EP 3 312 722 A1

(1 9) Europdisches

: Patentamt

European
Patent Office

Office européen
des brevets

(11) EP 3 312 722 A1

(12) EUROPEAN PATENT APPLICATION

(43) Date of publication:
25.04.2018 Bulletin 2018/17

(21) Application number: 17195347.4

(22) Date of filing: 06.10.2017

(51) IntClL:

GO6F 9/48 (2006.0%) GO6F 9/50 (2006.0%)

(84) Designated Contracting States:
AL AT BEBG CH CY CZDE DK EE ES FIFRGB
GRHRHUIEISITLILTLULVMC MKMT NL NO
PL PT RO RS SE SI SK SM TR
Designated Extension States:
BA ME
Designated Validation States:
MA MD

(30) Priority: 21.10.2016 DE 102016220777

(71) Applicant: FUJITSU LIMITED
Kanagawa 211-8588 (JP)

(72) Inventors:
+ MORA LOPEZ, José
28017 Madrid (ES)

+ VILLAZON-TERRAZAS, Boris
28003 Madrid (ES)
* DE LA TORRE, Victor
28007 Madrid (ES)
* LLAVES, Alejandro
28011 Madrid (ES)
« PENA MUNOZ, Manuel
41006 Sevilla (ES)

(74) Representative: Haseltine Lake LLP

Lincoln House, 5th Floor
300 High Holborn
London WC1V 7JH (GB)

(54) DATA PROCESSING APPARATUS, METHOD, AND PROGRAM

(57) Embodiments include a data processing appa-
ratus, the apparatus comprising: a software library, stor-
ing a plurality of software services, each executable soft-
ware service being configured to execute a respective
data processing function; a user interface configured to
receive a plurality of user input commands, each user
input command expressed in a domain specific language
and defining a data processing target and a data process-
ing request; and a parser. The parser is configured to
extract from each user input command: the data process-
ing request from the domain specific language; and the
defined data processing target. The apparatus further
comprises: a knowledge base, configured to maintain a
record of the data processing request and the defined
data processing target for each of the plurality of user
input commands; a software service execution schedul-
er, configured, for each user input command, to obtain
the data processing request from the parser, and to com-
pile a schedule of one or more software services from
among the plurality of software services to fulfil the data
processing request; a software service execution con-
troller configured, for each user input command, to con-
trol execution of the compiled schedule of one or more
software services, the defined data processing target be-
ing the input data to the controlled execution, and to out-
put a processing result of said controlled execution; and
a result processor, configured to obtain the output

processing result, and, based on the records of data
processing requests and defined data processing targets
maintained by the knowledge base, to identify a data
processing request candidate for performance on the
processing result, and to output to the user as a selecta-
ble userinput command expressed in the domain specific
language, via the user interface, the identified data
processing request candidate with the processing result
defined as a data processing target.

DATA
PROCESSING
APPARATUS

10

1 USER INTERFACE

[user input]

[data processing
instruction
candidate]

PARSER

[data processing instruction]

[data processing target]

14| SOFTWARE SERVICE
EXECUTION
SCHEDULER 17

1[schedule]
[execution | SOFTWARE SERVICE | -15

EXECUTION |
CONTROLLER

o

KNOWLEDGE
BASE

l

12

O
SOFTWARE | control]
LIBRARY

13 [data processing
instruction
candidate]

[processing
result] RESULT
PROCESSOR

FIG. 1

Printed by Jouve, 75001 PARIS (FR)

1 EP 3 312 722 A1 2

Description

[0001] Embodiments lie in the field of data processing
and in particular relate to the execution of software serv-
ices via a user interface.

[0002] Data science is an interdisciplinary field about
processes and systems to extract knowledge or insights
from data in various forms, either structured or unstruc-
tured, which is a continuation of some data analysis fields
such as statistics, data mining, and predictive analysis.
[0003] According to the New York Times, 80% of a
typical data science projectis sourcing, cleaning and pre-
paring the data, while the remaining 20% is the actual
data analysis. Therefore, data analysts/scientists per-
form repetitive and time consuming tasks.

[0004] Software services in data science are time-con-
suming to configure. Time-savings gained by using soft-
ware services to automate manual data processing tasks
can be lost due to time overheads of configuring the soft-
ware services to execute.

[0005] It is desirable to facilitate user access to data
processing software services.

[0006] Embodiments include a data processing appa-
ratus, the apparatus comprising: a software library, stor-
ing a plurality of software services, each executable soft-
ware service being configured to execute a respective
data processing function; a user interface configured to
receive a plurality of user input commands, each user
input command expressed in a domain specific language
and defining a data processing target and a data process-
ing request; and a parser. The parser is configured to
extract from each user input command: the data process-
ing request from the domain specific language; and the
defined data processing target. The apparatus further
comprises: a knowledge base, configured to maintain a
record of the data processing request and the defined
data processing target for each of the plurality of user
input commands; a software service execution schedul-
er, configured, for each user input command, to obtain
the data processing request from the parser, and to com-
pile a schedule of one or more software services from
among the plurality of software services to fulfil the data
processing request; a software service execution con-
troller configured, for each user input command, to con-
trol execution of the compiled schedule of one or more
software services, the defined data processing target be-
ing the input data to the controlled execution, and to out-
put a processing result of said controlled execution; and
a result processor, configured to obtain the output
processing result, and, based on the records of data
processing requests and defined data processing targets
maintained by the knowledge base, to identify a data
processing request candidate for performance on the
processing result, and to output to the user as a selecta-
ble userinput command expressed in the domain specific
language, via the user interface, the identified data
processing request candidate with the processing result
defined as a data processing target.

10

15

20

25

30

35

40

45

50

55

[0007] Advantageously, the data processing appara-
tus defined above enables a user to access the function-
ality of a plurality of software services by interacting with
a single user interface in a domain specific language,
obviating the need for the user to have knowledge of the
syntax and semantics of the individual software services.
Furthermore, the result processor recommends a next
action to the user based on previous user actions, thus
enabling the user to benefit from the experience of the
apparatus. The result processor facilitates analysis of the
processing target by proposing an option for additional
processing of the processing result, based on previous
data processing requests.

[0008] Data processing requests specify a desired da-
ta processing result, for example, by specifying a seman-
tic descriptor of output data or by specifying a data type
of output data. The software service execution scheduler
converts the data processing request to a schedule of
software services, which are in turn instructed to execute
by the software service execution controller.

[0009] The domain specific language comprises con-
trolled vocabulary that allows using natural language
sentences describing operations in a very high level. It
provides a natural way to interact with the data process-
ing capabilities of the apparatus by using a language that
is natural to the user.

[0010] The parser converts user inputs expressed in
domain specific language to queries (data processing
requests) for processing by the data processing appara-
tus.

[0011] The software services may be data science soft-
ware services. Thatis, the data processing functions per-
formed by the software services when executed are data
science processing functions. Data science is the study
& analysis of properties of the data itself.

[0012] The data processing apparatus may be a web
server and the software services web services. The soft-
ware services, whether web services or otherwise, may
be microservices.

[0013] Each microservice implements (or wraps an ex-
ternal resource implementing) some atomic functionality
in the system. Microservices may be annotated with me-
ta-information about the semantics of the operations that
they perform.

[0014] The parser may be configured to extract a data
processing request from the domain specific language
of the user input by at least: parsing the domain specific
language into a series of domain specific language ele-
ments; querying a domain specific language map, said
domain specific language map mapping each member
of a vocabulary of domain specific language elements to
a data processing request element, to obtain a data
processing request element mapped to each member of
the series of domain specific language elements; and
combining the obtained data processing request ele-
ments to form the data processing request.

[0015] The domain specific language map translates
from the domain specific language employed by the user

3 EP 3 312 722 A1 4

in interacting with the apparatus via the user interface,
to a data processing request which can be used as the
basis for a schedule of execution of software services by
the software service execution scheduler.

[0016] Optionally, the software service execution
scheduler is configured to maintain a software service
registry, the software service registry comprising an entry
for each of the plurality of software services, the entry
identifying the respective software service and specifying
a data processing function performed by the software
service when executed; wherein the data processing
functions are each specified as one or more data
processing request elements to which the domain spe-
cific language elements are mapped; and wherein the
software service execution scheduler is configured to se-
lect software services for inclusion in the schedule by
matching data processing request elements from the da-
ta processing request to software services for which the
respective data processing request element is included
in the specified data processing function in the respective
registry entry.

[0017] The data processing request elements are, for
example, semantic descriptors of data processing func-
tions. The software service registry entries may be gen-
erated by a system administrator of the apparatus upon
addition of software services to the software library. Ad-
vantageously, using a common set of semantic descrip-
tors for the data processing request elements to which
user entries are mapped, and for the specification of data
processing functions of software services, enables the
software service execution controller to interpret the data
processing request in terms of specific software services
to execute.

[0018] In a particularimplementation of the result proc-
essor, the result processor is further configured to output
the obtained processing result to the user via the user
interface.

[0019] The processingresult may be outputto the user
in complete or summarised form. For example, the result
processor may comprise processing logic for extracting
a summary from a processing result. Software services
may be configured to output processing results to a par-
ticular URL (uniform resource locator) or URI (uniform
resource identifier) specified for the software service, so
that the output processing result may be a link or refer-
ence to said URL or URI, or may comprise data copied
therefrom.

