

(11) EP 3 330 358 A1

(12) EUROPEAN PATENT APPLICATION

(43) Date of publication:

06.06.2018 Bulletin 2018/23

(51) Int Cl.:

C11D 3/386 (2006.01)

(21) Application number: 17204802.7

(22) Date of filing: 30.11.2017

(84) Designated Contracting States:

AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

Designated Extension States:

BA ME

Designated Validation States:

MA MD

(30) Priority: 02.12.2016 EP 16202079

(71) Applicant: The Procter & Gamble Company Cincinnati, OH 45202 (US)

(72) Inventor: LANT, Neil Joseph Newcastle upon Tyne, NE12 9TS (GB)

(74) Representative: Peet, Jillian Wendy
Procter & Gamble Technical Centres Limited
Whitley Road
Longbenton
Newcastle upon Tyne
NE12 9TS (GB)

(54) CLEANING COMPOSITIONS INCLUDING MANNANASE ENZYME AND AMINES

(57) Cleaning compositions that include a mannanase enzyme and an amine. Methods of making and using such cleaning compositions. Use of a mannanase enzyme and an amine.

Description

REFERENCE TO A SEQUENCE LISTING

5 [0001] This application contains a Sequence Listing in computer readable form, which is incorporated herein by reference.

FIELD OF THE INVENTION

[0002] The present invention relates to cleaning compositions that include a mannanase enzyme and an amine. The present invention also relates to methods of making such cleaning compositions. The present invention also relates to the use of a mannanase enzyme and an amine.

BACKGROUND OF THE INVENTION

15

20

35

40

50

55

[0003] The detergent formulator is constantly aiming to improve the performance of detergent compositions. One particular challenge is the removal of certain malodorous soils from surfaces such as textiles. Such soils may build up over time, including on collars and cuffs where incomplete cleaning may occur.

[0004] Certain mannanase enzymes have been found to be effective on such soils, but their efficiency can be improved, particularly when such soils are present in combination with other soils, such as greasy soils.

[0005] There is a need for improved cleaning compositions that include mannanase enzymes.

SUMMARY OF THE INVENTION

[0006] The present invention relates to cleaning compositions that include a mannanase enzyme comprising a polypeptide having mannan endo-1,4-beta-mannosidase activity (EC 3.2.1.78) that catalyzes the hydrolysis of 1,4-3-D-mannosidic linkages in mannans, galactomannans and/or glucomannans, and/or optionally having at least 60% sequence identity to SEQ ID NO: 1 or having at least 81% sequence identity to SEQ ID NO: 2 or having at least 75% sequence identity to SEQ ID NO: 3 or having at least 65% sequence identity to SEQ ID NO: 4 or having at least 75% sequence identity to SEQ ID NO: 5; and an amine selected from the group consisting of etheramines, cyclic amines, polyamines, oligoamines, and combinations thereof. Preferably the mannanase is a member of the glycoside hydrolase family 26.
[0007] The present invention relates to methods of cleaning a surface, such as a textile, that include mixing a cleaning composition as described herein with water to form an aqueous liquor and contacting a surface with the aqueous liquor in a laundering step.

[0008] The present invention also relates to the use of the mannanase enzyme to enhance the greasy-stain removal of an amine selected from the group consisting of etheramines, cyclic amines, polyamines, oligoamines, and combinations thereof.

[0009] The present invention also relates to the use of an amine selected from the group consisting of etheramines, cyclic amines, polyamines, oligoamines, and combinations thereof, to enhance the stain-removal and/or malodor-reducing benefits of the mannanase enzyme.

[0010] Preferably the mannanase is a variant having at least 60% sequence identity to SEQ ID NO: 1 or having at least 81% sequence identity to SEQ ID NO: 2 or having at least 75% sequence identity to SEQ ID NO: 3 or having at least 65% sequence identity to SEQ ID NO: 4 or having at least 75% sequence identity to SEQ ID NO: 5.

45 DETAILED DESCRIPTION OF THE INVENTION

[0011] The present invention relates to cleaning compositions comprising a mannanase enzyme and an amine, selected from the group consisting of etheramines, cyclic amines, polyamines, oligoamines, and combinations thereof, preferably comprising an etheramine. Without wishing to be bound by theory, it is believed that certain malodor-causing soils become trapped under greasy soils on certain surfaces, such as textiles. It is further believed that the compositions of the invention help to lift the greasy soils, facilitating the soil-removing (and malodor-reducing) benefits of the mannanases described herein.

[0012] The components of the compositions and processes of the present invention are described in more detail below. [0013] As used herein, the articles "a" and "an" when used in a claim, are understood to mean one or more of what is claimed or described. As used herein, the terms "include," "includes," and "including" are meant to be non-limiting. The compositions of the present invention can comprise, consist essentially of, or consist of, the components of the present invention.

[0014] The terms "substantially free of" or "substantially free from" may be used herein. This means that the indicated

material is at the very minimum not deliberately added to the composition to form part of it, or, preferably, is not present at analytically detectable levels. It is meant to include compositions whereby the indicated material is present only as an impurity in one of the other materials deliberately included. The indicated material may be present, if at all, at a level of less than 1%, or less than 0.1%, or less than 0.01%, or even 0%, by weight of the composition.

[0015] As used herein, the term "etheramine" includes the term "polyetheramine" and includes amines that have one or more ether groups.

[0016] Unless otherwise noted, all component or composition levels are in reference to the active portion of that component or composition, and are exclusive of impurities, for example, residual solvents or by-products, which may be present in commercially available sources of such components or compositions.

[0017] All temperatures herein are in degrees Celsius (°C) unless otherwise indicated. Unless otherwise specified, all measurements herein are conducted at 20°C and under the atmospheric pressure.

[0018] In all embodiments of the present invention, all percentages are by weight of the total composition, unless specifically stated otherwise. All ratios are weight ratios, unless specifically stated otherwise.

[0019] It should be understood that every maximum numerical limitation given throughout this specification includes every lower numerical limitation, as if such lower numerical limitations were expressly written herein. Every minimum numerical limitation given throughout this specification will include every higher numerical limitation, as if such higher numerical limitations were expressly written herein. Every numerical range given throughout this specification will include every narrower numerical range that falls within such broader numerical range, as if such narrower numerical ranges were all expressly written herein.

[0020] As used herein, the term "alkoxy" is intended to include C1-C8 alkoxy and C1-C8 alkoxy derivatives of polyols having repeating units such as butylene oxide, glycidol oxide, ethylene oxide or propylene oxide.

[0021] As used herein, unless otherwise specified, the terms "alkyl" and "alkyl capped" are intended to include C1-C18 alkyl groups, or even C1-C6 alkyl groups.

[0022] As used herein, unless otherwise specified, the term "aryl" is intended to include C3-12 aryl groups.

20

30

35

40

45

50

55

[0023] As used herein, unless otherwise specified, the term "arylalkyl" and "alkaryl" are equivalent and are each intended to include groups comprising an alkyl moiety bound to an aromatic moiety, typically having C1-C18 alkyl groups and, in one aspect, C1-C6 alkyl groups.

[0024] The terms "ethylene oxide," "propylene oxide" and "butylene oxide" may be shown herein by their typical designation of "EO," "PO" and "BO," respectively.

[0025] As used herein, the term "cleaning and/or treatment composition" includes, unless otherwise indicated, granular, powder, liquid, gel, paste, unit dose, bar form and/or flake type washing agents and/or fabric treatment compositions.

[0026] As used herein, "cellulosic substrates" are intended to include any substrate which comprises cellulose, either 100% by weight cellulose or at least 20% by weight, or at least 30 % by weight or at least 40 or at least 50 % by weight or even at least 60 % by weight cellulose. Cellulose may be found in wood, cotton, linen, jute, and hemp. Cellulosic substrates may be in the form of powders, fibers, pulp and articles formed from powders, fibers and pulp. Cellulosic fibers, include, without limitation, cotton, rayon (regenerated cellulose), acetate (cellulose acetate), triacetate (cellulose triacetate), and mixtures thereof. Typically cellulosic substrates comprise cotton. Articles formed from cellulosic fibers include textile articles such as fabrics. Articles formed from pulp include paper.

[0027] As used herein, the term "maximum extinction coefficient" is intended to describe the molar extinction coefficient at the wavelength of maximum absorption (also referred to herein as the maximum wavelength), in the range of 400 nanometers to 750 nanometers.

[0028] As used herein "average molecular weight" is reported as a weight average molecular weight, as determined by its molecular weight distribution; as a consequence of their manufacturing process, polymers disclosed herein may contain a distribution of repeating units in their polymeric moiety.

[0029] As used herein the term "variant" refers to a polypeptide that contains an amino acid sequence that differs from a wild type or reference sequence. A variant polypeptide can differ from the wild type or reference sequence due to a deletion, insertion, or substitution of a nucleotide(s) relative to said reference or wild type nucleotide sequence. The reference or wild type sequence can be a full-length native polypeptide sequence or any other fragment of a full-length polypeptide sequence. A polypeptide variant generally has at least about 70% amino acid sequence identity with the reference sequence, 80% amino acid sequence identity within the reference sequence, 80% amino acid sequence identity within the reference sequence, 86% amino acid sequence identity with the reference sequence, 87% amino acid sequence identity with the reference sequence, 88% amino acid sequence identity with the reference sequence, 90% amino acid sequence identity with the reference sequence, 91% amino acid sequence identity with the reference sequence, 91% amino acid sequence identity with the reference sequence, 93% amino acid sequence identity with the reference sequence, 95% amino acid sequence identity with the reference sequence, 95% amino acid sequence identity with the reference sequence, 95% amino acid sequence identity with the reference sequence, 97% amino acid sequence identity with the reference sequence, 97% amino acid sequence identity with the reference sequence, 97% amino acid sequence identity with the reference sequence, 97% amino acid sequence identity with the reference sequence, 97% amino acid sequence identity with the reference sequence, 97% amino acid sequence identity with the reference sequence, 97% amino acid sequence identity with the reference sequence, 97% amino acid sequence identity with the reference sequence, 98% amino acid sequence identity with the reference sequence, 97%

quence, 98.5% amino acid sequence identity with the reference sequence or 99% amino acid sequence identity with the reference sequence.

[0030] As used herein, the term "solid" includes granular, powder, bar and tablet product forms.

[0031] As used herein, the term "fluid" includes liquid, gel, paste, and gas product forms.

Cleaning Composition

5

10

20

30

35

40

45

50

55

[0032] The present disclosure relates to cleaning and/or treatment compositions. The cleaning composition may be selected from the group of light duty liquid detergents compositions, heavy duty liquid detergent compositions, solid, for example particulate/powder or "dry" cleaning compositions, hard surface cleaning compositions, detergent gels commonly used for laundry, bleaching compositions, laundry additives, fabric enhancer compositions, shampoos, body washes, other personal care compositions, and mixtures thereof. The cleaning composition may be a hard surface cleaning composition (such as a dishwashing composition) or a laundry composition (such as a heavy duty liquid or solid detergent composition).

[0033] The cleaning compositions may be in any suitable form. The composition can be selected from a liquid, solid, or combination thereof. As used herein, "liquid" includes free-flowing liquids, as well as pastes, gels, foams and mousses. Non-limiting examples of liquids include light duty and heavy duty liquid detergent compositions, fabric enhancers, detergent gels commonly used for laundry, bleach and laundry additives. Gases, e.g., suspended bubbles, or solids, e.g. particles, may be included within the liquids. A "solid" as used herein includes, but is not limited to, powders, agglomerates, and mixtures thereof. Non-limiting examples of solids include: granules, microcapsules, beads, noodles, and pearlised balls. Solid compositions may provide a technical benefit including, but not limited to, through-the-wash benefits, pre-treatment benefits, and/or aesthetic effects.

[0034] The cleaning composition may be in the form of a unitized dose article, such as a tablet or in the form of a pouch. Such pouches typically include a water-soluble film, such as a polyvinyl alcohol water-soluble film, that at least partially encapsulates a composition. Suitable films are available from MonoSol, LLC (Indiana, USA). The composition can be encapsulated in a single or multi-compartment pouch. A multi-compartment pouch may have at least two, at least three, or at least four compartments. A multi-compartmented pouch may include compartments that are side-by-side and/or superposed. The composition contained in the pouch may be liquid, solid (such as powders), or combinations thereof. Preferably the composition of the invention is a liquid.

Mannanases

[0035] The composition comprises a mannanase enzyme. The term "mannanase" herein means a polypeptide having mannan endo-1,4- beta-mannosidase activity (EC 3.2.1.78) from the glycoside hydrolase family 26 that catalyzes the hydrolysis of 1 ,4-3-D-mannosidic linkages in mannans, galactomannans and glucomannans. Alternative names of mannan endo-1,4-beta-mannosidase are 1,4-3-D-mannan mannanohydrolase; endo-1,4-3-mannanase; endo- β -1,4-mannase; β -mannanase B; 3-1,4-mannan 4-mannanohydrolase; endo-3-mannanase; and β -D-mannanase. Preferred mannanases are members of the glycoside hydrolase family 26.

[0036] For purposes of the present disclosure, mannanase activity may be determined using the Reducing End Assay as described in the experimental section of WO 2015040159.

Suitable examples from class EC 3.2.1.78 are described in WO 2015040159, such as the mature polypeptide SEQ ID NO: 2 described therein.

[0037] Preferred mannanases are variants having at least 60%, at least 65%, at least 70%, at least 75%, at least 80%, at least 81 %, at least 82%, at least 83%, at least 84%, at least 85%, at least 86%, at least 87%, at least 88%, at least 89%, at least 90%, at least 91 %, at least 92%, at least 93%, at least 94%, at least 95%, at least 96%, at least 97%, at least 98%, at least 99% or 100% sequence identity to the mature polypeptide SEQ ID NO: 1 from *Ascobolus stictoideus;* [0038] Preferred mannanases are variants having at least 81 %, at least 82%, at least 83%, at least 84%, at least 85%, at least 86%, at least 87%, at least 88%, at least 89%, at least 90%, at least 91 %, at least 92%, at least 93%, at least 94%, at least 95%, at least 95%, at least 95%, at least 97%, at least 98%, at least 99% or 100% sequence identity to the mature polypeptide SEQ ID NO: 2 from *Chaetomium virescens*.

[0039] Preferred mannanases are variants having at least 75%, at least 76%, at least 77%, at least 78%, at least 79%, at least 80%, at least 81%, at least 82%, at least 83%, at least 84%, at least 85%, at least 86%, at least 87%, at least 88%, at least 89%, at least 90%, at least 91 %, at least 92%, at least 93%, at least 94%, at least 95%, at least 96%, at least 97%, at least 98%, at least 99% or 100% sequence identity to the mature polypeptide SEQ ID NO: 3 from *Preussia aemulans*.

[0040] Preferred mannanases are variants having at least at least 65%, at least 66%, at least 67%, at least 68%, at least 69%, at least 70%, at least 71%, at least 72%, at least 73%, at least 74%, at least 75%, at least 76%, at least 77%, at least 78%, at least 80%, at least 81%, at least 82%, at least 83%, at least 84%, at least 85%, at least 85%,

86%, at least 87%, at least 88%, at least 89%, at least 90%, at least 91 %, at least 92%, at least 93%, at least 94%, at least 95%, at least 96%, at least 97%, at least 98%, at least 99% or 100% sequence identity to the mature polypeptide SEQ ID NO: 4 from *Yunnania penicillata*.

[0041] Preferred mannanases are variants having at least at least 75%, at least 76%, at least 77%, at least 78%, at least 79%, at least 80%, at least 81%, at least 82%, at least 83%, at least 84%, at least 85%, at least 86%, at least 87%, at least 88%, at least 89%, at least 90%, at least 91%, at least 92%, at least 93%, at least 94%, at least 95%, at least 96%, at least 97%, at least 98%, at least 99% or 100% sequence identity to the mature polypeptide SEQ ID NO: 5 from *Myrothecium roridum*. Preferably the mannanase is an isolated mannanase.

[0042] Preferably the mannanase enzyme is present in the cleaning compositions in an amount from 0.001 to 1 wt% based on active protein in the composition, or from 0.005 to 0.5 wt% or from 0.01 to 0.25 wt%. Preferably the mannanase enzyme is present in the laundering aqueous liquor in an amount of from 0.01ppm to 1000ppm of the mannanase enzyme, or from 0.05 or from 0.1ppm to 750 or 500ppm. The mannanases or compositions comprising them may also give rise to biofilm-disrupting effects.

Amines

10

15

20

30

35

40

45

50

55

[0043] The cleaning compositions described herein may contain an amine selected from the group consisting of etheramines, cyclic amines, polyamines, oligoamines (e.g., triamines, diamines, pentamines, tetraamines), and combinations thereof, preferably in an amount from about 0.1% to about 10%, or from about 0.2% to about 5%, or from about 0.5% to about 4%, or from about 0.1% to about 2%, by weight of the composition, of the amine. The amine can be subjected to protonation depending on the pH of the cleaning medium in which it is used. **[0044]** Preferably the amine comprises an amine selected from the group consisting of oligoamines, etheramines, cyclic amines, and combinations thereof. In some aspects, the amine is not an alkanolamine. In some aspects, the amine is not a polyalkyleneimine.

[0045] Examples of suitable oligoamines include tetraethylenepentamine, triethylenetetraamine, diethylenetriamine, and mixtures thereof. Etheramines and cyclic amines are described in more detail below.

Etheramines

[0046] Preferably the amine comprises an etheramine. The cleaning compositions may contain from about 0.1% to about 10%, or from about 0.2% to about 5%, or from about 0.5% to about 4%, by weight of the composition, of an etheramine.

