(11) EP 3 320 965 A1

(12)

EUROPEAN PATENT APPLICATION

(43) Date of publication:

16.05.2018 Bulletin 2018/20

(21) Application number: 17200615.7

(22) Date of filing: 08.11.2017

(51) Int Cl.:

B01F 5/04 (2006.01) B01F 3/08 (2006.01)

B01F 15/02 (2006.01)

B01F 3/04 (2006.01) B01F 5/00 (2006.01)

(84) Designated Contracting States:

AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

Designated Extension States:

BA ME

Designated Validation States:

MA MD

(30) Priority: 08.11.2016 DK 201600690

(71) Applicant: Nilfisk Food A/S 2605 Brøndby (DK)

(72) Inventor: ASP, Flemming 9400 Nørresundby (DK)

(74) Representative: Budde Schou A/S

Hausergade 3

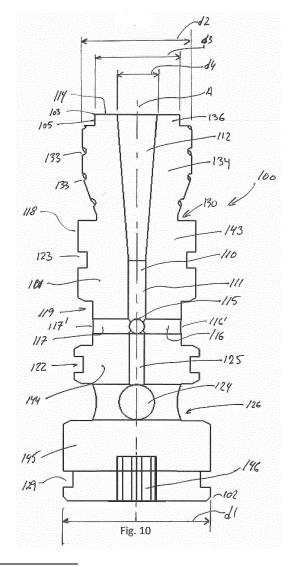
1128 Copenhagen K (DK)

(54) MIXING UNIT WITH REPLACEABLE INJECTOR

(57) A mixing unit (9) for supplying foam for cleaning, the mixing unit (9) comprising:

a housing (10) having a liquid inlet (43) for receiving pressurized water, a gas inlet (53) for receiving pressurized air, a fluid outlet (44) for delivering said foam, a cleaning agent inlet (39), and an injector receiving bay/port (70) for receiving an injector (100);

the mixing unit (9) further comprising an injector (100), the injector (100) having


- an injector body (101) with a first end (102) and a second end (103) opposite to the first end (102), and a longitudinal axis (A);
- an injector inlet (115);
- an injector outlet (113) formed through the second end (103); and
- an injector liquid inlet (124);

which injector inlet (115) is fluidly connectable to the cleaning agent inlet (39) of the housing (10),

which injector liquid inlet (124) is fluidly connectable to the liquid inlet (43) of the housing (10), and

which injector outlet (113) is fluidly connected to the fluid outlet (44) of the housing (10),

wherein the injector liquid inlet (124) is in a direction transverse to the a longitudinal axis (A) of the injector (100).

30

35

40

45

[0001] The present invention pertains to a mixing unit for producing foam for cleaning purposes, a cleaning device with a mixing unit, particularly for use in the food manufacturing industries. More particularly, the invention concerns the use of injectors for sucking a cleaning agent into a water flow. Such injectors are extensively used in cleaning devices and cleaning systems for cleaning heavily soiled surfaces in the food processing area, for instance in meat and fish processing industries, vegetables processing or the pastry industry. The cleaning device according to the invention may also be used for cleaning cars, tractors and other agricultural machines.

1

[0002] The present invention relates to a mixing unit for use in a cleaning device and cleaning system, the mixing unit having replaceable injectors.

Background of the invention/Background Art

which often get heavily soiled during use.

[0003] In the food processing industry, in particular in heavily soiled areas, such as slaughter-houses or in the meat and fish processing industries, tenacious soiling through grease, protein and starch residues requires the application of a series of different treatments procedures, including disinfection, in order to achieve a level of cleaning that complies with official standards. Traditionally, the cleaning procedure would involve an initial flushing with water, wherein all larger debris are removed and the surfaces are made wet. Then it is customary to apply a "carpet" of foam comprising a cleaning agent over these surfaces, particularly in order to clean these surfaces from grease. Finally, the areas may be disinfected with yet another chemical agent, such as chlorine.

[0004] Injectors are typically used for such devices and systems.

[0005] The injectors typically used in cleaning devices and cleaning systems in the industry today, where water is mixed with some type of chemistry (also known as a cleaning agent), are all in one way or another built in to a piping system. Typically, the piping systems are assembled on or fixed to a pipe-manifold or the like. Consequently, it is cumbersome to access modern type injectors, e.g. in order to change the size (capacity) of the injector, or in connection with service or maintenance of the injectors. In order to access the prior art injectors, it is necessary to disassemble the entire or at least portions of the piping system.

[0006] Fig. 1 of the attached description shows a typical cleaning device where injectors are built-in to a piping system. As it appears from Fig. 1, the injectors cannot be accessed without disassembling the piping system, at least to some extent.

[0007] Other similar injectors and cleaning devices are disclosed in US 5,855,217 and WO 2015/067989 A1.

[0008] Injectors are built in to a pipe or some other type of housing. Such housings are often referred to as mixing

units, because it is inside the mixing unit, that the cleaning agent is drawn into and mixed with a flow of water, and where air may be added to provide a foam.

[0009] There is thus a need for mixing unit and an injector that allows easy access to and replacement of injectors.

Disclosure of the invention

[0010] On this background, it is an object of the present invention to provide a mixing unit which is simpler in construction, and more compact, flexible and robust than the prior art mixing units. It is a further object of the invention to provide a mixing unit where an injector may be interchanged more easily than in the prior art devices. Yet further it is an object of the present invention to obtain a mixing device that minimizes the need for welding components of the cleaning system or the cleaning device together.

[0011] In a first aspect, these objects are achieved by a mixing unit for supplying foam for cleaning, the mixing unit comprising:

a housing having a liquid inlet for receiving pressurized water, a gas inlet for receiving pressurized gas, a fluid outlet for delivering said foam, and a cleaning agent inlet, and an injector receiving bay/port for receiving an injector;

the mixing unit further comprising an injector, the injector having

- injector body with a first end and a second end opposite to the first end and a longitudinal axis;
- an injector inlet;
- an injector outlet formed/arranged through the second end; and
- an injector liquid inlet;

which injector inlet is fluidly connectable to the cleaning agent inlet of the housing, which injector liquid inlet is fluidly connectable to the liquid inlet/water inlet of the housing, and which injector outlet is fluidly connected to the fluid outlet of the housing, wherein the injector liquid inlet formed/arranged in a direction transverse to the a longitudinal axis of the injector.

[0012] Preferably, the pressurized gas is air.

[0013] Thereby, is achieved, that the injector may be accessed from a side of a housing of a mixing unit, where no fluid connections enters the injector when located in the mixing unit. Therefore, the need for making water tight connections is diminished and easier access to the injector may thus be provide. The principle may also be used to retrofit in prior at pipe-manifold-type systems.

[0014] In an embodiment, the injector liquid inlet is formed/arranged as a bore from an outer surface of the injector body.

[0015] In a further embodiment the injector liquid inlet communicates with a water inlet connection channel ex-

25

30

40

45

50

55

tending in the direction of the longitudinal axis of the injector body and opens into an injector chamber at the injector inlets.

[0016] In a further embodiment the injector liquid inlet is formed/arranged at a circumferential groove, formed/arranged in the outer surface of the injector body, the circumferential groove forming an annular water inlet channel around the injector together with a portion of the inner surface of the injector receiving bay/port of the mixing unit, when the injector is inserted in the injector receiving bay/port.

[0017] In a further embodiment the injector is positioned within the mixing unit in such a way that a gap around the injector outlet is provided, said gap being fluidly connected to the gas inlet for allowing pressurized gas/air to enter and pass through the gap and mix with a cleaning agent and water at the fluid outlet of the housing.

[0018] In a further embodiment the injector body only has a decreasing maximum dimension from the first end to outlet end, and where the injector body comprises means for releaseably connecting the injector to a portion of the housing of the mixing unit.

[0019] In further embodiment, the means for releaseably connecting the injector to a portion of the housing of the mixing unit comprises a threading on a portion located at the first end of the injector, the threading cooperating with a corresponding threading on the surface of the injector receiving bay/port of the mixing unit.

[0020] In a further embodiment helical grooves may be formed/arranged in an outer surface of a portion of the injector body in order to provide a swirling gas/air flow surrounding the injector outlet.

[0021] In a second aspect of the invention the objects of the invention are obtained by a cleaning device comprising:

- a mixing unit according to any one of the above mentioned embodiments:
- at least one cleaning agent valve for supplying cleaning agents, and connectable to a source of a cleaning agent;
- an injector valve connectable to a source of pressurized liquid;
- a gas supply valve connectable to a source of pressurized gas;

wherein the at least one injector and the injector valve are integrated within the mixing unit housing;

wherein cleaning agent channels fluidly connecting the

wherein cleaning agent channels fluidly connecting the at least one injector and sources of cleaning agent are formed/arranged within the mixing unit housing,

wherein a liquid supply channel fluidly connecting the injector valve with the injector is formed/arranged within the mixing unit housing; and

wherein a gas supply channel fluidly connecting the gas supply valve and the at least one injector is formed/arranged in the mixing unit housing.

[0022] In an embodiment of the cleaning device, the mixing unit housing is formed as a solid block of material,

wherein the at least one injector is arranged in an injector receiving bay/port formed/arranged as a bore in said block;

wherein the injector valve, is arranged in an injector receiving bay/port formed/arranged as a bore in said block, and

wherein the cleaning agent connection channels, the water supply channel and the gas supply channel are formed/arranged as bores in the block.

[0023] Further objects, features, advantages and properties of the cleaning system and cleaning device e according to the invention will become apparent from the detailed description.

Brief description of the drawings

[0024] In the following detailed portion of the present description, the invention will be explained in more detail with reference to the exemplary embodiments shown in the drawings, in which:

Fig 1 shows a prior art cleaning device with three prior art mixing units;

Fig. 2, in a sectional view, shows a diagrammatic depiction of a mixing unit for a cleaning device according to the present invention, and with an injector mounted in the mixing unit;

Fig. 3 shows the mixing unit of Fig. 2, with an injector dismounted from the mixing unit;

Fig. 4A, in a perspective view, shows an embodiment of a mixing unit according to the invention;

Fig. 4B, in a perspective view, shows the mixing unit of Fig. 4A from a different angle;

Fig. 5, in diagrammatic form, shows a cleaning system according to one aspect of the invention including a cleaning device according to another aspect of the invention, and an extended cleaning system;

Fig. 6A, in a sectional view, shows a close up of an injector of a cleaning device according to the invention mounted in a mixing unit of the cleaning device; Figs. 6B and 6C shows the injector and the mixing unit of Fig. 6A, where the injector has been loosened and partly extracted from a bay/port of the mixing unit.

Fig. 6D shows the injector and the mixing unit of Fig. 6A, where the injector has been fully extracted from a bay/port of the mixing unit;

Fig. 6E, in a perspective view, shows an injector and a portion of a mixing unit for a cleaning device according to the invention, before mounting the injector in a bay/port of the mixing unit;

Fig. 6F shows the injector and the portion of a mixing unit of Fig. 6E, where the injector has been mounted in the mixing unit;

20

25

40

Fig. 7, in a partly sectional perspective view, shows an injector according to an aspect of the invention, and a part of a mixing unit for a cleaning device according to the invention;

Fig. 8, in a front view, shows the injector of Fig. 7 and a portion of the mixing unit;

Fig. 9, in a side sectional view shows a portion of the injector and the mixing unit of Fig. 7; and

Fig. 10 shows a section through the injector of Fig. 7.

Detailed description of the invention

[0025] In the following detailed description of the mixing unit according to the invention will be described by preferred embodiments. Also described herein is a cleaning system and a cleaning unit, in which the mixing unit may be implemented. The present invention will now be described more fully hereinafter with reference to the accompanying drawings, in which exemplary embodiments of the invention are shown. The invention may however be embodied in different forms and should not be construed as limited to the embodiments set forth herein. Rather, these embodiments are provided so that this disclosure will be thorough and complete, and will fully convey the scope of the invention to those skilled in the art. Like reference numerals refer to like elements throughout. Like elements may therefore not be described in detail with respect to the description of each figure.

[0026] The present invention concerns a new mixing unit 9, e.g. for use in a cleaning system 1 and a cleaning device 2 within the field of automated hygienic systems for cleaning of process-systems/apparatuses in the food processing industry. The invention further concerns an integrated mixing unit or module 10 for handling liquid (preferably water), gas (preferably air), and different chemical cleaning compounds, hereinafter called cleaning agents. The mixing unit 10 comprises a suction vacuum chamber, preferably in the form of a so-called injector 100 for mixing water, air and one or more cleaning agents.

[0027] In a further aspect of the invention, the mixing unit 9 of the cleaning device 2 may further include a function for integrated flushing or rinsing of the mixing chamber(s), i.e. the injector(s).

[0028] The mixing unit 10 varies from the mixing units of existing cleaning devices, in that all functions may be integrated in one and the same compact module/unit. This contrasts the cleaning systems available in the market for the food processing industry today. These prior art cleaning devices are typically constructed from different and independent standard components, which via tubes, weldings, fittings and valves (see e.g. Fig. 1) are connected into a cleaning manifold.

[0029] Fig. 1 shows a prior art cleaning device for room surfaces cleaning in the food processing industry. The cleaning device shown is representative of the prior art cleaning devices for surface cleaning in the food processing industry. Other types of apparatuses are used in con-

nection with CIP cleaning.

[0030] In Fig. 1, the encircled device indicated by the reference AA is a cleaning agent valve with tubing. The cleaning agent valve AA includes an injector, which is encircled by the smaller circle inside circle AA, and with the reference "aa". The injector aa is mounted inside the shown tubing by matching threading inside the tube and on the injector. An example of such an injector can be seen in WO 2015/067989. The injector housing, i.e. the tubing is welded together, making it difficult to access the injector for maintenance or repair.

[0031] In Fig. 1, the encircled devices indicated by the references BB and CC are further cleaning agent valves with tubing, similar to AA described above. Further, the encircled device indicated by the reference DD is a valve for supplying spraying water directly to a surface to be cleaned, without being mixed with a cleaning agent, i.e. the valve circumvents the cleaning agent valves AA, BB, CC. Further, in Fig. 1, the arrow marked with the reference WI indicates the incoming water from a pump, delivering water under pressure. Yet further, the arrow marked with the reference OU indicates the outlet for water, water/cleaning agent mix, or water/cleaning agent/air-mix. The encircled device indicated by the reference EE is a valve for supplying air to water/cleaning agent mix in order to provide a foam. The structure encircled and named FF is a valve and tubing for supplying water for rinsing the injectors, aa, in the cleaning agent valves AA, BB, CC. In connection with an aspect of the present invention, such an additional valve may be completely spared, due to the new setup.

[0032] As is apparent from Fig. 1, the prior art system is a large and complex construction.

[0033] Further, the system illustrated in Fig. 1 shows the housing in which the prior art injectors are typically build into. It is evident that the injectors are located inside the tubing and cannot be accessed without disassembling the piping at the unions.

[0034] The cleaning device and the cleaning system according to the present invention integrates some or all the functionalities of the prior art devices in one compact module for automated surface cleaning, in order reduce the space requirements, the production time, and to improve the overall hygiene in the cleaning device 2 and system 1, based on a hygienic design without weldings and with a minimum of connections.

