(11) EP 3 316 409 A1

(12)

EUROPEAN PATENT APPLICATION

(43) Date of publication:

02.05.2018 Bulletin 2018/18

(51) Int Cl.:

H01R 13/436 (2006.01) H01R 13/641 (2006.01) H01R 13/627 (2006.01)

(21) Application number: 17207724.0

(22) Date of filing: 15.12.2017

(84) Designated Contracting States:

AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

Designated Extension States:

BA ME

Designated Validation States:

MA MD TN

(30) Priority: 13.01.2017 US 201715405405

(71) Applicant: J.S.T. Corporation Farmington Hills, MI 48335 (US)

(72) Inventors:

 Abraham, Rajit Farmington Hills, Michigan 48335 (US)

Holub, Franklin A.
 Farmington Hills, Michigan 48335 (US)

(74) Representative: Latscha Schöllhorn Partner AG Austrasse 24 4051 Basel (CH)

(54) TERMINAL POSITION ASSURANCE MEMBER AND METHOD OF OPERATING A TERMINAL POSITION ASSURANCE MEMBER

(57) Terminal position assurance (TPA) member used in a connector, to make sure that a terminal is positioned properly. The TPA member has at least one locating/guide feature to provide proper guidance and to

avoid an imbalance during engagement with a connector housing, and has at least one flexible feature to help retain the TPA member in a preset position and/or a final lock position.

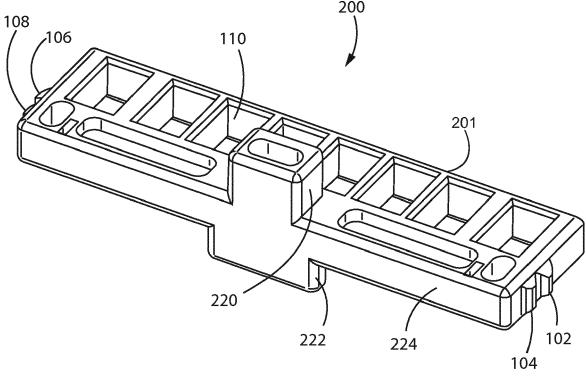


FIG. 3

EP 3 316 409 A1

BACKGROUND OF THE INVENTION

[0001] The present invention generally relates to a terminal position assurance (TPA) member used in a connector.

1

BRIEF SUMMARY OF THE INVENTION

[0002] The present invention generally relates to a terminal position assurance (TPA) member used in a connector. A TPA member can be used in a connector to make sure that a terminal is positioned properly. The connector can be an electrical connector or other type of connector, for example. The connections or for other types of connections, for example.

[0003] According to the principles of the present invention, a first TPA member has at least one flexible feature. [0004] According to the principles of the present invention, a second TPA member has at least one locating/guide feature and at least one flexible feature. The locating/guide feature can also be referred to as a guide feature or a guide. The flexible feature can also be referred to as a protrusion.

[0005] According to the principles of the present invention, a second TPA member has at least one locating/guide feature to provide proper guidance and to avoid any imbalance created during engagement and disengagement with a connector or a connector housing.

[0006] A TPA member, according to the principles of the present invention, provides a number of desirable characteristics, including at least, for example: it helps to achieve a full potential force of the system and desirable audible "click" sound when TPA member is inserted into connector housing; it helps to avoid a TPA member being moved to a final lock position (or "set" position) during shipping and/or handling; it requires no secondary operation of a user; and it helps prevent failure.

[0007] It is a desirable trait to achieve full potential force of the system and an audible "click" sound. For example, when the TPA member is inserted into a connector housing, it is a desirable trait to achieve a full potential force of the system and to have an audible "click" sound for convenient assurance that the components are completely mated. In the automotive connector field and other fields, for example, an extra loud sound is favorable. It is desirable to have the loudest "click" sound possible. The "click" sound can be achieved by an interaction of latching features, for example.

