BACKGROUND OF THE INVENTION
1. Field of the Invention
[0001] The present invention relates to a paper bobbin for yarn, and more particularly to
a cylindrical paper bobbin having two annular protruding portions to protect a yarn
being wound from fibers damaged, fluffs occurred or fiber breakage at initial stage
of a yarn winding operation.
2. Description of Related Art
[0002] Referring to FIG. 1, a conventional paper bobbin 10 for winding yams has a hollow
cylindrical body 11, of which outer periphery (particularly in those areas respectively
adjacent to the two ends of the hollow cylindrical body 11) has a smooth surface without
any protruding structure.
[0003] To wind yarns around the paper bobbin 10, the paper bobbin 10 is mounted around a
stationary shaft 30, and a frictional surface 41 of a rotary shaft 40 is brought into
close contact with the outer periphery of the hollow cylindrical body 11 of the paper
bobbin 10, as indicated by the circled area of "A" in FIG. 1.
[0004] Then, the rotary shaft 40 is rotated as a driving shaft such that the paper bobbin
10 is rotated along with the rotary shaft 40 by friction resulting from the rotating
frictional surface 41. Once the tangential velocity of the outer periphery of the
hollow cylindrical body 11 of the paper bobbin 10 reaches that of the frictional surface
41 of the rotary shaft 40, yarns are introduced and wound around the paper bobbin
10.
[0005] The paper bobbin 10 is a passive component to be rotated by the rotary shaft 40.
When the frictional surface 41 of the rotary shaft 40 has a constant tangential velocity,
the angular velocity of the paper bobbin 10 if rotated is in inverse proportion to
the overall outer diameter of the paper bobbin 10 wound with yarns. As more and more
layers of yarn are winding around the paper bobbin 10, so the angular velocity of
the paper bobbin 10 is also slowed down as more significant.
[0006] At initial stage of a yarn winding operation, the overall outer diameter of the paper
bobbin 10 wound with yarns is still relatively small; in other words, the overall
outer diameter is imperceptible on the increase with the amount of yarn wound around
the paper bobbin 10. During this stage of the yarn winding operation, the rotary shaft
40 therefore drives the paper bobbin 10 to be rotated at a very high angular velocity
to carry out the yarn winding operation.
[0007] When wound at high speed, however, the yarn is pulled by a strong winding force as
well as subject to a high tension. Resulted in that the yarn has fibers damaged or
fluffs occurred, and more seriously, fiber breakage is often happened, repeatedly.
Should any of these problems be occurred, the spinning process must be stopped to
reconnect the yarn.
[0008] In addition, as the hollow cylindrical body 11 of the conventional paper bobbin 10
has a smooth outer periphery without any protruding structure, as shown in FIG. 1,
a complete contact between the hollow cylindrical body 11 of the paper bobbin 10 and
the frictional surface 41 of the rotary shaft 40 takes place at the initial stage
of the yarn winding operation. And, because of the large area of contact, friction-based
acceleration of the paper bobbin 10 generates noise as loud as 95 dB, which causes
noise pollution in a spinning factory.
SUMMARY OF THE INVENTION
[0009] In light of the above, it is a primary object of the present invention to disclose
a paper bobbin for winding yarn, comprising a hollow cylindrical body of which outer
periphery has two annular protruding portions spaced apart at a distance; wherein
each annular protruding portion is protruded from the outer periphery of the hollow
cylindrical body to a height (H) ranging from 0.5 to 2.0 mm, preferably from 0.5 to
1.5 mm, and more preferably from 0.8 to 1.2 mm.
[0010] It is another objective of the present invention to disclose a paper bobbin for winding
yarn, comprising a hollow cylindrical body of which outer periphery has two annular
protruding portions spaced apart at a distance and two annular grooves spaced apart
at a distance; wherein each annular protruding portion is protruded from the outer
periphery of the hollow cylindrical body to a height (H) ranging from 0.5 to 2.0 mm,
and each annular groove of the paper bobbin has a groove width (W) ranging from 4
to 15 mm, preferably from 4 to 12 mm, and more preferably from 4 to 8 mm.