[0047] The etheramine preferably has a weight average molecular weight of less than about grams/mole 1000 grams/mole, or from about 100 to about 800 grams/mole, or from about 200 to about 450 grams/mole, or from about 290 to about 1000 grams/mole, or from about 290 to about 900 grams/mole, or from about 300 to about 700 grams/mole, or from about 300 to about 450 grams/mole. Preferably the weight average molecular weight is from about 150, or from about 200, or from about 350, or from about 500 grams/mole, to about 1000, or to about 900, or to about 800 grams/mole.

[0048] A preferred etheramine is represented by the structure of Formula (I):

$$Z_{1}\text{-}A_{1} \xrightarrow{\text{-}(OA_{2})} \underbrace{(OA_{3})_{(y_{1}\text{-}1)}}_{O} \underbrace{(OA_{3})_{(x_{1}\text{-}1)}}_{O} \underbrace{(A_{4}O)_{(x_{1}\text{-}1)}}_{(x_{1}\text{-}1)} \underbrace{(A_{5}O)_{(x_{1}\text{-}1)}}_{(x_{1}\text{-}1)} A_{6}\text{-}Z_{2}$$

Formula (I)

where each of R_1 - R_6 is independently selected from H, alkyl, cycloalkyl, aryl, alkylaryl, or arylalkyl, where at least one of R_1 - R_6 is different from H, typically at least one of R_1 - R_6 is an alkyl group having 2 to 8 carbon atoms, each of A_1 - A_6 is independently selected from linear or branched alkylenes having 2 to 18 carbon atoms, each of Z_1 - Z_2 is independently selected from OH or NH $_2$, where at least one of Z_1 - Z_2 is NH $_2$, typically each of Z_1 and Z_2 is NH $_2$, where the sum of x+y is in the range of about 2 to about 200, or about 2 to about 20, or about 2 to about 3 to about 8, or about 2 to about 2 to about 200, or about 2 to about 3 to about 3, or about 2 to about 2 to about 4, where

 $x_1 \ge 1$ and $y_1 \ge 1$.

[0049] In the etheramine of Formula (I), each of A_1 - A_6 is preferably independently selected from ethylene, propylene, or butylene, typically each of A_1 - A_6 is propylene, preferably each of A_1 and A_6 is independently selected from linear alkanediyl groups having 2 to 18 carbon atoms, or 2-10 carbon atoms, or 2-5 carbon atoms; each of A_2 , A_3 , A_4 , and A_5 is independently selected from linear or branched alkanediyl groups having 2 to 18 carbon atoms, preferably 2-10 carbon atoms, most preferably 2-5 carbon atoms. In the etheramine of Formula (I), preferably each of R_1 , R_2 , R_5 , and R_6 may be H and each of R_3 and R_4 may be independently selected from C1-C16 alkyl or aryl, typically each of R_1 , R_2 , R_5 , and R_6 is H and each of R_3 and R_4 is independently selected from a butyl group, an ethyl group, a methyl group, a propyl group, or a phenyl group. In the etheramine of Formula (I), R_3 is preferably an ethyl group, each of R_1 , R_2 , R_5 , and R_6 is H, and R_4 is a butyl group. In the etheramine of Formula (I), perferably each of R_1 and R_2 is H and each of R_3 , R_4 , R_5 , and R_6 is independently selected from an ethyl group, a methyl group, a butyl group, a phenyl group, or H.

[0050] Preferably the amine comprises an etheramine represented by the structure of Formula (II):

20

$$\begin{array}{c} (A_{7}O) \xrightarrow{(x-1)+(y-1)+1} (A_{8}O) \xrightarrow{(x_{1}-1)+(y_{1}-1)+1} A_{9} \cdot Z_{4} \\ R_{7} \xrightarrow{R_{8}} (R_{12}) \xrightarrow{R_{10}} R_{11} \end{array}$$

25

30

35

40

45

Formula (II)

each of R_7 - R_{12} is independently selected from H, alkyl, cycloalkyl, aryl, alkylaryl, or arylalkyl, where at least one of R_7 - R_{12} is different from H, typically at least one of R_7 - R_{12} is an alkyl group having 2 to 8 carbon atoms, each of A_7 - A_9 is independently selected from linear or branched alkylenes having 2 to 18 carbon atoms, each of Z_3 - Z_4 is independently selected from OH or NH $_2$, where at least one of Z_3 - Z_4 is NH $_2$, typically each of Z_3 and Z_4 is NH $_2$, where the sum of x+y is in the range of about 2 to about 200, or about 2 to about 20, or about 2 to about 3, or about 2 to about 4, where x \ge 1 and y \ge 1, and the sum of x_1 + y_1 is in the range of about 2 to about 20, or about 2 to about 3, or about 3 to about 8, or about 2 to about 4, where x_1 and x_2 1 and x_3 1 and x_4 2 1 and x_4 2 1 and x_4 2 1 and x_4 3 about 3 to about 3 to about 4, where

[0051] In the etheramine of Formula (II), each of A_7 - A_9 may be independently selected from ethylene, propylene, or butylene, typically each of A_7 - A_9 is propylene. A_9 may be selected from linear alkanediyl groups having 2 to 18 carbon atoms, or 2-10 carbon atoms, or 2-5 carbon atoms; each of A_7 and A_8 may be independently selected from linear or branched alkanediyl groups having 2 to 18 carbon atoms, or 2-10 carbon atoms, or 2-5 carbon atoms. In the etheramine of Formula (II), each of R_7 , R_8 , R_{11} , and R_{12} may be H and each of R_9 and R_{10} may be independently selected from C1-C16 alkyl or aryl; each of R_7 , R_8 , R_{11} , and R_{12} may be H and each of R_9 and R_{10} may bes independently selected from a butyl group, an ethyl group, a methyl group, a propyl group, or a phenyl group. In the etheramine of Formula (II), R_9 may be an ethyl group, each of R_7 , R_8 , R_{11} , and R_{12} may be H, and R_{10} may be a butyl group. In the etheramine of Formula (II), each of R_7 and R_8 may be H and each of R_9 , R_{10} , R_{11} , and R_{12} may be independently selected from an ethyl group, a propyl group, a propyl group, a phenyl group, or H.

[0052] Suitable etheramines are represented by Formula A, Formula B, and Formula C:

50

55

where n+m is from about 0 to about 8, or from about 0 to about 6, or from about 1 to about 6.

[0053] The etheramine preferably comprises a mixture of a compound of Formula (I) and a compound of Formula (II). [0054] The etheramine of Formula (I) or Formula (II) may have a weight average molecular weight of 100 grams/mole to 1000 grams/mole, or from about 100 to about 800 grams/mole, or from about 200 to about 450 grams/mole.

[0055] The etheramine preferably comprises an etheramine mixture comprising at least 90%, by weight of the etheramine mixture, of the etheramine of Formula (I), the etheramine of Formula(II), the etheramine of Formula(III) or a mixture thereof. The etheramine may comprise a etheramine mixture comprising at least 95%, by weight of the etheramine mixture, of the etheramine of Formula (I), the etheramine of Formula(II) and the etheramine of Formula(III). [0056] The etheramine of Formula (I) and/or the etheramine of Formula (II) are obtainable by known methods, such as those disclosed in US2014/0296127A1. The etheramines of Formula (I) and/or Formula (II) may be obtained by:

a) reacting a 1,3-diol of formula (1) with a C_2 - C_{18} alkylene oxide to form an alkoxylated 1,3-diol, wherein the molar ratio of 1,3-diol to C_2 - C_{18} alkylene oxide is in the range of about 1:2 to about 1:10,

where R_1 - R_6 are independently selected from H, alkyl, cycloalkyl, aryl, alkylaryl, or arylalkyl, where at least one of R_1 - R_6 is different from H; and

b) aminating the alkoxylated 1,3-diol with ammonia.

30

35

40

45

50

55

[0057] Suitable 1,3-diols include 2,2-dimethyl-1,3-propane diol, 2-butyl-2-ethyl-1,3-propane diol, 2-pentyl-2-propyl-1,3-propane diol, 2-(2-methyl)butyl-2-propyl-1,3-propane diol, 2,2,4-trimethyl-1,3-propane diol, 2,2-diethyl-1,3-propane diol, 2-methyl-2-propyl-1,3-propane diol, 2-ethyl-1,3-propane diol, 2-pentyl-2-methyl-1,3-propane diol, 2-ethyl-1,3-propane diol, 2-ethyl-2-methyl-1,3-propane diol, 2-isopropyl-2-methyl-1,3-propane diol, or a mixture thereof. In some aspects, the 1,3-diol is selected from 2-butyl-2-ethyl-2-ethyl-1,3-propane diol, 2-ethyl-2-ethyl-2-ethyl-1,3-propane diol, 2-ethyl-2-e

1,3-propanediol, 2-methyl-2-propyl-1,3-propanediol, 2-methyl-2-phenyl-1,3-propanediol, or a mixture thereof. Typically used 1,3-diols are 2-butyl-2-ethyl-1,3-propanediol, 2-methyl-2-propyl-1,3-propanediol, 2-methyl-2-phenyl-1,3-propanediol.

[0058] The degree of amination for the etheramine of Formula (I) and/or Formula (II) may be from about 50% to about 100%, or from about 60% to about 100%, or from about 70% to about 100%.

[0059] The degree of amination may be calculated from the total amine value (AZ) divided by sum of the total acetylables value (AC) and tertiary amine value (tert. AZ) multiplied by 100: (Total AZ/ (AC+tert. AZ))x100). The total amine value (AZ) is determined according to DIN 16945. The total acetylables value (AC) is determined according to DIN 53240. The secondary and tertiary amines are determined according to ASTM D2074-07. The hydroxyl value is calculated from (total acetylables value + tertiary amine value)- total amine value.

[0060] The cleaning compositions of the present invention preferably comprises an etheramine represented by Formula (III),

$$\begin{array}{c} A_{1} \longrightarrow A_{4} \longrightarrow Z_{1} \\ A_{1} \longrightarrow A_{2} \longrightarrow A_{3} \longrightarrow A_{5} \longrightarrow Z_{2} \\ A_{3} \longrightarrow A_{3} \longrightarrow A_{6} \longrightarrow Z_{3} \end{array}$$

Formula (III)

where

15

20

25

30

35

40

50

55

R is selected from H or a C1-C6 alkyl group,

each ofk₁, k₂, and k₃ is independently selected from 0, 1, 2, 3, 4, 5, or 6,

each of A_1 , A_2 , A_3 , A_4 , A_5 , and A_6 is independently selected from a linear or branched alkylene group having from about 2 to about 18 carbon atoms or mixtures thereof,

 $x\ge1$, $y\ge1$, and $z\ge1$, and the sum of x+y+z is in the range of from about 3 to about 100, and each of Z_1 , Z_2 , and Z_3 is independently selected from NH₂ or OH, where at least two of Z_1 , Z_2 , and Z_3 are NH₂.

[0061] R may be H or a C1-C6 alkyl group selected from methyl, ethyl, or propyl. R may be H or a C1-C6 alkyl group selected from ethyl.

[0062] Each of k_1 , k_2 , and k_3 may be independently selected from 0, 1, or 2. Each of k_1 , k_2 , and k_3 may be independently selected from 0 or 1. At least two of k_1 , k_2 , and k_3 may be 1, or even each of k_1 , k_2 , and k_3 may be 1.

45 [0063] Each of Z_1 , Z_2 , and Z_3 may be NH_2 .

[0064] All A groups (i.e., A_1 - A_6) may be the same, at least two A groups may be the same, at least two A groups may be different, or all A groups may be different from each other. Each of A_1 , A_2 , A_3 , A_4 , A_5 , and A_6 may be independently selected from a linear or branched alkylene group having from about 2 to about 10 carbon atoms, or from about 2 to about 6 carbon atoms, or from about 2 to about 4 carbon atoms, or mixtures thereof. At least one, or at least three, of A_1 - A_6 may be a linear or branched butylene group. Each of A_4 , A_5 , and A_6 may be a linear or branched butylene group. Each of A_1 - A_6 may be a linear or branched butylene group.

[0065] The variables x, y, and/or z may be independently selected and should be equal to 3 or greater, meaning that that the etheramine may have more than one $[A_1 - O]$ group, more than one $[A_2 - O]$ group, and/or more than one $[A_3 - O]$ group. A_1 may be selected from ethylene, propylene, butylene, or mixtures thereof. A_2 may be selected from ethylene, propylene, butylene, or mixtures thereof. A_3 may be selected from ethylene, propylene, butylene, or mixtures thereof. When A_1 , A_2 , and/or A_3 are mixtures of ethylene, propylene, and/or butylenes, the resulting alkoxylate may have a blockwise structure or a random structure.

[0066] $[A_1 - O]_{x-1}$ can be selected from ethylene oxide, propylene oxide, butylene oxide, or mixtures thereof. $[A_2 - O]_{y-1}$

can be selected from ethylene oxide, propylene oxide, butylene oxide, or mixtures thereof. $[A_3 - O]_{z-1}$ can be selected from ethylene oxide, propylene oxide, butylene oxide, or mixtures thereof.

[0067] The sum of x+y+z may be in the range of from about 3 to about 100, or from about 3 to about 30, or from about 3 to about 10, or from about 5 to about 10.

[0068] When the etheramine is a etheramine of Formula (III) where R is a C2 alkyl group (i.e., ethyl) and optionally each of k_1 , k_2 , and k_3 is 1, the molecular weight of the etheramine may be from about 500 to about 1000, or to about 900, or to about 800 grams/mole. When the etheramine is an etheramine of Formula (III) where R is a C2 alkyl group (i.e., ethyl) and optionally each of k_1 , k_2 , and k_3 is 1, it may be that at least one A group (i.e., at least one of A1, A2, A3, A4, A5, or A6) is not a propylene group. When the etheramine is an etheramine of Formula (III) where R is a C2 alkyl group (i.e., ethyl) and optionally each of k_1 , k_2 , and k_3 is 1, it may be that at least one A group (i.e., at least one of A1, A2, A3, A4, A5, or A6) is an ethylene group or a butylene group, or even that at least one A group (i.e., at least one of A1, A2, A3, A4, A5, or A6) is a butylene group.

[0069] The composition preferably comprises an etheramine selected from the group consisting of Formula D, Formula E, Formula F, and mixtures thereof:

$$H_2N$$
 O
 n
 NH_2
Formula D,

Formula E

15

20

25

40

45

50

where average n is from about 0.5 to about 5, or about 1 to about 3, or about 1 to about 2.5;

[0070] The etheramines of Formula (III) are obtainable by known methods, such as those disclosed in US2015/0057212A1. The etheramines of Formula (III) may be obtained by a process comprising the following steps:

a) reacting a low-molecular-weight, organic triol, such as glycerine and/or 1,1,1-trimethylolpropane, with C_2 - C_{18} alkylene oxide, to form an alkoxylated triol, where the molar ratio of the low-molecular-weight organic triol to the alkylene oxide is in the range of about 1:3 to about 1:10, and b) aminating the alkoxylated triol with ammonia.

Formula F.

[0071] The low-molecular-weight triol can be selected from glycerine, 1,1,1-trimethylolpropane, or mixtures thereof. [0072] The etheramine of Formula (III) may have a weight average molecular weight of from about 500 to about 1000, or to about 900, or to about 800 grams/mole.

[0073] The degree of amination for the etheramine of Formula (III) may be may be from about 67% to about 100%, or from about 85% to about 100%. The degree of amination is calculated as described about in regard to the etheramines of Formula (I) and (II).

[0074] The cleaning compositions described herein may contain an etheramine as represented by the structure of Formula (IV):

$$H_2N$$
 R
 O
 NH_2
 R

Formula (IV)

where each R group is independently selected from the group consisting of H, a methyl group, and an ethyl group, where at least one R group is a methyl group, x is in the range of about 2 to about 300. x indicates the average number of repeated units or basic building blocks that constitute the polymer, x may be a whole number or a fraction. x may be in the range of about 2 and about 20, or about 2 to about 10.

[0075] The primary amino groups of the etheramine of formula (IV) may be protonated, that is, ammonium groups. The etheramine according to the invention may comprise at least one repeated unit based on propylene oxide (R = a methyl group in formula (IV)) in the polymer backbone. The etheramine may have between about 2 and about 10 propylene oxide-based (PO) units. In the mentioned ranges (for the PO units), the hydrophobicity of the etheramine may provide for an improved cleaning on grease and particulate stains.

[0076] Preferred suitable etheramines according to the invention are marketed by Huntsman Corp. Texas under the trade names, Jeffamine® D-230, Jeffamine® D-400, Jeffamine® ED-600, and by BASF under the trade names Baxxodur EC301, EC302.

[0077] The etheramine may be represented by the structure of Formula (E):

$$H_2N$$

$$O$$

$$X$$

$$NH_2$$
Formula (E)

where x is about 2.5.

5

10

15

20

30

35

40

45

50

55

[0078] The etheramine of formula (IV) may have a weight average molecular weight of about 200 to about 1000 grams/mole, or about 230 to about 700 grams/mole, or about 450 grams/mole.

[0079] The etheramine of Formula (IV) is obtainable by:

a) reacting a propane-1,2-diol of formula (2) with a C_2 - C_{18} alkylene oxide to form an alkoxylated propane-1,2-diol, wherein the molar ratio of propane-1,2-diol to C_2 - C_{18} alkylene oxide is in the range of about 1:2 to about 1:10,

b) aminating the alkoxylated propane-1,2-diol with ammonia.

[0080] The degree of amination for the etheramine of Formula (IV) may be from about 50% to about 100%, typically

from about 60% to about 100%, and more typically from about 70% to about 100%. The degree of amination is calculated as described about in regard to the etheramines of Formula (I) and (II).