[0008] Because of the use of location/guide features of the present invention, the TPA member's first pair of flexible features is more likely to engage substantially simultaneously, and then subsequently the TPA member's second pair of flexible features is more likely to engage substantially simultaneously, thereby achieving full potential force of the system and producing an audible

"click" sound. Because of the location/guide features, there is additional force when a TPA member and a connector housing are mated together, and that additional force helps to make the "click" sound louder than it would have been if the location/guide features were not present. [0009] It is a desirable trait to avoid a TPA member being moved to a final lock position (or "set" position) during shipping and/or handling. The location/guide features and flexible features of TPA members, according to the principles disclosed herein, help to make the TPA member more resistant to entering a final lock position (or "set" position) during shipping and/or handling. The location/guide features and flexible features of TPA members, according to the principles disclosed herein, help to prevent a movement of TPA members from a preset position to a final lock position during shipping and/or handling.

[0010] It is a desirable trait for a TPA member to avoid a need for a secondary operation of a user. The location/guide features and flexible features of TPA members, according to the principles disclosed herein, help to avoid a need for a secondary operation of a user. The desired movement can be accomplished by a single operation of a user.

[0011] It is a desirable trait for a TPA member to help prevent failure. The location/guide features and flexible features of TPA members, according to the principles disclosed herein, help to avoid failure.

[0012] When a TPA member and a connector housing are engaged together in a final lock position, the engagement thereof is assured because there is an audible "click" sound.

[0013] Additional features, advantages, and embodiments of the invention are set forth or are apparent from consideration of the following detailed description, drawings and claims. Moreover, it is to be understood that both the foregoing summary of the invention and the following detailed description are exemplary and are intended to provide further explanation without limiting the scope of the invention as claimed.

BRIEF DESCRIPTION OF THE DRAWINGS

[0014]

40

45

50

55

FIG. 1 is a perspective view of a first TPA member that has flexible features, in accordance with the principles of the present invention.

FIG. 2 is a graph showing the forces used to insert the first TPA member of FIG. 1 into a connector.

FIG. 3 is a perspective view of a second TPA member that has location/guide features and flexible features, in accordance with the principles of the present invention.

FIG. 4 is an exploded perspective view of the second

15

25

40

45

50

TPA member of FIG. 3 and a connector, in accordance with the principles of the present invention.

FIG. 5 is an elevational view of the second TPA member of FIG. 4 partially inserted into the connector of FIG. 4, in a preset position, in accordance with the principles of the present invention.

FIG. 6 is a cross-sectional view, taken along line 6-6 in FIG. 5.

FIG. 7 is an enlarged view of the portion denoted in FIG. 6.

FIG. 8 is an elevational view of the second TPA member of FIG. 4 fully inserted into the connector of FIG. 4, in a final lock position, in accordance with the principles of the present invention.

FIG. 9 is a cross-sectional view, taken along line 9-9 in FIG. 8.

FIG. 10 is an enlarged view of the portion denoted in FIG. 9.

DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS

[0015] There is a need to provide a TPA member with a configuration that helps to prevent inadvertent movement from a preset position to a final lock position.

[0016] For example, a TPA member can be partially inserted into a connector before shipping, and that position can correspond to a preset position. Then the connector, having the TPA in the preset position, can be shipped to a customer. At that time, the customer can put the connector to use, and then can lastly move the TPA member from the preset position to the final lock position. The customer typically does not want to receive a connector with a TPA member already in the final lock position, because this could mean that the customer needs to take one or more additional steps which would be inconvenient and not desirable. For example, the customer will need to move the TPA member from the final lock position to the preset position, then put the connector to use, and then move the TPA member from the preset position to the final lock position. Additional steps, or secondary operations, are not desired.

[0017] Thus, in view of the above, there is a need to provide a TPA member with a configuration that helps to prevent inadvertent movement from a preset position to a final lock position, during shipping and/or handling, for example.

[0018] FIG. 1 is a perspective view of a first TPA member that has flexible features, in accordance with the principles of the present invention.

[0019] FIG. 1 illustrates a first TPA member, generally referred to by reference numeral 100. The first TPA mem-

ber 100 has a body that has a first side which includes flexible feature 102 and flexible feature 104. The body of the first TPA member 100 has a second side which includes flexible feature 106 and flexible feature 108. The body of the first TPA member 100 forms at least one terminal aperture 110.

[0020] When the first TPA member 100 is inserted into a connector, it is desirable for the first side to be even, balanced, or in alignment with the second side, so that flexible feature 102 will be engaged with a first tab of the connector at substantially the same time as the flexible feature 106 is engaged with a second tab of the connecter.