[0011] The paper bobbin of the present invention produces the following advantageous effects
at initial stage of a yarn winding operation, where the paper bobbin is driven by
a high-speed rotary shaft to reel in yarn:
- 1. The tension of the yarn being wound is effectively reduced;
- 2. The yarn is protected from fiber breakage by high tension; or more particularly
from fibers damaged or fluffs occurred;
- 3. The fibers of the yarn are less likely to break, meaning the quality and yield
of the yarn can be ensured; and
- 4. The noise generated in the initial stage of the yarn winding operation is reduced,
e.g., from about 95 dB to about 80 dB; thus, noise pollution in the spinning factory
is ameliorated.
BRIEF DESCRIPTION OF THE DRAWINGS
[0012]
FIG. 1 is a partially sectional view to show how yarns are wound around a conventional
paper bobbin;
FIG. 2 is a partially sectional view of a cylindrical paper bobbin according to the
present invention; and
FIG. 3 is a partially sectional view to show how yarns are wound around the paper
bobbin in FIG. 2.
DETAILED DESCRIPTION OF THE INVENTION
[0013] As shown in FIG. 2 and FIG. 3, a paper bobbin 20 according to the present invention
is disclosed to use in winding yarns, which includes a seamless hollow cylindrical
body 21 formed by winding multiple layers of synthetic paper together. And particularly,
a structural improvement on the paper bobbin 20 of the present invention is that an
outer periphery of the hollow cylindrical body 21 is provided with two identical annular
protruding portions 22 which are each other spaced apart at a distance.
[0014] One of the two annular protruding portions 22 is located the place adjacent to one
end of the hollow cylindrical body 21, and the other is adjacent to the other end
of the hollow cylindrical body 21, respectively.
[0015] Each annular protruding portion 22 is protruded from the outer periphery of the hollow
cylindrical body 21 to a height (H) ranging from 0.5 to 2 mm, preferably from 0.5
to 1.5 mm, more preferably from 0.8 to 1.2 mm.
[0016] Accordingly, no matter the paper bobbin 20 of the present invention has the same
outer diameter as that of the conventional paper bobbin 10 shown in FIG. 1, the outer
diameter of the annular protruding portions 22 is still greater than the outer diameter
of the hollow cylindrical body 11 of the conventional paper bobbin 10 by 0.5-2.0 mm.
Therefore, at initial stage of a yarn winding operation, referring to the circled
area of "B" in FIG. 3, only the top of each annular protruding portion 22 of the paper
bobbin 20 of the present invention is in contact with the frictional surface 41 of
the rotary shaft 40; in consequence, a frictional area generated between the paper
bobbin 20 and the rotary shaft 40 is substantially smaller than that between the conventional
paper bobbin 10 and the rotary shaft 40. This helps reduce noise pollution in a spinning
factory by lowering the noise generated at the initial stage of the yarn winding operation
from about 95 dB (when the conventional paper bobbin 10 is used) to about 80 dB.
[0017] More specifically, at the initial stage of a yarn winding operation, the paper bobbin
20 of the present invention contacts the rotary shaft 40 via the annular protruding
portions 22, whose outer diameter is greater than that of the hollow cylindrical body
11 of the conventional paper bobbin 10 and which keep rotating at the same tangential
velocity as the rotary shaft 40.
[0018] By contrast, the conventional paper bobbin 10 contacts the rotary shaft 40 via the
hollow cylindrical body 11, whose outer diameter is smaller than that of the annular
protruding portions 22 of the paper bobbin 20 of the present invention. Hence, when
driven by the rotary shaft 40 at the same tangential velocity, the paper bobbin 20
of the present invention has a much lower angular velocity at the initial stage of
a yarn winding operation than the conventional paper bobbin 10 has, and this helps
reduce the winding force (or tension) with which the yarn is reeled in. Thus, the
annular protruding portions 22 keep the yarn being wound from fibers damaged, fluffs
occurred or fiber breakage at the initial stage of a yarn winding operation.