[0020] Optionally, the records of data processing re-
quests and defined data processing targets on which the
identification of the data processing request candidate is
based are constrained to records of data processing re-
quests and defined data processing targets input to the
user interface by the same user to which the identified
data processing request candidate is to be output.
[0021] The data processing apparatus may further
comprise a user authentication processor, configured to
authenticate a user by username & password or by token.
[0022] Advantageously, the constraining to records of

10

15

20

25

30

35

40

45

50

55

a particular user enable idiosyncratic user behaviour to
be reflected in the proposed next action (the data
processing request candidate) output to the user, and
also protects a user from the idiosyncratic behaviour of
others. Furthermore, it may be that users wish their ac-
tions to remain undiscoverable to others, and constrain-
ing to records of the same user prevents one user’s ac-
tions being discoverable to another, albeit anonymously,
in the form of a proposed next action.

[0023] Records are maintained by the knowledge
base. In particular, the records of data processing re-
quests and defined data processing targets maintained
by the knowledge base may include, for each defined
data processing target: one or more data types of data
in the data processing target; the result processor being
configured to identify a data processing request candi-
date for performance on the processing result by recog-
nising a data type of data in the processing result, and
identifying, as the candidate, a data processing request
in a knowledge base record for a user input command in
which the defined data processing target is recorded as
including data of the recognised data type.

[0024] A datatype being a particular kind of data item,
as defined by the values it can take, the programming
language used, or the operations that can be performed
on it.

[0025] The result processor exploits knowledge of pre-
vious user actions to inform selections of actions (data
processing request candidate) to propose to the user.
The result processor therefore behaves as a machine
learning mechanism, or artificial intelligence mechanism.
Data type provides a characteristic by which to distin-
guish relevant from irrelevant records. For example, if a
user typically initiates further analysis of time-series data,
then this will be discovered by the result processor upon
finding knowledge base records for the user in which the
data processing target includes time-series data.
[0026] Furthermore, it may be that the identified data
processing request candidate is selected by determining
a most common data processing request among a rele-
vant subset of the records maintained by the knowledge
base, the relevant subset of records being those records
for which a quantification of similarity between the char-
acterisation of data in the defined data processing target
and the characterisation of the data in the processing
result is above a predefined threshold.

[0027] The characterisation may comprise values of
one or more characteristics. The quantification of simi-
larity may be, for example, a cosine distance of a vector
representing the values. Non-numerical values may be
mapped to numerical values for cosine distance compar-
ison. As an alternative to cosine distance (or as an ad-
ditional quantification to be combined with the cosine dis-
tance), the quantification of similarity may be the Maha-
lanobis distance. For example, the apparatus includes a
support vector machine configured to accept two vectors
representing values of characteristics as an input, and
to output a value representing the Mahalanobis distance

5 EP 3 312 722 A1 6

between the two input vectors.

[0028] The user interface may be implemented by an
interface including one or more from among the following
for interacting with a user: a web interface; an application
programming interface; a command line interface; a user
voice command interface; and a graphical user interface.
[0029] Pluralimplementations of the user interface are
listed above. Optionally, the system may be operable in
a number of different modes, each mode being associ-
ated with a particular implementation of user interface.
[0030] The parser is configured to extract a data
processing request from the user input. Such extracting
may include, at least: extracting an incomplete data
processing request from the user input; outputting to the
user, via the user interface, a prompt for information to
complete the incomplete data processing request; re-
ceiving, via the user interface, a response to the prompt
from the user; and completing the incomplete data
processing request with the received response.

[0031] Optionally, the software service execution
scheduler is configured to: maintain a software service
registry, the software service registry comprising an entry
for each of the plurality of software services, the entry
identifying the respective software service and specifying
a data processing function performed by the software
service when executed; divide the data processing re-
quest into a series of one or more instructed data
processing functions; and compile an execution sched-
ule, of one or more software services, from among the
plurality of software services identified in the registry, to
fulfil the respective data processing request by, for each
of the one or more instructed data processing functions,
identifying a software service for which the processing
function specified in the registry matches the requested
data processing function, and including the identified
software service in the execution schedule.

[0032] The software service execution controller is
configured to compile the schedule by at least: when
more than one software services are identified for which
the processing function specified in the registry matches
one of the requested data processing functions, request-
ing a selection of one software service from among the
more than one software services as manual selection
candidates by a user of the apparatus, and receiving the
requested selection from the user. Furthermore, the soft-
ware service execution scheduler is configured to main-
tain a record of the compiling of the execution schedule
for the respective instructed data processing function,
including in the record the identity of the manual selection
candidates and an indication of the received user selec-
tion; the software service execution scheduler being con-
figured to automate the selection of one software service
from among more than one software services identified
for performing a requested data processing function
based, at least partially, on the recorded indication of the
received user selection from among manual selection
candidates matching the more than one software serv-
ices.

10

15

20

25

30

35

40

45

50

55

[0033] The software service execution scheduler
makes a selection from among plural candidates based
on maintained records of selections made by a user.
Such records may be stored with a characterisation of
the data processing target (i.e. values of one or more
characteristics of the data: data size; data type; semantic
representation of concept instantiated by the data) for
processing by the software services from which the se-
lection was made. The data processing target of the in-
structed data processing function is characterised in the
same way (i.e. with values of the same characteristics),
and hence the data characterisations provide a basis to
discriminate between relevant and irrelevant records,
with, for example, a most common selection among the
relevant records being the automated selection. The dis-
crimination between relevant and irrelevant may be
achieved by imposing a threshold minimum cosine dis-
tance between vectors representing the characterisation
of the data processing target of the instructed data
processing function (for which an automated selection is
sought) and the data processing target for which the
record is maintained.

[0034] Advantageously, such a machine learning as-
pect to the software service execution scheduler enables
intelligent scheduling of software services to satisfy a re-
ceived data processing requestin the absence of manual
input. It is noted that manual inputs in satisfying previous
data processing requests may be utilised by the machine
learning mechanism.

[0035] Embodiments of another aspectinclude: a data
processing method, comprising: storing a plurality of soft-
ware services, each software service being configured
to execute a respective data processing function; receiv-
ing, via a user interface, a plurality of user input com-
mands, each userinputcommand expressedinadomain
specific language and defining a data processing target
and a data processing request; extracting from each user
input command: the data processing request from the
domain specific language; and the defined data process-
ing target. The method further comprises maintaining a
record of the data processing request and the defined
data processing target for each of the plurality of user
input commands; and, for each user input command: ob-
taining the data processing request from the parser, com-
piling a schedule of one or more software services from
among the plurality of software services to fulfil the data
processing request, controlling execution of the compiled
schedule of one or more software services, the defined
data processing target being the input data to the con-
trolled execution, and outputting a processing result of
said controlled execution. The method further comprises
obtaining the output processing result, and, based on the
records of data processing requests and defined data
processing targets maintained by the knowledge base,
identifying a data processing request candidate for per-
formance on the processing result, and outputting to the
uservia a userinterface a selectable userinputcommand
expressed in the domain specific language, via the user

7 EP 3 312 722 A1 8

interface, the identified data processing request candi-
date with the processing result defined as a data process-
ing target.

[0036] Embodiments of another aspectinclude a com-
puter program which, when executed by a computing ap-
paratus, causes the computing apparatus to function as
a system defined in the claims as an invention embodi-
ment.

[0037] Embodiments of another aspectinclude a com-
puter program which, when executed by a computing ap-
paratus, causes the computing apparatus to perform a
method defined above or elsewhere in this document as
an invention embodiment.

[0038] Furthermore, embodiments of the present in-
vention include a computer program or suite of computer
programs, which, when executed by a plurality of inter-
connected computing devices, cause the plurality of in-
terconnected computing devices to operate as a system
embodying the present invention.

[0039] In any of the above aspects, the various fea-
tures may be implemented in hardware, or as software
modules running on one or more processors. Features
of one aspect may be applied to any of the other aspects.
[0040] The invention also provides a computer pro-
gram or a computer program product for carrying out any
of the methods described herein, and a computer read-
able medium having stored thereon a program for carry-
ing out any of the methods described herein. A computer
program embodying the invention may be stored on a
computer-readable medium, or it could, for example, be
in the form of a signal such as a downloadable data signal
provided from an Internet website, or it could be in any
other form.

[0041] A detailed description of embodiments will now
be provided, with reference to the accompanying draw-
ings, in which:

Figure 1 illustrates a data processing apparatus;
Figure 2 illustrates a data processing method;
Figure 3 illustrates userinputs and messages output
to the user by the data processing apparatus; and
Figure 4 illustrates ahardware configuration ofa data
processing apparatus.

[0042] Figure 1illustrates a data processing apparatus
10. The data processing apparatus 10 comprises a user
interface 11, a parser 13, a software service execution
scheduler 14, a software service execution controller 15,
a result processor 16, and a knowledge base 17; which
collection of components may be collectively referred to
as a virtual assistant, since those components provide
intelligent (based on experience) support to a user in ac-
cessing the functionality provided by software services
in the software library 12.

[0043] Figure 2 illustrates a data processing method
of an embodiment.