[0021] When flexible feature 102 engages with a first tab of the connector at substantially the same time as the flexible feature 106 engages with a second tab of the connector, this corresponds to a single peak force. If the first TPA member 100 is inserted into a connector in a lopsided manner, such that flexible feature 102 engages a first tab of the connector before flexible feature 106 engages a second tab of the connector, wherein the first side of the TPA member 100 is inserted into the connector before the second side of the TPA member 100, this can correspond to two or more peak forces, which is not desirable.

[0022] FIG. 2 is a graph showing the forces used to insert the first TPA member of FIG. 1 into a connector.
[0023] FIG. 2 shows the forces used to insert the first TPA member 100 into a connector, or to extract the first TPA member 100 from a connector. The first TPA member 100 does not have locating/guide features 220, 222. Because the first TPA member 100 does not have locating/guide features 220, 222, the flexible feature 102 might be engaged before the flexible feature 106 is engaged. That is, the first TPA member 100 might be inserted into

[0024] Because the first TPA member 100 does not have the locating/guide features 220, 222 of the present invention, the first TPA member 100 can be lopsided during insertion and this can lead to an imbalance of force, and the corresponding force curve can have two or more peaks of force. It is desirable to just have one peak of force when a TPA member is inserted into a connector.

[0025] In FIG. 2, each different colored curve repre-

a connector in a lopsided manner, such that one side is

inserted before another side.

sents forces from a different sample, when a TPA member that does not have the locating/guide features 220, 222 of the present invention is inserted into a connector. It is easy and common to insert a TPA member in a lop-sided manner or uneven manner, when that TPA member does not have the locating/guide features 220, 222 of the present invention.

[0026] In FIG. 2, most or all of the different colored curves have two or more peak forces, because it is easy and common to insert a TPA member in a lopsided manner or uneven manner, when that TPA member does not have the locating/guide features 220, 222 of the present invention.

[0027] To achieve the maximum force and/or a single peak force during insertion, a TPA member can be configured to have the locating/guide features 220, 222 of the present invention. To achieve the maximum force and/or a single peak force when a TPA member is extracxted from a connector, a TPA member can be configured to have the locating/guide features 220, 222 of the present invention. The locating/guide features 220, 222, in a middle area of a TPA member 200 as shown in FIG. 3, help to enable the flexible features 102 and 106 to engage a tab substantially simultaneously. The locating/guide features 220, 222 help to enable the flexible features 104 and 108 engage substantially simultaneously.

[0028] The locating/guide features 220, 222 help to have flexible features 102 and 106 engage a connector substantially simultaneously.

[0029] FIG. 3 is a perspective view of a second TPA member that has location/guide features and flexible features, in accordance with the principles of the present invention.

[0030] FIG. 3 depicts a second TPA member 200 that has a body 201. The body has flexible features 102, 104, 106, and 108 formed thereon. The flexible features 102, 104, 106, and 108 can also be referred to as protrusions 102, 104, 106, and 108 extending outward from sides of the body of the second TPA member 200. FIG. 3 shows that the body of the second TPA member 200 has a top 224. The body also has a location/guide feature 220 extending outward from the body in a first direction, and a location/guide feature 222 extending outward from the body in a second direction opposite to the first direction. The body forms at least one terminal aperture 110. A plurality of terminal apertures 110 are shown in FIG. 3. The flexible features 102, 104, 106, and 108 are more flexible than the location/guide features 220 and 222.

[0031] FIG. 3 shows that the location/guide features 220, 222 are at or near a middle area of the top 224, but the location/guide features 220, 222 could be located at one or more different areas of the second TPA member 200, in accordance with the principles of the present invention. One of the purposes of the location/guide features 220, 222 is to help the second TPA member 200 be even and balanced during insertion and extraction, and is not lopsided during insertion or extraction.

[0032] FIG. 4 is an exploded perspective view of the second TPA member of FIG. 3 and a connector, in accordance with the principles of the present invention.

[0033] FIG. 4 indicates the top 224 and bottom 226 of the second TPA member 200. FIG. 4 shows a connector 300 which has an aperture 302. The aperture 302 receives the bottom 226 of the second TPA member 200. The connector 300 has ribs 304 and 306.

[0034] The location/guide feature 220 extends from the top 224 of the body of the second TPA member 200 in a first direction outward away from the body as shown in FIG. 4, and the location/guide feature 222 extends from the top 224 of the body of the second TPA member 200

in a second direction opposite to the first direction, outward away from the body as shown in FIG. 4.

