(11) EP 3 311 968 A1

(12)

EUROPEAN PATENT APPLICATION

(43) Date of publication: **25.04.2018 Bulletin 2018/17**

(21) Application number: 16398007.1

(22) Date of filing: 20.10.2016

(51) Int Cl.:

B28C 5/08 (2006.01) B01F 13/00 (2006.01) B28C 5/18 (2006.01) B01F 9/06 (2006.01) B01F 15/02 (2006.01)

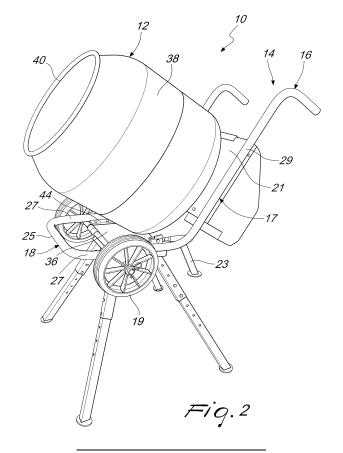
(84) Designated Contracting States:

AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

Designated Extension States:

BA ME

Designated Validation States:


MA MD

- (71) Applicant: Simoes & Rodrigues, S.A. 3230-347 Penela (PT)
- (72) Inventor: Rodrigues Simões, Mário José 3230-331 Penela (PT)
- (74) Representative: Modiano, Micaela Nadia et al Modiano & Partners Thierschstrasse 11 80538 München (DE)

(54) BARREL MIXER

(57) A barrel mixer (10) is disclosed. The barrel mixer (10) comprises a barrel (12); a frame (14) for removably supporting the barrel (12), the frame (14) having a handle portion (16) and a base (18); a pivot member (20) pivotably coupled to the base (18) for movement of the barrel (12) between a mixing position and a pouring position about a rotation axis (B) relative to the pivot member (20),

the pivot member (20) having a pivot mounting element (22); and a stand (24) for supporting the frame (14), the stand (24) having a stand mounting element (26) for detachable coupling with the pivot mounting element (22), characterised by the rotation axis (B) being spaced from the pivot mounting element (22).

15

20

25

35

40

Technical Field

[0001] This disclosure relates to the field barrel mixers for mixing cement, and in particular to mountable barrel mixers and more particularly to tiltable barrel mixers.

1

Background

[0002] Barrel mixers are used to mix materials such as cement, concrete, mortar, render and other similar materials. Barrel mixers may be used either in producing batches of mixed material or in producing continuous amounts of mixed material.

[0003] Barrel mixers may have different types. One type of a barrel mixer is mounted so as to be tiltable between a mixing position and a tipping position. The barrel mixer can have an ability for the tilt angle to be fixed at a position between the mixing and tipping positions.

[0004] Barrel mixers may have a support base on which it is tiltable. The support base may have wheels for ease of movement of the barrel mixer. The barrel mixer may be attached to the base which prevents dismantling into component parts. The barrel mixer may be detachable from the support base which allows for dismantling into component parts for easy transportation.

[0005] EP1332853 discloses a barrel mixer comprising a support for a rotary mixer barrel having a tipping arrangement. The barrel mixer can be tilted between a mixing position in which the barrel is angled so as to retain its contents and a pouring position in which the barrel is angled so that its contents are poured out. The tipping arrangement has a first and second limiting stops that are provided to limit the movement of the barrel between the mixing and pouring positions.

[0006] The barrel mixer also has a motor and transmission mounted on the support for rotating the barrel, and includes a step-down gearing positioned between the motor and the barrel. The motor and the associated gearing can be tilted along with the barrel.

[0007] The support comprises a wheeled trolley and a stand with a pintle bearing that can receive the wheeled trolley. The pintle bearing permits the support to be tipped on the pintle bearing between the mixing position and the pouring position.

[0008] The present disclosure is directed, at least in part, to improving or overcoming one or more aspects of the prior art system.

Brief Summary of the Invention

[0009] In a first aspect, the present disclosure describes a barrel mixer comprising: a barrel; a frame for removably supporting the barrel, the frame having a handle portion and a base; a pivot member pivotably coupled to the base for movement of the barrel between a mixing position and a pouring position about a rotation axis rel-

ative to the pivot member, the pivot member having a pivot mounting element; and a stand for supporting the frame, the stand having a stand mounting element (26) for detachable coupling with the pivot mounting element, characterised by the rotation axis (B) being spaced from the pivot mounting element.

[0010] In a second aspect, the present disclosure describes a method.

10 Brief Description of the Drawings

[0011] The foregoing and other features and advantages of the present disclosure will be more fully understood from the following description of various embodiments, when read together with the accompanying drawings, in which:

Fig. 1 is a front view of a barrel mixer according to the present disclosure;

Fig. 2 is a isometric view of the barrel mixer of Fig. 1; Fig. 3 is a side view of a frame supporting a rotary mixer barrel of the barrel mixer of Fig. 1;

Fig. 4 is a plane view of a frame supporting a rotary mixer barrel of the barrel mixer of Fig. 1;

Fig. 5 is a cross-sectional view of a pivot member coupled to a wheel assembly of the barrel mixer of Fig. 1;

Fig. 6 is a side view of a stand of the barrel mixer of Fig. 1;

Fig. 7 is a plan view of a stand of the barrel mixer of Fig. 1:

Fig. 8 is a side view of the barrel mixer at a mixing position (solid lines) and at a pouring position (dashes):

Fig. 9 is a front view of the barrel mixer in a pouring position with the base positioned away from the pivot member;

Fig. 10 is a schematic view of a motor and a transmission system to rotate the barrel of the barrel mixer; and

Fig. 11 is a side view of a casing for the motor and transmission system of Fig. 9.