[0044] A step of storing a plurality of software services,
each software service being configured, upon execution,

10

15

20

25

30

35

40

45

50

55

to execute a respective data processing function, is rep-
resented by step S201 in Figure 2. The line intersecting
step S201 indicating the storage persists during perform-
ance of steps S202 to S208. The storage of software
services in step S201 may be performed by the software
library 12 of Figure 1.

[0045] The software library 12 stores a plurality of ex-
ecutable software services. For example, the software
services may be web services, and whether web service
or otherwise, the software services may be microservic-
es.

[0046] A microservice is an atomic service in a data
processing apparatus. Atomic in this context means sin-
gleresponsibility or single function. A microservice is dis-
tinguished from a generic web service by the dimension
of service. For example, a generic web service would
include some form of authentication as part of a wider
functionality. In amicroservice-based apparatus, authen-
tication is a dedicated microservice.

[0047] The software services, whether microservices
or otherwise, may be RESTful software services, each
defining methods for GET, and POST and/or PUT re-
quests.

[0048] REST (Representational State Transfer) is an
architectural style which governs the proper behaviour
of participants in the web for machines. REST sets out
constraints for system architectures to which conforming
is described as being 'RESTful’, the first of which is that
the architecture has a client-server arrangement, with
clients being separated from servers by a uniform inter-
face. There are four guiding principles of the interface
between client and server, and an interface developed
in accordance with these principles can be described as
'RESTful'. For example, an API can be written in accord-
ance with the REST guiding principles for interfaces to
the software services, and would hence be described as
a’RESTful API'. Such a restful API for a software service
may be stored in a registry entry for a software service
stored by the software service execution scheduler 14,
or stored in a location made accessible (for example, by
a reference) by a reference in said registry. HTTP as a
protocol can be used in a RESTful manner, and RESTful
HTTP is suitable for the web for machines. RESTful in-
terfaces (APIs) are popular for a number of key reasons:
there is simplicity of the basic protocol built on a proven
foundation with solid architectural principles, and the re-
sult is approachable and usable by web developers.
[0049] In brief, the REST architectural style describes
six constraints (one of the six is optional) on a system
architecture are as follows:

- the architecture should be client-server;

- the client and server are separated by a uniform in-
terface;

- the architecture is stateless, meaning that no client
context is stored on the server between requests
from the client - each request contains all of the in-
formation necessary to service the request, with

9 EP 3 312 722 A1 10

state information held in the client itself;

- clients are able to cache responses;

- (optional) functionality may be extended by a server
transferring logic to a client which the client can ex-
ecute.

[0050] Inthe context of the software service execution
system, the clientis the entity making the data processing
request, and the server is the web server or other com-
puting device executing the software services. The data
processing apparatus 10, either as part of the software
library 12 or otherwise, may comprise an execution plat-
form for the plurality of software services, for example, a
processor and memory to store the data being processed
and execute the processing logic of the software service.
The plurality of software services stored by the software
library 12 may be standalone software services for exe-
cution by the data processing apparatus 10, or may wrap
externally held and executed software services.

[0051] The guiding principles for the uniform interface
are briefly summarised below:

- individual resources in the domain can be identified
in requests from the client (this would be via URIs
(Universal Resource Identifiers) in a web-based sys-
tem). The resources themselves are separate enti-
ties from the representations returned to the client;

- the representation of a resource held by a client is
sufficient to give the client enough information to
modify or delete the resource on the server (permis-
sions allowing);

- each message between client and server contains
enough information for the recipient to process the
message;

- the representation of a resource provided from the
server to the client should include hypertext links to
related resources.

[0052] Apositive aspectofthe REST architectural style
is thatit links well with information models, an information
model being a formalised description of items in a domain
and relationships between those items. The operations
allowed in a RESTful API are constrained (fixed), this
avoids the unwanted side effects of poor programming
behaviour which would ordinarily lead to problems in link-
ing an interface with an information model.

[0053] In fact, a RESTful API for a particular domain
may be defined purely in terms of the information model
for the domain, and by how this model then appears in-
side different data formats, the data formats being wire
level (low level or implementation level) manifestations
of the information model. Unfortunately, APIls currently
in use show disparities regarding their approach to infor-
mation modelling, how this appears inside data formats,
and how the semantics of HTTP are brought to use in
the specific domain of the API(s) in question. This lack
of consistency is problematic since potential benefits of
a RESTful protocols are lost, for example, the potential

10

15

20

25

30

35

40

45

50

55

for re-usable toolkits (eg standard code) and generic cli-
ent agents (equivalent to a browser).

[0054] The virtual assistant components may be real-
ised by instructions stored on a memory and executed
by a processor.

[0055] A step of receiving, via a user interface, a plu-
rality of user input commands, each user input command
expressed in a domain specific language and defining a
data processing target and a data processing request; is
represented by S202 in Figure 2. The receiving user com-
mands step S202 may be performed by the user interface
11 of Figure 1.

[0056] The userinterface 11 is configured to receive a
plurality of user input commands, each user input com-
mand at least partially expressed in a domain specific
language and defining a data processing target and a
data processing request. The data processing target may
be defined by a URI or URL at which the data processing
target (i.e. some data such as a file) is accessible. The
domain specific language may define a data processing
target by some syntax or semantic information indicating
that a next part of the user input is a data processing
target, for example, [VERB] [TARGET], so that the use
of averb in the domain specific language of the user input
indicates that a data processing target is to follow.
[0057] Domain specific language is a vocabulary of
terms which are recognisable among a natural language
input, and which map to specific elements of data
processing requests in the apparatus 10.

[0058] The user interface 11 interacts with the user to
enable user input commands to be input to the apparatus
10. The user interface 11 comprises at least one means
forinteracting with auser. Forexample, the userinterface
includes at least one of: a web interface; an application
programming interface; a command line interface; a user
voice command interface; and a graphical user interface.
The user input received by the user interface 11 is at
least partially expressed in domain specific language.
Complete absence of domain specific language from us-
er input received by the user interface 11 may cause the
user interface to output a message requesting a new in-
put. Itis noted that the parser 13 may be required to notify
the user interface 11 of the absence or otherwise of do-
main specific language from the user input.

[0059] The userinterface 11 also provides a means to
output processing results, in full or summarised form, to
the user. The user interface 11 also provides a means
to propose a next data processing action to the user, in
the form of a data processing request candidate, ex-
pressed in domain specific language (and therefore un-
derstandable to the user) and selectable by the user as
a user input. For example, such a data processing re-
quest candidate may be output in a sentence such as:
"would you like me to [semantic representation of data
processing function] the [definition of data processing tar-
get]?", to which a "yes" from the user would be sufficient
to initiate execution of the software service performing
the data processing function on the defined data process-

11 EP 3 312 722 A1 12

ing target.

[0060] A step of extracting from each user input com-
mand: the data processing request from the domain spe-
cific language; and the defined data processing target;
is represented by step S203 in Figure 2. It is noted that
the term parameters is used as shorthand for the extract-
ed data processing request & data processing target. The
extracting parameters from user commands step S203
of Figure 2 may be performed by the parser 13 of Figure 1.
[0061] The parser 13 is configured to extract informa-
tion from the user input that can be used to control exe-
cution of software services. Noting that the software serv-
ices each perform a single data processing function on
input data, the information required to extract is a re-
quested data processing function (or functions) and a
location from which the input data for processing is ac-
cessible. In particular, the parser 13 is configured to ex-
tract from each user input command: the data processing
request from the domain specific language; and the de-
fined data processing target.

[0062] The parser 13 serves as a translator between
the domain specific language in which user inputs are
expressed, and the vocabulary of the software service
execution scheduler, which selects software services to
execute in order to fulfil the data processing request de-
fined by the user. To that end, the parser 13 may store
a domain specific language map, said domain specific
language map mapping each member of a vocabulary
of domain specific language elements to a data process-
ing request element.

[0063] The parsed data processing request and data
processing target are output by the parser 13 and ob-
tained by both the software service execution scheduler
14 and knowledge base 17.

[0064] A step of maintaining a record of the data
processing request and the defined data processing tar-
get for each of the plurality of user input commands; is
represented by step S204 of Figure 2. Of course, the
maintaining is persistent throughout multiple executions
of the method. The maintaining a record of user com-
mands and parameters step S204 of Figure 2 may be
performed by the knowledge base 17 of Figure 1.
[0065] The knowledge base 17 therefore receives a
record, for storage, of data processing instructed by a
user, and the data upon which said data processing is
instructed. The data may be characterised in that record
by, for example, one or more data types of data items
among the data.

[0066] A step of obtaining the data processing request
from the parser, and compiling a schedule of one or more
software services from among the plurality of software
services to fulfil the data processing request; is repre-
sented by step S205 in Figure 2. The compiling a sched-
ule step S205 may be performed by the software service
execution scheduler 14 of Figure 1.

[0067] The parsed data processing request defines
one or more data processing functions. It may be that
some processing of the parsed data processing request

10

15

20

25

30

35

40

45

50

55

is performed by the software service execution scheduler
14 in order to determine the constituent data processing
function(s). That is to say, the constituent data process-
ing function(s) may be implicitly defined by the parsed
data processingrequestand extracted (i.e. made explicit)
by the software service execution scheduler 14, for ex-
ample, by reference to the software services themselves
or to a registry of software services maintained by the
service execution scheduler 14. For example, the parsed
data processing request may be "summarize" and the
data processing target may be plural disparate relational
databases. A software service has a registry entry indi-
cating thatit performs a summarize data processing func-
tion. However, the registry entry specifies that input data
is to be stored locally as a single table. Another software
service has a registry entry indicating that it performs a
load data processing function, with input data being an
external database and a data processing result being a
locally stored table of data. Another software service has
a registry entry indicating that it performs a table join on
locally stored tables, taking plural locally stored tables
as inputs and generating as a processing result a single
locally stored table. This complex example exemplifies
a technique for compiling a software service execution
schedule.