[0035] The location/guide feature 220 also extends downward in a direction toward the bottom 226 of the body of the second TPA member 200, as shown in FIG. 4. The location/guide feature 222 also extends downward in a direction toward the bottom 226 of the body of the second TPA member 200, as shown in FIG. 4.

[0036] As shown in FIG. 4, the connector 300 has an aperture 320 for receiving the locating/guide feature 220 of the second TPA member 200. The connector 300 also has an aperture 322 for receiving the locating/guide feature 222 of the second TPA member 200.

[0037] FIG. 5 is an elevational view of the second TPA member of FIG. 4 partially inserted into the connector of FIG. 4, in a preset position, in accordance with the principles of the present invention.

[0038] FIG. 5 depicts the preset position, wherein the second TPA member 200 is partially inserted into the aperture 302 of the connector. In the preset position, the flexible features 104 and 108 are visible in FIG. 5, but the flexible features 102 and 106 are not visible in FIG. 5. [0039] FIG. 6 is a cross-sectional view, taken along line 6-6 in FIG. 5.

[0040] FIG. 6 depicts the preset position, wherein the second TPA member 200 is partially inserted into the aperture 302 of the connector. FIG. 6 shows that connector 300 forms a receiving area 330 and a tab 332 on an interior of aperture 302, at one side. FIG. 6 also shows that connector 300 forms a receiving area 340 and a tab 342 on an interior of aperture 302, at an opposite side. [0041] When the bottom 226 of the second TPA member 200 is first inserted into the aperture 302, the flexible feature 102 of the second TPA member 200 will engage with the tab 332 of the connector 300, and then the flexible feature 102 will be held in the receiving area 330 by the tab 332, so that the second TPA member 200 is held in the preset position.

[0042] When the bottom 226 of the second TPA member 200 is inserted into the aperture 302, the flexible feature 106 of the second TPA member 200 will engage with the tab 342 of the connector 300, and then the flexible feature 106 will be held in the receiving area 340 by the tab 342, so that the second TPA member 200 is held in the preset position.

[0043] In the preset position, as shown in FIG. 6, the flexible feature 104 is not in the receiving area 330, and the flexible feature 108 is not in the receiving area 340.

[0044] FIG. 7 is an enlarged view of the portion denoted in FIG. 6. The scale of FIG. 7 is 30:1.

[0045] FIG. 8 is an elevational view of the second TPA member of FIG. 4 fully inserted into the connector of FIG. 4, in a final lock position, in accordance with the principles of the present invention.

[0046] FIG. 8 depicts the final lock position, wherein the second TPA member 200 is fully inserted into the aperture 302 of the connector. In the final lock position, the tabs 332 and 342 are visible in FIG. 8, but the flexible

40

45

features 104 and 108 are not visible in FIG. 8.

[0047] FIG. 9 is a cross-sectional view, taken along line 9-9 in FIG. 8.

[0048] FIG. 9 depicts the final lock position, wherein the second TPA member 200 is fully inserted into the aperture 302 of the connector. FIG. 9 shows that connector 300 forms a receiving area 330 and a tab 332 on an interior of aperture 302, at one side. FIG. 9 also shows that connector 300 forms a receiving area 340 and a tab 342 on an interior of aperture 302, at an opposite side.

[0049] When the second TPA member 200 is moved from the preset position to the final lock position, the flexible feature 104 of the second TPA member 200 will engage with the tab 332 of the connector 300, and then the flexible feature 104 will be held in the receiving area 330 by the tab 332.

[0050] When the second TPA member 200 is moved from the preset position to the final lock position, the flexible feature 108 of the second TPA member 200 will engage with the tab 342 of the connector 300, and then the flexible feature 108 will be held in the receiving area 340 by the tab 342.

[0051] In the final lock position, as shown in FIG. 9, the flexible features 102 and 104 are both in the receiving area 330, and the flexible features 106 and 108 are both in the receiving area 340.

[0052] FIG. 10 is an enlarged view of the portion denoted in FIG. 9. The scale of FIG. 10 is 30:1.

[0053] Although the foregoing description is directed to the preferred embodiments of the invention, it is noted that other variations and modifications will be apparent to those skilled in the art, and may be made without departing from the spirit or scope of the invention. Moreover, features described in connection with one embodiment of the invention may be used in conjunction with other embodiments, even if not explicitly stated above.