Detailed Description

[0012] This disclosure generally relates to a barrel mixer **10**. The barrel mixer **10** may be adjusted so as to be inclined between a mixing position and a pouring position.

[0013] Fig. 1 illustrates a barrel mixer 10. The barrel mixer 10 comprises a barrel 12. Barrel 12 may have a body 38 and a mouth 40. Body 38 is cylindrical. Mouth 40 is positioned at an end of the body 38. Mouth 40 is open for receiving component materials and for permitting mixed materials to be poured out. Mouth 40 has a diameter that is smaller than the diameter of the body 38. Barrel 12 may be a rotary mixer barrel that is driven by a motor (not shown).

2

_

45

15

25

30

40

[0014] With respect to figure 2, the barrel mixer 10 comprises a frame 14. The barrel 12 is removably supported on the frame 14. The barrel 12 may be mounted onto the frame 14 for operation and demounted for transportation. Barrel 12 may be rotatably supported on the frame 14. With respect to fig. 3, barrel 12 may be rotatably supported on the frame 14 so as to rotate about a rotary mixing axis A. The barrel 12 may be rotated manually or by a motor.

[0015] With respect to figs. 2 and 3, the frame 14 has a handle portion 16 and a base 18. Handle portion 16 may have handles 15 for manual control of the barrel mixer 10. Base 18 may be provide with wheels 19 and frame legs 23. Frame legs 23 may be spaced from the wheels 19. Opposite sides of the base 18 is provided with a respective wheel 19 and a frame leg 23. Frame 14 may be in a form of a trolley.

[0016] Frame 14 has a body portion 17 positioned between the handle portion 16 and the base 18. Body portion 17 is inclined relative to the base 18. Body portion 17 is inclined away from the base 18. Base 18 may be U shaped. In an embodiment, base 18 may be formed form a single tube formed into a U shaped structure. Base 18 comprises a beam 25 and arms 27. The beam 25 connects to ends of the arms 27. At respective opposite ends, each arm 27 is connected to the body portion 17. In an embodiment, body portion 17 comprises spaced apart tubes 29. Each spaced apart tube 29 of the body portion 17 is connected to a respective arm 27 of base 18. [0017] With respect to fig. 3, handle portion 16 may be comprised of tubes wherein each tube has a handle 15 and a connection end 31. The handle portion 16 may be substantially L-shaped wherein the handles 15 are substantially perpendicular to the connection ends 31. Connection ends 31 are mounted to the body portion 17. Connection ends 31 are mounted to the body portion 17 at a plurality of engagement points on the body portion 17. The distance of the handles 15 from the body portion 17 may be varied by the selection of a suitable engagement point thereon. Connection ends 31 are linearly aligned with the body portion 17. Handles 15 are inclined relative to the body portion 17. In an embodiment, handles 15 are substantially perpendicular to the body portion 17.

[0018] Barrel 12 is removably mounted to the frame 14 at the body portion 17. Barrel 12 is positioned at the body portion 17 so as to be suspended over the base 18. End of body 38 opposite mouth 40 is coupled to the body portion 17. Mouth 40 is located over the base 18. Position of barrel 12 is fixed relative to the base 18.

[0019] Rotation axis A of barrel 12 is substantially perpendicular to the body portion 17. Rotation axis A of barrel 12 is inclined relative to the base 18. Rotation axis A of barrel 12 is inclined away from the base 18. Position and angle of inclination of rotation axis A is fixed relative to the base 18.

[0020] With reference to fig. 2, body portion 17 has a panel 21 for removable mounting of the barrel 12. In an embodiment, panel 21 is positioned between the tubes

29 forming the body portion 17. Panel 21 may be positioned between the barrel 12 and the transmission system (not shown). The transmission system and the motor may be encompassed within a cover 42.

[0021] With respect to figs. 4 and 5, barrel mixer 10 has a pivot member 20. The pivot member 20 is pivotably coupled to the base 18. Pivot member 20 is pivotably coupled to the base 18 so as to enable the movement of the barrel 12 between a mixing position and a pouring position relative to the pivot member 20. The barrel 12 undergoes a rotational movement between the mixing position and the pouring position relative to the pivot member 20. Barrel 12 moves along an arc when travelling between the mixing position and the pouring position relative to the pivot member 20.

[0022] Barrel 12 is movable about the rotation axis B. Barrel 12 is movable about the rotation axis B when travelling between the mixing position and the pouring position. The rotation axis B is perpendicular to the rotary mixing axis A. Rotation axis B is positioned transverse to the plane of movement of the barrel 12.