[0035] Fig. 5 shows a first exemplary embodiment of cleaning device 2 and a cleaning system 1, which is particular suitable for performing cleaning in the food processing industry, in particular surface cleaning (as opposed to e.g. CIP).

[0036] The cleaning system 1 comprises a cleaning device 2, and an external cleaning system 300, and a control system 200. The external cleaning system 300 may comprise a tubing 310, 311, 312, 313, in order to deliver water, foam and cleaning agents/water mix from the cleaning device 2 to the locations to be cleaned, e. g. surfaces of rooms and/or machinery of a food process-

40

45

50

55

ing facility.

[0037] The illustrated cleaning device 2 comprises a source of liquid 49. The source of liquid 49 may include a liquid pump 41. The liquid is preferably water. The liquid pump 41 has a pump inlet 41' to be connected to a liquid (water) supply (not shown), such as regular municipal tap water, and an outlet 41" for the provision of pressurized water.

[0038] The cleaning device 2 also comprises a source 51 of pressurized gas, preferably comprising a compressor 51, having an gas/air inlet (not shown), and a gas outlet 51' for the provision of pressurized gas, such as air. In other embodiments (not shown) other pressurized gasses may be used, e.g. O₂.

[0039] The cleaning device 2 also comprises one or more sources 33, 34 of cleaning agents. In Fig. 5 two such sources are shown. However, in other embodiments there may be another number of cleaning agent sources, such as one or three or more.

[0040] It is understood that, in other embodiments (as explained in the general description above), the cleaning device 2 could be embodied without a compressor 51 or a water pump 41 or sources 33, 34 of cleaning agents, or without either. Alternatively, either the compressor 51 or the water pump 41 or the sources 33, 34 of cleaning agents could form part of the device 2, but be placed at a different location.

[0041] Furthermore, as indicated in Fig. 5, the cleaning device 2 comprises a mixing unit 9. The mixing unit 9 allows mixing of liquid, e.g. water, with a cleaning agent, and a gas, e.g. air, to provide a foam for cleaning purposes. The mixing unit 9, according to the invention may also allow spraying with water only, or spraying with a mixture of cleaning agent and water (i.e. without gas/air). [0042] The mixing unit 9 has a liquid inlet 43, which is fluidly connectable to the outlet 41" of the water pump 41 via suitable liquid supply tubing 42. The mixing unit 9 further comprises a fluid outlet 44. The water flow through the mixing unit 9 may be controlled by an injector valve 40, which is a flow control valve, i.e. a valve for controlling the magnitude or volume of water flowing there through per unit of time. The valve may be a ball valve, or a seat valve, or any other suitable valve. The injector valve 40 is located in the mixing unit 9 in a liquid supply channel 64', 64 forming a fluid connection between the liquid inlet 43 and an injector 100 of the mixing unit 9. Although this may not be necessary, a second flow control valve, a spraying liquid valve 80 is shown inside the mixing unit 9 in Fig. 5. The valve may be of the same type as the injector valve 40. The spraying liquid valve 80 is arranged in a fluid connection 81, 82 between the liquid inlet 43 and the liquid outlet 44 of the mixing unit 9. This spraying liquid valve 80 may be used for providing clean water for spraying in the external cleaning system 300.

[0043] Further, the mixing unit 9 has a gas inlet 53, which is fluidly connected the gas outlet 51' of the source of pressurized gas/compressor 51 via suitable gas piping 52. The flow of gas (air) to the mixing unit may be con-

trolled by a gas supply valve 50, which in the embodiment shown in Fig. 5 is provided in the fluid connection piping 52 between the source of pressurized gas/compressor 51 and the gas inlet 53 of the mixing unit 9. However, in other embodiments (not shown) the gas supply valve 50 may be arranged inside the mixing unit 9.

[0044] Yet further, the mixing unit 9 has a number of cleaning agent inlets 37, 38, 39, which are fluidly connected with the cleaning agent sources 33, 34, via cleaning agent input lines 35, 36, which as formed by suitable tubes or pipes. The flow of cleaning agents to the mixing device 9 may be controlled by cleaning agent valves 30, 31 arranged in the respective cleaning agent input lines 35, 36. In alternative embodiments (not shown) cleaning agent valves may instead be located inside the mixing unit 9.

[0045] The cleaning device 2 may further be connected to an electrical power supply (not shown) via a suitable cable (not shown) in order to supply electrical power to the water pump 41 and the compressor 51, and/or any further valves, actuators as described below, and the control system 200 for the cleaning device 2 and cleaning system 1.

[0046] The water pump 41, the compressor 50, the mixing unit 9, and further components of the cleaning device 2 may placed inside a housing, not shown. However, they may also be distributed in different locations and connected via suitable tubing.

[0047] The illustrated mixing unit 9 may be a wall or floor mountable device, but it could in alternative embodiments be placed on a wheeled chassis, whereby a mobile cleaning device 2 could be provided.

[0048] The pressurized water provided by the water pump 41, i.e. at the pump outlet 41", may have has a pressure of between 3 bar and 60 bar, preferably between 10 bar and 60 bar, even more preferably between 20 bar and 60 bar. Hereby is achieved that sufficient pressure is provided by the water pump 41 in order to suck (see explanation of injector function below) a first cleaning agent and/or a second cleaning agent, even when an air pressure provided by the compressor 51 (for foaming) is supplied to an injector 100 of the mixing unit 9. This will be explained below. The air pressure provided by the compressor 51 is preferably around 5-10 bar.

[0049] Water vapor can carry contagious/infectious gems, which can pose a real health hazard to the operators performing cleaning work in for example the food industry. However, by keeping the water pressure below 60 bar or below 40 bar, it is assured that the health risk associated with water vapor carried infections is minimized, while at the same time providing sufficient pressure in order to suck up the first or second cleaning agent for cleaning or disinfection purposes. Preferably, the water provided by the water supply to the inlet 41' of the water pump 41 has a pressure of less than 10 bar, preferably less than 8 bar.

[0050] Further, and as shown in Fig. 5, the cleaning system 1 and the cleaning device 2 comprises a control

40

45

system 200, for controlling the operation of the cleaning device 2 and in some embodiments the external cleaning system 300, which may form part of the cleaning system 1 of the invention.

[0051] The control system 200 controls at least the cleaning device 2. The control system 200 comprises a control unit 201. The control unit 201 may be any suitable electronic processing unit available. The control unit 201 may be connected to various sensors and actuators via suitable cables or wirelessly.

[0052] Thus, the control unit 201 may control the operation of the pump 41, which forms part of the source of liquid/water for the cleaning device 2. The pump 41 may preferably be a variable pump driven by a motor 210, connected to and controlled by the control unit 201, via a control connection 211. As mentioned above the control connection may be a cable or a wireless connection.

[0053] The control unit 201 also may control the operation of the injector valve 40. The injector valve 40 may be controlled by an actuator 240, connected to and controlled by the control unit 201, via a control connection 241. As mentioned above the control connection 241 may be a cable or a wireless connection. In Fig. 5, the actuator 241 is represented by the symbol of a magnetic actuator, and is illustrated within the mixing unit 9. However, it must be emphasized that the actuator 240 may in other embodiments, see e.g. Figs. 4A, 4B, physically be located outside of and adjacent to the mixing unit 9 housing 10, and connected to the injector valve 40 via e.g. a shaft extending through a wall of the housing 10. Further, it must be emphasized that the actuator 240 may be of a different type than a magnetic actuator. For the injector valve the actuator may e.g. be a pneumatic actuator (which may be supplied by the compressor 51 (not shown) or by an additional source of pressurized gas or fluid (not shown)), which in itself may be controlled by an electrical actuator such as a magnetic actuator.

[0054] Further, the control unit 201 also may control the operation of the spraying liquid valve 80. The spraying liquid valve 80 may be controlled by an actuator 280, connected to and controlled by the control unit 201, via a control connection 281. As mentioned above the control connection 281 may be a cable or a wireless connection. In Fig. 5, the actuator 280 is represented by the symbol of a magnetic actuator, and is illustrated within the mixing unit 9. However, it must be emphasized that the actuator 280 may in other embodiments, see e.g. Figs. 4A, 4B, physically be located outside of and adjacent to the mixing unit 9 housing 10, and connected to the spraying liquid valve 80 via e.g. a shaft extending through a wall of the housing 10. Further, it must be emphasized that the actuator 280 may be of a different type than a magnetic actuator. For the spraying liquid valve 80, the actuator may e.g. be a pneumatic actuator (which may be supplied by the compressor 51 (not shown) or by an additional source of pressurized gas or fluid (not shown)), which in itself may be controlled by an electrical actuator such as

a magnetic actuator.

[0055] Yet further, the control unit 201 may control the operation of the gas supply valve 50. The gas supply valve 50 may be controlled by an actuator 250, connected to and controlled by the control unit 201, via a control connection 251. As mentioned above the control connection 251 may be a cable or a wireless connection. In Fig. 5, the actuator 250 is represented by the symbol of a magnetic actuator, and is illustrated outside the housing 10 of the mixing unit 9, along with the gas supply valve 50. However, it must be emphasized that the actuator 250 and the gas supply valve may in other embodiments (not shown), physically be located inside the mixing unit 9 housing 10. Alternatively, in a further embodiment (not shown), the gas supply valve 50 may be located inside the housing 10 of the mixing unit 9, and the actuator 250 may be located externally of and adjacent to housing 10 of the mixing unit 9, and connected to the gas supply valve 50 via e.g. a shaft extending through a wall of the housing 10. Further, it must be emphasized that the actuator 250 may be of a different type than a magnetic actuator.

[0056] Yet further, the control unit 201 may control the operation of the each of the cleaning agent valves 30, 31. The cleaning agent valves 30, 31 may be controlled by actuators 230, 232 connected to and controlled by the control unit 201, via control connections 231, 233, respectively. As mentioned above the control connections 231, 233 may be cables or wireless connections. In Fig. 5, the actuators 230, 232 are represented by the symbol of a magnetic actuator, and are illustrated as located outside the housing 10 of the mixing unit 9, along with the cleaning agent valves 30, 31. However, it must be emphasized that the actuators 230, 232 and the cleaning agent valves 30, 31 may in other embodiments (not shown), physically be located inside the mixing unit 9 housing 10. Alternatively, in a further embodiment (not shown), on or more of the cleaning agent valves 30, 31 may be located inside the housing 10 of the mixing unit 9, and one or more of the actuators 230, 232 may be located externally of and adjacent to housing 10 of the mixing unit 9, and be connected to the cleaning agent valve 30, 31 via e.g. a shaft extending through a wall of the housing 10. Further, it must be emphasized that the actuators 230, 232 may be of a different type than a magnetic actuator.

[0057] Fig. 5 further shows that the cleaning device 2 according to the invention may be connected to an extended cleaning system 300. A suitable piping 310 of the extended cleaning system 300 may be connected to the liquid outlet 44 of the mixing unit 9. The piping 310 may extend to a plurality of locations where cleaning is expected to be necessary, e.g. different rooms or machines, such as food packing machines, etc. The piping may thus have several branches 311, 312, 313 supplying water, mixture of water and a cleaning agent or foam to cleaning outlets 331, 332, 333. In Fig. 5 three branches 311, 312, 313 are shown. It will however be appreciated that alter-

25

30

40

45

natively the tubing 310 may branch into only two, or several more branches, or not branch of at all.

[0058] Further, each cleaning outlet 331, 332, 333 may comprise delivery nozzles 340. Each cleaning outlet 331, 332, 333 may comprise a number of delivery nozzles 340. In Fig. 5 it has been shown that cleaning outlet 331 has five delivery nozzles 340, cleaning outlet 334 has three delivery nozzles 340, and cleaning outlet 333 has one delivery nozzles. It is however evident, that the number of delivery nozzles 340 may be adapted to the purpose.

[0059] The supply of water, water/cleaning agent mixture or foam to the cleaning outlet may be controlled by outlet control valves 321, 322, 323. The outlet control valves 321, 322, 323 may in turn be controlled by the control system 200. Thus, the control unit 201 may control the operation of the each of the outlet control valves 321, 322, 323. The outlet control valves 321, 322, 323 may be controlled by actuators 261, 262, 263 connected to and controlled by the control unit 201, via control connections 270, 271, 272, 273. As mentioned above the control connections 270, 271, 272, 273 may be cables or wireless connections. In Fig. 5, the actuators 261, 262, 263 are represented by the symbol of a magnetic actuator. It must be emphasized that the actuators 261, 262, 263 may be of a different type than a magnetic actuator. [0060] Fig. 2 shows an embodiment of a mixing unit 9, which forms part of a cleaning device 2 according to one aspect of the invention. The mixing unit 9 comprises a housing 10. Inside the housing 10, the mixing unit 9 has a mixing chamber located inside an injector 100. The injector 100 is arranged inside the housing 10.

[0061] The mixing unit utilizes the injector principle for mixing a water and one or more cleaning agent. The injector principle utilizes that when water is under pressure is led through a channel with a decreasing and increasing cross-sectional area (in the direction of the flow of the water) and a channel is formed to intersect the water flow chamber, then a vacuum is formed in the intersecting channel. This vacuum sucks a cleaning agent into the chamber where the water flows. There, the cleaning agent starts to mix with the water. Thus, the cleaning agent may be transported into the flowing water without the use of pumps. This principle is well known and will not be discussed further. Also, known in the art, is to subsequently add gas/air under pressure to the water/cleaning agent mixture in order to provide a foam. Various principles for adding air/gas for foaming are known in the art, and provides foam of varying qualities and quantities. One principle is to let the gas/air impinge on the stream of water/cleaning agent mixture. Another, principle is inject air/gas in parallel with the flow of water/cleaning agent mixture. Both of the principles may be used in the present context. However, further below a specific embodiment of the latter principle is described. [0062] Fig. 2 shows a cross section of an embodiment of a mixing unit 9 for supplying foam and/or water/cleaning agent mixture and/or pure water for cleaning. The

illustrated mixing unit 9 comprises a housing 10 having a liquid/water inlet 43 for receiving pressurized liquid/water. The water is supplied to the water inlet 43 via a suitable pipe, liquid supply tubing 42, as described above. The liquid supply tubing 42 may be connected to the mixing unit via a connector 43', which may secured to the mixing unit 9, e.g. by cooperating threading (not shown) on the mixing unit 9 and connector 43', or by other fastening means. Further, the connection may be water tight by application of a suitable gasket 43" such as an O-ring. [0063] The housing 10 also has a gas inlet 53 for receiving pressurized gas, preferably air from compressor 51 as described above. The gas inlet 53 may comprise a connector 53', allowing easy connection to the hose, tube, or pipe forming the gas piping 52 described in connection with Fig. 5 above. The connector 53' may be connected to the mixing device 9, e.g. by cooperating threading (not shown) on the mixing unit 9 and connector 53', or by other fastening means. Further, the connection may be water tight by application of a suitable gasket (not shown), such as an O-ring.