[0019] Referring to FIG. 1, yarn is wound around the conventional paper bobbin 10 by moving
spirally back and forth between the two ends of the hollow cylindrical body 11 of
the paper bobbin 10; as a result, the two ends of the hollow cylindrical body 11 of
the conventional paper bobbin 10 are the mostly frequently wound portions. This phenomenon
tends to deform the conventional paper bobbin 10 and cause high-tension damage to
the yarn at the two ends of the hollow cylindrical body 11.
[0020] To solve these problems, referring to FIG. 2 and FIG. 3, another structural improvement
on the aforesaid paper bobbin 20 of the present invention is that, in addition to
having the two annular protruding portions 22, the paper bobbin 20 further provides
two identical annular grooves 23 each depressed on the outer periphery of the hollow
cylindrical body 21 of the paper bobbin 20. More specifically, one of the two annular
grooves 23 is located the place adjacent to one of the two annular protruding portions
22, and the other is adjacent to the other annular protruding portion 22 of the hollow
cylindrical body 21, respectively.
[0021] Each annular groove 23 is a recess, which depth recessed into the outer periphery
of the hollow cylindrical body 21 preferably ranges from 0.5 to 5.5 mm. In addition,
each annular groove 23 has a groove width (W) ranging from 4 to 15 mm, preferably
from 4 to 12 mm, more preferably from 4 to 8 mm.
[0022] When driven by the rotary shaft 40, the paper bobbin 20 of the present invention
has different tangential velocities at different positions. At the annular grooves
23, whose inner diameter is smaller than the outer dimeter of the hollow cylindrical
body 21, a relatively low tangential velocity is obtained at the initial stage of
a yarn winding operation.
[0023] More specifically, each annular groove 23 formed on the paper bobbin 20 is functionally
served as a buffer area when the paper bobbin 20 in winding yarns, so that each annular
groove 23 allows yarn to be wound in the buffer area at a relatively low tangential
velocity during the initial stage of a yarn winding operation. Thus, the annular grooves
23 keep the paper bobbin 20 from deformation and the yarn being wound from damage
attributable to high tension.
[0024] Referring to FIG. 3, when the paper bobbin 20 of the present invention is winding
with yarn, the paper bobbin 20 is mounted around the stationary shaft 30, and the
frictional surface 41 of the rotary shaft 40 is brought into close contact with the
top of each protruding portion 22 of the paper bobbin 20. Then, the rotary shaft 40,
which serves as a driving shaft, drives the paper bobbin 20 into simultaneous rotation
via friction generated by rotation of the frictional surface 41. Once the tangential
velocity of the outer periphery of the hollow cylindrical body 21 of the paper bobbin
20 becomes equal to that of the frictional surface 41 of the rotary shaft 40, yarn
is introduced into one of the annular grooves 23 of the paper bobbin 20 and subsequently
wound around the paper bobbin 20.
[0025] According to the above, the paper bobbin 20 of the present invention can lower the
frequency of fiber breakage at the initial stage of a yarn winding operation and therefore
leads to an increase in quality and yield of yarn.
1. A paper bobbin for winding yarn, comprising a hollow cylindrical body of which outer
periphery has two annular protruding portions spaced apart at a distance; wherein
each annular protruding portion is protruded from the outer periphery of the hollow
cylindrical body to a height (H) ranging from 0.5 to 2.0 mm.
2. The paper bobbin for winding yarn of Claim 1, wherein the height (H) of each protruding
portion ranges from 0.5 to 1.5 mm.
3. The paper bobbin for winding yarn of Claim 1, wherein the height (H) of each protruding
portion ranges from 0.8 to 1.2 mm.
4. The paper bobbin for winding yarn of any one of Claims 1-3, wherein the outer periphery
of the hollow cylindrical body is further provided with two annular grooves, one of
them is adjacent to one of the two annular protruding portions, the other is adjacent
to the other annular protruding portion, and each said annular groove has a groove
width (W) ranging from 4 to 15 mm.
5. The paper bobbin for winding yarn of Claim 4, wherein the groove width (W) of each
annular groove ranges from 4 to 12 mm.
6. The paper bobbin for winding yarn of Claim 4, wherein the groove width (W) of each
annular groove ranges from 4 to 8 mm.