[0023] Barrel mixer 10 comprising a hinge coupling 28 between the pivot member 20 and the base 18. The rotation axis B extends through the hinge coupling 28. Barrel 12 is rotatable along the direction in which the pivot member 20 is rotatable. Rotation of pivot member 20 relative to the base 18 enables the movement of the barrel 12 between the mixing position and the pouring position.

[0024] In an embodiment, the hinge coupling 28 comprises a strut 32. The base 18 has the strut 32 extending transversely across. Strut 32 is rigidly fixed to the base 18. Pivot member 20 is pivotably coupled to the strut 32. Pivot member 20 is rotatable about strut 32. Rotation axis B may extend through the strut 32. In an embodiment, strut 32 extends between arms 27. Strut 32 is perpendicular to the arms 27. Pivot member 20 is rotatable between the arms 27. Strut 32 is spaced from beam 25. Strut 32 is parallel to the beam 25. Strut 32 is positioned between the frame legs 23 and the beam 25. Pivot member 20 is within the space provided between the arms 27 and the beam 25.

[0025] Hinge coupling 28 comprises at least one ring 34 rotatably coupled to the strut 32 and rigidly fixed to the pivot member 20. Ring 34 is positioned on an edge of the pivot member 20. The pivot member 20 comprises at least two rings 34 rotatably connected to the strut 32. [0026] With reference to Fig. 5, the pivot member 20 comprises a pivot plate 30. The pivot plate 30 is pivotably coupled to the base 18. The pivot plate 30 is pivotable about the rotation axis B. The edge of pivot plate 30 is pivotably coupled to the base 18 through the hinge coupling 28. The ring 34 is disposed on the edge of plate 30 for rotatable coupling to the strut 32. In an embodiment, pivot plate 30 is rectangular in shape. Pivot plate 30 is substantially flat.

[0027] In an embodiment, hinge coupling 28 may comprise protrusions from the arms 27 to which the pivot

member **20** is coupled. Protrusions may be in mutual alignment on the arms **27**. Rotation axis **B** may extend through the protrusions.

[0028] With reference to Fig. 4, in an embodiment, the strut 32 extends away from base 18 so as to present free ends on either side of the base 18 for attachment of wheels 19. The strut 32 serves as the axle for the wheeled frame 14. The rotation axis B extends through the wheels 19.

[0029] With reference to Figs. 4, 5 and 9, barrel mixer 10 further comprises a limit plate 36 rigidly fixed to the base 18 for limiting the movement of the pivot member 20. Limit plate 36 limits the rotational movement of the base 18 relative to the pivot member 20. Limit plate 36 limits the rotational movement of the base 18 relative to the pivot member 20 towards the barrel 12. Limit plate 36 abuts the pivot member 20 thereby preventing further rotational movement of the base 18.

[0030] Limit plate 36 is configured to abut and rest against the pivot plate 30. Limit plate 36 abuts the pivot plate 30 at respective planar sides. Limit plate 36 has a limit surface 46 that abuts an abutment surface 48 of the pivot plate 30.

[0031] Limit plate 36 is positioned on a plane that is substantially parallel to the plane of the base 18. Limit plate 36 is positioned on a plane that is substantially aligned to the rotational axis B. Limit plate 36 is positioned between the arms 27. Limit plate 36 is rigidly connected to the arms 27. Limit plate 36 is connected at respective opposite sides to brackets 44 that are rigidly joined to the arms 27. Limit plate 36 is spaced from the beam 29. Limit plate 36 is positioned adjacent strut 32.

[0032] In an embodiment, limit plate 36 is rigidly connected to the strut 32. Limit plate 36 is rigidly connected to the strut 32 along a side that is adjacent to the sides connected to the arms 27. Connections of the limit plate 36 to the strut 32 are positioned between the respective arms 27 and the hinge connection 28 of the pivot member 20 and the strut 32.

[0033] In an embodiment, limit plate 36 has a rectangular shape. Limit plate 36 has a dimension that is greater than the dimension of the pivot member 20. Limit plate 36 has a dimension that is greater than the dimension of the pivot plate 30.

[0034] With reference to fig. 4, the pivot member 20 further comprises a pivot mounting element 22. The rotation axis **B** is spaced from the pivot mounting element 22. The pivot mounting element 22 is disposed away from the rotation axis **B**. The pivot mounting element 22 is positioned away from the hinge coupling 28. The pivot mounting element 22 is positioned away from the strut 32. [0035] Pivot mounting element 22 is disposed on a resting surface 52 that is the side opposite the abutment surface 48. The pivot mounting element 22 is a projection centrally positioned on the pivot plate 30. Pivot mounting element 22 extends from the pivot plate 30 away from the resting surface 52. Pivot mounting element 22 is circled by positional ring 50. Positional ring 50 extends from

the abutment surface **48.** Positional ring **50** extends in a direction parallel to the pivot mounting element **22.** Pivot mounting element **22** extends to greater length from the pivot plate **30** relative to the positional ring **50.**

[0036] In an embodiment, pivot mounting element 22 is a tube extending from the pivot plate 30. Pivot mounting element 22 is perpendicular to the pivot plate 30. Pivot mounting element 22 is perpendicular to the rotation axis B.