[0064] The housing 10 also comprises a fluid outlet 44 for said foam and/or water/cleaning agent mixture and/or pure water. The fluid outlet 44 may comprise a connector 44', allowing easy connection to the hose, tube, or pipe forming the tubing of external cleaning system 310 described in connection with Fig. 5 above. The connector 44' may be connected to the mixing device 9, e.g. by cooperating threading (not shown) on the mixing unit 9 and connector 44', or by other fastening means. Further, the connection may be water tight by application of a suitable gasket 44" such as an O-ring.

[0065] The housing 10 also comprises at least one cleaning agent inlet 37. The cleaning agent inlet 37 may comprise a connector 37', allowing easy connection to the hose, tube, or pipe forming the cleaning agent input line described in connection with Fig. 5 above. The connector 37' may be connected to the mixing device 9, e. g. by cooperating threading (not shown) on the mixing unit 9 and connector 37', or by other fastening means. Further, the connection may be water tight by application of a suitable gasket (not shown) such as an O-ring. In some embodiments, the cleaning agent connector 37' (or connectors) may be one-way valves in order to prevent a back flow of cleaning agent.

[0066] The gas/air is supplied to the housing 10 via a suitable pipe 52, which is preferable connected with a compressor 51, and the first cleaning agent is supplied to the housing 10 via a suitable pipe 35, which is in fluid communication with a reservoir 33. The water pipe 42 is fluidly connectable to a water pump 41 for supplying pressurized water to the housing 10 of the mixing unit 9.

[0067] The mixing unit 9 further comprises an injector 100 positioned inside the housing 10. The injector is received in an injector receiving bay 70 (the injector receiving bay 70 may alternatively be called an injector receiving port 70) in the housing 10, as may be appreciated by comparing e.g. Figs 2 and 3. Fig. 3 shows the injector

25

40

45

100 removed from the injector receiving bay 70, and Fig. 2 shows the injector 100 in place in the injector receiving bay 70. The injector 100 is in fluid communication with the fluid outlet 44 via a turbulence chamber 14 formed inside the housing 10 between the injector receiving bay 70 and the fluid outlet 44. Preferably, and as shown in e. g. Fig. 3, the injector receiving bay 70 opens into the turbulence chamber 14. Also, preferably, and as shown in e.g. Fig. 3, the turbulence chamber 14 opens into the fluid outlet 44 of the mixing unit 9. In the turbulence chamber 14 the water/cleaning agent mix is mixed with air in order to provide foam.

[0068] As shown in Figs. 2 and 3, the mixing unit further comprises an injector valve 40 formed within the housing 10. The flow of liquid (water) through the mixing unit 9 may be controlled by the injector valve 40, which is a flow control valve, i.e. a valve for controlling the magnitude or volume of water flowing there through per unit of time. The valve may be a ball valve, a seat valve, or any other suitable valve. The injector valve 40 is in fluid connection with the liquid inlet 43 via a channel 64'. The injector valve 40 is further in fluid connection with the injector 100 via a liquid supply channel 64, that opens into the abovementioned injector receiving bay 70. Thus, the injector valve 40 is located in the mixing unit 9 in a liquid supply channel 64, 64' forming a fluid connection between the liquid inlet 43 and an injector 100 of the mixing unit 9.

[0069] As shown in e.g. Figs. 2, 3 and 5, a second flow control valve, a spraying liquid valve 80 may preferably be arranged inside the housing 10 of the mixing unit 9. The valve may be of the same type as the injector valve 40. The spraying liquid valve 80 is in fluid communication with the liquid inlet 43 via a channel 81 formed in the housing 10. Further, the spraying liquid valve 80 is in fluid communication with the turbulence chamber 14, and thereby the fluid outlet 44. Thus, the spraying liquid valve 80 is arranged in a fluid connection 81, 82 between the liquid inlet 43 and the liquid outlet 44 of the mixing unit 9. This spraying liquid valve 80 may be used for providing clean water for spraying in the external cleaning system 300.

[0070] As shown in Figs 2 and 3, the liquid inlet 43 is preferably in fluid communication with a distribution chamber 13. The distribution chamber opens into the liquid inlet 43. The channel 64' to the injector valve 40 and the channel 81 to the spraying liquid valve 80 thus extend from the distribution camber 14.

[0071] The injector valve 40 is preferably arranged in an injector valve bay 74 (The injector valve bay 74 may alternatively be called an injector valve port 74). The injector valve bay 74 is arranged within the housing 10, and adapted for receiving the injector valve 40. Thus, the above mentioned channel 64' opens into the injector bay 74 at one (downstream) end and into the distribution chamber 13 at the other (upstream) end.

[0072] The spraying liquid valve 80 is preferably arranged in a spraying liquid valve bay 78 (The spraying liquid valve bay 78 may alternatively be called a spraying

liquid valve port 78). The spraying liquid valve bay 78 is arranged within the housing 10, and adapted for receiving the spraying liquid valve bay 78. Thus, the above mentioned channel 81 opens into the spraying liquid valve bay 78 at one (downstream) end, and into the distribution chamber 13 at the other (upstream) end.

[0073] As described above, in not shown embodiments, an actuator 240 for operating the injector valve 40 may further be arranged inside the housing, and preferably adjacent to the injector valve bay 74. However, in the illustrated embodiments, see Figs 4A and B, the actuator 240 is arranged external to the mixing unit 9 housing 10, but adjacent to a sidewall thereof. A shaft (not shown) extends from the actuator 240 to the injector valve bay 74 via a channel or passage (not shown) from the sidewall, where the actuator 240 is located, to the injector valve bay 74.

[0074] As also described above, in not shown embodiments, an actuator 280 for operating the spraying liquid valve 80 may further be arranged inside the housing, and preferably adjacent to the spraying liquid valve bay 78. However, in the illustrated embodiments, see Figs 4A and B, the actuator 280 is arranged external to the mixing unit 9 housing 10, but adjacent to a sidewall thereof. A shaft (not shown) extends from the actuator 280 to the spraying liquid valve bay 78 via a channel or passage (not shown) from the sidewall, where the actuator 280 is located, to the spraying liquid valve bay 78.

[0075] As shown in Figs 2 and 3, in some embodiments, a further channel 15 may extend from the distribution chamber 13 an outlet 16 formed in a sidewall of the housing 10. As shown in Figs. 4A and B, the outlet 16 may be formed through a connector 16'. The connector 16' may allow easy mounting of a hose for manual cleaning in the vicinity of the mixing unit 9.

[0076] In further embodiments (not shown) the mixing unit may comprise more than one injector 100, such as two or three or more formed inside the housing. In this case each injector may be arranged in injector receiving bay as described above and fluidly connected to a fluid outlet and to the liquid inlet as described above. In the case where the mixing unit 9 comprises more than one injector 100, the mixing unit may have one injector valve 40 per injector, each arranged in an injector valve bay 74 as described above. However, it may also be possible that a plurality of injectors may be connected to a single injector valve 40 arranged in a single injector valve bay 74, as described above. In this case a selector mechanism may be integrated into the housing 10 of the mixing unit 9, the selector mechanism being arranged to switch between liquid supply channel 64 in the mixing unit leading to each of the injectors 100. Such a selector mechanism may further be connected to the control system 200 via an actuator, which may be integrated inside the housing 10, or be located externally thereto.

[0077] However, an advantage of the mixing unit 9, the cleaning device 2 and the cleaning system 1 according to the invention is that one and only one injector is nec-

40

45

essary.

[0078] Preferably, the at least one injector 100 and the injector valve 40 are integrated within the mixing unit housing 10. Preferably, the cleaning agent connection channels 61, 62, 63 for fluidly connecting the at least one injector 100 and the sources of cleaning agent 33, 34 are formed within the mixing unit housing 10. Preferably, the liquid supply channel 64 for fluidly connecting the injector valve 40 with the injector 100 is formed within the mixing unit housing 10. Preferably, the gas supply channel 65, for fluidly connecting the gas supply valve 50 and the at least one injector 100 is formed inside the mixing unit housing 10.

[0079] As also mentioned above, the injector 100 (or each injector 100) may be connected to a plurality of sources 33, 34 of cleaning agents. In Figs. 2 and 3, for the sake of simplicity, only one cleaning agent connection channel 61 is shown, the leaning agent connection channel 61 extending from a cleaning agent inlet 37 of the mixing unit 9 to the injector 100. In the diagram of Fig. 5, two sources 33, 34 of cleaning agent are illustrated.

[0080] Fig. 2 shows the injector 100 inserted in the mixing unit 9 housing 10. Fig 3 shows the injector when separated from the housing. Details of the injector 100 can be appreciated from Fig. 3. However, Fig. 10 show more details of the injector 100.

[0081] Fig. 10 shows a section through an injector 100 according to an aspect of the invention. The injector 100 has an injector body 101. The injector body 101 is elongate, generally cylindrical in structure. Thus, injector 100 has a longitudinal axis A. The elongate injector body 101 has first end 102 and a second end 103 opposite to the first end 102.

[0082] An elongate injector chamber 110 is formed centrally within in the injector body 101. The injector chamber 110 comprises two sections, a first section 111 and a second section 112 opening into an injector outlet 113. The injector outlet 113 is formed in an end wall 114 of the injector body 101, at the second end 103 (the outlet end of the injector 100). At the end opposite to the injector outlet 113, the first section 111 of the injector chamber 110 has an injector inlet 115. The injector inlet 115 also is in fluid connection with one or more cleaning agent bores 116, 117. In Fig. 10, two cleaning agent bores 116, 117 are shown in the injector body 101 extending in a direction perpendicularly to the longitudinal axis A of the injector 100. It will be appreciated, that in other, not shown embodiments, the injector 100 may comprise one or three, or four or more cleaning agent bores 116, 117. It may also be noted, that the cleaning agent bores 116, 117 does not necessarily need to be formed perpendicularly to the longitudinal axis A of the injector 100, but may more generally be formed at an angle with the longitudinal axis A, however such that the cleaning agent bores 116, 117 will intersect with the injector chamber 110 at the injector inlet 115. Each of the cleaning agent bores 116, 117 has an inlet 116', 117', respectively, at an outer surface 118 of the injector body 101.

[0083] It may further be appreciated, that the inlet 116', 117' of the cleaning agent bores 116, 117 are formed at a place where the outer surface 118 of the injector body 101 has a circumferential groove, cleaning agent groove 119. The cleaning agent groove 119 forms an annular cleaning agent channel 120 (see Fig. 2) around the injector 100 together with the inner surface of the injector receiving bay 70 of the mixing unit 9 housing 10, when the injector 100 is inserted in the injector receiving bay 70 as shown in Fig. 2. The annular cleaning agent channel 120 serves to distribute the cleaning agent. Further, it is clear that the cleaning agent connection channel 61 of the mixing unit housing 10 opens into the annular cleaning agent channel 120 in an inlet 121 thereto (Figs 2 and 3).

[0084] In order to secure that cleaning agent only goes into the annular cleaning agent channel 120 not into the remainder of the injector receiving bay 70 suitable gaskets, such as O-rings may be arranged in annular grooves, gasket grooves 122, 123, which are formed in the outer surface 118 of the injector body 101, and on either side of the cleaning agent groove 119. In alternative embodiments (not shown), gaskets may instead be provided in grooves formed in the surface of the injector receiving bay 70.

[0085] Further, the injector comprises an injector liquid inlet124. The injector liquid inlet 124 is formed as a bore from the outer surface 118 of the injector body 101 and into the injector body 101 in a transverse direction to the longitudinal axis A of the injector 100. The injector liquid inlet 124 communicates with a water inlet connection channel 125 (may also be called liquid inlet connection channel 125) formed in the longitudinal direction of the injector 100 (parallel to longitudinal axis A) that opens into the injector chamber 110 at the injector inlet 115.

[0086] It may further be appreciated, that the injector liquid inlet 124 is formed at a place where the outer surface 118 of the injector body 101 has a circumferential groove, water inlet groove 126 (may also be called liquid inlet groove 126). The water inlet groove 126 forms an annular water inlet channel 127 (may also be called annular liquid inlet channel 127), (see Fig. 2) around the injector 100 together with a portion of the inner surface of the injector receiving bay 70 of the mixing unit 9 housing 10, when the injector 100 is inserted in the injector receiving bay 70 as shown in Fig. 2. The annular water inlet channel 127 serves to distribute the water. Further it is clear that the liquid supply channel 64 in the mixing unit housing 10 opens into the annular water inlet channel 127 in an inlet 128 thereto (Figs 2 and 3).

[0087] In order to secure that water only goes into the annular water inlet channel 127, and not into the remainder of the injector receiving bay 70 suitable gaskets, such as O-rings may be arranged in annular grooves, gasket grooves 122, 129, which are formed in the outer surface 118 of the injector body 101, and on either side of the water inlet groove 126. In alternative embodiments (not shown), gaskets may instead be provided in grooves

20

25

40

formed in the surface of the injector receiving bay 70. [0088] Thereby, pressurized liquid, preferably in the form of water, may be transported from the pump 141 via the liquid supply channel 64 in the mixing unit housing 10 into the annular water inlet channel 127 and further into the injector liquid inlet 124, and the water inlet connection channel 125 passing the injector inlet 115, and further into the injector chamber 110 and out the injector outlet 113. When the pressurized water passes the injector inlet 115, a vacuum is created in the cleaning agent bores 116, 117 and further the in annular cleaning agent channel 120. Thereby, cleaning agent will be sucked from the cleaning agent source 33, 34 into the annular cleaning agent channel 120 via the cleaning agent connection channel 61 of the mixing unit housing 10. In the injection chamber 110, water and cleaning agent is thereby mixed. [0089] The injector outlet 113 is fluidly connected to the fluid outlet 44 of the housing 10 via a turbulence chamber 14 formed within the housing 10. As illustrated in e. g. Fig. 10, the injector inlet 115 has a narrower cross section than the cross section of the injector outlet 113. [0090] As will be further appreciated from Fig. 3 and Fig. 10, the outer surface 118 of the injector body 101 has a further circumferential groove, gas groove 130. The gas groove 130 forms an annular gas inlet channel 131 (see Fig. 2) around the injector 100 together with a portion of the inner surface of the injector receiving bay 70 of the housing 10 of the mixing unit 9, when the injector 100 is inserted in the injector receiving bay 70 as shown in Fig. 2. The annular gas inlet channel 131 serves to distribute the gas (air). Further it is clear that gas supply channel 65 in mixing unit housing 10 opens into the annular gas inlet channel 131 in an inlet 132 thereto (Figs 2 and 3). When the injector 100 is in place in the injector receiving bay 70 in the mixing unit 9, the annular gas inlet channel 131 is in fluid communication with the turbulence chamber 14, via one or more helical grooves 133 formed in the outer surface 118 of a portion 134 of the injector body 101, and via a gap 135 between a cylindrical end portion 136 at the second (outlet) end 103 of the injector body and the inner surface of the injector receiving bay 70. The one or more helical grooves 133 formed in the outer surface 118 forms a helical channel 137 between the helical groove 133 and the inner surface of the injector receiving bay 70, when the injector is in place in the injector receiving bay 70 as shown in Fig. 2.