[0068] In summary, the data processing request may
be defined in terms of a processing result. The software
service execution scheduler 14 stores a registry of soft-
ware services of the software library 12, defined in terms
of the input data on which they are operable, and the
output generated (for example, both input and output de-
fined by a data type or semantic descriptor thereof). The
software service execution controller 14, upon identifying
a type of data of the parsed data processing target, then
compiles a schedule by selecting software services in a
stepwise fashion to go from the type of data of the parsed
data processing target to the type of data of the process-
ing result of the data processing request.

[0069] In a more simple example, each parsed data
processing request may correspond to a single data
processing function performed by a particular software
service, and hence compiling the schedule is simply a
process of matching the data processing function to the
software service.

[0070] An orderin which the constituent data process-
ing functions are to be performed in order to fulfil the data
processing request may also be defined by the parsed
data processing request.

[0071] A schedule, which may also be referred to as
an execution schedule or execution plan, is a plan iden-
tifying which software services to execute, in which order
(noting that the order may include parallel execution of
plural software services), and with which input data. The
compiling of the schedule and control of execution are
not necessarily steps performed serially. It may be that
the compiling is adaptive rather than prescribed or pre-
determined. The compilation of an element of the exe-
cution schedule may be dependent upon the outcome of

13 EP 3 312 722 A1 14

execution of preceding software services in the execution
schedule. The schedule is output by the software service
execution scheduler 14 and obtained by the software
service execution controller 15. Itis noted that processing
results from the software services may be input to the
software service execution scheduler 14 for use in adap-
tive compilation.

[0072] The schedule is compiled by the software serv-
ice execution scheduler 14 in order to fulfil the parsed
data processing request, for example, by using annota-
tions about the data processing functions of the software
services, which annotations may be stored in a registry.
For example, it may be that the parsed data processing
request specifies a particular data type sought as a
processing result, for example, specifying the particular
data type semantically or by use of a particular filename
or group of filenames. The execution schedule is com-
piled by the software service execution scheduler 14 by
determining a software service or series of software serv-
ices stored by the software library 12 which, when exe-
cuted (in the case of a series, with proceeding software
services in the series taking as an input the processing
result(s) of one or more preceding software service(s) in
the series) transform the data processing target output
by the parser 13 into the particular data type sought as
a processing result and specified by the parsed data
processing request.

[0073] Each of the software services is configured to
execute a respective data processing function. The data
processing executed by each of the software services
transforms input data of a particular type into output data
of a particular type. The exception to this singular input
type to output type relationship is the event of a failure
of the software service, such as a timeout, which does
not generate output data of the output type. Type means
a type of data, and may be specified by, for example, a
single or group of filename extensions orfile types, and/or
by a semantic descriptor or descriptor(s) of the data.
[0074] A step of controlling execution of the compiled
schedule of one or more software services, the defined
data processing target being the input data to the con-
trolled execution; is represented by step S206 in Figure
2. The controlling execution of the schedule step S206
may be performed by the software service execution con-
troller 15 of Figure 1. A step of outputting a processing
result of the controlled execution is represented by S207
in Figure 2, and may be performed by the software serv-
ice execution controller 15 of Figure 1.

[0075] The schedule is output by the software service
execution scheduler 14 and obtained by the software
service execution controller 15. The software service ex-
ecution controller 15 is configured, for each user input
command, to control execution of the compiled schedule
of one or more software services, the defined data
processing target being the input data to the controlled
execution, and to output a processing result of said con-
trolled execution. Controlling execution of the schedule
by the software service execution controller 15 is a proc-

10

15

20

25

30

35

40

45

50

55

ess of issuing calls to the respective software services
to execute, in the order/timing determined by the sched-
ule, and with input data specified by the schedule. The
line marked "execution control" between the software
service execution controller 15 and the software library
12 in Figure 1 illustrates the control of execution. For
example, controlling execution comprises calling the or
each of the software services included in the schedule
to perform the respective data processing function on
input data specified in the call. The input data to the first
of a series of software services in the schedule is the
data processing target defined in the user input, with the
input data of subsequent software services in the sched-
ule being the processing result of the adjacent preceding
software service in the schedule. Input data may be spec-
ified by reference to a URI or URL from which it is acces-
sible.

[0076] Figure 2 illustrates that the processing result
may be output from the apparatus (i.e. to the user) and
also to a further process within the apparatus.

[0077] An outcome of the execution may be returned
to the software service execution scheduler 14 in re-
sponse to the execution call, for use in compiling the re-
mainder of the schedule for the respective user input.
The outcome may be, for example, an indication of
whether a processing result was generated or whether
the execution timed out. Optionally, the response may
include information such as a measurement of the size
of data output by the executed software service as a
processing result.

[0078] Optionally, the software service execution
scheduler 14 is configured to revert to the user, via the
user interface 11, to select between plural software serv-
ices suitable for performing a particular data processing
function.

[0079] The software service execution scheduler 14
may store a registry of software services with an entry
per software service, the entry identifying the software
service and defining the data processing function per-
formed by the software service when executed. Said def-
inition may be in terms of a semantic descriptor of the
data processing function, which may be in domain spe-
cificlanguage, orin language which is mapped to domain
specific language. Said definition may be in terms of type
of input data and type of output data. A match between
a data processing function specified for a software serv-
ice in the registry and a data processing function forming
part of a data processing request (an instructed data
processing function) is an indication that the software
service for which the processing function is specified is
suitable to perform the instructed data processing func-
tion. The match is based on the definition of the instructed
data processing function, and the data processing func-
tion specified for the software service in the registry. The
match may be based on semantics, for example, the data
processing function is defined semantically in the registry
(for example, "tokenize"; "load"; "summarize"; "com-
pare") and the instructed data processing function is de-

15 EP 3 312 722 A1 16

fined semantically using the same or similar term(s), so
that a semantic comparison between the semantic defi-
nition of the requested data processing function and the
sematic definition of the data processing function yielding
a similarity score above a threshold is taken to be a
"match". Alternatively or additionally, the definition of the
instructed data processing function may be defined in
terms of input data and requested processing result, for
example, defining each by a semantic descriptor of the
data type ("tabular data" "matrix" "document" "vector") or
by a filename extension. The data processing functions
specified in the registry may be defined in the same way,
so that a match is matching input and output filename
extensions, or matching (i.e. semantic similarity above a
threshold) input and output semantic data type descrip-
tors.

[0080] The semantic data type descriptoris a semantic
representation of the concept instantiated by the data.
[0081] A step of obtaining the output processing result,
and, based on the records of data processing requests
and defined data processing targets maintained by the
knowledge base, identifying a data processing request
candidate for performance on the processing result, and
outputting to the user via a user interface a selectable
user input command expressed in the domain specific
language, via the user interface, the identified data
processing request candidate with the processing result
defined as a data processing target; is represented by
step S208 of Figure 2. The identifying and outputting re-
quest candidate step S208 of Figure 2 may be performed
by the results processor 17 of Figure 1.

[0082] Once execution of the schedule is complete,
the processing result is output to the result processor 16.
Forexample, in the case of the schedule defining a series
of software services in which each software services
takes as input data the processing result of the preceding
in the series, the processing result may be the processing
result of the final software service in the series. Although
not specifically illustrated in Figure 1, the result processor
16 may be notified of the parsed data processing request,
and in particular, any particular element of the parsed
data processing request indicating a form or destination
of output data sought in response to the user input.
[0083] The result processor 16 is configured to obtain
the output processing result, and, based on the records
of data processing requests and defined data processing
targets maintained by the knowledge base, to identify a
data processing request candidate for performance on
the processing result, and to output to the user as a se-
lectable user input command expressed in the domain
specific language, via the user interface, the identified
data processing request candidate with the processing
result defined as a data processing target. In other words,
the result processor 16 refers to the records of which
data processing requests have been carried out on which
target data, to determine a next data processing request
to propose to the user.

[0084] In a simple example, the record of the data

10

15

20

25

30

35

40

45

50

55

processing target in the knowledge base includes a value
of one or more characterisations of the data processing
target. Such characterisations may include: amount of
data; data type (in terms of syntax); semantic descriptor
(semantic representation of concept instantiated by the
data). The result processor 16 obtains values of one or
more of said characterisations for the processing result.
It is noted that a single processing result may contain
different types of data and data having different semantic
descriptors. In which case, multiple characterisations
each apply to respective parts of the processing result
(for example, each column), and the procedure of finding
a candidate data processing request can be performed
multiple times for the single processing result.

[0085] The characterisation of (all or part of) the
processing result can be used in many ways to inform
the selection of a data processing request candidate.
Two particular techniques will be set out.