[0037] With reference to figs, 6 and 7, barrel mixer 10 further comprises a stand 24 for supporting the frame 14. The stand 24 has a stand mounting element 26 for detachable coupling with the pivot mounting element 22. Stand 24 further comprises a platform 54 having the stand mounting element 26. Platform 54 engages the pivot member 20. The pivot member 20 rests on the platform 54 when the frame 14 is mounted on the stand 24. Pivot plate 30 is supported by the platform 54. Platform 54 has a support surface 56 for engaging the resting surface 52 of the pivot plate 30. Platform 54 is substantially flat.

[0038] Stand mounting element 26 is positioned in the centre of the platform 54. Stand mounting element 26 is a projection centrally positioned on the pivot plate 30. Stand mounting element 26 extends from the platform 54 away from the support surface 56. Pivot mounting element 22 engages with the stand mounting element 26. Pivot mounting element 26 into the stand mounting element 26.

30 [0039] In an embodiment, stand mounting element 26 is a tube extending from the platform 54. Stand mounting element 26 is perpendicular to the platform 54. Stand mounting element 26 is perpendicular to the rotation axis B.

[0040] Stand mounting element 26 is circled by positional depression 58. Positional depression 58 is formed on the platform 54 and positioned opposite the support surface 56. Positional depression 58 is coaxially positioned relative to the stand mounting element 26. Positional ring 50 engages with the positional depression 58. Positional ring 50 engages into the positional depression 58.

[0041] Stand 24 further comprises stand legs 59. Stand legs 59 are connected to the platform 54. Stand legs 59 are connected to the platform 54 opposite the support surface 56. Stand legs 59 are connected to the platform 54 at the corners thereof. Stand legs 59 are inclined relative to the platform 54. Stand legs 59 are inclined away from the stand mounting element 26.

[0042] With reference to Fig. 8, the barrel 12 is shown in a mixing position represented with solid lines and in a pouring position represented with dashes. In the pouring position, the barrel 12, frame 14 motor and transmission system enclosed in cover 42 are tilted relative to the stand
 24. With reference to Fig. 9, at the pouring position the limit plate 36 is rotated away from the pivot member 20. Pivot plate 30 remains in contact with the stand 24.

[0043] With reference to Fig. 10, the barrel mixer 10

35

40

further comprises a motor 60 and transmission system 62 for rotating the barrel 12. The transmission system 62 is interposed between the motor 60 and the barrel 12. The transmission system 62 and the motor 60 are positioned on panel 21. The transmission system 62 and the motor 60 are positioned on the side of panel 21 opposite to the side supporting the barrel 12. The transmission system 62 and the motor 60 are demountable from the panel 21. The demounted transmission system 62 and the motor 60 can be positioned within the barrel 12 for ease of transportation of the barrel mixer 10.

[0044] Transmission system 62 comprises a pulley 64, a first gear 66 and a second gear 68. The first gear 66 may be a pinion and the second gear 68 may be a chain transmission gear ring. Motor 60 may be coaxially aligned to the second gear 68.

[0045] Motor 60 is coupled to the pulley 64. Pulley 64 is driven by the motor 60 via a belt 76. Pulley 64 receives the rotation and force from the motor 60 through the belt 76. This makes possible the easy adjustment of belt 76. The belt 76 may be made from rubber. Vibrations produced by the motor 60 and pulley 64 may be eliminated by rubber belt damping. The force transmission that occurs between the motor 60, that is fixed on a non-metallic support, and the pulley 64, eliminates possible damage caused by electric shock with the transmission being made by a rubber belt.

[0046] First gear 66 is connected with the pulley 64. First gear 66 and the pulley 64 rotatable in unison. First gear 66 and pulley 64 rotate together when the first gear 66 is driven by the motor 60 via belt 76.

[0047] The second gear 68 is connected to the axel 72 of the barrel 12. Rotation of the second gear 68 rotates the barrel 12. The diameter of the second gear 68 is increased in order to ensure increased binary force on the barrel. The second gear 68 transfers force and rotation to the barrel 12, without losses, in the cement mixing time. The diameter of the second gear 68 is greater than the diameter of the first gear 66.

[0048] Second gear 68 is coupled to the first gear 66 by a chain 70. The chain 70 has a tensioning member 78 that ensures the chain 70 is properly tensioned between the first gear 66 and the second gear 68 thereby avoiding losses of force and power. The first gear 66 incorporated on the pulley 64 transmits force via chain 70 to the second gear 68 that makes rotate the barrel 12. [0049] Second gear 68 is connected to the axel 72 so that the rotation of the second gear 68 rotates the barrel 12. Axel 72 extends through the panel 21 so as to connect the transmission system 62 to the barrel 12. In an embodiment, axel 72 is configured to support and rotate the barrel 12. With reference to Fig. 11, transmission system 62 and the motor 60 may be disposed in a casing 74. [0050] The transmission system 62 has two transmis-

[0050] The transmission system 62 has two transmission systems, one by chain 70 and another by belt 76. Through this dual transmission there is an increase in performance of the barrel mixer 12 and an increase in safety during use.