List of reference numerals

[0054]

100	Terminal position assurance member
-----	------------------------------------

- 102 Flexible feature (protrusion)
- 104 Flexible feature (protrusion)
- 106 Flexible feature (protrusion)
- 108 Flexible feature (protrusion)
- 110 Terminal aperture, formed by the body of the terminal position assurance member
- 200 Terminal position assurance member with locating/guide features
- 201 Body of the terminal position assurance member
- 220 Locating/guide feature (guide)
- 222 Locating/guide feature (guide)
- 224 Top of body of terminal position assurance memher
- 226 Bottom of body of terminal position assurance member
- 300 Connector

302 Aperture for receiving bottom of body of terminal position assurance member

- 304 Rib
- 306 Rib
- 320 Aperture for receiving locating/guide feature 220
- 322 Aperture for receiving locating/guide feature 222
- Receiving area for receiving flexible features 102 and 104
- 332 Tab
- 10 340 Receiving area for receiving flexible features 106 and 108
 - 342 Tab

15 Claims

20

30

40

45

50

55

1. A terminal position assurance member, comprising:

a body;

at least a first guide on the body and extending in a first direction away from the body;

at least a first protrusion on a first side surface of the body;

at least a second protrusion on a second side surface of the body; and

at least one terminal aperture formed by the body.

2. The terminal position assurance member of claim 1, further comprising:

at least a second guide on the body and extending in a second direction away from the body, the second direction being opposite to the first direction.

3. The terminal position assurance member of claim 1 or 2, further comprising:

a third protrusion on the first side surface of the body.

4. The terminal position assurance member of any one of the preceding claims, further comprising:

a fourth protrusion on the second side surface of the body.

- The terminal position assurance member of any one of the preceding claims, wherein the protrusions are flexible features.
- 6. The terminal position assurance member of any one of the preceding claims, wherein the first guide is less flexible than the first and second protrusions.
- 7. The terminal position assurance member of any one of the preceding claims, further comprising:

10

15

20

30

35

40

45

50

55

a third protrusion on the first side surface of the body:

a fourth protrusion on the second side surface of the body; and

at least a second guide on the body and extending in a second direction away from the body, the second direction being opposite to the first direction,

wherein the first guide has a first shape and the second guide has a second shape different from the first shape.

- **8.** The terminal position assurance member of any one of the preceding claims, wherein at least the first protrusion is more flexible than the first guide.
- **9.** The terminal position assurance member of claim 7 or 8, wherein at least the second protrusion is more flexible than the second guide.
- **10.** A method of operating a terminal position assurance member, comprising:

inserting part of a body of a terminal position assurance member into a first aperture formed by a connector; and

causing a first guide, formed on the body of the terminal position assurance member, to be at least partly received by a second aperture formed by the connector.

11. The method of claim 10, further comprising:

engaging a first protrusion on a first side of the body of the terminal position assurance member with a first tab formed in the first aperture of the connector; and then

receiving the first protrusion in a first receiving area formed adjacent to the first tab.

12. The method of claim 11, further comprising:

engaging a second protrusion on a second side of the body of the terminal position assurance member with a second tab formed in the first aperture of the connector; and then receiving the second protrusion in a second receiving area formed adjacent to the second tab, wherein the first side is opposite to the second side.

- **13.** The method of claim 12, wherein the first protrusion engages with the first tab at substantially the same time as the second protrusion engages with the second tab.
- **14.** The method of claim 13, wherein the first protrusion engages with the first tab at substantially the same

time as the second protrusion engages with the second tab because the first guide, being at least partly in the second aperture, guides an alignment of the terminal position assurance member so that the first side is aligned with the second side.