[0091] Thereby, the helical grooves 133 and the gap 135 forms a swirling stream of air around the stream of water and cleaning agent mixture exiting from the injector outlet 113. Experiments has shown that this provides an improved foaming effect.

[0092] We note that the helical grooves 133 are only used in certain aspects of the invention. In other aspects of the invention an acceptable foaming effect may be obtained using other types of air injection as mentioned above.

[0093] We also note, that in principle, the helical grooves may alternatively be formed in the surface of the

injector receiving bay 70 (not shown).

[0094] When, as described above, the injector 100 has an injector liquid inlet 124 formed in a direction transverse to a longitudinal axis A of the injector 110 it allows the insertion and retraction of the injector 100 from the housing 10 of the mixing unit 9, through a wall 22 thereof. This means that instead of the cleaning device comprising numerous injectors, with various capacities for providing foam and/or water/cleaning agent mixture, the injector may instead easily be exchanged with another injector 100 with a different capacity.

[0095] The interchangeability of the injectors 100 is further supported by the above described cleaning device 2 where

the injector 100 has an elongate injector body 101 with a first end 102 and an outlet end 103 opposite to the first end 102;

the outlet end 103 has smaller maximum dimension d2, than a maximum dimension d1 of the injector body at the first end 102;

wherein the injector body 101 only has a decreasing maximum dimension from the first end 102 to the outlet end 103,

wherein the injector body 101 comprises means for releaseably connecting the injector to a portion 70 of the housing 10 of the mixing unit 9.

[0096] The maximum dimension d1 and d2 of the injector body 101 at the first end 102 and at the outlet end 103 is the largest cross sectional extent (perpendicular to the longitudinal axis A) of the injector body at those locations. Preferably, the injector body 101 is cylindrical, or formed from generally cylindrical portions 134, 136, 143, 144, 145. In that case the maximum dimensions corresponds to diameters. In the shown embodiments the maximum dimension d1 at the first end 102 is the dimension (diameter) of the portion 145 of the injector body. In the shown embodiments the maximum dimension d2 at the outlet end 103 is the dimension (diameter) of the portion 134 of the injector body 101, wherein the helical grooves 133 are formed.

[0097] By the injector body 101 only having a decreasing maximum dimension from the first end 102 to the outlet end 103, is meant that none of the portions 144, 143, in between the two maximum dimension d1 and d2 exceeds that of a previous portion as seen from the first end 102 to the outlet end 103. In this context, the abovementioned grooves 119, 126, 130 and the gasket grooves 122. 123, 129 are not counted with. Further, the gaskets (O-rings) 138, 139, 140 are not counted either as these are at least partly compressible.

[0098] By the injector body 101 comprising means for releaseably connecting the injector 100 to a portion 70 (such as the injector bay/port 70) of the housing 10 of the mixing unit 9 is meant e.g. that one or more of the cylindrical portions 143, 144, or 145 may be provided with means such as a threading (141, not shown in Fig.

10), which is configured to cooperate with connection means, such as corresponding threading (142 not shown in Fig. 10) in a section of the injector receiving bay 70 in the mixing unit 9. Apart from threading, other connection means known in the art may be used e.g. latches, bayonet fixtures, etc.

[0099] We note that, corresponding to the maximum dimensions of the cylindrical portions 135, 143, 144, or 145, the injector receiving bay 70 comprises sections 70-1, 70-2, 70-3 and 70-4 of increasing maximum dimensions from the end at the turbulence chamber 14 to the opposite end.

[0100] As mentioned above the mixing unit housing 10 is preferably formed as a solid block 11 of material, and the at least one injector 100 is arranged in an injector receiving bay 70 which is formed as a bore in the block 11. Further, the injector valve 40 is arranged in an injector receiving bay 74 formed as a bore in the block 11). Yet further, the cleaning agent connection channels 61, 62, 63, the water supply channel 64 and the gas supply channel 65 are preferably formed as bores in the block 11.

[0101] Thus, preferably, the housing 10 is formed from a solid block 11 of a uniform material as an integrated unit. The illustrated mixing unit 9 may preferably be manufactured from a metal alloy, e.g. stainless steel. Hereby, a robust mixing unit 9, which can withstand pressures up to 60 bar without malfunction or any noticeable leakage may be obtained. Also, it is obtained that weldings may be omitted or reduced in relation to the fluid connections of the cleaning device 2.

[0102] The bores mentioned above and below are channels, which may be formed in the block 11 by drilling out the bores and/or they may be formed by e.g. a molding process

[0103] The block 11 may as shown in Figs 4A and B be an elongate box shaped structure, having two end surfaces 20, 21 and four side surfaces 22, 23, 24, 25. However, in not shown embodiments, the block 11 may have other shapes e.g. cylindrical.

[0104] The injector 100 may be arranged in a bore of stepwise decreasing maximum dimension (injector receiving bay 70) in the block 11, this bore being provided in one side surface (a bottom surface) 22 of the block 11. The fluid outlet 44 of the mixing unit 9 may be provided through an opposite side surface 23 (top surface). The turbulence chamber 14 is preferably provided as a bore through this side surface 23.

[0105] The cleaning agent connection channel 61, 62, 63, and the gas supply channel 65 may preferably be formed as bores through on or both of further sidewalls 24, 25, as are the bores for shafts for connecting the actuators 240, 280 to the injector valve 40 and the spraying liquid valve 80, respectively.

[0106] The injector valve 40 and the spraying liquid valve 80 are, as described above, arranged in an injector valve bay 74 and a spraying liquid valve bay 78, respectively. These bays 74, 78 may, in not shown embodiments, be formed as bores through one of the free side-

walls 22, 23, 24, 25.

[0107] However, in a preferred embodiment, and as shown in Figs. 2 and 3, the block 11 may preferably comprise a main block portion 11' and a lid block portion 11". The lid block portion 11 "may be provided in extension of an end wall 20' of the main block portion 11'. The lid block portion 11" is preferably formed in the same material as the main block portion 11'. The distribution chamber 13, the liquid inlet 43, and the channels 81 and 64' are preferably provide as bores in the lid block portion 11". The injector valve bay 74 and a spraying liquid valve bay 78 are then formed as bores in through the main block portion 11', and the lid block portion 11" is then used to secure the injector valve 40 and the spraying liquid valve 80 in the injector valve bay 74 and a spraying liquid valve bay 78. The lid block portion 11" may be connected to the main portion 11' by use of suitable fasteners, such as bolts (not shown).

[0108] Returning now to Fig. 10, the injector 100 may preferably comprise a tool receiving lock 146 arranged at the portion 145 of the injector 100 at the first end thereof. The tool receiving lock 146 is preferably formed as a depression in the end wall 104 of the injector 100, opposite the injector outlet 113. Preferably, the tool receiving lock 146 has a polygonal cross sectional shape (in a plane perpendicular to the longitudinal axis A), e.g. a hexagonal shape. The tool receiving lock 146 may thereby allow rotation of the injector by a tool (not shown) having a correspondingly shaped cross-sectional shape. Thereby, the injector may be secured in the injector receiving bay 70 - or released therefrom.

[0109] Figs. 6A-F shows the injector 100 in various positions relative to the injector receiving bay 70 in mixing unit 9. In Fig. 6A, the injector 100 is inserted totally into the injector receiving bay 70 of the mixing unit 9, and is ready for use. In Fig. 6B the injector 100 has been released from the mating connection means, and has been slightly displaced relative to the housing 10. In Figs. 6C, the injector 100 has been further displaced away from is connected location. In Fig. 6D, the injector is seen completely removed from the injector receiving bay 70. In this figure, the corresponding shapes (dimension of sections of the injector 100 and the injector receiving bay 70) can be seen very clearly.

45 [0110] In Figs. 6E and 6F, the injector 100 and the housing 10 is again seen in a disassembled (Fig. 6E) and an assembled state (Fig. 6F). In the two figures, the above-mentioned hexagonal shape of a tool receiving lock 146 is clearly visible.

[0111] Turning now to Figs. 7-10, the figures illustrate in further detail, the principle of a swirling gas (air) flow, describe above. Fig. 7 is a partly sectional, perspective view through a housing 10 of a mixing unit and an injector. In Fig. 7, the housing 10 is sectioned at the injector receiving bay 70, and the injector 100 is shown un-sectioned and in perspective. In Figs. 7 the swirling air is represented by the arrows 400, 401, 402, 403. Gas (air) is injected via the gas supply channel 65 in the mixing

unit 9, as indicated by the arrow 404, and entered into the annular gas inlet channel 131 formed between the inner surface of injector receiving bay 70 and the gas groove 130 in outer surface 118 of injector body 101, as explained above in connection with Fig. 10. Cleaning agent is sucked into the injector 100 via the first cleaning agent connection channel 61 as indicated by arrow 405. Further, water is injected into the injector 100 via liquid supply channel 64, as indicated by the arrow 406 in Fig. 7. The water and cleaning agent will mix in the injector chamber 110 and exit mixed through the injector outlet 113 as indicated by the arrow 407 in Fig. 7.

[0112] Also, in Fig. 7 a threading 141 on the portion 145 of the injector 100 is clearly illustrated, the threading 141 cooperating with a corresponding threading 142 on the inside surface of the injector receiving bay 70 of the housing 11.

[0113] Now turning to Fig 9, this figure shows details of the portion 134, in which the helical grooves 133 are located. From the figure, it may appreciated that a helical channel 137 is formed between the helical groove 133 and the inner surface of the injector receiving bay 70. At least one such channel 137 is formed, but preferably a plurality of channels 137 are formed. In the shown embodiment, and as most clearly visible in Fig. 8, four channels 137 are formed. Also, clearly visible in Fig. 9 is the inlet 132 from the gas supply channel 65 of the mixing unit 9. Also, Fig. 9 clearly visualizes that the outlet 113 in the end wall 114 of the injector body 101 at outlet/second end 103 of injector body 101 is formed on a platform provided by the cylindrical portion 136, which extends further in the direction of the second end 103, than the portion 134 with the helical groove 133. Thereby, when the injector 100 is arranged in the injector receiving bay 70, a small gap 135 is provided between injector receiving bay 70 and the outer surface 118 of the injector body 101 of the cylindrical portion 136. This gap 135 allows to format the swirling air flow around the injector outlet 113, before the air flow enters the turbulence chamber 14.

[0114] In the embodiments shown throughout the figures, the portion 136 of the body 101 of the injector 100 is shown and described as a cylindrical object. However, in further embodiments (not shown), a sidewall 105 may show an outward taper in the direction from the first end 102 towards the second end 103 of the portion 136 of the body 101 of the injector 100. Thus, in side view, the portion 136 would appear to have a conical section. This may aid in dimensioning the airflow. The diameter d4 of the portion 136 at the end wall 114 may thereby be increased to minimize the gap 135. This may limit/control the air-flow through the gap 135, while still allowing the swirl to create and develop in the space of the gap 135. [0115] Now referring to Fig. 8, the figure shows a front view of an injector 100 inserted in the injector receiving bay 70 of a mixing unit. 9. The turbulence chamber 14 is the outmost facing surface. The inner circle of the figure shows the injector inlet 115. The next circle outward indicates the injector outlet 113. The area between this

circle and the next is the top surface 114 of the cylindrical portion 136, which forms the aforementioned extension ahead of the portion 134 where the helical grooves 133 are formed. The area between this circle and the next depict the gap 135. The helical grooves 133 and thereby the helical channels 137 are shown with their exit into the gap135.

[0116] Preferably, the injector 100 is positioned within the mixing unit 9 for providing a gap 135 around the injector outlet 132. This gap 135 is fluidly connected to the gas inlet 53 of the housing 10 for allowing gas (air) to pass between the injector outlet 132 and a portion of the injector receiving bay 70 of the housing 10 and mix with the first cleaning agent and water mixture at the turbulence chamber 14 and/or the fluid outlet 44 of the housing 10 to form foam.

[0117] When an injector is replaced with another injector, the ratio between the cross sectional area of the injector outlet and the cross sectional area of the helical channels 137 must remain constant, in order to obtain the same quality of foam, at different quantities.

[0118] Although the teaching of this application has been described in detail for purpose of illustration, it is understood that such detail is solely for that purpose, and variations can be made therein by those skilled in the art without departing from the scope of the teaching of this application.

[0119] The term "comprising" as used in the claims does not exclude other elements or steps. The term "a" or "an" as used in the claims does not exclude a plurality. The single processor or other unit may fulfill the functions of several means recited in the claims.

List of reference numbers

[0120]

35

- A longitudinal axis of injector
- 1 cleaning system
- 2 cleaning device
 - 9 mixing unit
 - 10 housing of mixing unit
 - 11 block
 - 11' main part of block
- 45 11" lid part of block
 - 13 distribution chamber of mixing unit
 - 14 turbulence chamber of mixing unit
 - 15 channel from distribution chamber
 - 16 outlet of channel from distribution chamber
 - 16' connector at outlet of channel from distribution chamber
 - 20 end surface (outer surface) of housing of mixing unit
 - 21 end surface (outer surface) of housing of mixing
 - 22 side surface/bottom surface (outer surface) of housing of mixing unit
 - 23 side surface/top surface (outer surface) of hous-