[0086] In a first technique, the processing result char-
acterisation is compared with recorded processing target
characterisations (for example, using a vector distance
comparison) to obtain a quantification of the similarity
between the processing result characterisation and each
of the processing target characterisations. A threshold is
set (which may be predefined or set at a fixed proportion)
and only those recorded processing target characterisa-
tions for which the quantification of similarity exceeds the
threshold are considered. Of those considered, the most
common corresponding data processing request (noting
that each record includes a data processing request and
a data processing target) is determined and selected for
proposal to the user as the data processing request can-
didate.

[0087] In a second technique, the processing result
characterisation is compared with recorded processing
target characterisations (for example, using a vector dis-
tance comparison) to obtain a quantification of the simi-
larity between the processing result characterisation and
each of the processing target characterisations. A con-
tribution to a frequency count to find the most common
corresponding data processing request is weighted ac-
cording to the quantification of similarity. So that, for ex-
ample, a data processing request commonly performed
on data characterised very differently to the processing
resultbuilds up a relatively small frequency count, where-
as a data processing request carried out less commonly,
but on data characterised very similarly to the processing
result, builds up a relatively larger frequency count (not-
ing that the processing result is the data upon which the
next data processing request is to be performed).
[0088] The data processing request candidate select-
ed by the result processor 16 using the records main-
tained by the knowledge base 17, is output to the user
via the user interface, expressed in domain specific lan-
guage, and identifying (all or part of) the processing result
as the processing target. The user is presented with a
proposal for a next data processing request, arrived at
based on experience of previous user actions, which is

17 EP 3 312 722 A1 18

selectable by the user for parsing, scheduling, and exe-
cution in the same way as other user inputs.

[0089] Figure 3 illustrates exemplary communications
between the user and the data processing apparatus.
The data processing apparatus is represented by the in-
itials AIDA: Artificial Intelligence for Data Analytics. The
data processing functions of the software services in the
example of Figure 3 are data analytics processing func-
tions.

[0090] The userinterface in the example of Figure 3 is
an interactive shell. Other forms of communication could
also be employed, for example, e-mails, a chat window,
an interactive webpage, voice commands (as usual for
many assistants), gestures, etc.

[0091] The example of Figure 3 exemplifies various
elements of the functionality of the data processing ap-
paratus 10.

[0092] In line 1 the user initiates a session. The term
"Hi" is an example of domain specific language and is
interpreted by the parser 13 as initiating a user session.
[0093] Inline 2, the result of user authentication is out-
put by the user interface 11, with the user ID "Dave" re-
trieved via an authentication process. In the present ex-
ample, authentication processing is performed by the da-
ta processing apparatus 10 in a manner that is transpar-
ent to the user, and is token-based. The user-authenti-
cation is triggered by the user input of line 1, initiating a
user session. If the user cannot be authenticated, then
it is possible that the user is a new user. For a new user,
a combination of user and password is requested.
[0094] The data processing apparatus 10 stores user
preferences on a per user basis, which are loaded and
implemented upon authentication. Following authentica-
tion, machine learning algorithms, which use records
maintained by the knowledge base to select data
processing request candidates for presentation to the us-
er, may be trained or otherwise prepared for execution
using records relating to past data processing requests
from the authenticated user. For example, such records
may be loaded into a cache accessible by the machine
learning algorithm.

[0095] The software services perform data processing
functions for data science and data analysis. Information
output by the data processing apparatus 10 in response
to questions posed by the user, such as in line 3, is tai-
lored to provide information useful to a data science pro-
fessional. For example in line 4 the user interface outputs
to the user accurate information that could be used for
support purposes.

[0096] The userinputs are parsed by the parser 13. In
the example of line 3, the term "tell me" is not recognised
as domain specific language and is ignored by the parser
13. The term "what is your name", on the other hand, is
domain specific language which maps to an instruction
to output system information about the data processing
apparatus 10 and specifically the virtual assistant com-
ponents thereof.

[0097] When information is omitted by the user, so that

10

15

20

25

30

35

40

45

50

55

10

a user input defines only a partial data processing re-
quest, or does not unambiguously specify a data
processing target, the parser 13 performs processing to:

Infer the missing information when possible.

Display via the user interface a set of possibilities in am-
biguous contexts.

Output prompts to the user for the missing information
via the user interface when previous options are not fea-
sible.

Output via the user interface a request to the user to
reformulate the sentence when all of the above fails.
[0098] Intheexampleofline 15, the parser 13 identifies
"it" as the data processing target, by processing the input
sentence, using natural language processing and the do-
main specific language mapping. Via inference, using an
inference rule which specifies if data processing target
not specified, infer that the most recently input data
processing target specified by the user is the specified
data processing target. The parser 13 may revert to the
user for confirmation of inferred information via the user
interface 11.

[0099] Line 5 illustrates the functionality of the virtual
assistant components to function as a very high level
programming language. Via the user interface 11 and
the parser 13, user inputs are received which define var-
iables and assign a value to them. In the example of line
5, the data processing target is specified as http://exam-
ple.com/file.csv, and the "as" is recognised as domain
specificlanguage which the parser 13 is aware is followed
by a name to be assigned to the data stored at the spec-
ified URL. The parser 13, when parsing future user inputs
in the same session, interprets "dataset1" as defining the
data held at the specified URL.

[0100] The term "explore" utilised by the user causes
a number of software services to be scheduled by the
software service execution scheduler 14. The term "ex-
plore" is domain specific language, which is interpreted
by the parser 13 as a data processing request to sum-
marize the data processing target. Summarize is a data
processing function of one or more of the software serv-
ices, which is known by the software service execution
scheduler 14 to correspond to a data processing request
to generate a summary. The software service execution
scheduler 14 is configured to compile an execution
schedule to output a summary of the data processing
target. Based on information held by the software service
execution scheduler 14, there is no software service
which can generate a processing result of a summary
with an input of a remotely held csv file. However, there
is a software service for which the registry entry indicates
aprocessing result of asummary from an input of a locally
held csv file, and another software service for which the
registry entry indicates a processing result of a locally
held csv file from an input of a remotely held csv file.
[0101] The compiled schedule is output to the software
service execution controller 15, and the software services

19 EP 3 312 722 A1 20

executed on the data processing target. The processing
result is output to the user via the result processor 16 in
line 6. The summary displayed in line 6 is representative,
noting that software services may generate much more
detailed summaries of data processing targets.

[0102] In a more complex example, an instruction to
explore a URL that points to a webpage with unknown
content may be handled differently by the software serv-
ice execution scheduler 14, operating adaptively. First
scheduling execution of a software service to establish
the protocol or protocols for accessing the content of the
webpage, and then, following execution of said software
service, receiving a processing result from the software
service (defining one or more protocols), and then com-
piling a new schedule of software services based on the
defined protocol or protocols. In this manner, the data
processing apparatus 10 uses software services stored
in the software library 12 to handle several different pro-
tocols in a way that is transparent to the user (http, https,
ftp, sftp, etc.). The data processing apparatus 10 pro-
vides the user with an intuitive interface based on natural
language structure and domain specific language ele-
ments.

[0103] Line 6 demonstrates that the result processor
16 characterises the processing result (on a per row or
per column basis), and uses the characterisation as a
key tofind relevant previously recorded (in the knowledge
base 17) data processing requests from the same user,
finding records of data processing targets sharing a char-
acterisation with the characterisation of the present
processing result, and the data processing request of the
user in the recorded instances. A machine learning al-
gorithm searches for and finds relevant records using
data characterisation as a key, and determines, from
among the data processing requests in the relevant
records, which to output to the user as a data processing
request candidate (exemplified in lines 6, 8, 10). The ba-
sis on which the machine learning mechanism deter-
mines one data processing request from plural, if plural
are defined in relevant records, is implementation de-
pendent. In a first exemplary technique, the machine
learning algorithm may simply find the mostrecentrecord
(assuming the records are time-stamped), or the most
popular among the most recent n (for example, n=10)
records. In a second exemplary technique, the machine
learning algorithm may quantify the relevance of each
record based on similarity of characterisation of the re-
corded data processing target to the processing resultin
question (wherein a threshold minimum of the quantifi-
cation is imposed for a record to be deemed relevant),
and a score calculated for each recorded data processing
request, wherein the score is a count of relevant records
in which the data processing request is defined. Option-
ally, the contribution to the count made by a record may
be weighted according to the respective quantification of
relevance.

[0104] By characterising the data of all or part of the
processing result, the results processor 16 can be seen

10

15

20

25

30

35

40

45

50

55

1"

as understanding the contents of the file, and using a
machine learning algorithm intelligently uses the previ-
ous decisions of the user to suggest a next data process-
ing operation based on what makes sense in the current
context (i.e. context provided by data characterisation
and the previous decisions and preferences of the user).
In this particular example the system detects the type of
one columninthe datasetand runs atime series analysis.
[0105] Line 10 demonstrates that the result processor
16 may also output a representation of the rationale for
outputting a particular data processing request candi-
date. In addition, line 10 exemplifies that the data
processing functions performed on datasets have a very
high level, as for instance training a regression model.
[0106] Line 13 illustrates accessibility of the persist-
ence layer to the data processing apparatus 10. A soft-
ware service from the software library 12 is configured
to perform an operation of writing a data processing target
to the persistence layer upon a "store" user input. The
persistence layer may be accessed upon the express
instruction of the user as in the example of line 13, or
may be automatically used by other software services in
the absence of an express instruction from the user, de-
pending on the operation performed, the characteristics
of the data and the previous preferences of the user. If
the information that the system has is not enough to make
a decision in a given context, it will prompt a question to
the user via the user interface 11.