[0051] The skilled person would appreciate that foregoing embodiments may be modified or combined to obtain the barrel mixer **10** of the present disclosure.

Industrial Applicability

[0052] This disclosure describes a barrel mixer 10 for mixing materials such as cement, concrete, mortar, render and other similar materials. Barrel mixer 10 has a stand 24 which supports the barrel 12 at a height that allows easy access to the mouth 40 of the barrel 12 and enables the barrel 12 to be moved between a mixing position and a pouring position. The rotation of the barrel 12 occurs along a hinge coupling 28 that is spaced from the mounting of the frame 14 to the stand 24.

[0053] Accordingly, this disclosure includes all modifications and equivalents of the subject matter recited in the claims appended hereto as permitted by applicable law. Moreover, any combination of the above-described elements in all possible variations thereof is encompassed by the disclosure unless otherwise indicated herein.

[0054] Where technical features mentioned in any claim are followed by reference signs, the reference signs have been included for the sole purpose of increasing the intelligibility of the claims and accordingly, neither the reference signs nor their absence have any limiting effect on the technical features as described above or on the scope of any claim elements.

[0055] One skilled in the art will realise the disclosure may be embodied in other specific forms without departing from the disclosure or essential characteristics thereof. The foregoing embodiments are therefore to be considered in all respects illustrative rather than limiting of the disclosure described herein. Scope of the invention is thus indicated by the appended claims, rather than the foregoing description, and all changes that come within the meaning and range of equivalence of the claims are therefore intended to be embraced therein.

Claims

40

45

50

1. A barrel mixer (10) comprising:

a barrel (12);

a frame (14) for removably supporting the barrel (12), the frame (14) having a handle portion (16) and a base (18);

a pivot member (20) pivotably coupled to the base (18) for movement of the barrel (12) between a mixing position and a pouring position about a rotation axis (B) relative to the pivot member (20), the pivot member (20) having a pivot mounting element (22); and

a stand (24) for supporting the frame (14), the stand (24) having a stand mounting element (26) for detachable coupling with the pivot mounting