side surface (outer surface) of housing of mixing unit or cleaning agent valve - valve for regulating flow of cleaning agent from a 1st source of a cleaning agent consector of cleaning agent from a 2st source of a cleaning agent or regulating flow of cleaning agent from a 2st source of a cleaning agent or regulating flow of cleaning agent from a 2st source of a cleaning agent from a 2st source of according to the ast source of according agent from a 2st sourc	24	ing of mixing unit side surface (outer surface) of housing of mixing unit		82	spraying liquid valve 80 in mixing unit fluid connection between the spraying liquid valve 80 and the liquid outlet 44 in mixing unit
cleaning agent valve - valve for regulating flow of cleaning agent from a 1st source of a cleaning agent consector of cleaning agent agent valve - valve for regulating flow of cleaning agent from a 2st source of a cleaning agent consector of cleaning agent agent valve - valve for regulating flow of cleaning agent from a 2st source of a cleaning agent from a 3st source of a cleaning agent from a 3st source of a cleaning agent from a 3st source of a cleaning agent from a 1st source of a cleaning agent from a 3st source of a cleaning agent from a 2st source at	25	side surface (outer surface) of housing of mixing	_	400	
cleaning agent valve - valve for regulating flow of cleaning agent from a 2nd source of a cleaning agent from a 3nd source of a cleaning agent from a 3nd source of a cleaning agent reservoir and 2nd source of a cleaning agent, reservoir at 2nd 2nd source of a cleaning agent, reservoir at 2nd 2nd source of a cleaning agent, reservoir at 2nd	30	cleaning agent valve - valve for regulating flow of cleaning agent from a 1st source of a cleaning	5	101 102	injector body first end of injector body
valve for regulating flow of cleaning agent from a dealing agent, reservoir 1st source of a cleaning agent, reservoir 2nd source of a cleaning agent, reservoir 1st source of a cleaning agent, reservoir 1st cleaning agent input line 1st cleaning agent onnector 1st cleaning agent input line 1st cleaning agent input line 1st cleaning agent input line 1st cleaning agent onnector 1st cleaning agent input of mixing unit 2st cleaning agent connector 1st cleaning agent connecto	31	cleaning agent valve - valve for regulating flow of cleaning agent from a 2 nd source of a cleaning	10		body end wall of injector opposite injector outlet
1st source of a cleaning agent, reservoir 2st cleaning agent input line cleaning agent connector cleaning agent connector cleaning agent infort of mixing unit cleaning agent connector cleaning agent infort of mixing unit cleaning agent connector body cleaning agent connector cleaning agent connector channel 61 of the mixing unit housing into annular cleaning agent channel connector, [giud connector connector, gas connector connector g	32	valve for regulating flow of cleaning agent from a		111	first section of injector chamber
3412nd source of a cleaning agent, reservoir151144an end wall of the injector body at outlet end352cleaning agent input line1156cleaning agent bore in injector373cleaning agent connector1177cleaning agent bore in injector384cleaning agent connector1180outer surface of the injector body385cleaning agent connector120annular cleaning agent channel between the injector valve120annular cleaning agent channel between the injector valve40injector valve121injector valva agent connector121injector cleaning agent connector411pump inlet122injector valva agent connector122injector cleaning agent connection channel 61 of the mixing unit housing into annular cleaning agent channel411pump inlet122gasket groove in injector422liquid snet of mixing unit124liquid/water inlet connection channel433connector, iquid connector124liquid/water inlet groove in outer surface of injector434gasket127liquid/water inlet connection channel445gasket127liquid/water inlet channel formed between the surface50gas supply valve128liquid/water inlet channel51gas inlet of mixing unit129gasket groove52gas piping129gasket53gas inlet of mixing unit130gas groove in outer surface of injector body54firict cleaning agent connection channel in mixing unit	33				-
cleaning agent input line 115 injector inlet cleaning agent input line 116 cleaning agent input line 117 cleaning agent tore in injector cleaning agent connector 118 cleaning agent tore in injector cleaning agent connector 120 cleaning agent inlet of mixing unit 20 tlass cleaning agent inlet of mixing unit cleaning agent tonnector 120 cleaning agent tonnector 120 cleaning agent tonnector 120 cleaning agent tonnector 120 cleaning agent tonnector 121 cleaning agent tonnector 121 cleaning agent tonnector 122 cleaning agent tonnector 123 cleaning agent tonnector 124 cleaning agent tonnector 124 cleaning agent tonnector 125 cleaning agent tonnector 126 cleaning agent tonnector 127 cleaning agent tonnector 128 cliquid supply tubing 123 connector, liquid connector 126 cleaning agent tonnector 127 cleaning agent tonnector 128 cliquid water inlet connection channel 127 cliquid connector 128 cliquid water inlet groove in injector 128 cliquid water inlet connection channel 128 cliquid water inlet channel formed between the 128 cliquid water inlet channel 128 cliquid water inlet ch			15		-
cleaning agent input line 116 cleaning agent bore in injector cleaning agent connector 118 cleaning agent bore in injector cleaning agent connector 118 cleaning agent bore in injector body cleaning agent connector 118 cleaning agent groove in injector body cleaning agent connector 120 cleaning agent groove in injector body cleaning agent connector 120 cleaning agent channel between the injector valve cleaning agent connector 121 cleaning agent connector 122 cleaning agent connector 123 cleaning agent connector 123 gasket groove in injector 123 gasket groove in injector 124 connector, liquid connector 123 gasket groove in injector 124 liquid supply tubing 125 gasket groove in injector 126 liquid/water inlet connection channel 127 gasket groove in injector 128 liquid/water inlet connection channel 128 liquid/water inlet groove in outer surface of injector 128 liquid/water inlet connection channel 128 liquid/water inlet groove in outer surface of injector body 128 liquid/water inlet channel 128 liquid/water i					
Second Earning agent connector 118 Outer surface of the injector body	36			116	
Cleaning agent connector 120 1	37	cleaning agent inlet of mixing unit		117	cleaning agent bore in injector
cleaning agent connector cleaning agent channel between the in- cleaning agent connector cliquid, pump cove of liquid, pump agent connector cliquid connector cliquid input pump inlet cliquid will input pump inlet cliquid inlet of mixing unit connector cliquid inlet of mixing unit connector, liquid connector cliquid cliquid connector cliquid cliqui	37'	cleaning agent connector		118	outer surface of the injector body
cleaning agent connector cleaning agent connection channel 61 of 121 inlet of cleaning agent connection channel 61 of 141 cliquid supply tubing cleaning agent channel cliquid supply tubing connector, liquid connector cliquid connector cliquid connector cliquid supply tubing connector, liquid connector cliquid connector	38	cleaning agent inlet of mixing unit	20	119	cleaning agent groove in injector body
series of liquid connector of liquid supply tubing pasket or connector, liquid connector of liquid outlet of mixing unit outlet of liquid water inlet of liquid/water inlet connection channel of liquid/water inlet connection channel of liquid/water inlet groove in injector or tor body of liquid liquid water inlet connection channel of liquid/water inlet groove in outler surface of injector or tor body or saket or surface of liquid/water inlet groove in outler surface of injector tor body or saket or tor body or saket or surface of liquid/water inlet groove in outler surface of injector tor body or saket or surface of liquid/water inlet groove in outler surface of injector tor body or saket or surface of liquid supply channel formed between injector receiving port/bay and water inlet of liquid supply channel into annular water inlet channel gas butter of source of pressurized gas/compressor gas piping 129 gasket groove gas surface of injector body or surface of mixing unit or surface of injector body or outler surface of injector body or outler surface of injector body or outler surface of injector body inter of gas supply channel in mixing unit or surface of injector receiving port/bay and gas groove in outler surface of injector body inter of gas supply channel in mixing unit or of the injector body with helical grooves gap between a cylindrical end portion at the second (outlet) end of the injector body and the inner surface of the injector body or the injector receiving port/bay or port/bay in mixing unit or port/bay in mixing unit or port/bay in mixing unit or port/bay in port/bay in mixing unit or port/bay in port/bay in port/bay gasket, O-ring gasket, O-ring gasket, O-ring gasket, O-ring gasket, O-ring	38'	cleaning agent connector		120	annular cleaning agent channel between the in-
injector valve source of liquid, pump ymp outlet pump outlet pupp outlet pump outlet pupp outlet pump outlet pump outlet pupp outlet pupp outlet pupp outlet pupp outlet pupp outlet pupp outlet pump outlet pupp outley dayled agasket groove in injector loquid inlet piquid/water inlet connection channel prove in judie full pupp outles prove outler surface of injector receiving port/bay and gas groove in outer surface of injector body pupp gasket groove in outler surface of injector body pasket fluid outlet of mixing unit pupp gasket prove in outler surface of injector body pupp gasket groove pupp outlet pupp dudivater inlet channel formed between the surface of injector body pupp gasket groove pupp dudivater inlet channel formed between the surface of inj	39	cleaning agent inlet of mixing unit			jector receiving port/bay and cleaning agent
411source of liquid, pump25the mixing unit housing into annular cleaning agent channel411pump inlet25gasket groove in injector42liquid supply tubing123gasket groove in injector43liquid inlet of mixing unit124injector liquid inlet43'connector, liquid connector30125liquid/water inlet connection channel44'fluid outlet of mixing unit126liquid/water inlet groove in outer surface of injector body44'connector, gas connector127annular liquid/water inlet channel formed between injector receiving port/bay and water inlet channel44'gasket127annular liquid/water inlet channel formed between injector receiving port/bay and water inlet channel50gas supply valve128inlet of liquid supply channel into annular water inlet channel51gas outlet of source of pressurized gas/compressor129gasket groove52gas piping129gasket groove53'gas outlet of source of pressurized gas/compressor129gasket groove51'gas outlet of source of pressurized gas/compressor130gas groove in outer surface of injector body53'gas inlet of mixing unit131surface of injector receiving port/bay and gas53'connector, gas connector.132inlet of gas supply channel in housing into the annular gas inlet channel64liquid supply channel in mixing unit134portion of the injector body65gas supply channel in mixing unit50<	39'	cleaning agent connector			groove
pump inlet agent channel gasket groove in injector inject	40	injector valve		121	inlet of cleaning agent connection channel 61 of
41" pump outlet 42 liquid supply tubing 43 liquid inlet of mixing unit 43' connector, liquid connector 44' gasket 45' connector, gas connector 46 source of liquid 47 gas supply valve 48 source of liquid 49 source of pressurized gas, compressor 40 gas supply valve 51 gas outlet of source of pressurized gas/compressor 52 gas piping 53 gas inlet of mixing unit 54 gas inlet of mixing unit 55 gas inlet of mixing unit 66 liquid supply channel in mixing unit 67 liquid supply channel in mixing unit 68 liquid supply channel in mixing unit 69 gas supply channel in mixing unit 60 liquid supply channel in mixing unit 61 liquid supply channel in mixing unit 62 gas supply channel in mixing unit 63 gas supply channel in mixing unit 64 liquid supply channel in mixing unit 65 gas supply channel in mixing unit 66 rinsing channel 67 injector receiving port/bay in mixing unit 68 liquid supply channel in mixing unit 69 gas supply channel in mixing unit 60 rinsing channel 61 liquid supply channel in mixing unit 62 gas piping 63 spraying liquid valve 64 liquid supply channel in mixing unit 65 gas supply channel in mixing unit 66 rinsing channel 67 liquid supply channel in mixing unit 68 rinsing channel 69 spraying liquid valve 60 spraying liquid valve 61 siquid supply channel in mixing unit 62 second cleaning agent connection channel in mixing unit 63 spraying liquid valve receiving port/bay in mixing unit 64 spraying liquid valve 65 spraying liquid valve 66 spraying liquid valve 67 spraying liquid valve 68 spraying liquid valve 69 spraying liquid valve 69 spraying liquid valve 60 spraying liquid valve 60 spraying liquid valve 61 spaket groove in unit injector interton channel in mixing unit injector valve receiving port/bay in mixing unit injec		source of liquid, pump	25		
liquid supply tubing liquid inlet of mixing unit 23 gasket groove in injector liquid inlet of mixing unit 24 injector liquid inlet of mixing unit 25 liquid/water inlet connection channel 16 liquid/water inlet groove in outer surface of injector body 27 annular liquid/water inlet channel formed between injector receiving port/bay and water inlet groove in outer surface of injector body 27 annular liquid/water inlet channel formed between injector receiving port/bay and water inlet groove in outer surface of injector pody 28 source of liquid 29 source of pressurized gas, compressor 29 gas piping 29 soutlet of source of pressurized gas/compressor 29 gas outlet of source of pressurized gas/compressor 29 gas outlet of source of pressurized gas/compressor 29 gas inlet of mixing unit 29 gasket groove 39 gas groove in outer surface of injector body 29 annular gas inlet channel formed between the 29 surface 20 injector receiving port/bay and gas 29 groove in outer surface of injector body 20 inlet of gas supply channel in mixing 20 inlet of gas					=
Iquid inlet of mixing unit 124 injector liquid inlet					
43' connector, liquid connector 44' gasket 47' connector, gas connector 48'' gasket 48' connector, gas connector 49' connector, gas connector 40' connector, gas connector 40' gasket 40' source of liquid 41' source of liquid 42' source of liquid 43' source of liquid 45' source of liquid 46' gas supply valve 47' source of pressurized gas, compressor 48' gas outlet of source of pressurized gas/compressor 49 source of pressurized gas/compressor 50 gas inlet of mixing unit 51' gas outlet of source of pressurized gas/compressor 52' gas outlet of source of pressurized gas/compressor 53' connector, gas connector. 54' first cleaning agent connection channel in mixing unit 55' second cleaning agent connection channel in mixing unit 62 second cleaning agent connection channel in mixing unit 63 third cleaning agent connection channel in mixing unit 64 liquid supply channel in mixing unit 65 gas supply channel in mixing unit 66 rinsing channel 67 injector receiving port/bay in mixing unit 68 gas supply channel in mixing unit 69 rinsing channel 60 rinsing channel 61 liquid supply channel in mixing unit 62 gas supply channel in mixing unit 63 gas supply channel in mixing unit 64 liquid supply channel in mixing unit 65 gas supply channel in mixing unit 66 rinsing channel 67 injector receiving port/bay in mixing unit 68 rinsing channel 69 spraying liquid valve receiving port/bay in mixing unit 60 rinsing channel 61 linjector valve receiving port/bay in mixing unit 62 spraying liquid valve receiving port/bay in mixing unit 63 spraying liquid valve receiving port/bay in mixing unit 64 linjector valve receiving port/bay in mixing unit 65 spraying liquid valve receiving port/bay in mixing unit 65 spraying liquid valve receiving port/bay in mixing unit 65 spraying liquid valve receiving port/bay in mixing unit 65 spraying liquid valve receiving port/bay in mixing unit 65 spraying liquid valve receiving port/bay in mixing unit 65 spraying liquid valve receiving port/bay in mixing unit 65 spraying liquid valve receiving port/bay in mi					
43" gasket 44 fluid outlet of mixing unit 44' connector, gas connector 44' gasket 49 source of liquid 50 gas supply valve 51 source of pressurized gas, compressor 52 gas piping 51' gas outlet of source of pressurized gas/compressor 52 gas inlet of mixing unit 53 gas inlet of mixing unit 54 gas inlet of mixing unit 55 gas inlet of mixing unit 56 second cleaning agent connection channel in mixing unit 57 third cleaning agent connection channel in mixing unit 58 third cleaning agent connection channel in mixing unit 59 gas supply channel in mixing unit 50 gas supply channel in mixing unit 51 second cleaning agent connection channel in mixing unit 52 second cleaning agent connection channel in mixing unit 53 third cleaning agent connection channel in mixing unit 54 liquid supply channel in mixing unit 55 gas supply channel in mixing unit 56 gas supply channel in mixing unit 57 gas between a cylindrical end portion at the second (outlet) end of the injector body with helical grooves in injector receiving port/bay in mixing unit 58 praying liquid valve receiving port/bay in mixing unit 59 spraying liquid valve receiving port/bay in mixing unit 50 spraying liquid valve 51 second cleaning agent connection channel in mixing unit 59 cylindrical end portion at the second (outlet) end of the injector body with helical grooves of the injector body helical channel formed between the helical grove and the inner surface of the injector receiving port/bay 50 spraying liquid valve receiving port/bay in mixing unit 50 spraying liquid valve receiving port/bay in mixing unit 50 spraying liquid valve receiving port/bay in mixing unit 50 spraying liquid valve receiving port/bay in mixing unit 51 spraying liquid valve 52 spraying liquid valve 53 spraying liquid valve 54 liquid/water inlet channel formed between the helical grove in unter surface of injector body 54 liquid supply channel in mixing unit 55 spraying liquid valve 56 spraying liquid valve 57 spraying liquid valve 58 spraying liquid valve					
fluid outlet of mixing unit 44' connector, gas connector 45' gasket 47' gasket 48' source of liquid 49 source of liquid 49 source of pressurized gas, compressor 50 gas supply valve 51 source of pressurized gas, compressor 52 gas piping 53 gas outlet of source of pressurized gas/compressor 54 gas inlet of mixing unit 55 gas inlet of mixing unit 56 gas inlet of mixing unit 57 second cleaning agent connection channel in mixing unit 58 third cleaning agent connection channel in mixing unit 59 sa supply channel in mixing unit 50 gas supply channel in mixing unit 50 gas supply channel in mixing unit 50 gas supply channel in mixing unit 51 second cleaning agent connection channel in mixing unit 52 liquid supply channel in mixing unit 53 spaying liquid valve receiving port/bay in mixing unit 54 spraying liquid valve 55 spaying liquid valve 56 spayang liquid valve 57 spaying liquid valve 58 spraying liquid valve 58 spaying liquid valve 59 spaying liquid valve 50 spaxed 50 spa			30		
44" connector, gas connector 44" gasket 49 source of liquid 50 gas supply valve 51 source of pressurized gas, compressor 52 gas piping 53 gas outlet of source of pressurized gas/compressor 54 gas inlet of mixing unit 55 gas inlet of mixing unit 56 second cleaning agent connection channel in mixing unit 61 third cleaning agent connection channel in mixing unit 62 second cleaning agent connection channel in mixing unit 63 third cleaning agent connection channel in mixing unit 64 liquid supply channel in mixing unit 65 gas supply channel in mixing unit 66 rinsing channel 67 rinsing channel 68 rinsing channel 69 rinsing channel 60 rinsing iquid valve receiving port/bay in mixing unit 60 spraying liquid valve 60 spraying liquid valve 60 spraying liquid valve 60 spraying liquid valve 61 source of pressurized gas, compressor 62 liquid supply channel in mixing unit 63 spraying liquid valve 64 spraying liquid valve 65 gas supply channel in mixing unit 66 spraying liquid valve 67 spraying liquid valve 68 spraying liquid valve 69 spraying liquid valve 60 spraying liquid valve 60 spraying liquid valve 60 spraying liquid valve 60 spraying liquid valve 61 spaket groove 129 gasket groove 129 gasket groove 130 gas groove in outer surface of injector body 131 annular gas inlet channel 132 inlet of liquid supply channel in mixing unit 133 helical grooves formed in the outer surface of a portion 134 of the injector body with helical grooves ond (outlet) end of the injector body and the inner surface of the injector body 136 cylindrical end portion at the second (outlet) end of the injector body 137 helical channel formed between the helical groove and the inner surface of the injector receiving port/bay 138 gasket, O-ring 139 gasket, O-ring		<u> </u>		126	
44" gasket 49 source of liquid 50 gas supply valve 51 source of pressurized gas, compressor 52 gas piping 53 gas inlet of source of pressurized gas/compressor 54 gas outlet of source of pressurized gas/compressor 55 gas inlet of mixing unit 56 gas inlet of mixing unit 57 connector, gas connector. 58 first cleaning agent connection channel in mixing unit 59 second cleaning agent connection channel in mixing unit 50 third cleaning agent connection channel in mixing unit 50 third cleaning agent connection channel in mixing unit 51 span supply channel in mixing unit 52 second cleaning agent connection channel in mixing unit 53 third cleaning agent connection channel in mixing unit 54 third cleaning agent connection channel in mixing unit 55 gas supply channel in mixing unit 56 gas supply channel in mixing unit 57 span supply channel in mixing unit 58 rinsing channel 59 rinsing channel 50 spraying liquid valve receiving port/bay in mixing unit 50 spraying liquid valve 50 spraying liquid valve 51 28 groove in cuter surface of injector body 52 agas text groove 54 131 annular gas inlet channel formed between the surface of injector receiving port/bay in the annular gas inlet channel 54 132 provies in outer surface of injector body 55 inlet of gas supply channel in housing into the annular gas inlet channel 56 pas supply channel in mixing unit 57 surface of the injector body with helical grooves gap between a cylindrical end portion at the second (outlet) end of the injector receiving port/bay 56 rinsing channel 57 surface of the injector body 58 helical channel formed between the helical groove and the inner surface of the injector receiving port/bay 59 surface of the injector body 50 helical channel formed between the helical groove and the inner surface of the injector receiving port/bay 59 surface of the injector body 50 helical channel formed between the helical groove and the inner surface of the injector receiving port/bay 50 spraying liquid valve		=			•
source of liquid 35 groove gas supply valve 51 source of pressurized gas, compressor 52 gas piping 53 gas outlet of source of pressurized gas/compressor 54 gas inlet of mixing unit 55 gas inlet of mixing unit 56 second cleaning agent connection channel in mixing unit 57 third cleaning agent connection channel in mixing unit 58 third cleaning agent connection channel in mixing unit 59 third cleaning agent connection channel in mixing unit 50 gas supply channel in mixing unit 51 spraying liquid valve receiving port/bay in mixing unit 52 spraying liquid valve 53 gas week groove in outer surface of injector body 54 annular gas inlet channel formed between the surface of injector body 58 inlet of gas supply channel in housing into the annular gas inlet channel 59 helical grooves formed in the outer surface of a portion 134 of the injector body with helical grooves 50 gap between a cylindrical end portion at the second (outlet) end of the injector body and the inner surface of the injector body 50 spraying liquid valve 51 source of pressurized gas, compressor 52 gas pove in outer surface of injector body 53 inlet of gas supply channel in housing into the annular gas inlet channel in housing into the annular gas inlet channel 54 lial of gas supply channel in housing into the annular gas inlet channel 55 portion 134 of the injector body with helical grooves 56 gap between a cylindrical end portion at the second (outlet) end of the injector receiving port/bay 57 celvindrical end portion at the second (outlet) end of the injector body 58 portion of the injector body 59 portion of the injector body 50 portion of the injector body 51 portion of the injector body 50 portion at the second (outlet) end of the injector body 51 portion of the injector body 52 portion of the injector body 53 portion of the injector body 54 portion of the injector body 55 portion of the injector body 56 portion of the injector body 57 portion of the injector body 58 portion of the injector body 59 portion of the injector body 50 portion of the				127	
50 gas supply valve 51 source of pressurized gas, compressor 52 gas piping 53 gas inlet of mixing unit 54 second cleaning agent connection channel in mixing unit 55 unit delaning agent connection channel in mixing unit 66 second cleaning agent connection channel in mixing unit 67 third cleaning agent connection channel in mixing unit 68 third cleaning agent connection channel in mixing unit 69 gas supply channel in mixing unit 60 third cleaning agent connection channel in mixing unit 61 third cleaning agent connection channel in mixing unit 62 second cleaning agent connection channel in mixing unit 63 third cleaning agent connection channel in mixing unit 64 liquid supply channel in mixing unit 65 gas supply channel in mixing unit 66 rinsing channel 67 injector receiving port/bay in mixing unit 68 spraying liquid valve receiving port/bay in mixing unit 69 spraying liquid valve 60 spraying liquid valve 60 spraying liquid valve 61 source of pressurized gas, compressor 62 gas ket groove 63 gas ket groove 64 liquid supply channel in mixing 65 gas supply channel in housing into the annular gas inlet channel formed between the surface of injector body 66 rinsing channel 67 spraying liquid valve receiving port/bay in mixing unit 68 spraying liquid valve 69 spraying liquid valve 60 spraying liquid valve 60 spraying liquid valve 61 source of pressurized gas/compressor 62 gas supply channel in mixing 63 surface of injector receiving port/bay in mixing unit 64 liquid supply channel in mixing unit 65 gas supply channel in mixing unit 66 surface of injector body 67 surface of injector body with helical grooves 68 surface of injector body 69 surface of injector body 60 surface of injector body 61 the injector body with helical grooves 60 surface of the injector receiving port/bay 61 surface of injector pody 62 surface of injector body 63 helical grooves formed in the outer surface of a portion of the injector body 64 liquid supply channel in mixing unit 65 surface of injector body 66 inlet of injector body 67 surface of inje		=			
51 source of pressurized gas, compressor 52 gas piping 53 gas outlet of source of pressurized gas/compressor 54 gas inlet of mixing unit 55 connector, gas connector. 61 first cleaning agent connection channel in mixing unit 62 second cleaning agent connection channel in mixing unit 63 third cleaning agent connection channel in mixing unit 64 liquid supply channel in mixing unit 65 gas supply channel in mixing unit 66 rinsing channel 67 gas supply channel in mixing unit 68 rinsing channel 69 rinsing channel 60 injector receiving port/bay in mixing unit 61 first cleaning agent connection channel in mixing unit 62 second cleaning agent connection channel in mixing unit 63 third cleaning agent connection channel in mixing unit 64 liquid supply channel in mixing unit 65 gas supply channel in mixing unit 66 rinsing channel 70 injector receiving port/bay in mixing unit 71 spraying liquid valve receiving port/bay in mixing unit 72 spraying liquid valve receiving port/bay in mixing unit 73 spraying liquid valve 74 spraying liquid valve 75 spraying liquid valve 75 spraying liquid valve 76 spraying liquid valve 77 spraying liquid valve 78 spraying liquid valve 79 spraying liquid valve 70 spraying liquid valve 70 spraying liquid valve 71 spraying liquid valve 72 spraying liquid valve 73 spraying liquid valve 74 spraying liquid valve 75 spraying liquid valve 76 spraying liquid valve 77 spraying liquid valve 78 spraying liquid valve 79		·	35	400	<u> </u>
gas piping 51' gas outlet of source of pressurized gas/compressor 53' gas inlet of mixing unit 53' connector, gas connector. 61 first cleaning agent connection channel in mixing unit 62 second cleaning agent connection channel in mixing unit 63 third cleaning agent connection channel in mixing unit 64 liquid supply channel in mixing unit 65 gas supply channel in mixing unit 66 rinsing channel 67 rinsing channel 68 spraying liquid valve receiving port/bay in mixing unit 69 spraying liquid valve 60 spraying liquid valve 60 spraying liquid valve 61 spraying liquid valve 62 gas piping 63 gas groove in outer surface of injector receiving port/bay and gas groove in outer surface of injector receiving port/bay and gas groove in outer surface of injector receiving port/bay and gas groove in outer surface of injector receiving port/bay and gas groove in outer surface of injector receiving port/bay and gas groove in outer surface of injector receiving port/bay and gas groove in outer surface of injector receiving port/bay and gas groove in outer surface of injector receiving port/bay and gas groove in outer surface of injector body 132 inlet of gas supply channel in housing into the annular gas inlet channel in between the beuter annular gas inlet channel in outer surface of a portion 134 of the injector body 134 portion of the injector body appetive or developed and the inner surface of the injector receiving port/bay of the injector body 135 cylindrical end portion at the second (outlet) end of the injector body 136 cylindrical end portion at the second (outlet) end of the injector body 137 helical channel formed between the helical grooves and the inner surface of the injector receiving port/bay 138 gasket, O-ring				128	
51' gas outlet of source of pressurized gas/compressor 40 131 annular gas inlet channel formed between the surface of injector body annular gas inlet channel formed between the surface of injector receiving port/bay and gas groove in outer surface of injector body inlet of gas supply channel in housing into the annular gas inlet channel in bouter surface of a portion of the injector body portion of the injector body and the inner surface of the injector receiving port/bay in gas supply channel in mixing unit injector receiving port/bay in mixing unit injector receiving port/bay in mixing unit injector valve receiving port/bay in mixing unit injector receiving port/bay in mixing unit injector valve receiving port/bay in mixing unit injector sold yard the injector body injector receiving port/bay injector receiving port/bay injector receiving port/bay injector receiving port/bay injector sold yard injector pody and the inner surface of the injector body helical channel formed between the helical groove and the inner surface of the injector receiving port/bay injecto				400	
sor gas inlet of mixing unit surface of injector receiving port/bay and gas groove in outer surface of injector body inlet of gas supply channel in housing into the annular gas inlet channel in the second (outlet sample formed between a cylindrical end portion at the second (outlet) end of the injector receiving port/bay injector receiving port/bay in mixing unit injector body injector pody in the injector body injector pody inj		9 11 9			3 3
surface of injector receiving port/bay and gas surface of injector receiving port/bay and gas grove in outer surface of injector body first cleaning agent connection channel in mixing unit second cleaning agent connection channel in mixing unit third cleaning agent connection channel in mixing unit third cleaning agent connection channel in mixing unit figure as supply channel in housing into the annular gas inlet channel finet cleaning agent connection channel in mixing unit figure as supply channel in housing into the annular gas inlet channel finet cleaning agent connection channel in mixing unit figure as supply channel in housing into the annular gas inlet channel for gas supply channel in housing into the annular gas inlet channel for gas supply channel in housing into the annular gas inlet channel for gas supply channel in housing into the annular gas inlet channel for gas supply channel in housing into the annular gas inlet channel for gas supply channel in housing into the annular gas inlet channel for gas supply channel in housing into the annular gas inlet channel for gas supply channel in housing into the annular gas inlet channel for gas supply channel in housing into the annular gas inlet channel for gas supply channel in housing into the annular gas inlet channel for during the figure annular gas inlet channel for during the figure	51		40		
53' connector, gas connector. 61 first cleaning agent connection channel in mixing unit 62 second cleaning agent connection channel in mixing unit 63 third cleaning agent connection channel in mixing unit 64 liquid supply channel in mixing unit 65 gas supply channel in mixing unit 66 rinsing channel 70 injector receiving port/bay in mixing unit 74 spraying liquid valve receiving port/bay in mixing unit 75 spraying liquid valve 80 spraying liquid valve 80 spraying liquid valve 81 second cleaning agent connection channel in mixing unit annular gas inlet channel in housing into the annular gas inlet channel heusing annular gas inlet channel in the outer surface of a portion 134 of the injector body with helical grooves and (outlet) end of the injector body and the inner surface of the injector body helical channel formed between the helical groove and the inner surface of the injector receiving port/bay gasket, O-ring 80 spraying liquid valve	5 0		40	131	-
first cleaning agent connection channel in mixing unit second cleaning agent connection channel in mixing unit third cleaning agent connection channel in mixing unit the annular gas inlet channel in the outer surface of a portion 134 of the injector body with helical grooves ond (outlet) end of the injector receiving port/bay of the injector receiving port/bay helical channel formed between the helical grooves ond the inner surface of the injector receiving port/bay gasket, O-ring spraying liquid valve spraying liquid valve third cleaning agent connection channel in mixing unit third cleaning agent connection channel in mixing unit annular gas inlet channel in the outer surface of a portion of the injector body ond (outlet) end of the injector receiving port/bay helical channel formed between the helical grooves and the inner surface of the injector receiving port/bay gasket, O-ring spraying liquid valve					
unit second cleaning agent connection channel in mixing unit helical grooves formed in the outer surface of a portion 134 of the injector body third cleaning agent connection channel in mixing unit third cleaning agent connection channel in mixing unit figured supply channel in mixing un				122	
mixing unit third cleaning agent connection channel in mixing unit third cleaning agent connection channel in mixing unit liquid supply channel in mixing unit gas supply channel in mixing unit rinsing channel injector receiving port/bay in mixing unit rinjector valve receiving port/bay in mixing unit spraying liquid valve receiving port/bay in mixing spraying liquid valve mixing unit portion 134 of the injector body portion of the injector body with helical grooves gap between a cylindrical end portion at the second (outlet) end of the injector receiving port/bay cylindrical end portion at the second (outlet) end of the injector body helical channel formed between the helical groove and the inner surface of the injector receiving port/bay gasket, O-ring spraying liquid valve 138 gasket, O-ring gove and the inner surface of the injector receiving port/bay gasket, O-ring	01			132	annular gas inlet channel
third cleaning agent connection channel in mixing unit 134 portion of the injector body with helical grooves gap between a cylindrical end portion at the second (outlet) end of the injector body and the inner surface of the injector receiving port/bay 135 gap between a cylindrical end portion at the second (outlet) end of the injector receiving port/bay 136 cylindrical end portion at the second (outlet) end of the injector receiving port/bay 137 helical channel formed between the helical grooves ond (outlet) end of the injector body 138 graying liquid valve receiving port/bay in mixing unit 139 gasket, O-ring 139 gasket, O-ring	62		45	133	
liquid supply channel in mixing unit gas supply channel in mixing unit rinsing channel rinsing channel rinjector receiving port/bay in mixing unit rinjector valve receiving port/bay in mixing unit surface of the injector receiving port/bay cylindrical end portion at the second (outlet) end of the injector body helical channel formed between the helical groove and the inner surface of the injector re- ceiving port/bay gasket, O-ring spraying liquid valve spraying liquid valve 138 gasket, O-ring gasket, O-ring	63	third cleaning agent connection channel in mixing			portion of the injector body with helical grooves
gas supply channel in mixing unit rinsing channel rinsing channel rinjector receiving port/bay in mixing unit rinjector valve receiving port/bay in mixing unit rinjector receiving port/bay in mixing unit rinjector valve receiving port/bay in mixing unit rinjector receiving port/bay in mixing groove and the inner surface of the injector receiving port/bay rinsing channel rinjector receiving port/bay rinjector receiving port/bay in mixing rinjector receiving port/bay rinjector receiving port/bay rinjector receiving port/bay in mixing rinjector valve receiving port/bay in mixing rinjector receiving port/bay in mixing rinj	61			133	
rinsing channel injector receiving port/bay in mixing unit ringictor valve receiving port/bay in mixing unit spraying liquid valve receiving port/bay in mixing unit ringictor valve receiving port/bay in mixing unit spraying liquid valve receiving port/bay in mixing unit ringictor valve receiving port/bay in mixing unit spraying liquid valve receiving port/bay in m			50		• • •
70 injector receiving port/bay in mixing unit 74 injector valve receiving port/bay in mixing unit 78 spraying liquid valve receiving port/bay in mixing unit 55 ceiving port/bay 138 gasket, O-ring 80 spraying liquid valve 139 gasket, O-ring			50	126	
74 injector valve receiving port/bay in mixing unit 78 spraying liquid valve receiving port/bay in mixing unit 80 spraying liquid valve 137 helical channel formed between the helical groove and the inner surface of the injector receiving port/bay 138 gasket, O-ring 139 gasket, O-ring		=		130	
spraying liquid valve receiving port/bay in mixing unit 55 ceiving port/bay spraying liquid valve receiving port/bay in mixing ceiving port/bay 138 gasket, O-ring spraying liquid valve 139 gasket, O-ring				137	
unit 55 ceiving port/bay 138 gasket, O-ring 80 spraying liquid valve 139 gasket, O-ring				.01	
138 gasket, O-ring 80 spraying liquid valve 139 gasket, O-ring	. 5		55		
80 spraying liquid valve 139 gasket, O-ring				138	
	80	spraving liquid valve			