[0081] The etheramines useful in the present invention are effective for removal of stains, particularly grease, from soiled material. Detergent compositions containing the etheramines of the invention also do not exhibit the cleaning negatives seen with conventional amine-containing detergent compositions on hydrophilic bleachable stains, such as coffee, tea, wine, or particulates. Additionally, unlike conventional amine-containing detergent compositions, the etheramines of the invention do not contribute to whiteness negatives on white fabrics. Furthermore, it is believed that the etheramines of the present invention are effective at facilitating mannanase enzyme efficacy.

[0082] The etheramines useful in the invention may be used in the form of a water-based, water-containing, or water-free solution, emulsion, gel or paste of the etheramine together with an acid such as, for example, citric acid, lactic acid, sulfuric acid, methanesulfonic acid, hydrogen chloride, e.g., aqeous hydrogen chloride, phosphoric acid, or mixtures thereof. Alternatively, the acid may be represented by a surfactant, such as, alkyl benzene sulfonic acid, alkylsulfonic acid, monoalkyl esters of sulphuric acid, mono alkylethoxy esters of sulphuric acid, fatty acids, alkyl ethoxy carboxylic acids, and the like, or mixtures thereof. When applicable or measurable, the preferred pH of the solution or emulsion ranges from pH 3 to pH 11, or from pH 6 to pH 9.5, even more preferred from pH 7 to pH 8.5.

Cyclic Amines

5

10

15

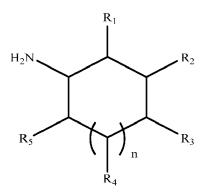
20

25

30

35

40


45

50

55

[0083] It may be preferred for the amine to comprise a cyclic amine. The cleaning compositions may include from about 0.1% to about 10%, or from about 0.2% to about 5%, or from about 0.5% to about 3%, by weight the composition, of a cyclic amine.

[0084] The cyclic amine may be represented by the structure of Formula (V):

Formula (V)

[0085] The substituents "Rs" may be independently selected from NH_2 , H and linear, branched alkyl or alkenyl from 1 to 10 carbon atoms. For the purpose of this invention, "Rs" includes R1-R5. At least one of the "Rs" needs to be NH_2 . The remaining "Rs" may be independently selected from NH_2 , H and linear or branched alkyl or alkenyl having from 1 to 10 carbon atoms. n may be from 0 to 3; n may be 1.

[0086] The amine of the invention may be a cyclic amine with at least two primary amine functionalities. The primary amines can be in any position in the cycle but it has been found that in terms of grease cleaning, better performance may be obtained when the primary amines are in positions 1,3. It has also been found advantageous in terms of grease cleaning amines in which one of the substituents is -CH3 and the rest are H.

[0087] The term "cyclic amine" as used herein encompasses a single cyclic amine and a mixture thereof.

[0088] The cyclic amine can be subjected to protonation depending on the pH of the cleaning medium in which it is used.

Adjuncts

[0089] The cleaning compositions described herein preferably include other adjunct components, for example selected from surfactants, fabric shading dyes, fabric care benefit agent; additional enzyme; deposition aid; rheology modifier; builder; chelant; bleach; bleaching agent; bleach precursor; bleach booster; bleach activator, bleach catalyst; perfume and/or perfume microcapsules; perfume loaded zeolite; starch encapsulated accord; polyglycerol esters; whitening agent; pearlescent agent; enzyme stabilizing systems; scavenging agents including fixing agents for anionic dyes, complexing agents for anionic surfactants, and mixtures thereof; optical brighteners or fluorescers; polymer including but not limited to soil release polymer and/or soil suspension polymer; dispersants; antifoam agents; non-aqueous

solvent; fatty acid; suds suppressors, e.g., silicone suds suppressors; cationic starches; scum dispersants; substantive dyes; colorants; opacifier; antioxidant; hydrotropes such as toluenesulfonates, cumenesulfonates and naphthalenesulfonates; color speckles; colored beads, spheres or extrudates; clay softening agents; anti-bacterial agents. Additionally or alternatively, the compositions may comprise surfactants, and/or solvent systems. Quaternary ammonium compounds may be present, particularly in fabric enhancer compositions, such as fabric softeners, and comprise quaternary ammonium cations that are positively charged polyatomic ions of the structure NR_4^+ , where R is an alkyl group or an aryl group.

Additional Enzymes

10

20

25

30

35

40

45

50

55

[0090] Preferably the composition of the invention comprises additional enzymes, for example selected from lipases, amylases, proteases, nucleases, pectate lyases, cellulases, cutinases, and mixtures thereof. The cleaning compositions preferably comprise one or more additional enzymes from the group selected from nucleases. The cleaning compositions preferably comprises one or more additional enzymes selected from the group amylases, lipases, proteases, pectate lyases, cellulases, cutinases, and mixtures thereof. Preferably, the cleaning compositions comprises one or more additional enzymes selected from lipases and mixtures thereof. Preferably the cleaning compositions comprise one or more additional enzymes selected from lipases. The compositions may also comprise hemicellulases, peroxidases, xylanases, pectinases, keratinases, reductases, oxidases, phenoloxidases, lipoxygenases, ligninases, pullulanases, tannases, pentosanases, malanases, β -glucanases, arabinosidases, hyaluronidase, chondroitinase, laccase and mixtures thereof. When present in the composition, the aforementioned additional enzymes may be present at levels from about 0.00001% to about 2%, from about 0.0001% to about 1% or even from about 0.001% to about 0.5% enzyme protein by weight of the composition. Preferably the or each additional enzyme is present in the laundering aqueous liquor in an amount of from 0.01ppm to 1000 ppm of the active enzyme protein, or from 0.05 or from 0.1ppm to 750 or 500ppm.

Nucleases

[0091] Preferably the composition additionally comprises a nuclease enzyme. The nuclease enzyme is an enzyme capable of cleaving the phosphodiester bonds between the nucleotide subunits of nucleic acids. Suitable nuclease enzymes may be deoxyribonuclease or ribonuclease enzyme or a functional fragment thereof. By functional fragment or part is meant the portion of the nuclease enzyme that catalyzes the cleavage of phosphodiester linkages in the DNA backbone and so is a region of said nuclease protein that retains catalytic activity. Thus it includes truncated, but functional versions, of the enzyme and/or variants and/or derivatives and/or homologues whose functionality is maintained.

[0092] Preferably the nuclease enzyme is a deoxyribonuclease, preferably selected from any of the classes E.C. 3.1.21.x, where x=1, 2, 3, 4, 5, 6, 7, 8 or 9, E.C. 3.1.22.y where y=1, 2, 4 or 5, E.C. 3.1.30.z where z= 1 or 2, E.C. 3.1.31.1 and mixtures thereof. Nuclease enzymes from class E.C. 3.1.21.x and especially where x=1 are particularly preferred. Nucleases in class E.C. 3.1.22.y cleave at the 5' hydroxyl to liberate 3' phosphomonoesters. Enzymes in class E.C. 3.1.30.z may be preferred as they act on both DNA and RNA and liberate 5'-phosphomonoesters. Suitable examples from class E.C. 3.1.31.2 are described in US2012/0135498A, such as SEQ ID NO:3 therein. Such enzymes are commercially available as DENARASE® enzyme from c-LECTA. Nuclease enzymes from class E.C. 3.1.31.1 produce 3'phosphomonoesters.

[0093] Preferably, the nuclease enzyme comprises a microbial enzyme. The nuclease enzyme may be fungal or bacterial in origin. Bacterial nucleases may be most preferred. Fungal nucleases may be most preferred.

[0094] The microbial nuclease is obtainable from *Bacillus*, such as a *Bacillus licheniformis* or *Bacillus subtilis* bacterial nucleases. A preferred nuclease is obtainable from *Bacillus licheniformis*, preferably from strain El-34-6. A preferred deoxyribonuclease is a variant of *Bacillus licheniformis*, from strain El-34-6 nuclease defined in SEQ ID NO:6 herein, or variant thereof, for example having at least 70% or 75% or 80% or 85% or 90% or 95%, 96%, 97%, 98%, 99% or 100% identical thereto. Other suitable nucleases are defined in SEQ ID NO: 7 herein, or variant thereof, for example having at least 70% or 75% or 80% or 95%, 96%, 97%, 98%, 99% or 100% identical thereto. Other suitable nucleases are defined in SEQ ID NO: 8 herein, or variant thereof, for example having at least 70% or 75% or 80% or 85% or 90% or 95%, 96%, 97%, 98%, 99% or 100% identical thereto.

[0095] A fungal nuclease is obtainable from *Aspergillus*, for example *Aspergillus oryzae*. A preferred nuclease is obtainable from *Aspergillus oryzae* defined in SEQ ID NO: 9 herein, or variant thereof, for example having at least 60% or 70% or75% or 80% or 85% or 90% or 95%, 96%, 97%, 98%, 99% or 100% identical thereto.

[0096] Another suitable fungal nuclease is obtainable from *Trichoderma*, for example *Trichoderma harzianum*. A preferred nuclease is obtainable from *Trichoderma harzianum* defined in SEQ ID NO: 10 herein, or variant thereof, for example having at least 60% or 70% or 75% or 80% or 85% or 90% or 95%, 96%, 97%, 98%, 99% or 100% identical thereto. [0097] Other fungal nucleases include those encoded by the DNA sequences of *Aspergillus oryzae* RIB40, *Aspergillus*

oryzae 3.042, Aspergillus flavus NRRL3357, Aspergillus parasiticus SU-1, Aspergillus nomius NRRL13137, Trichoderma reesei QM6a, Trichoderma virens Gv29-8, Oidiodendron maius Zn, Metarhizium guizhouense ARSEF 977, Metarhizium majus ARSEF 297, Metarhizium robertsii ARSEF 23, Metarhizium acridum CQMa 102, Metarhizium brunneum ARSEF 3297, Metarhizium anisopliae, Colletotrichum fioriniae PJ7, Colletotrichum sublineola, Trichoderma atroviride IMI 206040, Tolypocladium ophioglossoides CBS 100239, Beauveria bassiana ARSEF 2860, Colletotrichum higginsianum, Hirsutella minnesotensis 3608, Scedosporium apiospermum, Phaeomoniella chlamydospora, Fusarium verticillioides 7600, Fusarium oxysporum f. sp. cubense race 4, Colletotrichum graminicola M1.001, Fusarium oxysporum FOSC 3a, Fusarium avenaceum, Fusarium langsethiae, Grosmannia clavigera kw1407, Claviceps purpurea 20.1, Verticillium longisporum, Fusarium oxysporum f. sp. cubense race 1, Magnaporthe oryzae 70-15, Beauveria bassiana D1-5, Fusarium pseudograminearum CS3096, Neonectria ditissima, Magnaporthiopsis poae ATCC 64411, Cordyceps militaris CM01, Marssonina brunnea f. sp. 'multigermtubi' MB_m1, Diaporthe ampelina, Metarhizium album ARSEF 1941, Colletotrichum gloeosporioides Nara gc5, Madurella mycetomatis, Metarhizium brunneum ARSEF 3297, Verticillium alfalfae VaMs.102, Gaeumannomyces graminis var. tritici R3-111a-1, Nectria haematococca mpVI 77-13-4, Verticillium longisporum, Verticillium dahliae VdLs.17, Torrubiella hemipterigena, Verticillium longisporum, Verticillium dahliae VdLs.17, Botrytis cinerea B05.10, Chaetomium globosum CBS 148.51, Metarhizium anisopliae, Stemphylium lycopersici, Sclerotinia borealis F-4157, Metarhizium robertsii ARSEF 23, Myceliophthora thermophila ATCC 42464, Phaeosphaeria nodorum SN15, Phialophora attae, Ustilaginoidea virens, Diplodia seriata, Ophiostoma piceae UAMH 11346, Pseudogymnoascus pannorum VKM F-4515 (FW-2607), Bipolaris oryzae ATCC 44560, Metarhizium guizhouense ARSEF 977, Chaetomium thermophilum var. thermophilum DSM 1495, Pestalotiopsis fici W106-1, Bipolaris zeicola 26-R-13, Setosphaeria turcica Et28A, Arthroderma otae CBS 113480 and Pyrenophora tritici-repentis Pt-1C-BFP.

[0098] Preferably the nuclease is an isolated nuclease.

[0099] Preferably the nuclease enzyme is present in the laundering aqueous liquor in an amount of from 0.01ppm to 1000 ppm of the nuclease enzyme, or from 0.05 or from 0.1ppm to 750 or 500ppm.

²⁵ Acetylglucosaminidases.

20

30

35

45

50

55

[0100] Preferably the composition comprises an acetylglucosaminidase enzyme, preferably a β -N-acetylglucosaminidase enzyme from E.C. 3.2.1.52, preferably an enzyme having at least 70%, or at least 75% or at least 80% or at least 85% or at least 90% or at least 95% or at least 95% or at least 95% or at least 95% or at least 97% or at least 99% or at least 910 or at least 910 or at least 95% or at least 95%

Galactanase Enzyme

[0101] The compositions preferably additionally comprise an endo-beta-1,6-galactanase enzyme an extracellular polymer-degrading enzyme. The term "endo-beta-1,6-galactanase" or "a polypeptide having endo-beta-1,6-galactanase activity" means a endo-beta-1,6-galactanase activity (EC 3.2.1.164) that catalyzes the hydrolytic cleavage of 1,6-3-D-galactooligosaccharides with a degree of polymerization (DP) higher than 3, and their acidic derivatives with 4-O-meth-ylglucosyluronate or glucosyluronate groups at the non-reducing terminals.

[0102] For purposes of the present disclosure, endo-beta-1,6-galactanase activity is determined according to the procedure described in WO 2015185689 in Assay I. Suitable examples from class EC 3.2.1.164 are described in WO 2015185689, such as the mature polypeptide SEQ ID NO: 2 described therein. Preferably the galactanase enzyme is selected from Glycoside Hydrolase (GH) Family 30.

[0103] Preferably, the endo-beta-1,6-galactanase comprises a microbial enzyme. The endo-beta-1,6-galactanase may be fungal or bacterial in origin. Bacterial endo-beta-1,6-galactanase may be most preferred. Fungal endo-beta-1,6-galactanase may be most preferred.

[0104] A bacterial endo-beta-1,6-galactanase is obtainable from *Streptomyces*, for example *Streptomyces davawensis*. A preferred endo-beta-1,6-galactanase is obtainable from *Streptomyces davawensis* JCM 4913 defined in SEQ ID NO: 12 herein, or a variant thereof, for example having at least 40% or 50% or 60% or 70% or 75% or 80% or 85% or 90% or 95%, 96%, 97%, 98%, 99% or 100% identity thereto.

[0105] Other bacterial endo-beta-1,6-galactanase include those encoded by the DNA sequences of *Streptomyces avermitilis* MA-4680 with the amino acid sequence SEQ ID NO: 13 herein, or a variant thereof, for example having at least 40% or 50% or 60% or 70% or 75% or 80% or 85% or 90% or 95%, 96%, 97%, 98%, 99% or 100% identity thereto. [0106] A fungal endo-beta-1,6-galactanase is obtainable from *Trichoderma*, for example *Trichoderma harzianum*. A preferred endo-beta-1,6-galactanase is obtainable from *Trichoderma harzianum* defined in SEQ ID NO: 14 herein, or a variant thereof, for example having at least 40% or 50% or 60% or 70% or 75% or 80% or 85% or 90% or 95%, 96%, 97%, 98%, 99% or 100% identical thereto.

[0107] Other fungal endo-beta-1,6-galactanases include those encoded by the DNA sequences of *Ceratocystis fimbriata* f. sp. Platani, *Muscodor strobelii* WG-2009a, *Oculimacula yallundae, Trichoderma viride* GD36A, *Thermomyces*

stellatus, Myceliophthora thermophilia.

[0108] Preferably the galactanase has an amino acid sequence having at least 60%, or at least 80%, or at least 90% or at least 95% identity with the amino acid sequence shown in SEQ ID NO:12, SEQ ID NO:13 or SEQ ID NO:14. Preferably the galactanase is an isolated galactanase.

[0109] Preferably the galactanase enzyme is present in a laundering aqueous liquor in an amount of from 0.01ppm to 1000 ppm of the galactanase enzyme, or from 0.05 or from 0.1ppm to 750 or 500ppm.

[0110] The compositions of the invention comprising both mannanase and galactanase may be particularly effective against sticky soils and for improved cleaning. It is believed the two enzymes function together in a complementary way.

Further Glycosyl Hydrolases

[0111] The composition may comprise a glycoside hydrolase selected from GH family 39 and GH family 114 and mixtures thereof, for example as described in co-pending applications having applicants reference numbers CM4645FM and CM4646 FM, respectively.

Proteases.