5

10

15

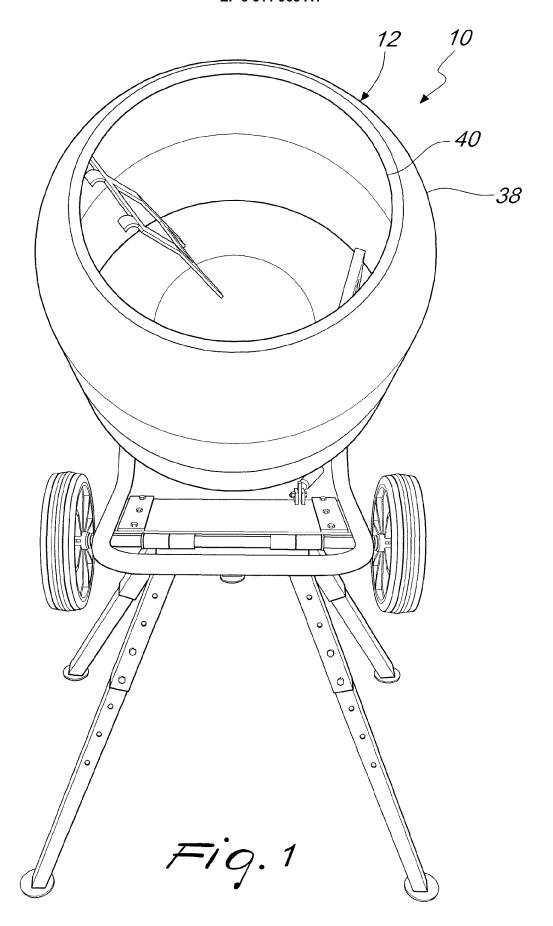
20

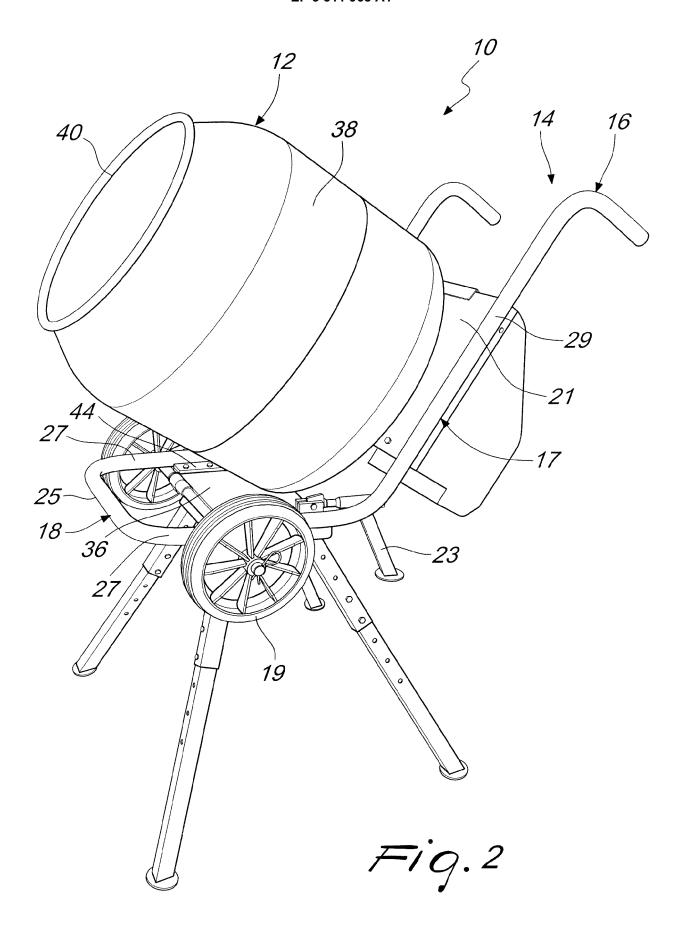
25

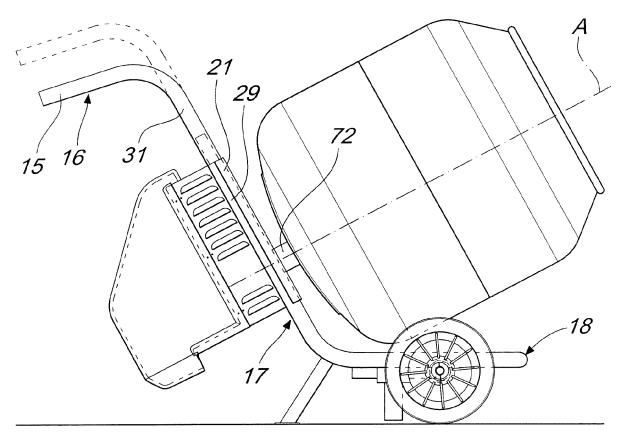
30

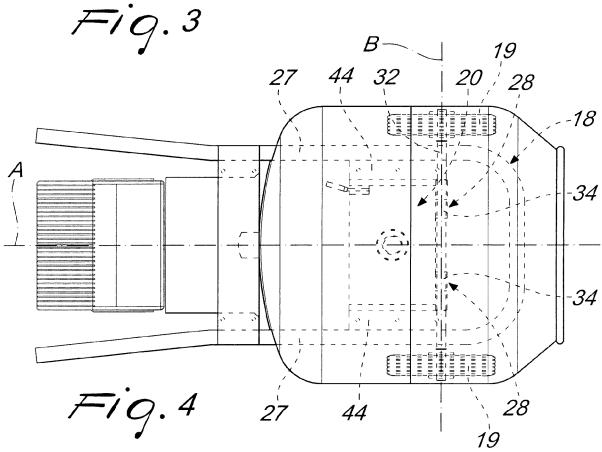
35

45

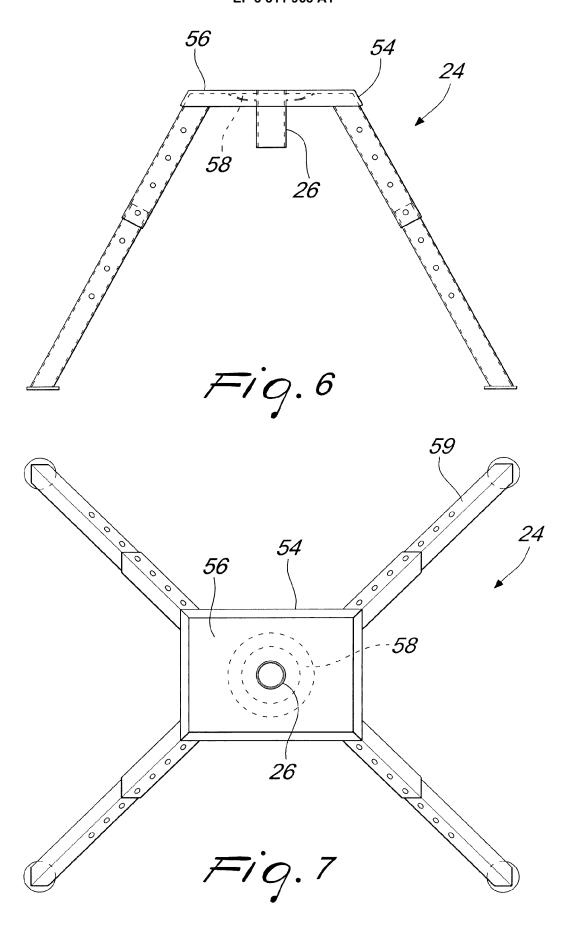

element (22),


characterised by the rotation axis (B) being spaced from the pivot mounting element (22).