d1	maximum dimension (diameter) of the injector body at the first end		400	arrow, indicating airflow passing away from the injector
d2	maximum dimension (diameter of the injector body at the outlet end		401	arrow, indicating airflow passing away from the injector
d3	dimension (diameter) of the portion 134 of the injector body	5	402	arrow, indicating airflow passing away from the injector
d4	dimension (diameter) of the injector outlet 113		403	arrow, indicating airflow passing away from the
141	threading on injector body for connection to the			injector
4.40	injector receiving port/bay in mixing unit	10	404	,
142 143	threading in the housing of the mixing unit portion of injector body	10	405	arrow, indicating the flow of cleaning agent into the injector
144	portion of injector body		406	
145	portion of injector body at first end		100	injector
146	tool receiving lock	15	407	arrow, indicating the flow of water and cleaning agent mixture from the outlet 113 of the injector.
200	control system			·
201	control unit			
210	pump motor		Clai	ims
230	actuator for cleaning agent valve	00		
231	control connection between control unit 200 and actuator 230	20	1.	A mixing unit (9) for supplying foam for cleaning, the mixing unit (9) comprising:
232	actuator for cleaning agent valve			a bayaing (10) baying a liquid inlat (12) for re
233	control connection between control unit 200 and actuator 232	0.5		a housing (10) having a liquid inlet (43) for receiving pressurized water, a gas inlet (53) for
240	actuator for injector valve 40 control connection between control unit 200 and	25		receiving pressurized air, a fluid outlet (44) for
241	actuator for injector valve			delivering said foam, a cleaning agent inlet (39), and an injector receiving bay (70) for receiving
250	actuator for gas supply valve 50			an injector (100);
251	control connection between control unit 200 and			, , , , , , , , , , , , , , , , , , , ,
	actuator for gas supply valve	30		the mixing unit (9) further comprising an injector
261	actuator for outlet control valve			(100), the injector (100) having
262	actuator for outlet control valve			
263	actuator for outlet control valve			- an injector body (101) with a first end (102) and
270	control connection for actuator for outlet control valve	35		a second end (103) opposite to the first end (102), and a longitudinal axis (A);
271	control connection for actuator for outlet control			- an injector inlet (115);
272	valve control connection for actuator for outlet control			 an injector outlet (113) formed through the sec- ond end (103); and
212	valve			- an injector liquid inlet (124);
273	control connection for actuator for outlet control	40		a, 5000quido. (. _ / ,
	valve			which injector inlet (115) is fluidly connectable to the
280	actuator for the spraying liquid valve 80			cleaning agent inlet (39) of the housing (10),
281	control connection between control unit 200 and			which injector liquid inlet (124) is fluidly connectable
	actuator for spraying liquid valve			to the liquid inlet (43) of the housing (10), and
290	actuator for rinsing valve	45		which injector outlet (113) is fluidly connected to the
300	ovternal alganing avetem			fluid outlet (44) of the housing (10), wherein the injector liquid inlet (124) is in a direction
310	external cleaning system tubing of external cleaning system			transverse to the a longitudinal axis (A) of the injector
311	tubing of external cleaning system, branch			(100).
312	tubing of external cleaning system, branch	50		
313	tubing of external cleaning system, branch		2.	A mixing unit (9) according to claim 1, wherein the
321	outlet control valve			injector liquid inlet (124) is formed as a bore from an
322	outlet control valve			outer surface (118) of the injector body (101).
323	outlet control valve	FF	^	A maintain a supit (O) page and the start of the Co. It is
331 332	cleaning outlet of external cleaning system	55	3.	A mixing unit (9) according to claim 1 or 2, wherein
333	cleaning outlet of external cleaning system cleaning outlet of external cleaning system			the injector liquid inlet (124) communicates with a liquid inlet connection channel (125) extending in the
340	delivery nozzles at cleaning outlet			direction of the longitudinal axis (A) of the injector
	3			(, , , , , , , , , , , , , , , , , , ,

