
étapes ci-dessous consistant à :
obtenir, par le biais d'un ou plusieurs processeurs matériels, une ou plusieurs données
d'entrée comprenant des données de squelette, des données de profondeur et des données
rouges, vertes et bleues, RGB, se rapportant à au moins un utilisateur, à une ou plusieurs
estampilles temporelles, dans lequel ladite une ou lesdites plusieurs données d'entrée
comprennent des coordonnées tridimensionnelles, 3D, se rapportant à une ou plusieurs
articulations de squelette ;
estimer, en utilisant ladite une ou lesdites plusieurs données d'entrée, par le biais
dudit un ou desdits plusieurs processeurs matériels (104), dans un premier ensemble
de trames, un ou plusieurs emplacements d'articulations de corps et une longueur de
segment de corps d'un ou plusieurs segments de corps connectés à des articulations
de squelette correspondantes, en vue d'obtenir i) une estimation d'un ou plusieurs
emplacements d'articulations de corps et ii) une estimation d'une ou plusieurs longueurs
de segments de corps ;
identifier de manière itérative, par le biais dudit un ou desdits plusieurs processeurs
matériels (104), un ou plusieurs emplacements d'articulations de corps corrects probables
dans un voisinage délimité autour de ladite estimation d'un ou plusieurs emplacements
d'articulations de corps, sur la base desdites données de profondeur et desdites données
RGB ;
mettre en œuvre, par le biais dudit un ou desdits plusieurs processeurs matériels
(104), une comparaison entre i) chaque longueur de segment de corps provenant de l'estimation
d'une ou plusieurs longueurs de segments de corps associées audit un ou auxdits plusieurs
emplacements d'articulations de corps corrects probables et ii) une longueur de référence
;
identifier, par le biais dudit un ou desdits plusieurs processeurs matériels (104),
au moins un sous-ensemble dudit un ou desdits plusieurs emplacements d'articulations
de corps corrects probables, en tant qu'un ou plusieurs emplacements d'articulations
de corps candidats, sur la base de ladite comparaison ;
déterminer une orientation physique de chaque segment de corps se rapportant à chaque
emplacement parmi ledit un ou lesdits plusieurs emplacements d'articulations de corps
candidats, en segmentant une ou plusieurs coordonnées 3D de chaque segment de corps
sur la base desdites données de profondeur, et en mettant en œuvre une analyse sur
chaque coordonnée 3D segmentée ; et
identifier, à partir dudit un ou desdits plusieurs emplacements d'articulations de
corps candidats, un emplacement d'articulation de corps, sur la base d'un écart minimal
de direction par rapport à ladite orientation physique d'un segment de corps correspondant,
avec un descripteur de caractéristiques desdites données RGB et desdites données de
profondeur, dans lequel ledit écart minimal est basé sur lesdites données de profondeur,
et dans lequel ledit écart minimal est basé sur une série de mouvements réalisés par
ledit utilisateur.
12. Un ou plusieurs supports non transitoires de stockage d'informations lisibles par
machine selon la revendication 11, dans lesquels l'étape d'identification, par le
biais dudit un ou desdits plusieurs processeurs matériels (104), d'au moins un sous-ensemble
dudit un ou desdits plusieurs emplacements d'articulations de corps corrects probables,
en tant qu'un ou plusieurs emplacements d'articulations de corps candidats, est basée
sur le fait que ladite comparaison se traduit par une variation de longueur de segment
de corps minimale.
13. Un ou plusieurs supports non transitoires de stockage d'informations lisibles par
machine selon la revendication 11, dans lesquels une région de recherche est définie
en vue d'identifier ledit un ou lesdits plusieurs emplacements d'articulations de
corps corrects probables en utilisant un rayon équivalent à un déplacement d'une articulation
de squelette correspondante.
14. Un ou plusieurs supports non transitoires de stockage d'informations lisibles par
machine selon la revendication 11, dans lesquels ladite estimation de ladite une ou
desdites plusieurs longueurs de segments de corps est basée sur une distance euclidienne
entre des articulations de squelette adjacentes.
15. Un ou plusieurs supports non transitoires de stockage d'informations lisibles par
machine selon la revendication 11, dans lesquels ladite longueur de référence est
dérivée sur la base de ladite estimation de ladite une ou desdites plusieurs longueurs
de segments de corps.