- 2. The barrel mixer (10) of claim 1 further comprising a hinge coupling (28) between the pivot member (20) and the base (18) wherein the rotation axis (B) extends through the hinge coupling (28).
- 3. The barrel mixer (10) of claims 1 or 2 wherein the frame comprises wheels (30) coupled to the base (18) through an a strut (32), the pivot member (20) being pivotably coupled to the base (18) through the strut (32) wherein the rotation axis (B) extends through the strut (32).
- **4.** The barrel mixer (10) of claim 3 wherein the pivot mounting element (22) is positioned away from the strut (32).
- 5. The barrel mixer (10) of claims 3 or 4 wherein the pivot member (20) comprises rings (34) rotatably connected to the strut (32).
- **6.** The barrel mixer (10) of any one of preceding claims further comprising a limit plate (36) rigidly fixed to the base (18) for limiting the movement of the pivot member (20).
- 7. The barrel mixer (10) of any one of preceding claims wherein the pivot member comprises a pivot plate (30) pivotably coupled to the base (18), the pivot plate (30) being pivotable about the rotation axis (B).
- **8.** The barrel mixer (10) of claim 7 wherein the edge of the pivot plate (30) is pivotably coupled to the base (18).
- **9.** The barrel mixer (10) of claim 7 or 8 wherein the pivot mounting element (22) is a projection centrally positioned on the pivot plate (30).
- **10.** The barrel mixer (10) of any one of preceding claims wherein the rotation axis (B) is positioned transverse to the plane of movement of the barrel (12).
- 11. The barrel mixer (10) of any one of preceding claims further comprising a motor (60) coupled to the barrel (12) through a transmission system (62), the transmission system (62) comprising:
 - a pulley (64) coupled to the motor (60) through a belt (76);
 - a first gear (66) connected to the pulley (64); and a second gear (68) coupled to the first gear (66) through a chain (70), the second gear (68) being connected to the barrel (12) wherein the barrel


- (12) is rotatable by the motor (60) though the transmission system (62).
- **12.** The barrel mixer (10) of claim 11 wherein the belt (76) is made of rubber.
- The barrel mixer (10) of claims 11 or 12 wherein the motor (60) is coaxially aligned to the second gear


6



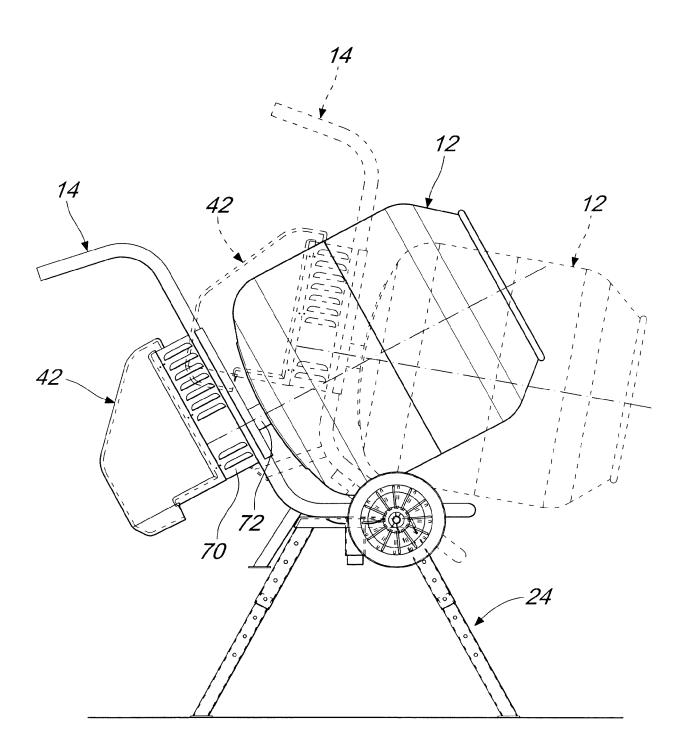



Fig. 8

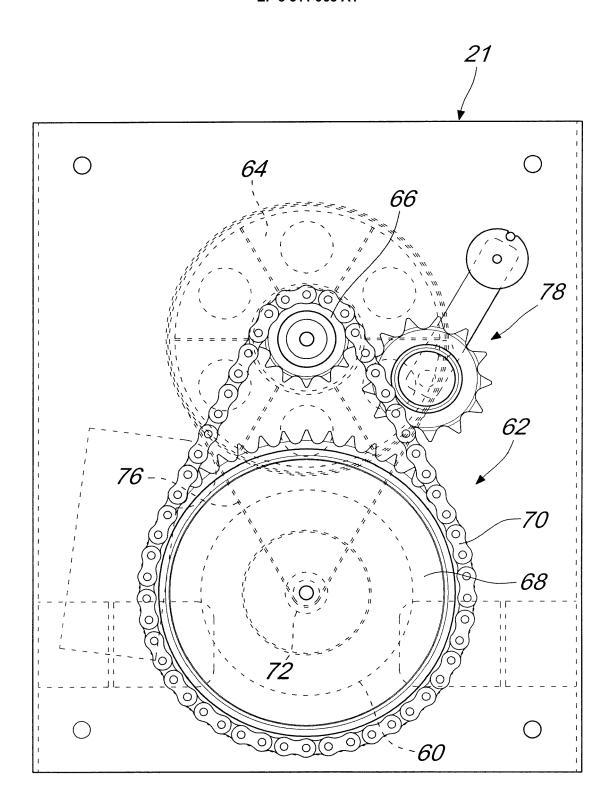
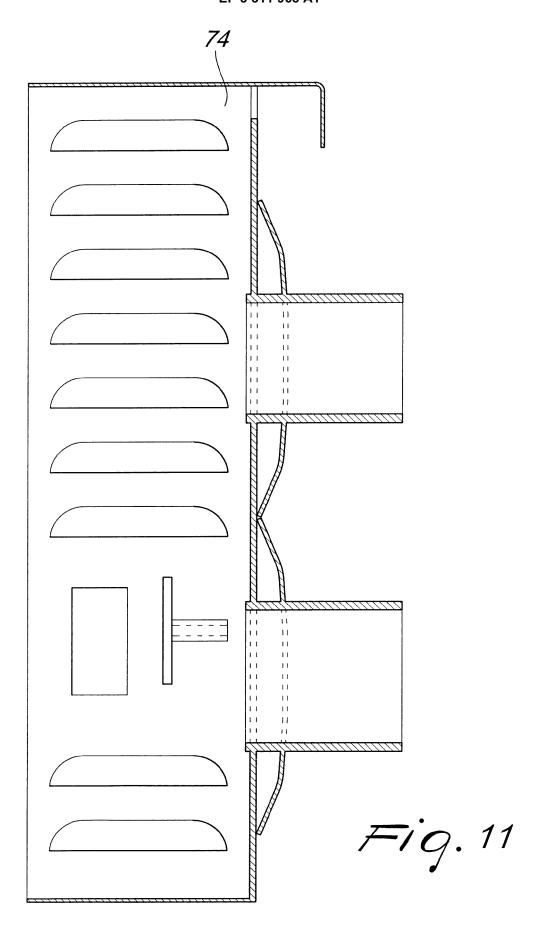