- 15. The method of any one of claims 12 to 14, wherein when the first protrusion is received in the first receiving area and the second protrusion is received in the second receiving area, a third protrusion on the first side of the body of the terminal position assurance member is not received in the first receiving area and a fourth protrusion on the second side of the body of the terminal position assurance member is not received in the second receiving area.
- 16. The method of claim 15, wherein when the first protrusion is received in the first receiving area, the second protrusion is received in the second receiving area, the third protrusion is not received in the first receiving area, and the fourth protrusion is not received in the second receiving area, the terminal position assurance member is in a preset position.
- 5 **17.** The method of claim 15 or 16, further comprising:

engaging the third protrusion with the first tab formed in the first aperture of the connector; engaging the fourth protrusion with the second tab formed in the first aperture of the connector; and then

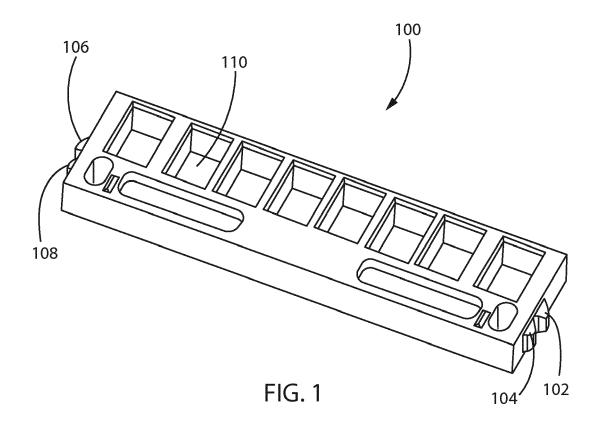
receiving the third protrusion in the first receiving area and receiving the fourth protrusion in the second receiving area.

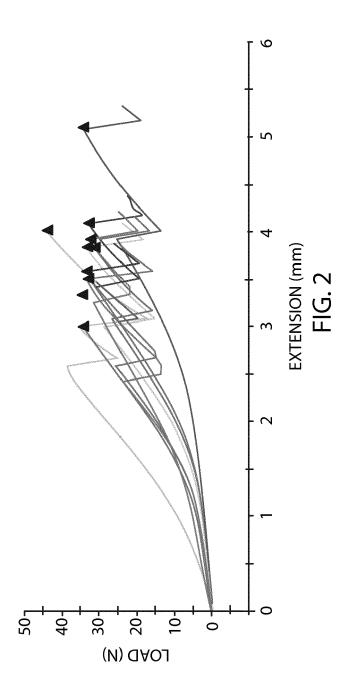
- **18.** The method of claim 17, wherein when the first and third protrusions are received in the first receiving area, and the second and fourth protrusions are received in the second receiving area, the terminal position assurance member is in a final lock position.
- **19.** A terminal position assurance member, comprising:

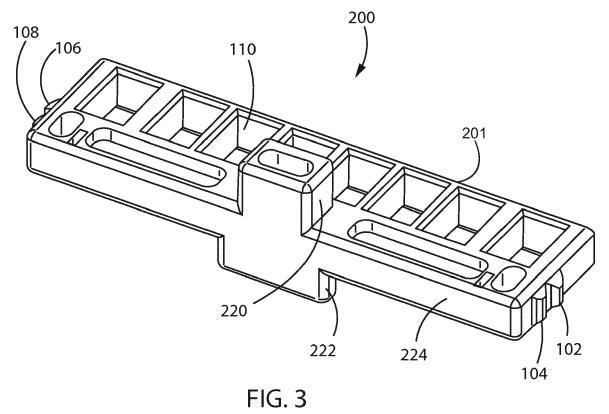
a body;

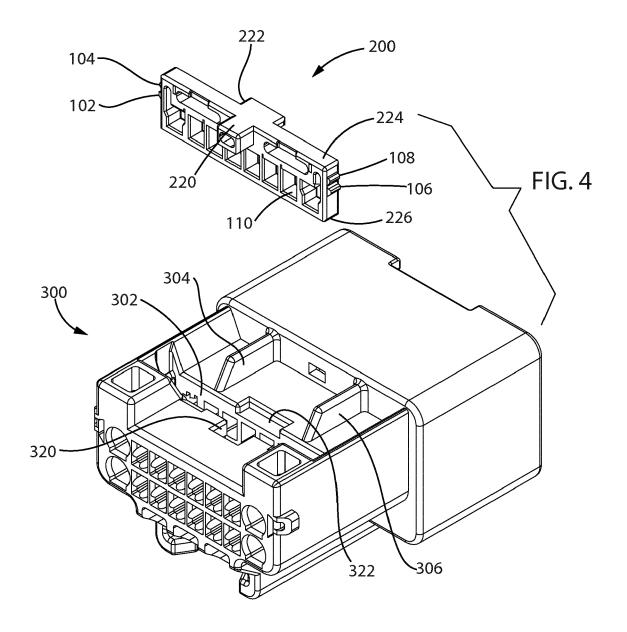
a first guide on the body and extending in a first direction away from the body;

a second guide on the body and extending in a second direction away from the body, the second direction being opposite to the first direction; a first pair of protrusions on a first side surface of the body;


a second pair of protrusions on a second side surface of the body; and


at least one terminal aperture formed by the body.