25

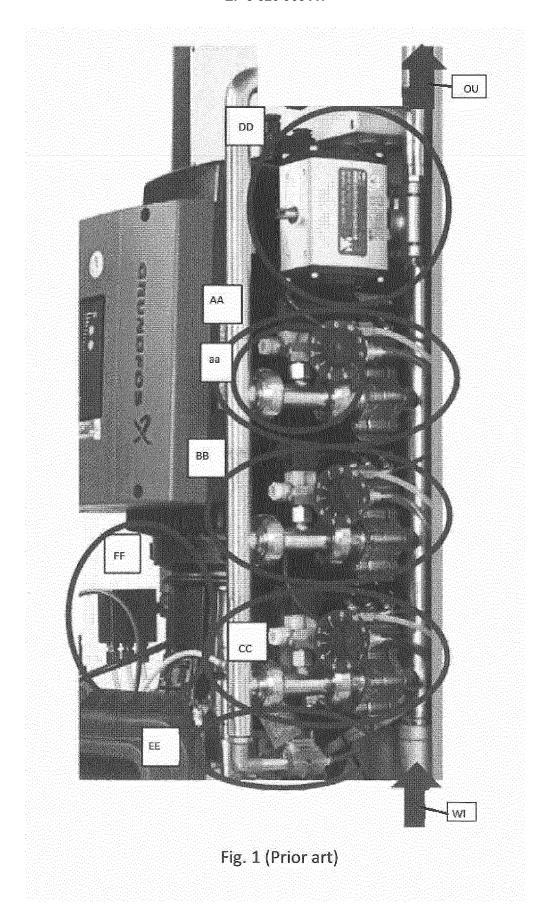
40

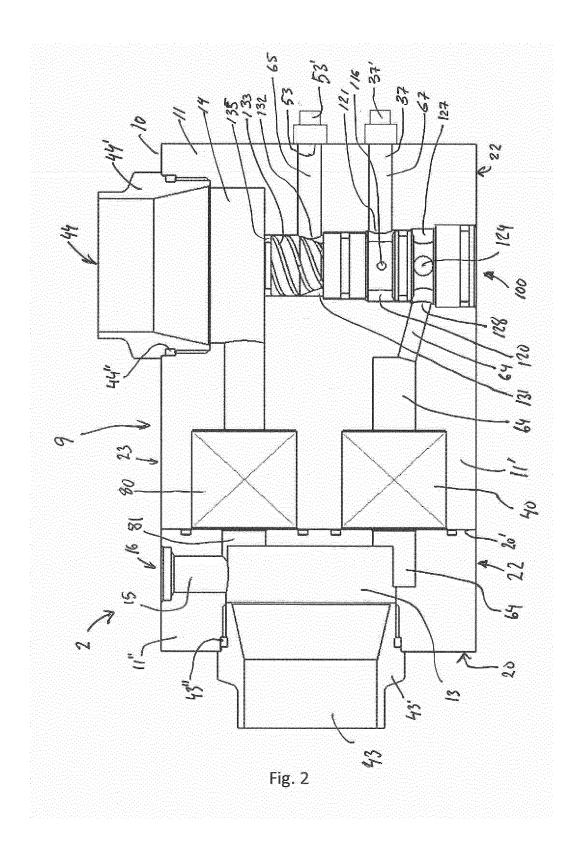
body and opens into an injector chamber (110) at the injector inlet (115).

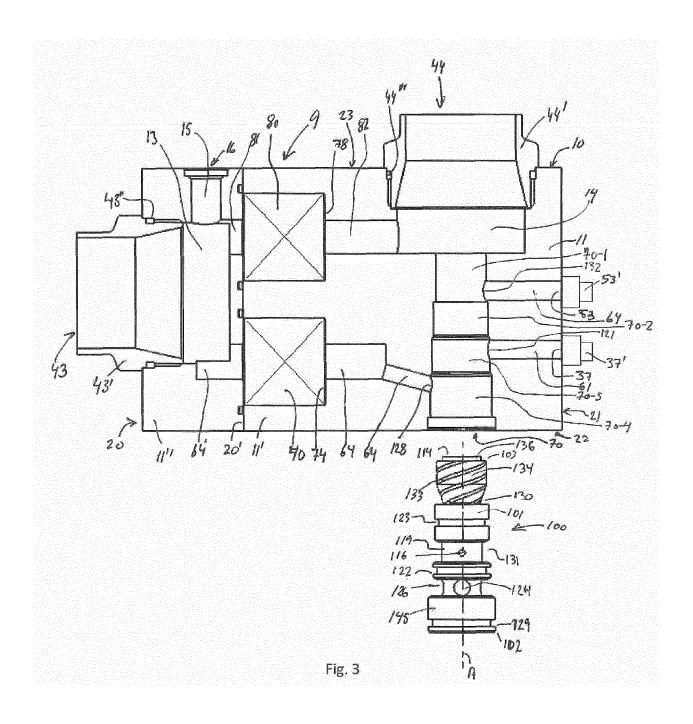
- 4. A mixing unit (9) according to any one of the claims 1-3, wherein the injector liquid inlet (124) is formed at a circumferential groove (26), which circumferential groove (26) is formed in the outer surface (118) of the injector body (101), the circumferential groove (126), forming an annular water inlet channel (127) around the injector (100) together with a portion of the inner surface of the injector receiving bay (70) of the mixing unit (9), when the injector (100) is inserted in the injector receiving bay (70).
- 5. A mixing unit (9) according to any one of the claims 1-4, wherein the injector (100) is positioned within the mixing unit (9) in such a way that a gap (135) around the injector outlet (113) is provided, said gap (135) being fluidly connected to the gas inlet (65) for allowing pressurized gas to enter and pass through the gap (135) and mix with a cleaning agent and liquid at the fluid outlet (44) of the housing (10).
- 6. A mixing unit (9) according to any one of the claims 1-5, wherein the injector body (101) only has a decreasing maximum dimension from the first end (102) to the second end (103), and where the injector body (101) comprises means for releaseably connecting the injector to a portion (70) of the housing (10) of the mixing unit (9).
- 7. A mixing unit (9) according to claim 6, wherein the means for releaseably connecting the injector (100) to a portion (70) of the housing (10) of the mixing unit (9) comprises a threading (141) located on a portion (145) of the injector body (101) at the first end (102) of the injector (100), the threading (141) cooperating with a corresponding threading (142) on the surface of the injector receiving bay (70) of the mixing unit (9).
- 8. A mixing unit (9) according to any one of the claims 1-7, wherein helical grooves (133) are formed in the outer surface (118) of a portion (134) of the injector body in order to provide a swirling air flow surrounding the injector outlet (113).
- 9. A cleaning device (2) comprising:
 - a mixing unit (9) according to any one of the claims 1-8;
 - at least one cleaning agent valve (30, 31) for supplying cleaning agents, and connectable to a source of a cleaning agent (33,34);
 - an injector valve (40) connectable to a source of pressurized liquid (49);
 - a gas supply valve (50) connectable to a source of pressurized gas (51);