Fig. 10

DOCUMENTS CONSIDERED TO BE RELEVANT

US 6 921 189 B2 (BLACKHURST RONALD SAMUEL

GB 2 463 003 A (HARRIS ERIC CHIGANEL [GB]) 1-13

Citation of document with indication, where appropriate,

* figures 1-10 *
* page 8, line 28 - page 10, line 10 *

US 2013/201780 A1 (LIAO SHU-HUNG [TW])

* paragraphs [0022], [0023], [0025] *

of relevant passages

[GB]) 26 July 2005 (2005-07-26) * figures 1-4 *

* column 3, lines 22-28 *

* column 3, lines 42-53 * * column 4, lines 1,2 *

* column 4, lines 19-33 *

3 March 2010 (2010-03-03)

8 August 2013 (2013-08-08)

* figures 5-13 *

Category

Χ

Α

Α

EUROPEAN SEARCH REPORT

Application Number

EP 16 39 8007

CLASSIFICATION OF THE APPLICATION (IPC)

INV.

B28C5/08 B01F9/06

B01F13/00

B01F15/02

TECHNICAL FIELDS SEARCHED (IPC)

B28C B01F

Examiner

Voltz, Eric

B28C5/18

Relevant

to claim

1-6,

10-13

1-10

5

10

15

20

25

30

35

40

45

50

55

1503 03.82

1	The present search report has been drawn up for all claims				
	Place of search	Date of completion of the search			
32 (P04C01)	The Hague	18 April 2017			
32 (P	CATEGORY OF CITED DOCUMENT	S T: theory or princ			

X : particularly relevant if taken alone Y : particularly relevant if combined with another document of the same category

A : technological background
O : non-written disclosure
P : intermediate document

T: theory or principle underlying the invention
E: earlier patent document, but published on, or after the filing date
D: document cited in the application

L: document cited for other reasons

& : member of the same patent family, corresponding document

1	6	
ı	n	

EP 3 311 968 A1

ANNEX TO THE EUROPEAN SEARCH REPORT ON EUROPEAN PATENT APPLICATION NO.

EP 16 39 8007

5

This annex lists the patent family members relating to the patent documents cited in the above-mentioned European search report. The members are as contained in the European Patent Office EDP file on The European Patent Office is in no way liable for these particulars which are merely given for the purpose of information.

18-04-2017

10	Patent document cited in search report	Publication date	Patent family member(s)	Publication date
15	US 6921189 B	2 26-07-2005	AU 4711397 A DE 69729810 D1 DE 69729810 T2 EP 1015204 A1 EP 1332853 A2 ES 2224221 T3 ES 2260531 T3 GB 2318303 A US 6220744 B1 US 2001010657 A1	15-05-1998 12-08-2004 11-08-2005 05-07-2000 06-08-2003 01-03-2005 01-11-2006 22-04-1998 24-04-2001 02-08-2001
	CD 0463003	02.02.0010	US 2003202419 A1 WO 9817451 A1	30-10-2003 30-04-1998
25	GB 2463003 A US 2013201780 A	03-03-2010 1 08-08-2013	NONE NONE	
30				
35				
40				
45				
50				
55	FOHM PO458			

For more details about this annex : see Official Journal of the European Patent Office, No. 12/82

EP 3 311 968 A1

REFERENCES CITED IN THE DESCRIPTION

This list of references cited by the applicant is for the reader's convenience only. It does not form part of the European patent document. Even though great care has been taken in compiling the references, errors or omissions cannot be excluded and the EPO disclaims all liability in this regard.

Patent documents cited in the description

• EP 1332853 A [0005]