20. The terminal position assurance member of claim 19, wherein the first and second guides are extend


6

from a top surface of the terminal position assurance member to be received by apertures formed by a connector housing.

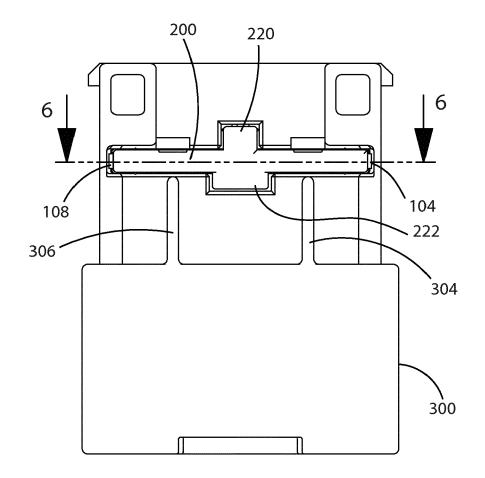
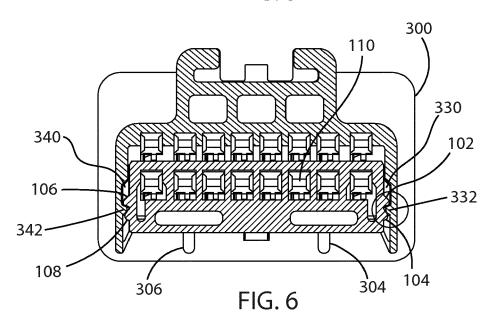



FIG. 5

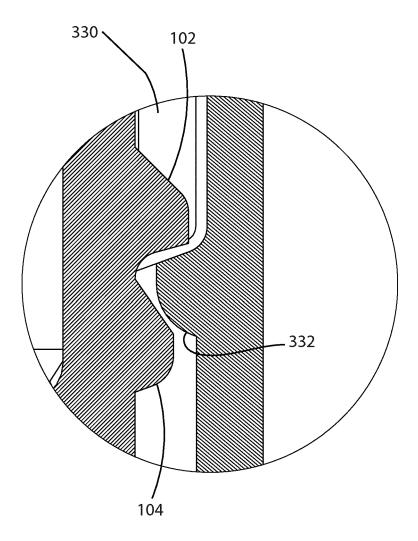


FIG. 7

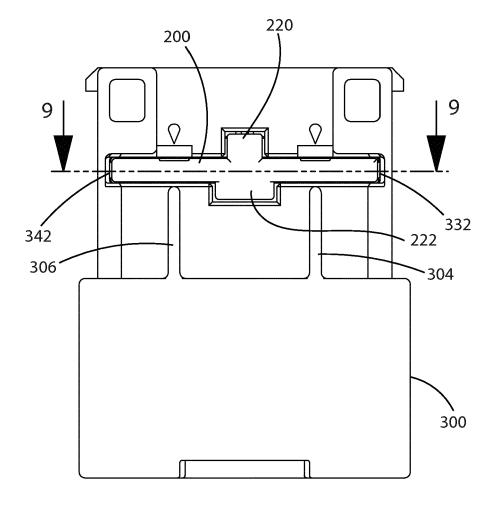
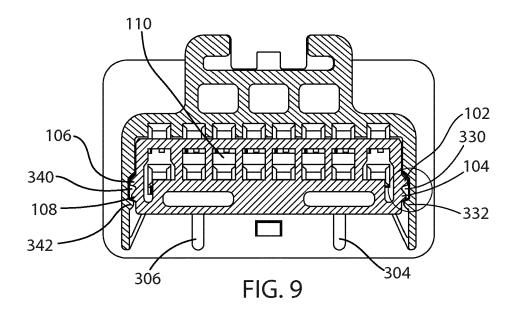