15

20

25

30

35

40

45

50

55

[0112] Preferably the composition comprises one or more proteases. Suitable proteases include metalloproteases and serine proteases, including neutral or alkaline microbial serine proteases, such as subtilisins (EC 3.4.21.62). Suitable proteases include those of animal, vegetable or microbial origin. In one aspect, such suitable protease may be of microbial origin. The suitable proteases include chemically or genetically modified mutants of the aforementioned suitable proteases. In one aspect, the suitable protease may be a serine protease, such as an alkaline microbial protease or/and a trypsin-type protease. Examples of suitable neutral or alkaline proteases include:

- (a) subtilisins (EC 3.4.21.62), preferably those derived from *Bacillus sp.*, such as *B. lentus*, *B. alkalophilus*, *B. subtilis*, *B. amyloliquefaciens*, *B. pumilus* and *B. gibsonii* and *B. akibaii* described in WO2004067737, WO2015091989, WO2015091990, WO2015024739, WO2015143360, US 6,312,936 B1, US 5,679,630, US 4,760,025, US7,262,042 and WO09/021867, DE102006022216A1, DE102006022224A1, WO2015089447, WO2015089441, WO2016066756, WO2016066757, WO2016069557, WO2016069563, WO2016069569...
- (b) trypsin-type or chymotrypsin-type proteases, such as trypsin (e.g., of porcine or bovine origin), including the *Fusarium* protease described in WO 89/06270 and the chymotrypsin proteases derived from *Cellumonas* described in WO 05/052161 and WO 05/052146.
- (c) metalloproteases, preferably those derived from *Bacillus amyloliquefaciens* described in WO 07/044993A2; from *Bacillus, Brevibacillus, Thermoactinomyces, Geobacillus, Paenibacillus, Lysinibacillus* or *Streptomyces spp.* Described in WO2014194032, WO2014194054 and WO2014194117; from *Kribella alluminosa* described in WO2015193488; and from *Streptomyces* and *Lysobacter* described in WO2016075078.
- (d) protease having at least 90% identity to the subtilase from Bacillus sp. TY145, NCIMB 40339, described in WO92/17577 (Novozymes A/S), including the variants of this Bacillus sp TY145 subtilase described in WO2015024739, and WO2016066757.

[0113] Preferred proteases include those derived from Bacillus gibsonii or Bacillus Lentus.

[0114] Suitable commercially available protease enzymes include those sold under the trade names Alcalase®, Savinase®, Primase®, Durazym®, Polarzyme®, Kannase®, Liquanase®, Liquanase Ultra®, Savinase Ultra®, Ovozyme®, Neutrase®, Everlase® and Esperase® by Novozymes A/S (Denmark), those sold under the tradename Maxatase®, Maxacal®, Maxapem®, Properase®, Purafect®, Purafect Prime®, Purafect Ox®, FN3®, FN4®, Excellase® and Purafect OXP® by Genencor International, those sold under the tradename Opticlean® and Optimase® by Solvay Enzymes, those available from Henkel/ Kemira, namely BLAP (sequence shown in Figure 29 of US 5,352,604 with the following mutations S99D + S101 R + S103A + V104I + G159S, hereinafter referred to as BLAP), BLAP R (BLAP with S3T + V4I + V199M + V205I + L217D), BLAP X (BLAP with S3T + V4I + V205I) and BLAP F49 (BLAP with S3T + V4I + A194P + V199M + V205I + L217D) - all from Henkel/Kemira; and KAP (*Bacillus alkalophilus* subtilisin with mutations A230V + S256G + S259N) from Kao, or as disclosed in WO2009/149144, WO2009/149145, WO2010/56653, WO2010/566640, WO2011/072117, US2011/0237487, WO2011/140316, WO2012/151480, EP2510092, EP2566960 OR EP2705145.

Amylases

[0115] Preferably the composition may comprise an amylase. Suitable alpha-amylases include those of bacterial or fungal origin. Chemically or genetically modified mutants (variants) are included. A preferred alkaline alpha-amylase is derived from a strain of Bacillus, such as Bacillus licheniformis, Bacillus amyloliquefaciens, Bacillus stearothermophilus,

Bacillus subtilis, or other Bacillus sp., such as Bacillus sp. NCIB 12289, NCIB 12512, NCIB 12513, DSM 9375 (USP 7,153,818) DSM 12368, DSMZ no. 12649, KSM AP1378 (WO 97/00324), KSM K36 or KSM K38 (EP 1,022,334). Preferred amylases include:

- (a) the variants described in WO 94/02597, WO 94/18314, WO96/23874 and WO 97/43424, especially the variants with substitutions in one or more of the following positions versus the enzyme listed as SEQ ID No. 2 in WO 96/23874: 15, 23, 105, 106, 124, 128, 133, 154, 156, 181, 188, 190, 197, 202, 208, 209, 243, 264, 304, 305, 391, 408, and 444. (b) the variants described in USP 5,856,164 and WO99/23211, WO 96/23873, WO00/60060 and WO 06/002643, especially the variants with one or more substitutions in the following positions versus the AA560 enzyme listed as SEQ ID No. 12 in WO 06/002643: 26, 30, 33, 82, 37, 106, 118, 128, 133, 149, 150, 160, 178, 182, 186, 193, 203, 214, 231, 256, 257, 258, 269, 270, 272, 283, 295, 296, 298, 299, 303, 304, 305, 311, 314, 315, 318, 319, 339, 345, 361, 378, 383, 419, 421, 437, 441, 444, 445, 446, 447, 450, 461, 471, 482, 484, preferably that also contain the deletions of D183* and G184*.
- (c) variants exhibiting at least 90% identity with SEQ ID No. 4 in WO06/002643, the wild-type enzyme from Bacillus SP722, especially variants with deletions in the 183 and 184 positions and variants described in WO 00/60060, which is incorporated herein by reference.
 - (d) variants exhibiting at least 95% identity with the wild-type enzyme from Bacillus sp.707 (SEQ ID NO:7 in US 6,093, 562), especially those comprising one or more of the following mutations M202, M208, S255, R172, and/or M261. Preferably said amylase comprises one or more of M202L, M202V, M202S, M202T, M202I, M202Q, M202W, S255N and/or R172Q. Particularly preferred are those comprising the M202L or M202T mutations.
 - (e) variants described in WO 09/149130, preferably those exhibiting at least 90% identity with SEQ ID NO: 1 or SEQ ID NO:2 in WO 09/149130, the wild-type enzyme from Geobacillus Stearophermophilus or a truncated version thereof:
 - (f) variants as described in EP2540825 and EP2357220, EP2534233; (g) variants as described in WO2009100102 and WO2010115028.

[0116] Suitable commercially available alpha-amylases include DURAMYL®, LIQUEZYME®, TERMAMYL®, TERMAMYL ULTRA®, NATALASE®, SUPRAMYL®, STAINZYME®, STAINZYME PLUS®, FUNGAMYL® and BAN® (Novozymes A/S, Bagsvaerd, Denmark), KEMZYM® AT 9000 Biozym Biotech Trading GmbH Wehlistrasse 27b A-1200 Wien Austria, RAPIDASE®, PURASTAR®, ENZYSIZE®, OPTISIZE HT PLUS®, POWERASE® and PURASTAR OXAM® (Genencor International Inc., Palo Alto, California) and KAM® (Kao, 14-10 Nihonbashi Kayabacho, 1-chome, Chuoku Tokyo 103-8210, Japan). In one aspect, suitable amylases include NATALASE®, STAINZYME® and STAINZYME PLUS® and mixtures thereof.

35 Lipases

5

10

15

20

25

30

40

45

50

55

[0117] Preferably the composition comprises one or more lipases, including "first cycle lipases" such as those described in U.S. Patent 6,939,702 B1 and US PA 2009/0217464. Preferred lipases are first-wash lipases. In one embodiment of the invention the composition comprises a first wash lipase. First wash lipases includes a lipase which is a polypeptide having an amino acid sequence which: (a) has at least 90% identity with the wild-type lipase derived from Humicola lanuginosa strain DSM 4109; (b) compared to said wild-type lipase, comprises a substitution of an electrically neutral or negatively charged amino acid at the surface of the three-dimensional structure within 15A of E1 or Q249 with a positively charged amino acid; and (c) comprises a peptide addition at the C-terminal; and/or (d) comprises a peptide addition at the N-terminal and/or (e) meets the following limitations: i) comprises a negative amino acid in position E210 of said wild-type lipase; ii) comprises a negatively charged amino acid in the region corresponding to positions 90-101 of said wild-type lipase; and iii) comprises a neutral or negative amino acid at a position corresponding to N94 or said wild-type lipase and/or has a negative or neutral net electric charge in the region corresponding to positions 90-101 of said wild-type lipase. Preferred are variants of the wild-type lipase from Thermomyces lanuginosus comprising one or more of the T231R and N233R mutations. The wild-type sequence is the 269 amino acids (amino acids 23 - 291) of the Swissprot accession number Swiss-Prot 059952 (derived from Thermomyces lanuginosus (Humicola lanuginosa)). Preferred lipases include those sold under the tradenames Lipex® and Lipolex® and Lipolean®. Other suitable lipases include those described in European Patent Application No. 12001034.3 or EP2623586.

Endoglucanases

[0118] Other preferred enzymes include microbial-derived endoglucanases exhibiting endo-beta-1,4-glucanase activity (E.C. 3.2.1.4), including a bacterial polypeptide endogenous to a member of the genus Bacillus which has a sequence of at least 90%, 94%, 97% and even 99% identity to the amino acid sequence SEQ ID NO:2 in US7,141,403B2)

and mixtures thereof. Suitable endoglucanases are sold under the tradenames Celluclean® and Whitezyme® (Novozymes A/S, Bagsvaerd, Denmark).

Pectate Lyases

5

15

20

30

35

40

45

50

55

[0119] Other preferred enzymes include pectate lyases sold under the tradenames Pectawash®, Pectaway®, Xpect® and mannanases sold under the tradenames Mannaway® (all from Novozymes A/S, Bagsvaerd, Denmark), and Purabrite® (Genencor International Inc., Palo Alto, California).

Cleaning Cellulase

[0120] The cleaning composition described herein may additionally comprise a cleaning cellulase. The cellulase may be an endoglucanase. The cellulase may have endo beta 1,4- glucanase activity and a structure which does not comprise a class A Carbohydrate Binding Module (CBM). A class A CBM is defined according to A. B. Boraston et al. Biochemical Journal 2004, Volume 382 (part 3) pages 769-781. In particular, the cellulase does not comprise a class A CBM from families 1, 2a, 3, 5 and 10.

[0121] The cellulase may be a glycosyl hydrolase having enzymatic activity towards amorphous cellulose substrates, wherein the glycosyl hydrolase is selected from GH families 5, 7, 12, 16, 44 or 74. Preferably, the cellulase is a glycosyl hydrolase selected from GH family 5. A preferred cellulase is Celluclean, supplied by Novozymes. This preferred cellulase is described in more detail in WO2002/099091. The glycosyl hydrolase (GH) family definition is described in more detail in Biochem J. 1991, v280, 309-316. Another preferred cellulase is a glycosyl hydrolase having enzymatic activity towards both xyloglucan and amorphous cellulose substrates, wherein the glycosyl hydrolase is selected from GH families 5, 12, 44 or 74. Preferably, the glycosyl hydrolase selected from GH family 44.

[0122] For purposes of the present invention, the degree of identity between two amino acid sequences is determined using the Needleman-Wunsch algorithm (Needleman and Wunsch, 1970, J. Mol. Biol. 48: 443-453) as implemented in the Needle program of the EMBOSS package (EMBOSS: The European Molecular Biology Open Software Suite, Rice et al, 2000, Trends in Genetics 16: 276-277), preferably version 3.0.0 or later. The optional parameters used are gap open penalty of 10, gap extension penalty of 0.5, and the EBLOSUM62 (EMBOSS version of BLOSUM62) substitution matrix. The output of Needle labeled "longest identity" (obtained using the -nobrief option) is used as the percent identity and is calculated as follows: (Identical Residues x 100)/(Length of Alignment - Total Number of Gaps in Alignment).

[0123] Suitable cleaning cellulase glycosyl hydrolases are selected from the group consisting of: GH family 44 glycosyl hydrolases from *Paenibacillus polyxyma* (wild-type) such as XYG1006 described in WO 01/062903 or are variants thereof; GH family 12 glycosyl hydrolases from *Bacillus licheniformis* (wild-type) such as Seq. No. ID: 1 described in WO 99/02663 or are variants thereof; GH family 5 glycosyl hydrolases from *Bacillus agaradhaerens* (wild type) or variants thereof; GH family 5 glycosyl hydrolases from *Bacillus* (wild type) such as XYG1034 and XYG 1022described in WO 01/064853 or variants thereof; GH family 74 glycosyl hydrolases from *Jonesia sp.* (wild type) such as XYG1020 described in WO 2002/077242 or variants thereof; and GH family 74 glycosyl hydrolases from *Trichoderma Reesei* (wild type), such as the enzyme described in more detail in Sequence ID no. 2 of WO03/089598, or variants thereof.

[0124] Preferred glycosyl hydrolases are selected from the group consisting of: GH family 44 glycosyl hydrolases from *Paenibacillus polyxyma* (wild-type) such as XYG1006 or are variants thereof.

[0125] Typically, the cellulase modifies the fabric surface during the laundering process so as to improve the removal of soils adhered to the fabric after the laundering process during wearing and usage of the fabric, in subsequent wash cycles. Preferably, the cellulase modifies the fabric surface during the laundering process so as to improve the removal of soils adhered to the fabric after the laundering process during wearing and usage of the fabric, in the subsequent two, or even three wash cycles.

[0126] Typically, the cellulase is used at a concentration of 0.005ppm to 1.0ppm in the aqueous liquor during the first laundering process. Preferably, the cellulase is used at a concentration of 0.02ppm to 0.5ppm in the aqueous liquor during the first laundering process.

Surfactant system

[0127] The cleaning composition preferably comprises a surfactant system. The cleaning composition preferably comprises from about 1% to about 80%, or from 1% to about 60%, preferably from about 5% to about 50% more preferably from about 8% to about 40%, by weight of the cleaning composition, of a surfactant system.

[0128] Surfactants suitable for use in the surfactant system may be derived from natural and/or renewable sources.

[0129] The surfactant system may comprise an anionic surfactant, more preferably an anionic surfactant selected from the group consisting of, alkyl benzene sulfonate, alkyl sulfate, alkyl alkoxy sulfate, especially alkyl ethoxy sulfate, paraffin sulfonate and mixtures thereof, alkyl benzene sulfonates are particularly preferred. The surfactant system may

further comprise a surfactant selected from the group consisting of nonionic surfactant, cationic surfactant, amphoteric surfactant, zwitterionic surfactant, and mixtures thereof. The surfactant system preferably comprises a nonionic surfactant, for example an ethoxylated nonionic surfactant. The surfactant system may comprise an amphoteric surfactant, for example an amine oxide surfactant, such as an alkyl dimethyl amine oxide. The surfactant system may comprise a zwitterionic surfactant, such as a betaine.

[0130] The most preferred surfactant system for the detergent composition of the present invention comprises from 1% to 40%, preferably 6% to 35%, more preferably 8% to 30% weight of the total composition of an anionic surfactant, preferably comprising an alkyl benzene sulphonate. The preferred surfactant system may optionally in addition comprise an alkyl alkoxy sulfate surfactant, more preferably an alkyl ethoxy sulfate, optionally combined with 0.5% to 15%, preferably from 1% to 12%, more preferably from 2% to 10% by weight of the composition of amphoteric and/or zwitterionic surfactant, more preferably an amphoteric and even more preferably an amine oxide surfactant, especially an alkyl dimethyl amine oxide.

[0131] Preferably the composition further comprises a nonionic surfactant, especially an alcohol alkoxylate in particular an alcohol ethoxylate nonionic surfactant. Most preferably the surfactant system comprises an anionic and a nonionic surfactant, preferably the weight ratio of the anionic to nonionic surfactant is from 25:1 to 1:2.

Anionic surfactant

15

20

35

40

45

50

55

[0132] Anionic surfactants may be in salt form or acid form, typically in the form of a water-soluble sodium, potassium, ammonium, magnesium or mono-, di- or tri- C2-C3 alkanolammonium salt, with the sodium cation being the usual one chosen.

Sulfonate Surfactant

[0133] Suitable anionic sulfonate surfactants for use herein include water-soluble salts of C8-C18 alkyl or hydroxyalkyl sulfonates; C11-C18 alkyl benzene sulfonates (LAS), modified alkylbenzene sulfonate (MLAS) as discussed in WO 99/05243, WO 99/05242, WO 99/05244, WO 99/05082, WO 99/05084, WO 99/05241, WO 99/07656, WO 00/23549, and WO 00/23548; methyl ester sulfonate (MES); and alpha-olefin sulfonate (AOS). Those also include the paraffin sulfonates may be monosulfonates and/or disulfonates, obtained by sulfonating paraffins of 10 to 20 carbon atoms. The sulfonate surfactant may also include the alkyl glyceryl sulfonate surfactants.

Sulfated anionic surfactant

[0134] Preferably the sulfated anionic surfactant is alkoxylated, more preferably, an alkoxylated branched sulfated anionic surfactant having an alkoxylation degree of from about 0.2 to about 4, even more preferably from about 0.3 to about 3, even more preferably from about 0.4 to about 1.5 and especially from about 0.4 to about 1. Preferably, the alkoxy group is ethoxy. When the sulfated anionic surfactant is a mixture of sulfated anionic surfactants, the alkoxylation degree is the weight average alkoxylation degree of all the components of the mixture (weight average alkoxylation degree). In the weight average alkoxylation degree calculation the weight of sulfated anionic surfactant components not having alkoxylated groups should also be included.

Weight average alkoxylation degree = (x1 * alkoxylation degree of surfactant 1 + x2 * alkoxylation degree of surfactant 2 +) / <math>(x1 + x2 +)

wherein x1, x2, ... are the weights in grams of each sulfated anionic surfactant of the mixture and alkoxylation degree is the number of alkoxy groups in each sulfated anionic surfactant.

[0135] Preferably, the branching group is an alkyl. Typically, the alkyl is selected from methyl, ethyl, propyl, butyl, pentyl, cyclic alkyl groups and mixtures thereof. Single or multiple alkyl branches could be present on the main hydrocarbyl chain of the starting alcohol(s) used to produce the sulfated anionic surfactant used in the detergent of the invention. Most preferably the branched sulfated anionic surfactant is selected from alkyl sulfates, alkyl ethoxy sulfates, and mixtures thereof

[0136] The branched sulfated anionic surfactant can be a single anionic surfactant or a mixture of anionic surfactants. In the case of a single surfactant the percentage of branching refers to the weight percentage of the hydrocarbyl chains that are branched in the original alcohol from which the surfactant is derived.