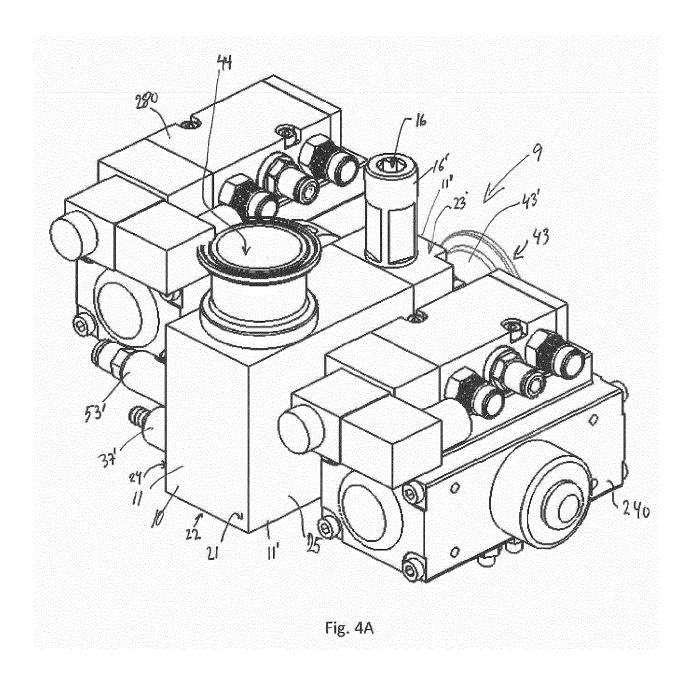
wherein the at least one injector (100) and the injector valve (40) are integrated within the mixing unit housing (10);

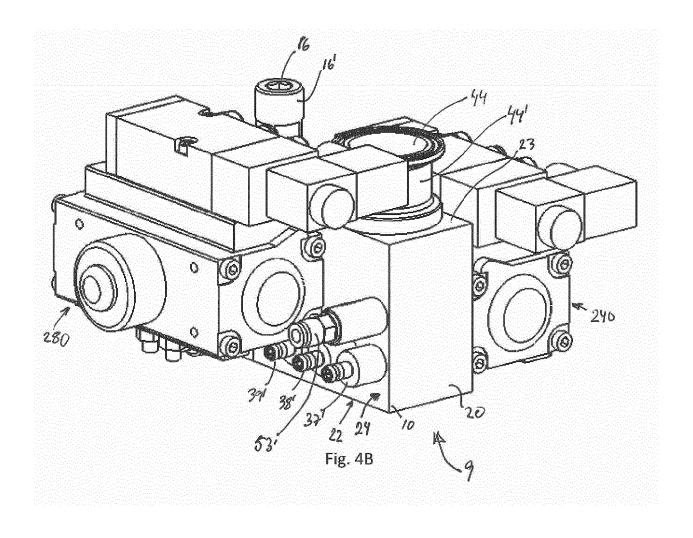
wherein cleaning agent channels (61, 62, 63) fluidly connecting the at least one injector (100) and the source of cleaning agent (33, 34) are formed within the mixing unit housing (10), wherein a liquid supply channel (64) fluidly connect-

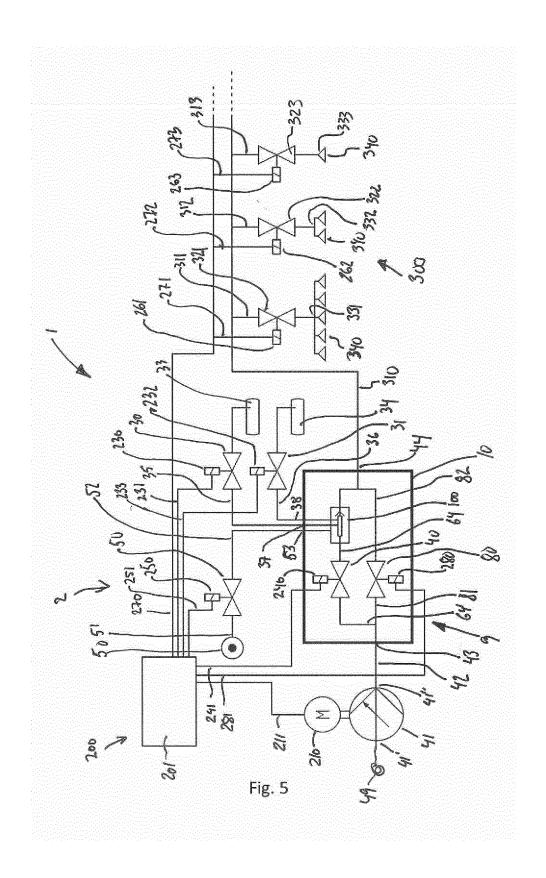

ing the injector valve (40) with the injector (100) is formed within the mixing unit housing (10); and wherein a gas supply channel (65), fluidly connecting the gas supply valve (50) and the at least one injector (100), is formed in the mixing unit housing (10).

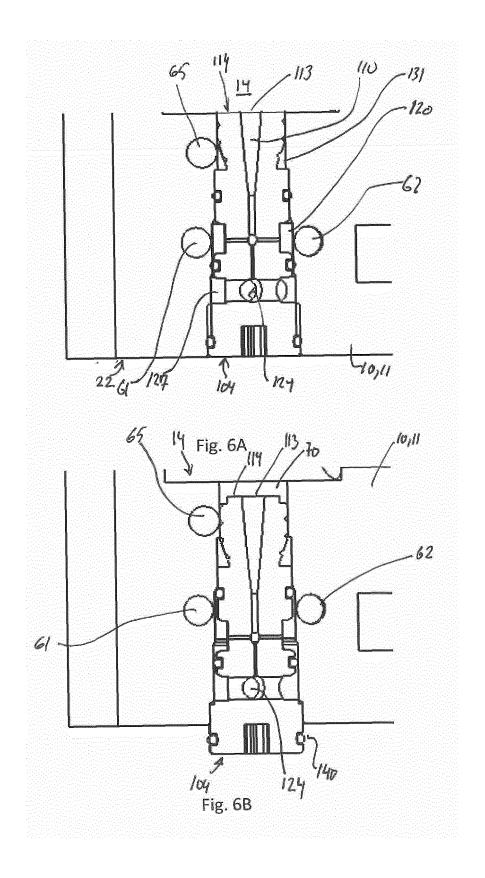

10. A cleaning device (2) according to claim 9, wherein the mixing unit housing (10) is formed as a solid block (11) of material,

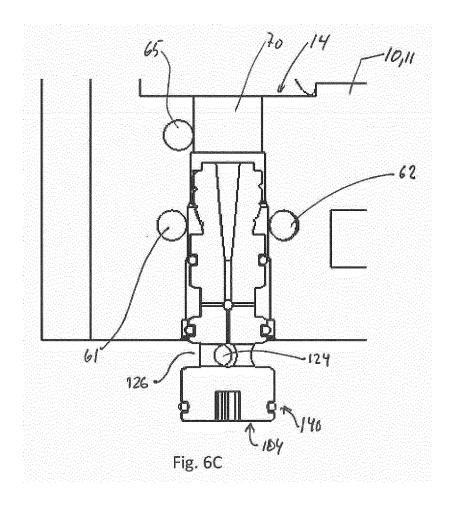

wherein the at least one injector (100) is arranged in an injector receiving bay (70) formed as a bore in said block (11);

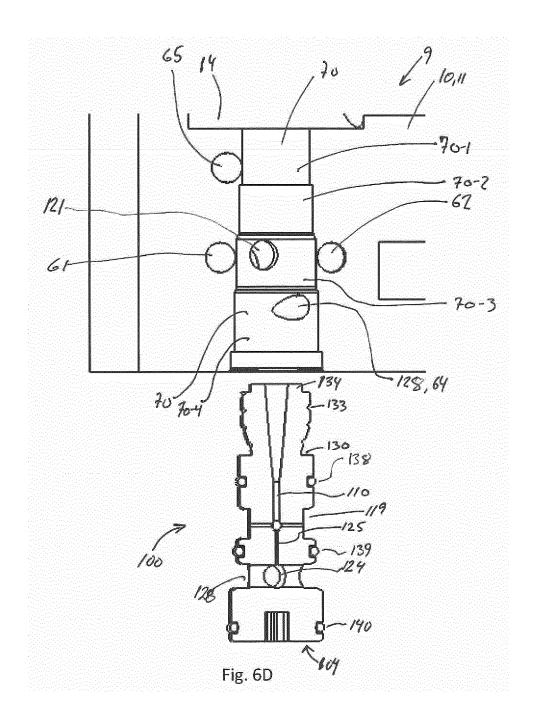

wherein the injector valve (40), is arranged in an injector receiving bay (74) formed as a bore in said block (11), and

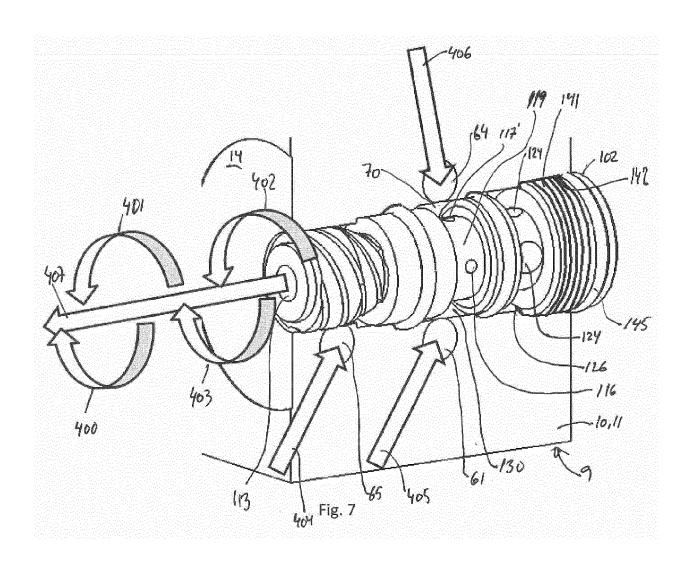

wherein the cleaning agent connection channels (61, 62, 63), the water supply channel (64) and the gas supply channel (65) are formed as bores in the block (11).

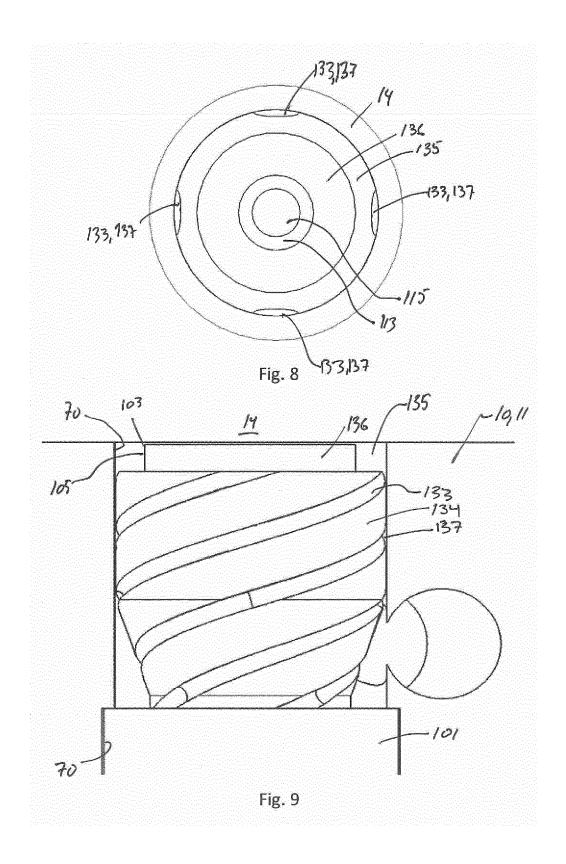


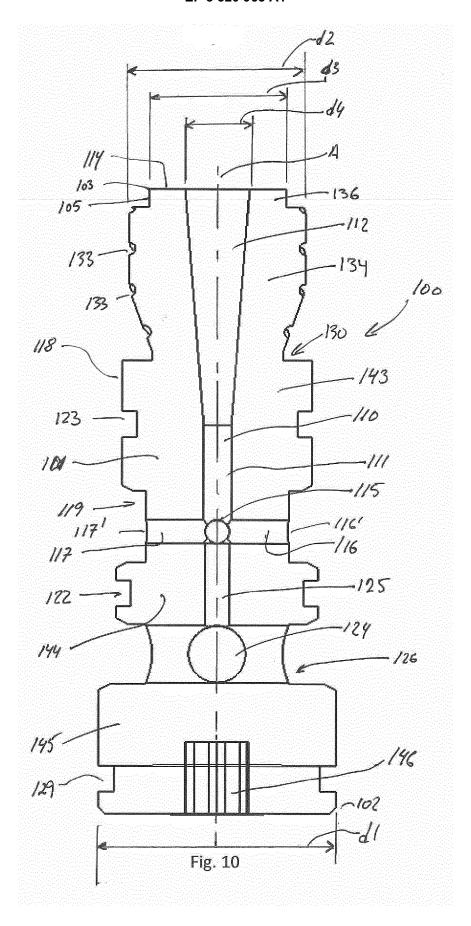












EUROPEAN SEARCH REPORT

Application Number EP 17 20 0615

Category	Citation of document with in of relevant pass	ndication, where appropriate, ages	Relevant to claim	CLASSIFICATION OF TH APPLICATION (IPC)	
A,D	WO 2015/067989 A1 ([DK]) 14 May 2015 (* page 1, lines 4-6	NILFISK ADVANCE AS 2015-05-14) * page 4, line 8 * 4 * * page 9, line 2 *	1-10	INV. B01F5/04 B01F3/04 B01F3/08 B01F5/00 B01F15/02 TECHNICAL FIELDS SEARCHED (IPC) B01F B08B	
	The present search report has				
	Place of search	Date of completion of the search	D	Examiner	
	The Hague	6 April 2018		sten, Katharina	
X : parti Y : parti docu A : tech O : non	ATEGORY OF CITED DOCUMENTS icularly relevant if taken alone icularly relevant if combined with anot ument of the same category nological background-written disclosure rediate document	E : earlier patent of after the filling there D : document cite L : document cite.	T: theory or principle underlying the invention E: earlier patent document, but published on, or after the filing date D: document cited in the application L: document cited for other reasons &: member of the same patent family, corresponding document		

EP 3 320 965 A1

ANNEX TO THE EUROPEAN SEARCH REPORT ON EUROPEAN PATENT APPLICATION NO.

EP 17 20 0615

5

This annex lists the patent family members relating to the patent documents cited in the above-mentioned European search report. The members are as contained in the European Patent Office EDP file on The European Patent Office is in no way liable for these particulars which are merely given for the purpose of information.

06-04-2018

10	Patent document cited in search report	Publication date	Patent family member(s)	Publication date
	WO 2015067989 A1	14-05-2015	EP 3065851 A1 WO 2015067989 A1	14-09-2016 14-05-2015
15				
20				
25				
30				
35				
40				
45				
50				
55 G				
55				

© L □ For more details about this annex : see Official Journal of the European Patent Office, No. 12/82

EP 3 320 965 A1

REFERENCES CITED IN THE DESCRIPTION

This list of references cited by the applicant is for the reader's convenience only. It does not form part of the European patent document. Even though great care has been taken in compiling the references, errors or omissions cannot be excluded and the EPO disclaims all liability in this regard.

Patent documents cited in the description

- US 5855217 A **[0007]**
- WO 2015067989 A1 [0007]

• WO 2015067989 A [0030]