FIG. 8

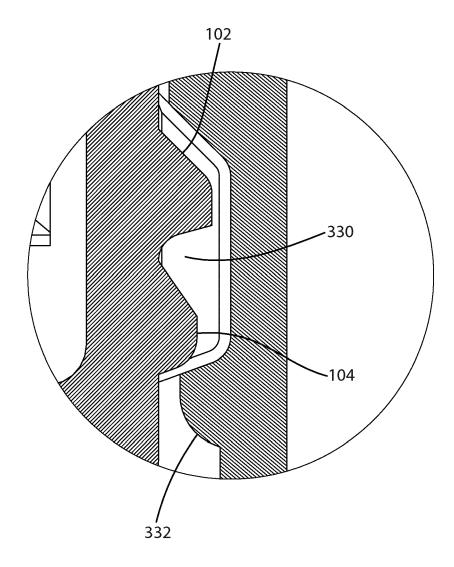


FIG. 10

EUROPEAN SEARCH REPORT

Application Number EP 17 20 7724

EPO FORM 1503 03.82 (P04C01)

	DOCUMENTS CONSID				
Category	Citation of document with in of relevant pass	ndication, where appropriate, ages	Relevant to claim	CLASSIFICATION OF THE APPLICATION (IPC)	
X A	EP 0 828 318 A2 (YA 11 March 1998 (1998 * figures 1,2(a) * * column 8, line 15		1-16,19, 20 17,18	INV. H01R13/436 ADD. H01R13/627	
X A	GB 2 255 864 A (SUN [JP]) 18 November 1 * figures 1,2 *	MITOMO WIRING SYSTEMS 1992 (1992-11-18)	1-16,19, 20 17,18		
X A	US 7 278 890 B1 (SM 9 October 2007 (200 * figures 1,2 *	MUTNY DALE J [US] ET AL) 07-10-09)	1-16,19, 20 17,18		
X	EP 3 046 185 A1 (TY KOREA CO LTD [KR]) 20 July 2016 (2016- * figures 1,2,3A,3E	-07-20)	1-20		
A,P	US 2017/179643 A1 (22 June 2017 (2017 * figures 1 -30 *		1-20	TECHNICAL FIELDS SEARCHED (IPC) H01R	
	The present search report has				
		Date of completion of the search		Examiner	
	The Hague	22 March 2018		loumpakas, K	
CATEGORY OF CITED DOCUMENTS T: theory or principle underlying the invention E: earlier patent document, but published on, or after the filing date Y: particularly relevant if taken alone Y: particularly relevant if combined with another document of the same category A: technological background O: non-written disclosure P: intermediate document CATEGORY OF CITED DOCUMENTS T: theory or principle underlying the invention E: earlier patent date D: document, but published on, or after the filing date D: document cited in the application L: document cited for other reasons C: member of the same patent family, corresponding document					

EP 3 316 409 A1

ANNEX TO THE EUROPEAN SEARCH REPORT ON EUROPEAN PATENT APPLICATION NO.

EP 17 20 7724

5

This annex lists the patent family members relating to the patent documents cited in the above-mentioned European search report. The members are as contained in the European Patent Office EDP file on The European Patent Office is in no way liable for these particulars which are merely given for the purpose of information.

22-03-2018

10	Patent document cited in search report	Publication date	Patent family member(s)	Publication date
15	EP 0828318 A2	11-03-1998	DE 69737175 T2 EP 0828318 A2 JP 3322803 B2 JP H1083854 A US 6010374 A	26-04-2007 11-03-1998 09-09-2002 31-03-1998 04-01-2000
20	GB 2255864 A	18-11-1992	GB 2255864 A JP 2541164 Y2 JP H04127976 U US 5252096 A	18-11-1992 09-07-1997 20-11-1992 12-10-1993
25	US 7278890 B1	09-10-2007	CN 101127424 A KR 20080010316 A US 7278890 B1	20-02-2008 30-01-2008 09-10-2007
	EP 3046185 A1	20-07-2016	CN 105789976 A EP 3046185 A1 US 2016204539 A1	20-07-2016 20-07-2016 14-07-2016
30	US 2017179643 A1	22-06-2017	US 2017179643 A1 US 2017179646 A1	22-06-2017 22-06-2017
35				
40				
45				
50				
55				

For more details about this annex : see Official Journal of the European Patent Office, No. 12/82