[0137] In the case of a surfactant mixture the percentage of branching is the weight average and it is defined according to the following formula:

Weight average of branching (%)= [(x1 * wt% branched alcohol 1 in alcohol 1 + x2 * wt% branched alcohol 2 in alcohol 2 +) / <math>(x1 + x2 +)] * 100

wherein x1, x2, ... are the weight in grams of each alcohol in the total alcohol mixture of the alcohols which were used as starting material for the anionic surfactant for the detergent of the invention. In the weight average branching degree calculation the weight of anionic surfactant components not having branched groups should also be included.

[0138] Suitable sulfate surfactants for use herein include water-soluble salts of C8-C18 alkyl or hydroxyalkyl, sulfate and/or ether sulfate. Suitable counterions include alkali metal cation or ammonium or substituted ammonium, but preferably sodium.

[0139] The sulfate surfactants may be selected from C8-C18 primary, branched chain and random alkyl sulfates (AS); C8-C18 secondary (2,3) alkyl sulfates; C8-C18 alkyl alkoxy sulfates (AExS) wherein preferably x is from 1-30 in which the alkoxy group could be selected from ethoxy, propoxy, butoxy or even higher alkoxy groups and mixtures thereof.

[0140] Alkyl sulfates and alkyl alkoxy sulfates are commercially available with a variety of chain lengths, ethoxylation and branching degrees. Commercially available sulfates include, those based on Neodol alcohols ex the Shell company, Lial - Isalchem and Safol ex the Sasol company, natural alcohols ex The Procter & Gamble Chemicals company.

[0141] Preferred alkyl sulfates are those in which the anionic surfactant is an alkyl ethoxy sulfate with a degree of ethoxylation of from about 0.2 to about 3, more preferably from about 0.3 to about 2, even more preferably from about 0.4 to about 1.5, and especially from about 0.4 to about 1. They are also preferred anionic surfactant having a level of branching of from about 5% to about 40%, even more preferably from about 10% to 35% and especially from about 20% to 30%.

Nonionic surfactant

5

10

15

20

25

30

35

40

45

50

55

[0142] Preferably the surfactant system comprises a nonionic surfactant, in an amount of from 0.1% to 40%, preferably 0.2% to 20%, most preferably 0.5% to 10% by weight of the composition. Suitable nonionic surfactants include the condensation products of aliphatic alcohols with from 1 to 25 moles of ethylene oxide. The alkyl chain of the aliphatic alcohol can either be straight or branched, primary or secondary, and generally contains from 8 to 22 carbon atoms. Particularly preferred are the condensation products of alcohols having an alkyl group containing from 10 to 18 carbon atoms, preferably from 10 to 15 carbon atoms with from 2 to 18 moles, preferably 2 to 15, more preferably 5-12 of ethylene oxide per mole of alcohol. Highly preferred nonionic surfactants are the condensation products of guerbet alcohols with from 2 to 18 moles, preferably 2 to 15, more preferably 5-12 of ethylene oxide per mole of alcohol.

[0143] Other suitable non-ionic surfactants for use herein include fatty alcohol polyglycol ethers, alkylpolyglucosides and fatty acid glucamides.

Amphoteric surfactant

[0144] The surfactant system may include amphoteric surfactant, such as amine oxide. Preferred amine oxides are alkyl dimethyl amine oxide or alkyl amido propyl dimethyl amine oxide, more preferably alkyl dimethyl amine oxide and especially coco dimethyl amino oxide. Amine oxide may have a linear or mid-branched alkyl moiety. Typical linear amine oxides include water-soluble amine oxides containing one R1 C8-18 alkyl moiety and 2 R2 and R3 moieties selected from the group consisting of C1-3 alkyl groups and C1-3 hydroxyalkyl groups. Preferably amine oxide is characterized by the formula R1 - N(R2)(R3) O wherein R1 is a C8-18 alkyl and R2 and R3 are selected from the group consisting of methyl, ethyl, propyl, isopropyl, 2-hydroxethyl, 2-hydroxypropyl and 3-hydroxypropyl. The linear amine oxide surfactants in particular may include linear C10-C18 alkyl dimethyl amine oxides and linear C8-C12 alkoxy ethyl dihydroxy ethyl amine oxides. Preferred amine oxides include linear C10, linear C10-C12, and linear C12-C14 alkyl dimethyl amine oxides. As used herein "mid-branched" means that the amine oxide has one alkyl moiety having n1 carbon atoms with one alkyl branch on the alkyl moiety having n2 carbon atoms. The alkyl branch is located on the α carbon from the nitrogen on the alkyl moiety. This type of branching for the amine oxide is also known in the art as an internal amine oxide. The total sum of n1 and n2 is from 10 to 24 carbon atoms, preferably from 12 to 20, and more preferably from 10 to 16. The number of carbon atoms for the one alkyl moiety (n1) should be approximately the same number of carbon atoms as the one alkyl branch (n2) such that the one alkyl moiety and the one alkyl branch are symmetric. As used herein "symmetric" means that | n1 - n2 | is less than or equal to 5, preferably 4, most preferably from 0 to 4 carbon atoms in at least 50 wt%, more preferably at least 75 wt% to 100 wt% of the mid-branched amine oxides for use herein. [0145] The amine oxide may further comprise two moieties, independently selected from a C1-3 alkyl, a C1-3 hydroxyalkyl group, or a polyethylene oxide group containing an average of from about 1 to about 3 ethylene oxide groups. Preferably the two moieties are selected from a C1-3 alkyl, more preferably both are selected as a C1 alkyl.

Zwitterionic surfactant

[0146] Other suitable surfactants include betaines, such as alkyl betaines, alkylamidobetaine, amidazoliniumbetaine, sulfobetaine (INCI Sultaines) as well as the Phosphobetaine and preferably meets formula (I):

$$R^{1}$$
-[CO-X(CH₂)_n]_x-N⁺(R²)(R₃)_m-(CH₂)m-[CH(OH)-CH₂]_v-Y- (I)

wherein

5

10

15

20

25

30

35

40

45

50

55

R¹ is a saturated or unsaturated C6-22 alkyl residue, preferably C8-18 alkyl residue, in particular a saturated C10-16 alkyl residue, for example a saturated C12-14 alkyl residue;

X is NH, NR⁴ with C1-4 Alkyl residue R⁴, O or S,

n a number from 1 to 10, preferably 2 to 5, in particular 3,

x 0 or 1, preferably 1,

R², R³ are independently a C1-4 alkyl residue, potentially hydroxy substituted such as a hydroxyethyl, preferably a methyl.

m a number from 1 to 4, in particular 1, 2 or 3,

y 0 or 1 and

Y is COO, SO3, OPO(OR⁵)O or P(O)(OR⁵)O, whereby R⁵ is a hydrogen atom H or a C1-4 alkyl residue.

[0147] Preferred betaines are the alkyl betaines of the formula (Ia), the alkyl amido propyl betaine of the formula (Ib), the Sulfo betaines of the formula (Ic) and the Amido sulfobetaine of the formula (Id);

$$R^{1}-N^{+}(CH_{3})_{2}-CH_{2}COO^{-}$$
 (Ia)

 R^{1} -CO-NH(CH₂)₃-N⁺(CH₃)₂-CH₂COO⁻ (Ib)

 $R^{1}-N^{+}(CH_{3})_{2}-CH_{2}CH(OH)CH_{2}SO_{3}-$ (Ic)

 R^{1} -CO-NH-(CH₂)₃-N+(CH₃)₂-CH₂CH(OH)CH₂SO₃- (Id)

in which R¹1 as the same meaning as in formula I. Particularly preferred betaines are the Carbobetaine [wherein Y=COO-], in particular the Carbobetaine of the formula (Ia) and (Ib), more preferred are the Alkylamidobetaine of the formula (Ib).

[0148] Examples of suitable betaines and sulfobetaine are the following [designated in accordance with INCI]: Almondamidopropyl of betaines, Apricotam idopropyl betaines, Avocadamidopropyl of betaines, Babassuamidopropyl of betaines, Behenam idopropyl betaines, Behenyl of betaines, betaines, Canolam idopropyl betaines, Capryl/Capram idopropyl betaines, Carnitine, Cetyl of betaines, Cocamidoethyl of betaines, Cocam idopropyl betaines, Cocam idopropyl Hydroxysultaine, Coco betaines, Coco Hydroxysultaine, Coco/Oleam idopropyl betaines, Coco Sultaine, Decyl of betaines, Dihydroxyethyl Oleyl Glycinate, Dihydroxyethyl Soy Glycinate, Dihydroxyethyl Stearyl Glycinate, Dihydroxyethyl Tallow Glycinate, Dimethicone Propyl of PG-betaines, Erucam idopropyl Hydroxysultaine, Hydrogenated Tallow of betaines, Isostearam idopropyl betaines, Lauram idopropyl betaines, Lauryl of betaines, Myristam idopropyl betaines, Myristyl of betaines, Oleam idopropyl betaines, Oleam idopropyl betaines, Oleam idopropyl betaines, Palmam idopropyl betaines, Palm itam idopropyl betaines, Palmitoyl Carnitine, Palm Kernelam idopropyl betaines, Polytetrafluoroethylene Acetoxypropyl of betaines, Ricinoleam idopropyl betaines, Sesam idopropyl betaines, Soyam idopropyl betaines, Stearam idopropyl betaines, Tallow Dihydroxyethyl of betaines, Undecylenam idopropyl betaines and Wheat Germam idopropyl betaines. A preferred betaine is, for example, Cocoamidopropylbetaine.

Fatty Acid

[0149] Especially when in liquid form, preferably, the detergent composition comprises between 1.5% and 20%, more preferably between 2% and 15%, even more preferably between 3% and 10%, most preferably between 4% and 8% by weight of the liquid detergent composition of soap, preferably a fatty acid salt, more preferably an amine neutralized fatty acid salt, wherein preferably the amine is an alkanolamine more preferably selected from monoethanolamine, diethanolamine, triethanolamine or a mixture thereof, more preferably monoethanolamine.

Perfume

5

10

15

20

25

40

45

[0150] Preferred compositions of the invention comprise perfume. Typically the composition comprises a perfume that comprises one or more perfume raw materials, selected from the group as described in WO08/87497. However, any perfume useful in a detergent may be used. A preferred method of incorporating perfume into the compositions of the invention is via an encapsulated perfume particle comprising either a water-soluble hydroxylic compound or melamine-formaldehyde or modified polyvinyl alcohol. In one aspect the encapsulate comprises (a) an at least partially water-soluble solid matrix comprising one or more water-soluble hydroxylic compounds, preferably starch; and (b) a perfume oil encapsulated by the solid matrix. In a further aspect the perfume may be pre-complexed with a polyamine, preferably a polyethylenimine so as to form a Schiff base.

Polymers

[0151] The detergent composition may comprise one or more polymers for example for cleaning and/or care. Examples are optionally modified carboxymethylcellulose, poly (ethylene glycol), poly(vinyl alcohol), polycarboxylates such as polyacrylates, maleic/acrylic acid copolymers and lauryl methacrylate/acrylic acid co-polymers and carboxylate polymers. [0152] Suitable carboxylate polymers include maleate/acrylate random copolymer or polyacrylate homopolymer. The carboxylate polymer may be a polyacrylate homopolymer having a molecular weight of from 4,000 Da to 9,000 Da, or from 6,000 Da to 9,000 Da. Other suitable carboxylate polymers are co-polymers of maleic acid and acrylic acid, and may have a molecular weight in the range of from 4,000 Da to 90,000 Da.

[0153] Other suitable carboxylate polymers are co-polymers comprising: (i) from 50 to less than 98 wt% structural units derived from one or more monomers comprising carboxyl groups; (ii) from 1 to less than 49 wt% structural units derived from one or more monomers comprising sulfonate moieties; and (iii) from 1 to 49 wt% structural units derived from one or more types of monomers selected from ether bond-containing monomers represented by formulas (I) and (II):

formula (I):

 $\begin{array}{c}
R_0 \\
H_2C = C \\
R \\
O \\
CH_2 \\
X \\
O = F
\end{array}$

wherein in formula (I), R₀ represents a hydrogen atom or CH₃ group, R represents a CH₂ group, CH₂CH₂ group or single bond, X represents a number 0-5 provided X represents a number 1-5 when R is a single bond, and R₁ is a hydrogen atom or C1 to C20 organic group;

formula (II)

50

55

in formula (II), R_0 represents a hydrogen atom or CH_3 group, R represents a CH_2 group, CH_2CH_2 group or single bond, R_1 is a hydrogen atom or R_2 to R_3 group.

[0154] The composition may comprise one or more amphiphilic cleaning polymers such as the compound having the following general structure: $bis((C_2H_5O)(C_2H_4O)n)(CH_3)-N^+-C_xH_{2x}-N^+-(CH_3)-bis((C_2H_5O)(C_2H_4O)n)$, wherein n = from 20 to 30, and x = from 3 to 8, or sulphated or sulphonated variants thereof. In one aspect, this polymer is sulphated or sulphonated to provide a zwitterionic soil suspension polymer.

[0155] The composition preferably comprises amphiphilic alkoxylated grease cleaning polymers which have balanced hydrophilic and properties such that they remove grease particles from fabrics and surfaces. Preferred amphiphilic alkoxylated grease cleaning polymers comprise a core structure and a plurality of alkoxylate groups attached to that core structure. These may comprise alkoxylated polyalkylenimines, preferably having an inner polyethylene oxide block and an outer polypropylene oxide block. Typically these may be incorporated into the compositions of the invention in amounts of from 0.005 to 10 wt%, generally from 0.5 to 8 wt%.

[0156] Alkoxylated polycarboxylates such as those prepared from polyacrylates are useful herein to provide additional grease removal performance. Such materials are described in WO 91/08281 and PCT 90/01815. Chemically, these materials comprise polyacrylates having one ethoxy side-chain per every 7-8 acrylate units. The side-chains are of the formula $-(CH_2CH_2O)_m(CH_2)_nCH_3$ wherein m is 2-3 and n is 6-12. The side-chains are ester-linked to the polyacrylate "backbone" to provide a "comb" polymer type structure. The molecular weight can vary, but is typically in the range of about 2000 to about 50,000. Such alkoxylated polycarboxylates can comprise from about 0.05% to about 10%, by weight, of the compositions herein.

[0157] The composition may comprise polyethylene glycol polymers and these may be particularly preferred in compositions comprising mixed surfactant systems. Suitable polyethylene glycol polymers include random graft co-polymers comprising: (i) hydrophilic backbone comprising polyethylene glycol; and (ii) side chain(s) selected from the group consisting of: C4-C25 alkyl group, polypropylene, polybutylene, vinyl ester of a saturated C1-C6 mono-carboxylic acid, C1-C6 alkyl ester of acrylic or methacrylic acid, and mixtures thereof. Suitable polyethylene glycol polymers have a polyethylene glycol backbone with random grafted polyvinyl acetate side chains. The average molecular weight of the polyethylene glycol backbone can be in the range of from 2,000 Da to 20,000 Da, or from 4,000 Da to 8,000 Da. The molecular weight ratio of the polyethylene glycol backbone to the polyvinyl acetate side chains can be in the range of from 1:1 to 1:5, or from 1:1.2 to 1:2. The average number of graft sites per ethylene oxide units can be in the range of from 0.5 to 0.9, or the average number of graft sites per ethylene oxide units can be in the range of from 0.1 to 0.5, or from 0.2 to 0.4. A suitable polyethylene glycol polymer is Sokalan HP22.

[0158] Typically these polymers when present are each incorporated into the compositions of the invention in amounts from 0.005 to 10 wt%, more usually from 0.05 to 8 wt%.

[0159] Preferably the composition comprises one or more carboxylate polymer, such as a maleate/acrylate random copolymer or polyacrylate homopolymer. In one aspect, the carboxylate polymer is a polyacrylate homopolymer having a molecular weight of from 4,000 Da to 9,000 Da, or from 6,000 Da to 9,000 Da. Typically these are incorporated into the compositions of the invention in amounts from 0.005 to 10 wt%, or from 0.05 to 8 wt%.

[0160] Preferably the composition comprises one or more soil release polymers.

[0161] Suitable soil release polymers are polyester soil release polymers such as Repel-o-tex polymers, including Repel-o-tex SF, SF-2 and SRP6 supplied by Rhodia. Other suitable soil release polymers include Texcare polymers, including Texcare SRA100, SRA300, SRN100, SRN170, SRN240, SRN260, SRN300 and SRN325 supplied by Clariant. Other suitable soil release polymers are Marloquest polymers, such as Marloquest SL supplied by Sasol.

[0162] Preferably the composition comprises one or more cellulosic polymer, including those selected from alkyl cellulose, alkyl alkoxyalkyl cellulose, carboxyalkyl cellulose, alkyl carboxyalkyl cellulose. Preferred cellulosic polymers are selected from the group comprising carboxymethyl cellulose, methyl cellulose, methyl hydroxyethyl cellulose, methyl carboxymethyl cellulose, and mixures thereof. In one aspect, the carboxymethyl cellulose has a degree of carboxymethyl substitution from 0.5 to 0.9 and a molecular weight from 100,000 Da to 300,000 Da.

[0163] The composition preferably comprises a cationically-modified polysaccharide polymer. Preferably, the cationic polysaccharide polymer is selected from cationically modified hydroxyethyl cellulose, cationically modified hydroxypropyl cellulose, cationically and hydrophobically modified hydroxyethyl cellulose, cationically and hydrophobically modified hydroxyethyl cellulose, cationically modified hydroxyethyl cellulose, cationically and hydrophobically modified hydroxyethyl cellulose, or a mixture thereof.