[0107] Line 15 demonstrates syntax for separating se-
quences of operations using commas, consistent with
natural language syntax. Without prior configuration, the
system provides freedom to use other separators and

combinations of them, as for example: ’;, '.’, 'and’, or
‘then’.
[0108] As another example of the intelligence of the

data processing apparatus 10, in line 16 it can be seen
that when the execution of a software service under the
control of the software service execution controller 16
software takes, or is expected to take, over a predefined
threshold amount of time, the task is automatically sent
to the background, the user is notified via the user inter-
face 11 (see line 16), and new user inputs can be sub-
mitted during execution.

[0109] There may be cases in which no relevant
records can be found by the result processor 16, that is
to say, based on characterisation of all or a part of the
processing result, there are no records in the knowledge
base 17 of data processing requests having similarly
characterised data as a data processing target. In line 8
we see that the user is asked for confirmation on an op-
eration. For example, in the absence of relevant records,
such a proposal may instead be based on registry entries
for software services defining input data characterised in
the same or similar way as the processing resultin ques-
tion. After several iterations, the results processor may
use the machine learning capabilities to proactively per-
form the operations that are usually done with similarly
characterised data, or skip the questions for the opera-

21 EP 3 312 722 A1 22

tions that are never used.

[0110] FIGURE 4 is a block diagram of a computing
device, such as a web server, which embodies the
present invention, and which may be used to implement
a data processing method of an embodiment. The com-
puting device comprises a processor 993, and memory,
994. Optionally, the computing device also includes a
network interface 997 for communication with other com-
puting devices, for example with other computing devices
of invention embodiments.

[0111] For example, an embodiment may be com-
posed of a network of such computing devices. Option-
ally, the computing device also includes one or more input
mechanisms such as keyboard and mouse 996, and a
display unit such as one or more monitors 995. The com-
ponents are connectable to one another via a bus 992.
[0112] The memory 994 may include a computer read-
able medium, which term may refer to a single medium
or multiple media (e.g., a centralized or distributed data-
base and/or associated caches and servers) configured
to carry computer-executable instructions or have data
structures stored thereon. Computer-executable instruc-
tions may include, for example, instructions and data ac-
cessible by and causing a general purpose computer,
special purpose computer, or special purpose process-
ing device (e.g., one or more processors) to perform one
or more functions or operations. Thus, the term "compu-
ter-readable storage medium" may also include any me-
dium that is capable of storing, encoding or carrying a
set of instructions for execution by the machine and that
cause the machine to perform any one or more of the
methods of the present disclosure. The term "computer-
readable storage medium" may accordingly be taken to
include, but not be limited to, solid-state memories, op-
tical media and magnetic media. By way of example, and
not limitation, such computer-readable media may in-
clude non-transitory computer-readable storage media,
including Random Access Memory (RAM), Read-Only
Memory (ROM), Electrically Erasable Programmable
Read-Only Memory (EEPROM), Compact Disc Read-
Only Memory (CD-ROM) or other optical disk storage,
magnetic disk storage or other magnetic storage devices,
flash memory devices (e.g., solid state memory devices).
[0113] The processor 993 is configured to control the
computing device and execute processing operations,
for example executing code stored in the memory to im-
plement the various different functions of the software
library, user interface, parser 13, knowledge bade, soft-
ware service execution scheduler, software services ex-
ecution controller, and result processor, described here
and in the claims. The memory 994 stores data being
read and written by the processor 993. As referred to
herein, a processor may include one or more general-
purpose processing devices such as a microprocessor,
central processing unit, or the like. The processor may
include a complex instruction set computing (CISC) mi-
croprocessor, reduced instruction set computing (RISC)
microprocessor, very long instruction word (VLIW) mi-

10

15

20

25

30

35

40

45

50

55

12

croprocessor, or a processor implementing other instruc-
tion sets or processors implementing a combination of
instruction sets. The processor may also include one or
more special-purpose processing devices such as an ap-
plication specific integrated circuit (ASIC), a field pro-
grammable gate array (FPGA), a digital signal processor
(DSP), network processor, or the like. In one or more
embodiments, a processor is configured to execute in-
structions for performing the operations and steps dis-
cussed herein.

[0114] The display unit 997 may display a representa-
tion of data stored by the computing device and may also
display a cursor and dialog boxes and screens enabling
interaction between a user and the programs and data
stored on the computing device. The input mechanisms
996 may enable a user to input data and instructions to
the computing device.

[0115] The network interface (network I/F) 997 may be
connected to a network, such as the Internet, and is con-
nectable to other such computing devices via the net-
work. The network I/F 997 may control data input/output
from/to other apparatus via the network. Other peripheral
devices such as microphone, speakers, printer, power
supply unit, fan, case, scanner, trackerball etc may be
included in the computing device.

[0116] The software library 12 of Figure 1, and the stor-
ing a plurality of software services step S201 of Figure
2, may be a processor 993 (or plurality thereof) executing
processing instructions (a program) stored on a memory
994 and exchanging data via a network I/F 997. In par-
ticular, the processor 993 executes processing instruc-
tions to receive, via the network I/F or otherwise, execu-
tion controls from the software service execution control-
ler 15 and execute the software services as indicated by
the received execution controls, as indicated by the "ex-
ecution controls" arrow in Figure 1. Furthermore, the
processor 993 may execute processing instructions to
store software services in the software library 12 on a
connected storage unit. Furthermore, the processor 993
may execute processing instructions to transmit, via the
network I/F 997, processing results to the result proces-
sor 16 for processing.

[0117] The user interface 11 of Figure 1, and the re-
ceiving user commands step S202 of Figure 2, may be
a processor 993 (or plurality thereof) executing process-
ing instructions (a program) stored on a memory 994 and
exchanging data with a user via a network I/F 997 or
other input means. In particular, the processor 993 exe-
cutes processing instructions to receive, via the network
I/F or other input means, user input from the user and
transmit the user input to the parser 13, as indicated by
the "user input" arrow in Figure 1. In addition, the user
interface executes processing instructions to output the
data processing request candidate to the user as a se-
lectable user input command.

[0118] The parser 13 of Figure 1, and the extracting
parameters from user commands step S203 of Figure 2,
may be a processor 993 (or plurality thereof) executing

23 EP 3 312 722 A1 24

processing instructions (a program) stored on a memory
994 and exchanging data with the user interface 11 and
software service execution scheduler 14 via a network
I/F 997 or another means of data exchange. In particular,
the processor 993 executes processing instructions to
receive from the user interface 11, the user input com-
mand, to extract the data processing request and the
defined data processing target from the user input com-
mand, and output the extracted information to the knowl-
edge base 17 and software service execution scheduler,
as indicated by the arrows marked "data processing re-
quest" and "data processing target" in Figure 1. Further-
more, the processor 993 may execute processing in-
structions to store the extracted information on the knowl-
edge base as a record.

[0119] The knowledge base 17 of Figure 1, and the
maintaining a record of user commands and parameters
step S204 of Figure 2, may be a processor 993 (or plu-
rality thereof) executing processing instructions (a pro-
gram) stored on a memory 994 and exchanging data via
a network I/F 997 or another means of data exchange.
In particular, the processor 993 executes processing in-
structions to receive, via the network I/F, information ex-
tracted from user inputs by the parser 13 from the parser
13, and to store the extracted information as a record.
Furthermore, the records maintained by the knowledge
base 17 are accessible by the result processor 16 iniden-
tifying a data processing request candidate. Further-
more, the processor 993 may execute processing in-
structions to store maintained records on a connected
storage unit and/or to transmit, via the network I/F 997,
maintained records relevant to a particular user (and
processing result) to the result processor 16 for process-
ing.

[0120] The software service execution scheduler 14 of
Figure 1, and the compiling a schedule step S205 of Fig-
ure 2, may be a processor 993 (or plurality thereof) ex-
ecuting processing instructions (a program) stored on a
memory 994 and exchanging data via a network I/F 997
or another means of data exchange. In particular, the
processor 993 executes processing instructions to re-
ceive, via the network I/F or otherwise, a data processing
request and data processing target extracted from a user
input by the parser 13, and compile a schedule of soft-
ware services to fulfil the data processing request with
the data processing target as input data, and to output
the schedule, as indicated by the "schedule" arrow in
Figure 1. Furthermore, the processor 993 may execute
processing instructions to store the schedule on a con-
nected storage unit and/or to transmit, via the network
I/F 997, the schedule to the software service execution
controller 15 for execution.

[0121] The software service execution controller 15 of
Figure 1, the controlling execution step S206 of Figure
2, and the outputting step S207 of Figure 2, may be a
processor 993 (or plurality thereof) executing processing
instructions (a program) stored on a memory 994 and
exchanging data via a network I/F 997 or another form

10

15

20

25

30

35

40

45

50

55

13

of data exchange. In particular, the processor 993 exe-
cutes processing instructions to receive, via the network
I/F or another form of data exchange, the schedule output
by the software service execution schedule, and to con-
trol execution of the schedule by the software services
of the software library, as indicated by the "execution
control" arrow of Figure 1.