Fabric Shading Dye

10

20

30

35

40

45

50

55

[0164] The composition preferably comprises a fabric shading agent. Suitable fabric shading agents include dyes, dye-clay conjugates, and pigments. Suitable dyes include small molecule dyes and polymeric dyes. Suitable small molecule dyes include small molecule dyes selected from the group consisting of dyes falling into the Colour Index (C.I.)

classifications of Direct Blue, Direct Red, Direct Violet, Acid Blue, Acid Red, Acid Violet, Basic Blue, Basic Violet and Basic Red, or mixtures thereof. Preferered dyes include alkoxylated azothiophenes, Solvent Violet 13, Acid Violet 50 and Direct Violet 9. Particularly preferred dyes are polymeric dyes, particularly comprising polyalkoxy, most preferably polyethoxy groups, for example:

wherein the index values x and y are independently selected from 1 to 10.

Dye Transfer Inhibitors

[0165] Suitable dye transfer inhibitors include polyamine N-oxide polymers, copolymers of N-vinylpyrrolidone and N-vinylimidazole, polyvinylpyrrolidone, polyvinyloxazolidone, polyvinylimidazole and mixtures thereof. Preferred are poly(vinyl pyrrolidone), poly(vinylpyridine betaine), poly(vinylpyridine N-oxide), poly(vinyl pyrrolidone-vinyl imidazole) and mixtures thereof. Suitable commercially available dye transfer inhibitors include PVP-K15 and K30 (Ashland), Sokalan® HP165, HP50, HP53, HP59, HP56K, HP56, HP66 (BASF), Chromabond® S-400, S403E and S-100 (Ashland).

Chelant

5

10

15

20

25

30

35

40

45

50

55

[0166] The composition may comprise chelant for example selected from phosphonic, sulphonic, succinic and acetic chelants or mixtures thereof. Suitable examples include HEDP, DTPA, EDTA, MGDA, GLDA, EDDS and 4,5-dihydroxy-1,3-benzenedisulfonic acids and salts thereof.

Methods of Making the Composition

[0167] The present invention relates to methods of making the compositions described herein. The compositions of the invention may be solid (for example granules or tablets) or liquid form. Preferably the compositions are in liquid form. They may be made by any process chosen by the formulator, including by a batch process, a continuous loop process, or combinations thereof.

[0168] When in the form of a liquid, the compositions of the invention may be aqueous (typically above 2 wt% or even above 5 or 10 wt% total water, up to 90 or up to 80wt% or 70 wt% total water) or non-aqueous (typically below 2 wt% total water content). Typically the compositions of the invention will be in the form of an aqueous solution or uniform dispersion or suspension of optical brightener, DTI and optional additional adjunct materials, some of which may normally be in solid form, that have been combined with the normally liquid components of the composition, such as the liquid alcohol ethoxylate nonionic, the aqueous liquid carrier, and any other normally liquid optional ingredients. Such a solution, dispersion or suspension will be acceptably phase stable. When in the form of a liquid, the detergents of the invention preferably have viscosity from 1 to 1500 centipoises (1-1500 mPa*s), more preferably from 100 to 1000 centipoises (100-1000 mPa*s), and most preferably from 200 to 500 centipoises (200-500 mPa*s) at 20s-1 and 21°C. Viscosity can be determined by conventional methods. Viscosity may be measured using an AR 550 rheometer from TA instruments using a plate steel spindle at 40 mm diameter and a gap size of 500 μm. The high shear viscosity at 20s-1 and low shear viscosity at 0.05-1 can be obtained from a logarithmic shear rate sweep from 0.1-1 to 25-1 in 3 minutes time at 21C. The preferred rheology described therein may be achieved using internal existing structuring with detergent ingredients or by employing an external rheology modifier. More preferably the detergents, such as detergent liquid compositions have a high shear rate viscosity of from about 100 centipoise to 1500 centipoise, more preferably from 100 to 1000 cps. Unit Dose detergents, such as detergent liquid compositions have high shear rate viscosity of from 400 to 1000cps. Detergents such as laundry softening compositions typically have high shear rate viscosity of from 10 to 1000, more preferably from 10 to 800 cps, most preferably from 10 to 500 cps. Hand dishwashing compositions have high shear rate viscosity of from 300 to 4000 cps, more preferably 300 to 1000 cps.

[0169] The cleaning and/or treatment compositions in the form of a liquid herein can be prepared by combining the components thereof in any convenient order and by mixing, e.g., agitating, the resulting component combination to form a phase stable liquid detergent composition. In a process for preparing such compositions, a liquid matrix is formed containing at least a major proportion, or even substantially all, of the liquid components, e.g., nonionic surfactant, the non-surface active liquid carriers and other optional liquid components, with the liquid components being thoroughly

admixed by imparting shear agitation to this liquid combination. For example, rapid stirring with a mechanical stirrer may usefully be employed. While shear agitation is maintained, substantially all of any anionic surfactants and the solid form ingredients can be added. Agitation of the mixture is continued, and if necessary, can be increased at this point to form a solution or a uniform dispersion of insoluble solid phase particulates within the liquid phase. After some or all of the solid-form materials have been added to this agitated mixture, particles of any enzyme material to be included, e.g., enzyme granulates, are incorporated. As a variation of the composition preparation procedure hereinbefore described, one or more of the solid components may be added to the agitated mixture as a solution or slurry of particles premixed with a minor portion of one or more of the liquid components. After addition of all of the composition components, agitation of the mixture is continued for a period of time sufficient to form compositions having the requisite viscosity and phase stability characteristics. Frequently this will involve agitation for a period of from about 30 to 60 minutes.

[0170] The adjunct ingredients in the compositions of this invention may be incorporated into the composition as the product of the synthesis generating such components, either with or without an intermediate purification step. Where there is no purification step, commonly the mixture used will comprise the desired component or mixtures thereof (and percentages given herein relate to the weight percent of the component itself unless otherwise specified) and in addition unreacted starting materials and impurities formed from side reactions and/or incomplete reaction. For example, for an ethoxylated or substituted component, the mixture will likely comprise different degrees of ethoxylation/substitution.

Method of Use

10

15

20

25

30

35

40

45

50

55

[0171] The present invention relates to methods of using the cleaning compositions of the present invention to clean a surface, such as a textile. In general, the method includes mixing the cleaning composition as described herein with water to form an aqueous liquor and contacting a surface, preferably a textile, with the aqueous liquor in a laundering step. The target surface may include a greasy soil such as a body soil. The compositions herein, typically prepared as hereinbefore described, can be used to form aqueous washing/treatment solutions for use in the laundering/treatment of fabrics and/or hard surfaces. Generally, an effective amount of such a composition is added to water, for example in a conventional fabric automatic washing machine, to form such aqueous liquor laundering solutions. The aqueous liquor so formed is then contacted, typically under agitation, with the fabrics to be laundered/treated therewith. An effective amount of the cleaning composition herein added to water to form aqueous liquors for washing can comprise amounts sufficient to form from about 500 to 25,000 ppm, or from 500 to 15,000 ppm of composition in aqueous liquor, or from about 1,000 to 3,000 ppm of the cleaning compositions herein will be provided in aqueous liquor.

[0172] Typically, the aqueous liquor is formed by contacting the detergent with (wash) water in such an amount that the concentration of the cleaning composition in the aqueous liquor is from above 0.1 g/l to 5g/l, or from 1g/1, and to 4.5g/l, or to 4.0g/l, or to 3.5g/l, or to 3.0g/l, or to 2.5g/l, or even to 2.0g/l, or even to 1.5g/l. The method of laundering fabric or textile may be carried out in a top-loading or front-loading automatic washing machine, or can be used in a hand-wash laundry application. In these applications, the aqueous liquor formed and concentration of laundry detergent composition in the aqueous liquor is that of the main wash cycle. Any input of water during any optional rinsing step(s) is not included when determining the volume of the aqueous liquor.

[0173] The aqueous liquor may comprise 40 litres or less of water, or 30 litres or less, or 20 litres or less, or 10 litres or less, or 8 litres or less, or even 6 litres or less of water. The wash liquor may comprise from above 0 to 15 litres, or from 2 litres, and to 12 litres, or even to 8 litres of water. Typically from 0.01kg to 2kg of fabric per litre of aqueous liquor is dosed into said aqueous liquor. Typically from 0.01kg, or from 0.07kg, or from 0.10kg, or from 0.10kg, or from 0.10kg, or from 0.20kg, or from 0.25kg fabric per litre of aqueous liquor is dosed into said aqueous liquor. Optionally, 50g or less, or 45g or less, or 40g or less, or 35g or less, or 30g or less, or 25g or less, or 20g or less, or even 15g or less, or even 10g or less of the composition is contacted to water to form the aqueous liquor. Such compositions are typically employed at concentrations of from about 500 ppm to about 15,000 ppm in solution. When the wash solvent is water, the water temperature typically ranges from about 5 °C to about 90 °C and, when the situs comprises a fabric, the water to fabric ratio is typically from about 1:1 to about 30:1. Typically the aqueous liquor comprising the detergent of the invention has a pH of from 3 to 11.5.

[0174] In one aspect, such method comprises the steps of optionally washing and/or rinsing said surface or fabric, contacting said surface or fabric with any composition disclosed in this specification then optionally washing and/or rinsing said surface or fabric is disclosed, with an optional drying step.

[0175] Drying of such surfaces or fabrics may be accomplished by any one of the common means employed either in domestic or industrial settings: machine drying or open-air drying. The fabric may comprise any fabric capable of being laundered in normal consumer or institutional use conditions, and the invention is particularly suitable for synthetic textiles such as polyester and nylon and especially for treatment of mixed fabrics and/or fibres comprising synthetic and cellulosic fabrics and/or fibres. As examples of synthetic fabrics are polyester, nylon, these may be present in mixtures with cellulosic fibres, for example, polycotton fabrics. The solution typically has a pH of from 7 to 11, more usually 8 to 10.5. The compositions are typically employed at concentrations from 500 ppm to 5,000 ppm in solution. The water

temperatures typically range from about 5 °C to about 90 °C. The water to fabric ratio is typically from about 1:1 to about 30:1.

Use of a Mannanase Enzyme

[0176] The present invention further relates to a use of a mannanase enzyme as defined above, to enhance the greasy-stain removal of an amine, such as an etheramine (e.g., a polyetheramine) as described herein.

Use of an Amine

5

10

15

20

30

35

40

50

[0177] The present invention further relates to a use of an amine, such as an etheramine (e.g., a polyetheramine) to enhance the malodor-reducing benefits of a mannanase enzyme as defined herein.

TEST METHODS

Enzymatic activity towards xyloglucan substrates

[0178] An enzyme is deemed to have activity towards xyloglucan if the pure enzyme has a specific activity of greater than 50000 XyloU/g according to the following assay at pH 7.5.

[0179] The xyloglucanase activity is measured using AZCL-xyloglucan from Megazyme, Ireland as substrate (blue substrate).

[0180] A solution of 0.2% of the blue substrate is suspended in a 0.1M phosphate buffer pH 7.5, 20°C under stirring in a 1.5ml Eppendorf tubes (0.75ml to each), 50 microlitres enzyme solution is added and they are incubated in an Eppendorf Thermomixer for 20 minutes at 40°C, with a mixing of 1200 rpm. After incubation the coloured solution is separated from the solid by 4 minutes centrifugation at 14,000 rpm and the absorbance of the supernatant is measured at 600nm in a 1cm cuvette using a spectrophotometer. One XyloU unit is defined as the amount of enzyme resulting in an absorbance of 0.24 in a 1cm cuvette at 600nm.

[0181] Only absorbance values between 0.1 and 0.8 are used to calculate the XyloU activity. If an absorbance value is measured outside this range, optimization of the starting enzyme concentration should be carried out accordingly.

Enzymatic activity towards amorphous cellulose substrates

[0182] An enzyme is deemed to have activity towards amorphous cellulose if the pure enzyme has a specific activity of greater than 20000 EBG/g according to the following assay at pH 7.5. Chemicals used as buffers and substrates were commercial products of at least reagent grade. Endoglucanase Activity Assay Materials:

- 0.1M phosphate buffer pH 7.5
- Cellazyme C tablets, supplied by Megazyme International, Ireland.
- Glass microfiber filters, GF/C, 9cm diameter, supplied by Whatman.

Method:

[0183] In test tubes, mix 1ml pH 7.5 buffer and 5ml deionised water.

[0184] Add 100 microliter of the enzyme sample (or of dilutions of the enzyme sample with known weight:weight dilution factor). Add 1 Cellazyme C tablet into each tube, cap the tubes and mix on a vortex mixer for 10 seconds. Place the tubes in a thermostated water bath, temperature 40°C. After 15,30 and 45 minutes, mix the contents of the tubes by inverting the tubes, and replace in the water bath. After 60 minutes, mix the contents of the tubes by inversion and then filter through a GF/C filter. Collect the filtrate in a clean tube.

[0185] Measure Absorbance (Aenz) at 590nm, with a spectrophotometer. A blank value, Awater, is determined by adding $100\mu l$ water instead of 100 microliter enzyme dilution.

Calculate Adelta = Aenz - Awater.

[0186] Adelta must be <0.5. If higher results are obtained, repeat with a different enzyme dilution factor. Determine DFO.1, where DFO.1 is the dilution factor needed to give Adelta = 0.1. Unit Definition: 1 Endo-Beta-Glucanase activity unit (1 EBG) is the amount of enzyme that gives Adelta = 0.10, under the assay conditions specified above. Thus, for example, if a given enzyme sample, after dilution by a dilution factor of 100, gives Adelta = 0.10, then the enzyme sample

has an activity of 100 EBG/g.

EXAMPLES

⁵ **[0187]** The following are illustrative examples of cleaning compositions according to the present invention and are not intended to be limiting.

Examples 1 to 18: Unit Dose Compositions.

10 [0188] These examples provide various formulations for unit dose laundry detergents and comprise double compartment unit dose products comprising one powder and one liquid compartment. The film used to encapsulate the compositions in PVA. Each example is prepared by combining a liquid compartment composition selected from compositions A-E with a powder compartment composition selected from compositions F-K.

Example	1	2	3	4	5	6
Liquid composition	20g A	25g A	20g A	15g A	20g B	20g B
Solid composition	15g F	12g G	12g H	12g I	15g J	15g K

Example	7	8	9	10	11	12
Liquid composition	15g B	17g B	20g C	19g C	15g C	25g C
Solid composition	15g L	14g F	15g G	18g H	15g I	12g J

Example	13	14	15	16	17	18
Liquid composition	20g D	18g D	22g D	32g E	32g E	27g E
Solid composition	20g K	13g L	15g F	17g G	12g H	18g I

Ingradianta	Α	В	С	D	E			
<u>Ingredients</u>	% weight of compartment							
LAS	19.09	16.76	8.59	6.56	3.44			
AE3S	1.91	0.74	0.18	0.46	0.07			
AE7	14.00	17.50	26.33	28.08	31.59			
Citric Acid	0.6	0.6	0.6	0.6	0.6			
C12-15 Fatty Acid	14.8	14.8	14.8	14.8	14.8			
Polymer 3	4.0	4.0	4.0	4.0	4.0			
Chelant 2	1.2	1.2	1.2	1.2	1.2			
Optical Brightener 1	0.20	0.25	0.01	0.01	0.50			
Optical Brightener 2	0.20	-	0.25	0.03	0.01			
Optical Brightener 3	0.18	0.09	0.30	0.01	-			
DTI 1	0.10	-	0.20	0.01	0.05			
DTI 2	-	0.10	0.20	0.25	0.05			
Glycerol	6.1	6.1	6.1	6.1	6.1			
Monoethanol amine	8.0	8.0	8.0	8.0	8.0			

(continued)

Ingradianta	Α	В	С	D	Е			
<u>Ingredients</u>	% weight of compartment							
Tri-isopropanol amine	-	-	2.0	-	-			
Tri-ethanol amine	-	2.0	-	-	-			
Cumene sulfonate	-	-	-	-	2.0			
Protease	0.80	0.60	0.07	1.00	1.50			
Galactanase	0.07	0.05	-	0.10	-			
Amylase 1	0.20	0.11	0.30	0.50	0.05			
Amylase 2	0.11	0.20	0.10	1	0.50			
Polishing enzyme	0.005	0.05	-	-	-			
Mannanase	0.005	0.05	0.005	0.010	0.005			
Dispersin B	0.010	0.05	0.005		-			
Cyclohexyl dimethanol	-	-	-	2.0	-			
Acid violet 50	0.03	0.02						
Violet DD			0.01	0.05	0.02			
Structurant	0.14	0.14	0.14	0.14	0.14			
Perfume	1.9	1.9	1.9	1.9	1.9			
Water, solvents and miscellaneous		ı	To 100%					
pH	7.5-8.2							

Ingradient	F	G	Н	ı	J	K		
Ingredient	% weight							
Sodium carbonate	20.0	35.0	30.0	29.0	28.0	18.0		
Carboxymethyl cellulose	2.0	1.0	-	-	2.5	0.6		
Sodium silicate 2R	5.0	-	5.0	3.2	20.0	-		
Tetraacetyl ethylenediamine	20.0	15.0	18.0	15.0	-	25.0		
Sodium percarbonate	50.0	44.0	45.0	45.0	29.0	50.0		
Polyetheramine	0.5	2	0.5	1	0.5	4		
Sulfate/ Water & Miscellaneous	Balance							

[0189] Based on total cleaning and/or treatment composition/compartment weight. Enzyme levels are reported as raw material.

Examples 19 to 24

[0190] Granular laundry detergent compositions for hand washing or washing machines, typically top-loading washing machines.

Ingredient	19	20	21	22	23	24		
ingredient	% weight							
LAS	11.33	10.81	7.04	4.20	3.92	2.29		

(continued)

lu ava dia ut	19	20	21	22	23	24
Ingredient			% we	ight		
Quaternary ammonium	0.70	0.20	1.00	0.60	-	-
AE3S	0.51	0.49	0.32	-	0.08	0.10
AE7	8.36	11.50	12.54	11.20	16.00	21.51
Sodium Tripolyphosphate	5.0	-	4.0	9.0	2.0	-
Zeolite A	-	1.0	-	1.0	4.0	1.0
Sodium silicate 1.6R	7.0	5.0	2.0	3.0	3.0	5.0
Sodium carbonate	20.0	17.0	23.0	14.0	14.0	16.0
Polyacrylate MW 4500	1.0	0.6	1.0	1.0	1.5	1.0
Polymer 6	0.1	0.2	-	-	0.1	-
Carboxymethyl cellulose	1.0	0.3	1.0	1.0	1.0	1.0
Acid Violet 50	0.05	-	0.02	-	0.04	-
Violet DD	-	0.03	-	0.03	-	0.03
Protease 2	0.10	0.10	0.10	0.10	-	0.10
Amylase	0.03	-	0.03	0.03	0.03	0.03
Lipase	0.03	0.07	0.30	0.10	0.07	0.40
Polishing enzyme	0.002	-	0.05	-	0.02	-
Galactanase	0.001	0.0005	-	-	0.001	0.01
Mannanase	0.001	0.001	0.01	0.05	0.002	0.02
Dispersin B	0.001	0.001	0.05	-	0.001	-
Optical Brightener 1	0.200	0.001	0.300	0.650	0.050	0.001
Optical Brightener 2	0.060	-	0.650	0.180	0.200	0.060
Optical Brightener 3	0.100	0.060	0.050	-	0.030	0.300
Chelant 1	0.60	0.80	0.60	0.25	0.60	0.60
DTI 1	0.32	0.15	0.15	1	0.10	0.10
DTI 2	0.32	0.15	0.30	0.30	0.10	0.20
Sodium Percarbonate	4.6	5.2	5.0	5.7	4.5	7.3
Nonanoyloxybenzensulfonate	1.9	0.0	1.66	0.0	0.33	0.75
Tetraacetylethylenediamine	0.58	1.2	0.51	0.0	0.015	0.28
Photobleach	0.0030	0.0	0.0012	0.0030	0.0021	-
S-ACMC	0.1	0.0	0.0	0.0	0.06	0.0
Polyetheramine	0.5	2	0.5	1	0.5	4
Sulfate/Moisture			Bala	nce		1

Examples 25-30

[0191] Granular laundry detergent compositions typically for front-loading automatic washing machines.

Ingredient	25	26	27	28	29	30
ingredient			% we	eight		
LAS	6.08	5.05	4.27	3.24	2.30	1.09
AE3S	-	0.90	0.21	0.18	-	0.06
AS	0.34	-	-	-	-	-
AE7	4.28	5.95	6.72	7.98	9.20	10.35
Quaternary ammonium	0.5	-	-	0.3	-	-
Crystalline layered silicate	4.1	-	4.8	-	-	-
Zeolite A	5.0	-	2.0	-	2.0	2.0
Citric acid	3.0	4.0	3.0	4.0	2.5	3.0
Sodium carbonate	11.0	17.0	12.0	15.0	18.0	18.0
Sodium silicate 2R	0.08	-	0.11	-	-	-
Optical Brightener 1	-	0.25	0.05	0.01	0.10	0.02
Optical Brightener 2	-	-	0.25	0.20	0.01	0.08
Optical Brightener 3	-	0.06	0.04	0.15	-	0.05
DTI 1	0.08	-	0.04	-	0.10	0.01
DTI 2	0.08	-	0.04	0.10	0.10	0.02
Soil release agent	0.75	0.72	0.71	0.72	-	-
Acrylic /maleic acid copolymer	1.1	3.7	1.0	3.7	2.6	3.8
Carboxymethyl cellulose	0.2	1.4	0.2	1.4	1.0	0.5
Protease 3	0.20	0.20	0.30	0.15	0.12	0.13
Amylase 3	0.20	0.15	0.20	0.30	0.15	0.15
Lipase	0.05	0.15	0.10	-	-	-
Amylase 2	0.03	0.07	-	-	0.05	0.05
Cellulase 2	-	-	-	-	0.10	0.10
Polishing enzyme	0.003	0.005	0.020	-	-	-
Galactanase	0.001	0.002	-	0.010	-	0.001
Mannanase	0.002	0.010	0.020	0.020	0.010	0.003
Dispersin B	0.002	0.010	0.020	0.020	-	0.002
Tetraacetylehtylenediamine	3.6	4.0	3.6	4.0	2.2	1.4
Sodium percabonate	13.0	13.2	13.0	13.2	16.0	14.0
Chelant 3	-	0.2	-	0.2	-	0.2
Chelant 2	0.2	-	0.2	-	0.2	0.2
MgSO ₄	-	0.42	-	0.42	-	0.4
Perfume	0.5	0.6	0.5	0.6	0.6	0.6
Suds suppressor agglomerate	0.05	0.10	0.05	0.10	0.06	0.05
Soap	0.45	0.45	0.45	0.45	-	-
Acid Violet 50	0.04	-	0.05	-	0.04	-
Violet DD	_	0.04	_	0.05	-	0.04

(continued)

Ingredient	25	26	27	28	29	30			
<u>ingredient</u>	% weight								
S-ACMC	0.01	0.01	-	0.01	-	1			
Direct Violet 9 (active)	-	-	0.0001	0.0001	-				
Polyetheramine	0.5	2	0.5	1	0.5	4			
Sulfate/ Water & Miscellaneous	Balance								

Examples 31-37

[0192] Heavy Duty Liquid laundry detergent compositions.

In much discrete	1	2	3	4	5	6	7
<u>Ingredients</u>			(% weight			
AE _{1.8} S	6.77	5.16	1.36	1.30	-	-	-
AE ₃ S	-	-	-	-	0.45	-	-
LAS	0.86	2.06	2.72	0.68	0.95	1.56	3.55
HSAS	1.85	2.63	1.02	-	-	-	-
AE9	6.32	9.85	10.20	7.92			
AE8							35.45
AE7					8.40	12.44	
C ₁₂₋₁₄ dimethyl Amine Oxide	0.30	0.73	0.23	0.37	-	-	-
C ₁₂₋₁₈ Fatty Acid	0.80	1.90	0.60	0.99	1.20	-	15.00
Citric Acid	2.50	3.96	1.88	1.98	0.90	2.50	0.60
Optical Brightener 1	1.00	0.80	0.10	0.30	0.05	0.50	0.001
Optical Brightener 3	0.001	0.05	0.01	0.20	0.50	-	1.00
Sodium formate	1.60	0.09	1.20	0.04	1.60	1.20	0.20
DTI 1	0.32	0.05	-	0.60	0.10	0.60	0.01
DTI 2	0.32	0.10	0.60	0.60	0.05	0.40	0.20
Sodium hydroxide	2.30	3.80	1.70	1.90	1.70	2.50	2.30
Monoethanolamine	1.40	1.49	1.00	0.70	-	-	-
Diethylene glycol	5.50	-	4.10	-	-	-	-
Chelant 1	0.15	0.15	0.11	0.07	0.50	0.11	0.80
4-formyl-phenylboronic acid	-		-	1	0.05	0.02	0.01
Sodium tetraborate	1.43	1.50	1.10	0.75	-	1.07	-
Ethanol	1.54	1.77	1.15	0.89	-	3.00	7.00
Polymer 1	0.10	-	-	-	-	-	2.00
Polymer 2	0.30	0.33	0.23	0.17	-	-	-
Polymer 3	-	-	-	-	-	-	0.80
Polymer 4	0.80	0.81	0.60	0.40	1.00	1.00	-
1,2-Propanediol	-	6.60	ı	3.30	0.50	2.00	8.00

(continued)

Ingradianta	1	2	3	4	5	6	7
<u>Ingredients</u>			(% weight			
Structurant	0.10	-	-	-	-	-	0.10
Perfume	1.60	1.10	1.00	0.80	0.90	1.50	1.60
Perfume encapsulate	0.10	0.05	0.01	0.02	0.10	0.05	0.10
Protease	0.80	0.60	0.70	0.90	0.70	0.60	1.50
Galactanase	0.03	0.01	-	0.01	0.02	0.002	ı
Amylase 1	0.30	-	0.30	0.10	-	0.40	0.10
Amylase 2	-	0.20	0.10	0.15	0.07	-	0.10
Xyloglucannase	0.20	0.10	-	-	0.05	0.05	0.20
Lipase	0.40	0.20	0.30	0.10	0.20	_	-
Polishing enzyme	-	0.04	-	-	-	0.004	-
Mannanase of SEQ ID NO: 1	0.05	0.03	0.01	0.03	0.03	0.003	0.003
Dispersin B	-	-	-	0.05	0.03	0.001	0.001
Acid Violet 50	0.05	-	-	-	-	-	0.005
Direct Violet 9	-	-	-	-	-	0.05	-
Violet DD	-	0.035	0.02	0.037	0.04	_	-
Alkoxylated polyaryl/polyalkyl phenol	0.8	1.0	1.2	0.9	0.5	2.2	3.1
Water, dyes & minors				Balance			
рН				8.2			

[0193] Based on total cleaning and/or treatment composition weight. Enzyme levels are reported as raw material.

35	AE1.8S	is C ₁₂₋₁₅ alkyl ethoxy (1.8) sulfate
•	AE3S	is C ₁₂₋₁₅ alkyl ethoxy (3) sulfate

5

10

15

20

25

30

AE7 is C_{12-15} alkyl ethoxy (3) suitate

AE7 is C_{12-13} alcohol ethoxylate, with an average degree of ethoxylation of 7

AE8 is C_{12-13} alcohol ethoxylate, with an average degree of ethoxylation of 8

AE9 is C_{12-13} alcohol ethoxylate, with an average degree of ethoxylation of 9

Amylase 1 is Stainzyme®, 15 mg active/g
Amylase 2 is Natalase®, 29 mg active/g
Amylase 3 is Stainzyme® Plus, 20 mg active/g,

AS is C₁₂₋₁₄ alkylsulfate

Cellulase 2 is Celluclean™, 15.6 mg active/g
Xyloglucanase is Whitezyme®, 20mg active/g
Chelant 1 is diethylene triamine pentaacetic acid
Chelant 2 is 1-hydroxyethane 1,1-diphosphonic acid

Chelant 3 is sodium salt of ethylenediamine-N,N'-disuccinic acid, (S,S) isomer (EDDS)

Dispersin B is a glycoside hydrolase, reported as 1000mg active/g

50 DTI 1 is poly(4-vinylpyridine-1-oxide) (such as Chromabond S-403E®),
DTI 2 is poly(1-vinylpyrrolidone-co-1-vinylimidazole) (such as Sokalan

HSAS HP56®). is mid-branched alkyl sulfate as disclosed in US 6,020,303 and US6,060,443 LAS is linear alkylbenzenesulfonate having an average aliphatic carbon chain length C_9 - C_{15} (HLAS

is acid form).

Galactanase is SEQ ID NO: 9, as active protein.

Mannanase is SEQ ID NO:1, as active protein

Lipase is Lipex®, 18 mg active/g
Mannanase is Mannaway®, 25 mg active/g

Optical Brightener 1 is disodium 4,4'-bis{[4-anilino-6-morpholino-s-triazin-2-yl]-amino}-2,2'-stilbenedisulfonate

Optical Brightener 2 is disodium 4,4'-bis-(2-sulfostyryl)biphenyl (sodium salt)

Optical Brightener 3 is Optiblanc SPL10® from 3V Sigma

Perfume encapsulate is a core-shell melamine formaldehyde perfume microcapsules

5 Photobleach is a sulfonated zinc phthalocyanine

Polishing enzyme is Para-nitrobenzyl esterase, reported as 1000mg active/g

Polyetheramine as described in present invention.

Polymer 1 is $bis((C_2H_5O)(C_2H_4O)n)(CH_3)-N^+-C_xH_{2x}-N^+-(CH_3)-bis((C_2H_5O)(C_2H_4O)n)$, wherein n=1

20-30,x = 3 to 8 or sulphated or sulfonated variants thereof

10 Polymer 2 is ethoxylated (EO₁₅) tetraethylene pentamine

Polymer 3 is ethoxylated polyethylenimine
Polymer 4 is ethoxylated hexamethylene diamine
Polymer 5 is Acusol 305, provided by Rohm&Haas

Polymer 6 is a polyethylene glycol polymer grafted with vinyl acetate side chains, provided by BASF.

Protease is Purafect Prime®, 40.6 mg active/g
Protease 2 is Savinase®, 32.89 mg active/g
Protease 3 is Purafect®, 84 mg active/g

Quaternary ammonium $\,$ is C_{12-14} Dimethylhydroxyethyl ammonium chloride

S-ACMC is Reactive Blue 19 Azo-CM-Cellulose provided by Megazyme

20 Soil release agent is Repel-o-tex® SF2, supplied by Solvay

Structurant is Hydrogenated Castor Oil

30

35

40

45

50

55

Violet DD is a thiophene azo polymeric hueing dye provided by Milliken

[0194] The dimensions and values disclosed herein are not to be understood as being strictly limited to the exact numerical values recited. Instead, unless otherwise specified, each such dimension is intended to mean both the recited value and a functionally equivalent range surrounding that value. For example, a dimension disclosed as "40 mm" is intended to mean "about 40 mm."

SEQUENCE LISTING

	<110>	P&G												
5	<120>	CLEANING	COMPOSI	TIONS II	NCLUDING	ENZYME A	ND BLEAC	н						
	<130>	CM04655F	М											
	<160>	14												
10	<170>	PatentIn	version	3.5										
15	<210> <211> <212> <213>	1 541 PRT Ascobolu	s sticto	ideus										
	<400>	00> 1												
20	Gln Th 1	r Tyr Thr	Leu Glu 5	Ala Glu	ı Ala Gly 10	Thr Leu	Thr Gly	Val Thr 15						
	Val Me	t Asn Glu 20	Ile Ala	Gly Phe	Ser Gly 25	Thr Gly	Tyr Val 30	Gly Gly						
25	Trp As	p Glu Asp 35	Ala Asp	Thr Val	l Ser Leu	Thr Phe	Thr Ser 45	Asp Ala						
30	Thr Ly	s Leu Tyr	Asp Val	Lys Ile 55	e Arg Tyr	Ser Gly 60	Pro Tyr	Gly Ser						
35	Lys Ty 65	r Thr Arg	Ile Ser 70	Tyr Ası	n Gly Ala	Thr Gly 75	Gly Asp	Ile Ser 80						
	Leu Pr	o Glu Thr	Thr Glu 85	Trp Ala	a Thr Val 90	Asn Ala	Gly Gln	Ala Leu 95						
40	Leu As	n Ala Gly 100		Thr Ile	Lys Leu 105	His Asn	Asn Trp	Gly Trp						
45	Tyr Le	u Ile Asp 115	Ala Val	Ile Let		Ser Val	Pro Arg 125	Pro Pro						
50	His Gl 13	n Val Thr O	Asp Ala	Leu Val	L Asn Thr	Asn Ser 140	Asn Ala	Val Thr						
	Lys Gl 145	n Leu Met	Lys Phe 150		l Ser Lys	Tyr His 155	Lys Ala	Tyr Ile 160						
55	Thr Gl	y Gln Gln	Glu Leu 165	His Ala	a His Gln 170	_	Glu Lys	Asn Val 175						

	Gly	Lys	Ser	Pro 180	Ala	Ile	Leu	Gly	Leu 185	Asp	Phe	Met	Asp	Tyr 190	Ser	Pro
5	Ser	Arg	Val 195	Glu	Phe	Gly	Thr	Thr 200	Ser	Gln	Ala	Val	Glu 205	Gln	Ala	Ile
10	Asp	Phe 210	Asp	Lys	Arg	Gly	Gly 215	Ile	Val	Thr	Phe	Ala 220	Trp	His	Trp	Asn
	Ala 225	Pro	Ser	Gly	Leu	Ile 230	Asn	Thr	Pro	Gly	Ser 235	Glu	Trp	Trp	Arg	Gly 240
15	Phe	Tyr	Thr	Glu	His 245	Thr	Thr	Phe	Asp	Val 250	Ala	Ala	Ala	Leu	Gln 255	Asn
20	Thr	Thr	Asn	Ala 260	Asn	Tyr	Asn	Leu	Leu 265	Ile	Arg	Asp	Ile	Asp 270	Ala	Ile
25	Ala	Val	Gln 275	Leu	Lys	Arg	Leu	Gln 280	Thr	Ala	Gly	Val	Pro 285	Val	Leu	Trp
	Arg	Pro 290	Leu	His	Glu	Ala	Glu 295	Gly	Gly	Trp	Phe	Trp 300	Trp	Gly	Ala	Lys
30	Gly 305	Pro	Glu	Pro	Ala	Lys 310	Lys	Leu	Tyr	Lys	Ile 315	Leu	Tyr	Asp	Arg	Leu 320
35	Thr	Asn	Tyr	His	Lys 325	Leu	Asn	Asn	Leu	Ile 330	Trp	Val	Trp	Asn	Ser 335	Val
	Ala	Lys	Asp	Trp 340	Tyr		_	Asp	Glu 3 4 5	Ile	Val	Asp	Val	Leu 350	Ser	Phe
40	Asp	Ser	Tyr 355	Pro	Ala	Gln	Pro	Gly 360	Asp	His	Gly	Pro	Val 365	Ser	Ala	Gln
45	Tyr	A sn 370	Ala	Leu	Val	Glu	Leu 375	Gly	Lys	Asp	Lys	Lys 380	Leu	Ile	Ala	Ala
50	Thr 385	Glu	Val	Gly	Thr	Ile 390	Pro	Asp	Pro	Asp	Leu 395	Met	Gln	Leu	Tyr	Glu 400
	Ser	Tyr	Trp	Ser	Phe 405	Phe	Val	Thr	Trp	Glu 410	Gly	Glu	Phe	Ile	Glu 415	Asn
55	Gly	Val	His	Asn 420	Ser	Leu	Glu	Phe	Leu 425	Lys	Lys	Leu	Tyr	Asn 430	Asn	Ser