[0122] The result processor 16 of Figure 1, and the
identifying and outputting a request candidate S207 of
Figure 2, may be a processor 993 (or plurality thereof)
executing processing instructions (a program) stored on
a memory 994 and exchanging data via a network I/F
997 or another form of data exchange. In particular, the
processor 993 executes processing instructions to re-
ceive, via the network I/F or otherwise, processing results
from the software services of the software library 12 ex-
ecuted under the control of the software service execu-
tion controller 15 and identify a data processing request
candidate from among records held by the knowledge
base (using a machine learning algorithm). Furthermore,
the processor 993 may execute processing instructions
to store the identified data processing request candidate
on a connected storage unit and/or to transmit, via the
network I/F 997 or otherwise, the identified data process-
ingrequest candidate to the user via the userinterface 11.
[0123] Methods embodying the present invention may
be carried out on a computing device such as that illus-
trated in Figure 4. Such a computing device need not
have every component illustrated in Figure 4, and may
be composed of a subset of those components. A method
embodying the present invention may be carried out by
a single computing device in communication with one or
more data storage servers via a network. The computing
device may be a data storage itself storing the knowledge
base 17 and processing results.

[0124] Amethod embodyingthe presentinvention may
be carried out by a plurality of computing devices oper-
ating in cooperation with one another. One or more of
the plurality of computing devices may be a data storage
server storing at least a portion of the knowledge base
17 and processing results.

Claims
1. A data processing apparatus, comprising:

a software library, storing a plurality of software
services, each software service being config-
ured to execute a respective data processing
function;

a user interface configured to receive a plurality
of user input commands, each user input com-
mand expressed in a domain specific language
and defining a data processing target and a data
processing request;

a parser configured to extract from each user
input command:

25 EP 3 312 722 A1 26

the data processing request from the do-
main specific language; and
the defined data processing target;

a knowledge base, configured to maintain a
record of the data processing request and the
defined data processing target for each of the
plurality of user input commands;

a software service execution scheduler, config-
ured, for each user input command, to obtain
the data processing request from the parser, and
to compile a schedule of one or more software
services from among the plurality of software
services to fulfil the data processing request;

a software service execution controller config-
ured, for each user input command, to control
execution of the compiled schedule of one or
more software services, the defined data
processingtargetbeingthe inputdata to the con-
trolled execution, and to output a processing re-
sult of said controlled execution; and

aresult processor, configured to obtain the out-
put processing result, and, based on the records
of data processing requests and defined data
processing targets maintained by the knowl-
edge base, to identify a data processing request
candidate for performance on the processing re-
sult, and to output to the user as a selectable
user input command expressed in the domain
specific language, via the user interface, the
identified data processing request candidate
with the processing result defined as a data
processing target.

2. A data processing apparatus according to claim 1,

wherein:

the parser is configured to extract the data
processing request from the domain specific
language of the user input by at least:

parsing the domain specific language into
a series of domain specific language ele-
ments;

querying a domain specific language map,
said domain specific language map map-
ping each member of a vocabulary of do-
main specific language elements to a data
processing request element, to obtain a da-
ta processing request element mapped to
each member of the series of domain spe-
cific language elements;

combining the obtained data processing re-
quest elements to form the data processing
request.

3. A data processing apparatus according to claim 2,

wherein

10

15

20

25

30

35

40

45

50

55

14

the software service execution scheduler is config-
ured to maintain a software service registry, the soft-
ware service registry comprising an entry for each
of the plurality of software services, the entry identi-
fying the respective software service and specifying
a data processing function performed by the soft-
ware service when executed; wherein

the data processing functions are each specified as
one or more data processing request elements to
which the domain specific language elements are
mapped; and

the software service execution scheduler is config-
ured to select software services for inclusion in the
schedule by matching data processing request ele-
ments from the data processing request to software
services for which the respective data processing
request element is included in the specified data
processing function in the respective registry entry.

A data processing apparatus according to any of the
preceding claims, the result processor being further
configured to output the obtained processing result
to the user via the user interface.

A data processing apparatus according to any of the
preceding claims, wherein

the records of data processing requests and defined
data processing targets on which the identification
of the data processing request candidate is based
are constrained to records of data processing re-
quests and defined data processing targets input to
the userinterface by the same user to which the iden-
tified data processing request candidate is to be out-
put.

A data processing apparatus according to any of the
preceding claims, wherein

the records of data processing requests and defined
data processing targets maintained by the knowl-
edge base include, for each defined data processing
target:

a characterisation of data in the data processing
target;

the result processor being configured to identify
a data processing request candidate for per-
formance on the processing result by character-
ising some or all data in the processing result,
and identifying, as the candidate, a data
processing request in a knowledge base record
for a user input command in which the charac-
terisation of data in the defined data processing
targetis the same or similar to the characterisa-
tion of the data in the processing result.

7. A data processing apparatus according to claim 6,

wherein
the identified data processing request candidate is

27 EP 3 312 722 A1 28

selected by determining a most common data
processing request among a relevant subset of the
records maintained by the knowledge base, the rel-
evant subset of records being those records for
which a quantification of similarity between the char-
acterisation of data in the defined data processing
target and the characterisation of the data in the
processing result is above a predefined threshold.

A data processing apparatus according to any of the
preceding claims, wherein the user interface com-
prises one or more from among:

a web interface;

an application programming interface;
a command line interface;

a user voice command interface; and
a graphical user interface.

A data processing apparatus according to any of the
preceding claims, wherein the parser is configured
to extract a data processing request from the user
input by at least:

extracting an incomplete data processing re-
quest from the user input;

outputting to the user, via the user interface, a
prompt for information to complete the incom-
plete data processing request;

receiving, via the user interface, a response to
the prompt from the user; and

completing the incomplete data processing re-
quest with the received response.

10. A data processing apparatus according to any of the

preceding claims, wherein the software service ex-
ecution scheduler is configured to:

maintain a software service registry, the soft-
ware service registry comprising an entry for
each of the plurality of software services, the
entry identifying the respective software service
and specifying a data processing function per-
formed by the software service when executed;
divide the data processing request into a series
of one or more instructed data processing func-
tions; and

compile an execution schedule, of one or more
software services, from among the plurality of
software services identified in the registry, to ful-
fil the respective data processing request by, for
each of the one or more instructed data process-
ing functions, identifying a software service for
which the processing function specified in the
registry matches the requested data processing
function, and including the identified software
service in the execution schedule.

10

15

20

25

30

35

40

45

50

55

15

11. A data processing apparatus according to claim 10,

wherein

the compiling includes if more than one software
services are identified for which the processing func-
tion specified in the registry matches one of the re-
quested data processing functions, requesting a se-
lection of one software service from among the more
than one software services as manual selection can-
didates by a user of the apparatus, and receiving the
requested selection from the user; and

the software service execution scheduler is config-
ured to maintain a record of the compiling of the ex-
ecution schedule for the respective instructed data
processing function, including in the record the iden-
tity of the manual selection candidates and an indi-
cation of the received user selection;

the software service execution scheduler being con-
figured to automate the selection of one software
service from among more than one software services
identified for performing a requested data process-
ing function based, at least partially, on the recorded
indication of the received user selection from among
manual selection candidates matching the more
than one software services.

12. A data processing method, comprising:

storing a plurality of software services, each soft-
ware service being configured to execute a re-
spective data processing function;

receiving, via a user interface, a plurality of user
input commands, each user input command ex-
pressed in a domain specific language and de-
fining a data processing target and a data
processing request;

extracting from each user input command:

the data processing request from the do-
main specific language; and
the defined data processing target;

maintaining a record of the data processing re-
quest and the defined data processing target for
each of the plurality of user input commands;
for each user input command:

obtaining the data processing request from
the parser,

compiling a schedule of one or more soft-
ware services from among the plurality of
software services to fulfil the data process-
ing request,

controlling execution of the compiled sched-
ule of one or more software services, the
defined data processing target being the in-
put data to the controlled execution, and
outputting a processing result of said con-
trolled execution; and

29 EP 3 312 722 A1

obtaining the output processing result, and,
based on the records of data processing re-
quests and defined data processing targets
maintained by the knowledge base, identifying

a data processing request candidate for per- 5
formance on the processing result, and output-
ting to the user via a user interface a selectable
user input command expressed in the domain
specific language, via the user interface, the
identified data processing request candidate 10
with the processing result defined as a data
processing target.

13. A computer program which, when executed by a
computing apparatus, causes the computing appa- 15
ratus to perform a method according to claim 12.

20

25

30

35

40

45

50

55

16

EP 3 312 722 A1

DATA
PROCESSING | USERINTERFACE |« :
APPARATUS 11 [data processing
10 [user input] instruction
— 13 Y candidate]
U PARSER
[data processing instruction]
{ [data processing target]
14~ | SOFTWARE SERVICE
Y EXECUTION
SCHEDULER
[schedule]
1 2 i
= [execution | SOFTWARE SERVICE
SOFTWARE | control] EXECUTION
LIBRARY [* CONTROLLER
. 1& [dafta processing
[processing instruction
result] RESULT | candidate]
| PROCESSOR |

FIG. 1

17

EP 3 312 722 A1

user commands

|

S202~ | receiving user
commands S204
S201
ft ¥
. . _/
storing a extracting |S203 —
plurality of parameters _ rg?lnézplngmarr{ecgrd
software from user g alrjmd crom tan S
services commands parameters
/_\
~—
v
S205+| compiling a
schedule
A
82061 controlling
execution
of schedule
S208
i ~
S207 outputting identifying and
\ processing = outputting request —'c;?\%l;ggte
result candidate
processing result

FIG. 2

18

EP 3 312 722 A1

¢ Old

iAep ao1u & BABY ‘uoIsses Bulpul | Ay | 8l
BplY 9Aq | uesn | /1
'SJopJo Buniemy
“*punoJByoeq ul Buiuuns ysep
payILLO:BUI}age\'8|qBlLBA pasn Apuadal 1se| Se L1aseleq Bulunssy | waly | 91
1l [lBW pue ‘Jodal eyeseusb ‘sisAjeue injunt | :Jesn | Gl
{IX8U 1eYM
|nyssaoons uonesado | valy | vl
l1eseleqaio)s | uesn | €L
(Op1pINoysieymM | ‘valy | 2
ON | Jesn | Ll
ou/sak i japow uoissaibal ulel|
pejeeLI00 Ajesiaaul 8q 0} Wess (ZON_AUF, pejeqe)) gLulinjod pue (psedgpuip. psjege)) suwniog | 'valy | 0l
SOA | Hesn 6
ou/sak jsuwnjoo buluiewa.l usamiaq SUOIIEJ.I0D 10} YoJeas
dwejsawil enbiun B SBY MOJ YOBS “L8/Z1/GL0Z O L/1/8007Z WOJ) UoIIeuIojul Suleluoo Ljeseleq | :vary 9
SOA | uesn /
ou/seA ¢ siskjeue salias awil unJ ‘duweissun B aq 0} SWaas | MOY
0l suwnjioy Q0¢ -smoy dINg 9Z1S
‘Aewwing 8| ASO € 0} julod 0} swess TN 8YL | valv 9
T19seqe(q Se ASD 9T /wod aTdwexs//:di3yeiodxgy | 8sn G
¢oreplywe| | yaly 14
¢8Weu InoA sl jeym ‘sw |8 | :Jesn ¢
cnoA djsy | Aew moy ‘eaeq OlleH | valy 7
EPIV IH | -J8sn |
IXoL dl #

19

EP 3 312 722 A1

9937 pROCESSOR 9947 MEMORY
992
-/
995 996 997
U DispLAY U NPUT U NETWORK I/F
FIG. 4

20

10

15

20

25

30

35

40

45

50

55

EP 3 312 722 A1

9

Européisches
Patentamt

European
Patent Office

Office européen

des brevets

[

EPO FORM 1503 03.82 (P04C01)

EUROPEAN SEARCH REPORT

Application Number

EP 17 19 5347

DOCUMENTS CONSIDERED TO BE RELEVANT

Category

Citation of document with indication, where appropriate,
of relevant passages

Relevant
to claim

CLASSIFICATION OF THE
APPLICATION (IPC)

X

X,P

WO 2016/066035 Al (BAIDU ONLINE NETWORK
TECHNOLOGY BEIJING CO LTD [CN])

6 May 2016 (2016-05-06)

* the whole document *

& EP 3 096 226 Al (BAIDU ONLINE NETWORK
TECHNOLOGY BEIJING CO LTD [CN])

23 November 2016 (2016-11-23)

* paragraphs [0011], [0014], [0016] -
[0019], [0030], [0032], [0035], [0040]
- [0042], [0047], [0121]; claims 1,2,6;
figure 1 *

WO 2011/088053 A2 (APPLE INC [US]; GRUBER
THOMAS ROBERT [US]; CHEYER ADAM JOHN [US];
KITT) 21 July 2011 (2011-07-21)

* figures 1,2,7-11,23,27,31-33,37,47 *

The present search report has been drawn up for all claims

1-13 INV.
GO6F9/48

GO6F9/50
1-13

1-4,12,
13

TECHNICAL FIELDS
SEARCHED (IPC)

GO6F
GO6N

Place of search

The Hague

Date of completion of the search

1 March 2018

Examiner

Manfrin, Max

X : particularly relevant if taken alone

Y : particularly relevant if combined with another
document of the same category

A : technological background

O : non-written disclosure

P : intermediate document

CATEGORY OF CITED DOCUMENTS

T : theory or principle underlying the invention

E : earlier patent document, but published on, or

document

after the filing date
D : document cited in the application
L : document cited for other reasons

& : member of the same patent family, corresponding

21

10

15

20

25

30

35

40

45

50

55

EPO FORM P0459

ANNEX TO THE EUROPEAN SEARCH REPORT

EP 3 312 722 A1

ON EUROPEAN PATENT APPLICATION NO.

EP 17 19 5347

This annex lists the patent family members relating to the patent documents cited in the above-mentioned European search report.

The members are as contained in the European Patent Office EDP file on

The European Patent Office is in no way liable for these particulars which are merely given for the purpose of information.

01-03-2018
Patent document Publication Patent family Publication

cited in search report date member(s) date

WO 2016066035 Al 06-05-2016 CN 104360897 A 18-02-2015
EP 3096226 Al 23-11-2016
JP 2017517776 A 29-06-2017
KR 20160124766 A 28-10-2016
US 2017242843 Al 24-08-2017
WO 2016066035 Al 06-05-2016

WO 2011088053 A2 21-07-2011 AU 2011205426 Al 23-08-2012
CA 2787351 Al 21-07-2011
CA 2791791 Al 21-07-2011
CA 2792412 Al 21-07-2011
CA 2792442 Al 21-07-2011
CA 2792570 Al 21-07-2011
CA 2793002 Al 21-07-2011
CA 2793118 Al 21-07-2011
CA 2793248 Al 21-07-2011
CA 2793741 Al 21-07-2011
CA 2793743 Al 21-07-2011
CA 2954559 Al 21-07-2011
CN 102792320 A 21-11-2012
CN 105808200 A 27-07-2016
EP 2526511 A2 28-11-2012
EP 3131023 Al 15-62-2017
GB 2490444 A 31-10-2012
JP 5948372 B2 06-07-2016
JP 5956511 B2 27-07-2016
JP 5957038 B2 27-07-2016
JP 5973500 B2 23-08-2016
JP 6027052 B2 16-11-2016
JP 6175413 B2 02-08-2017
JP 6193181 B2 06-09-2017
JP 2013517566 A 16-05-2013
JP 2014222509 A 27-11-2014
JP 2014222510 A 27-11-2014
JP 2014222511 A 27-11-2014
JP 2014222512 A 27-11-2014
JP 2014222513 A 27-11-2014
JP 2014222514 A 27-11-2014
JP 2014222515 A 27-11-2014
JP 2014222516 A 27-11-2014
JP 2014222517 A 27-11-2014
JP 2017224300 A 21-12-2017
KR 20120120316 A 01-11-2012
KR 20120136417 A 18-12-2012
KR 20120137424 A 20-12-2012
KR 20120137425 A 20-12-2012

For more details about this annex : see Official Journal of the European Patent Office, No. 12/82
page 1 of 2

22

10

15

20

25

30

35

40

45

50

55

EPO FORM P0459

EP 3 312 722 A1

ANNEX TO THE EUROPEAN SEARCH REPORT

ON EUROPEAN PATENT APPLICATION NO.

EP 17 19 5347

This annex lists the patent family members relating to the patent documents cited in the above-mentioned European search report.

The members are as contained in the European Patent Office EDP file on

The European Patent Office is in no way liable for these particulars which are merely given for the purpose of information.

01-03-2018
Patent document Publication Patent family Publication
cited in search report date member(s) date
KR 20120137434 A 20-12-2012
KR 20120137435 A 20-12-2012
KR 20120137440 A 20-12-2012
KR 20120138826 A 26-12-2012
KR 20120138827 A 26-12-2012
KR 20130000423 A 02-01-2013
KR 20160105995 A 08-09-2016
KR 20170104006 A 13-09-2017
MX 338784 B 02-05-2016
MX 342072 B 13-69-2016
MX 348250 B 05-06-2017
RU 2012135502 A 27-02-2014
RU 2012144605 A 27-04-2014
RU 2012144606 A 10-05-2014
RU 2012144637 A 10-05-2014
RU 2012144639 A 10-65-2014
RU 2012144640 A 10-05-2014
RU 2012144643 A 10-05-2014
RU 2012144644 A 10-065-2014
RU 2012144647 A 10-05-2014
RU 2012144648 A 10-05-2014
RU 2015120954 A 27-12-2016
US 2012016678 Al 19-01-2012
US 2012245944 Al 27-09-2012
US 2013110505 Al 02-05-2013
US 2013110515 Al 02-05-2013
US 2013110518 Al 02-05-2013
US 2013110519 Al 02-05-2013
US 2013110520 Al 02-05-2013
US 2013111348 Al 02-05-2013
US 2013111487 Al 02-05-2013
US 2013117022 Al 09-05-2013
US 2013185074 Al 18-07-2013
US 2013185081 Al 18-07-2013
US 2017178626 Al 22-06-2017
WO 2011088053 A2 21-07-2011
For more details about this annex : see Official Journal of the European Patent Office, No. 12/82
page 2 of 2

23

	bibliography
	abstract
	description
	claims
	drawings
	search report