	Phe	Val	Leu 435	Asn	Leu	Asp	Thr	Ile 440	Gln	Gly	Trp	Lys	Asn 445	Gly	Ala	Gly
5	Ser	Ser 450	Thr	Thr	Thr	Val	Lys 455	Ser	Thr	Thr	Thr	Thr 460	Pro	Thr	Thr	Thr
10	Ile 465	Lys	Ser	Thr	Thr	Thr 470	Thr	Pro	Val	Thr	Thr 475	Pro	Thr	Thr	Val	Lys 480
	Thr	Thr	Thr	Thr	Pro 485	Thr	Thr	Thr	Ala	Thr 490	Thr	Val	Lys	Ser	Thr 495	Thr
15	Thr	Thr	Ala	Gly 500	Pro	Thr	Pro	Thr	Ala 505	Val	Ala	Gly	Arg	Trp 510	Gln	Gln
20	Cys	Gly	Gly 515	Ile	Gly	Phe	Thr	Gly 520	Pro	Thr	Thr	Cys	Glu 525	Ala	Gly	Thr
25	Thr	Cys 530	Asn	Val	Leu	Asn	Pro 535	Tyr	Tyr	Ser	Gln	Cys 540	Leu			
	<210 <211 <211	L> ! 2> I	2 526 PRT	- omi ı	.mr.i	iros	aon a									
30	<213 <400		_	comiu	ım Vi	ires	cens									
35	Pro 1	Arg	Asp	Pro	Gly 5	Ala	Thr	Ala	Arg	Thr 10	Phe	Glu	Ala	Glu	Asp 15	Ala
	Thr	Leu	Ala	Gly 20	Thr	Asn	Val	Asp	Thr 25	Ala	Leu	Ser	Gly	Phe 30	Thr	Gly
40	Thr	Gly	Tyr 35	Val	Thr	Gly	Phe	Asp 40	Gln	Ala	Ala	Asp	Lys 45	Val	Thr	Phe
45	Thr	Val 50	Asp	Ser	Ala	Ser	Thr 55	Glu	Leu	Tyr	Asp	Leu 60	Ser	Ile	Arg	Val
50	Ala 65	Ala	Ile	Tyr	Gly	Asp 70	Lys	Arg	Thr	Ser	Val 75	Val	Leu	Asn	Gly	Gly 80
	Ala	Ser	Ser	Glu	Val 85	Tyr	Phe	Pro	Ala	Gly 90	Glu	Thr	Trp	Thr	Asn 95	Val
55	Ala	Ala	Gly	Gln 100	Leu	Leu	Leu	Asn	Gln 105	Gly	Ser	Asn	Thr	Ile 110	Asp	Ile

	Val	Ser	Asn 115	Trp	Gly	Trp	Tyr	Leu 120	Ile	Asp	Ser	Ile	Thr 125	Leu	Thr	Pro
5	Ser	Thr 130	Pro	Arg	Pro	Ala	His 135	Gln	Ile	Asn	Glu	Ala 140	Pro	Val	Asn	Ala
10	Ala 145	Ala	Asp	Lys	Asn	Ala 150	Lys	Ala	Leu	Tyr	Ser 155	Tyr	Leu	Arg	Ser	Ile 160
	Tyr	Gly	Lys	Lys	Ile 165	Leu	Ser	Gly	Gln	Gln 170	Glu	Leu	Ser	Leu	Ser 175	Asn
15	Trp	Ile	Ala	Gln 180	Gln	Thr	Gly	Lys	Thr 185	Pro	Ala	Leu	Val	Ser 190	Val	Asp
20	Leu	Met	Asp 195	Tyr	Ser	Pro	Ser	Arg 200	Val	Glu	Arg	Gly	Thr 205	Val	Gly	Thr
25	Ala	Val 210	Glu	Glu	Ala	Ile	Gln 215	His	His	Asn	Arg	Gly 220	Gly	Ile	Val	Ser
	Val 225	Leu	Trp	His	Trp	Asn 230	Ala	Pro	Thr	Gly	Leu 235	Tyr	Asp	Thr	Glu	Glu 240
30	His	Arg	Trp	Trp	Ser 245	Gly	Phe	Tyr	Thr	Ser 250	Ala	Thr	Asp	Phe	Asp 255	Val
35	Ala	Ala	Ala	Leu 260	Ser	Ser	Thr	Thr	Asn 265	Ala	Asn	Tyr	Thr	Leu 270	Leu	Ile
40	Arg	Asp	Ile 275	Asp	Ala	Ile	Ala	Val 280	Gln	Leu	Lys	Arg	Leu 285	Gln	Ser	Ala
40	Gly	Val 290	Pro	Val	Leu	Phe	A rg 295	Pro	Leu	His	Glu	Ala 300	Glu	Gly	Gly	Trp
45	Phe 305	Trp	Trp	Gly	Ala	Lys 310	Gly	Pro	Glu	Pro	Ala 315	Lys	Lys	Leu	Trp	Gly 320
50	Ile	Leu	Tyr	Asp	Arg 325	Val	Thr	Asn	His	His 330	Gln	Ile	Asn	Asn	Leu 335	Leu
	Trp	Val	Trp	Asn 340	Ser	Ile	Leu	Pro	Glu 3 4 5	Trp	Tyr	Pro	Gly	Asp 350	Ala	Thr
55	Val	Asp	Ile 355	Leu	Ser	Ala	Asp	Val 360	Tyr	Ala	Gln	Gly	Asn 365	Gly	Pro	Met

		hr Gln 70	Tyr	Asn	Gln	Leu 375	Ile	Glu	Leu	Gly	Lys 380	Asp	Lys	Lys	Met
5	Ile A 385	la Ala	Ala	Glu	Val 390	Gly	Ala	Ala	Pro	Leu 395	Pro	Asp	Leu	Leu	Gln 400
10	Ala T	yr Glu	Ala	His 405	Trp	Leu	Trp	Phe	Thr 410	Val	Trp	Gly	Asp	Ser 415	Phe
	Ile A	sn Asn	Ala 420	Asp	Trp	Asn	Ser	Leu 425	Asp	Thr	Leu	Lys	Lys 430	Val	Tyr
15	Thr S	er Asp 435	_	Val	Leu	Thr	Leu 440	Asp	Glu	Ile	Gln	Gly 445	Trp	Gln	Gly
20		hr Pro 50	Ser	Ala	Thr	Thr 455	Thr	Ser	Ser	Thr	Thr 460	Thr	Pro	Ser	Ala
25	Thr T	hr Thr	Thr	Thr	Thr 470	Pro	Ser	Thr	Thr	Ala 475	Thr	Thr	Ala	Thr	Pro 480
	Ser A	la Thr	Thr	Thr 485	Ala	Ser	Pro	Val	Thr 490	Tyr	Ala	Glu	His	Trp 495	Gly
30	Gln C	ys Ala	Gly 500	Lys	Gly	Trp	Thr	Gly 505	Pro	Thr	Thr	Cys	Arg 510	Pro	Pro
35	Tyr T	hr Cys 515		Tyr	Gln	Asn	Asp 520	Trp	Tyr	Ser	Gln	Cys 525	Leu		
40	<210><211><211><212><213>	3 452 PRT Preu	ssia	aemu	ılans	5									
45	<400> Gln T 1	3 hr Val	Ile	Tyr 5	Gln	Ala	Glu	Gln	Ala 10	Lys	Leu	Ser	Gly	Val 15	Thr
50	Val G	lu Phe	Ser 20	Ile	Ile	Lys	Gln	Val 25	Val	Gly	Thr	Gly	Tyr 30	Val	Glu
	Gly P	he Asp 35	Glu	Ser	Thr	Asp	Ser 40	Ile	Thr	Phe	Thr	Val 45	Glu	Ser	Thr
55	Thr A	la Ala O	Leu	Tyr	Asp	Leu 55	Ala	Leu	Thr	Tyr	Asn 60	Gly	Pro	Tyr	Gly

	Asp 65	Lys	Tyr	Thr	Asn	Val 70	Val	Leu	Asn	Asn	Ala 75	Ala	Gly	Ser	Gln	Val 80
5	Ser	Leu	Pro	Ala	Thr 85	Thr	Ala	Trp	Thr	Thr 90	Val	Pro	Ala	Gly	Gln 95	Val
10	Leu	Leu	Asn	Ala 100	Gly	Ala	Asn	Thr	Ile 105	Gln	Ile	Gln	Asn	Asn 110	Trp	Gly
	Trp	Tyr	Leu 115	Val	Asp	Ser	Ile	Ser 120	Leu	Lys	Pro	Ala	Ala 125	Thr	Arg	Gly
15	Ala	His 130	Gln	Ile	Thr	Thr	Lys 135	Pro	Val	Asn	Lys	Asn 140	Ala	Asn	Ser	Asp
20	Ala 145	Lys	Ala	Leu	Leu	Lys 150	Tyr	Leu	Gly	Ser	Ile 155	Tyr	Gly	Lys	Lys	Ile 160
25	Leu	Ser	Gly	Gln	Gln 165	Asp	Leu	Ser	Ser	Leu 170	Asp	Trp	Val	Thr	Lys 175	Asn
	Val	Gly	Lys	Thr 180	Pro	Ala	Val	Leu	Gly 185	Leu	Asp	Thr	Met	Asp 190	Tyr	Ser
30	Glu	Ser	Arg 195	Lys	Ser	Arg	Gly	Ala 200	Val	Ser	Thr	Asp	Val 205	Asp	Lys	Ala
35	Ile	Ala 210	Phe	Ala	Lys	Lys	Gly 215	Gly	Ile	Val	Thr	Phe 220	Cys	Trp	His	Trp
40	Gly 225	Ala	Pro	Thr	Gly	Leu 230	Phe	Asp	Ser	Ala	Ala 235	Gln	Pro	Trp	Tyr	Arg 240
	Gly	Phe	Tyr	Thr	Asp 245	Ala	Thr	Asp	Phe	Asn 250	Ile	Glu	Thr	Ala	Leu 255	Lys
45	Asp	Thr	Thr	Asn 260	Ala	Asn	Tyr	Thr	Leu 265	Leu	Met	Lys	Asp	Ile 270	Asp	Thr
50	Ile	Ala	Val 275	Gln	Leu	Lys	Lys	Leu 280	Gln	Asp	Ala	Gly	Val 285	Pro	Val	Ile
	Trp	Arg 290	Pro	Leu	His	Glu	Ala 295	Glu	Gly	Gly	Trp	Phe 300	Trp	Trp	Gly	Ala
55	Lys	Gly	Pro	Glu	Pro	Ala	Lys	Lys	Leu	Trp	Lys	Ile	Met	Tyr	Asp	Arg

	305	310	315 320
5	Leu Thr Asn Gln His		Val Trp Thr Trp Asn Ser 335
	Val Ala Pro Asn Trp 340	Tyr Pro Gly Asp Asp 345	Thr Val Asp Ile Val Ser 350
10	Ala Asp Thr Tyr Ser 355	Gln Gly Asp His Gly 360	Pro Ile Ser Ala Thr Tyr 365
15	Asn Asn Leu Leu Ala 370	Leu Thr Asn Asp Thr 375	Lys Ile Ile Ala Ala Ala 380
20	Glu Ile Gly Ser Val 385	Met Glu Pro Ala Gln 390	Leu Gln Ala Tyr Gln Ala 395 400
	Asp Trp Val Tyr Phe 405	Cys Val Trp Ser Gly 410	Glu Phe Ile Asp Gly Gly 415
25	Val Trp Asn Ser Leu 420	Asp Phe Leu Lys Lys 425	Val Tyr Asn Asp Pro Tyr 430
30	Val Leu Thr Leu Asp 435	Glu Ile Gln Gly Trp 440	Lys Thr Ala Arg Gly Lys 445
	Pro Arg Val Ser 450		
35	<210> 4 <211> 312 <212> PRT <213> Yunnania pen	icillata	
40	<400> 4		
	Ala Pro Ser Thr Thr 1 5	Pro Val Asn Glu Lys 10	Ala Thr Asp Ala Ala Lys 15
45	Asn Leu Leu Ser Tyr 20	Leu Val Glu Gln Ala 25	Ala Asn Gly Val Thr Leu 30
50	Ser Gly Gln Gln Asp 35	Leu Glu Ser Ala Gln 40	Trp Val Ser Asp Asn Val 45
55	Gly Lys Trp Pro Ala 50	Ile Leu Gly Ile Asp 55	Phe Met Asp Tyr Ser Pro
	Ser Arg Val Glu Tyr	Gly Ala Val Gly Ser	Thr Val Pro Asp Ala Ile

	65					70					75					80
5	Ser	Tyr	Asp	Ser	Asp 85	Gly	Gly	Ile	Val	Thr 90	Phe	Суз	Trp	His	Trp 95	Gly
10	Ser	Pro	Ser	Gly 100	Thr	Tyr	Asn	Thr	Thr 105	Asp	Gln	Pro	Trp	Trp 110	Ser	Asn
	Phe	Tyr	Thr 115	Glu	Ala	Thr	Ala	Phe 120	Asp	Ile	Ala	Ala	Ala 125	Met	Asp	Asp
15	Pro	Asp 130	Ser	Ala	Asp	Tyr	Asn 135	Leu	Leu	Val	Arg	Asp 140	Ile	Asp	Ala	Ile
20	Ser 145	Glu	Leu	Leu	Leu	Gln 150	Leu	Gln	Asp	Leu	Asp 155	Ile	Pro	Ile	Leu	Trp 160
25	Arg	Pro	Leu	His	Glu 165	Ala	Glu	Gly	Gly	Trp 170	Phe	Trp	Trp	Gly	A la 175	Lys
23	Gly	Pro	Glu	Ala 180	Cys	Ile	Ala	Leu	Tyr 185	Arg	Leu	Met	Phe	Asp 190	Arg	Met
30	Thr	Asn	His 195	His	Gly	Leu	Asn	Asn 200	Leu	Leu	Trp	Val	Trp 205	Asn	Ser	Val
35	Asp	Pro 210	Ser	Trp	Tyr	Pro	Gly 215	Asn	Asp	Val	Val	Asp 220	Ile	Val	Ser	Ala
	Asp 225		Tyr	Ala		Ala 230	Gly	Asp		Ser			Glu	Glu	Thr	Phe 240
40	Ala	Ser	Leu	Gln	Ser 245	Leu	Thr	Gly	Asp	Thr 250	Lys	Leu	Val	Ala	Leu 255	Gly
45	Glu	Val	Gly	Asn 260	Ile	Pro	Asp	Pro	Ala 265	Ser	Thr	Gly	Gly	Val 270	Ala	Asp
50	Trp	Ala	Tyr 275	Trp	Val	Thr	Trp	Asn 280	Gly	Asp	Phe	Ile	Lys 285	Gly	Glu	Asp
	Tyr	A sn 290	Pro	Leu	Glu	Tyr	Lys 295	Lys	Glu	Val	Phe	Ser 300	Ala	Glu	Asn	Ile
55	Ile 305	Thr	Arg	Asp	Glu	Val 310	Asp	Val								

	<213 <213 <213	L> 3 2> I	327 PRT Vyrot	heci	Lum :	rorio	lum									
5	<400)> !	5													
	Gly 1	Thr	Ile	Glu	Asn 5	Arg	Gln	Trp	Leu	Thr 10	Tyr	Asn	Pro	Val	Asp 15	Ser
10			_,	_,	~ 1		_		_	_	_	_		~ 3		~ 1
	Ата	АІа	rnr	20	GIU	АІа	Arg	Ala	25	ьеи	Arg	Tyr	TTE	30	Ser	GIN
15	Tyr	Gly	Trp 35	Arg	Tyr	Leu	Ser	Gly 40	Gln	Gln	Glu	Arg	Ala 45	Glu	Val	Gln
20	Trp	Leu 50	Lys	Ser	Asn	Ile	Gly 55	Lys	Thr	Pro	Ala	Ile 60	Gln	Gly	Ser	Asp
25	Leu 65	Ile	Asp	Tyr	Ser	Pro 70	Ser	Arg	Val	Ser	Tyr 75	Gly	Ala	Thr	Ser	Thr 80
-	Ala	Val	Glu	Asp	Ala 85	Ile	Ala	Phe	Asp	Arg 90	Gln	Gly	Gly	Ile	Val 95	Thr
30	Phe	Thr	Trp	His 100	Trp	Asn	Ala	Pro	Asn 105	Cys	Leu	Tyr	Asn	Ser 110	Ala	Asp
35	Gln	Pro	Trp 115	Tyr	Phe	Gly	Phe	Tyr 120	Thr	Lys	Ala	Thr	Cys 125	Phe	Asn	Ile
40	Gln	Ala 130	Ala	Leu	Ala	Gln	Gly 135	Ser	Asn	Gly	Ala	Asp 140	Tyr	Lys	Leu	Leu
	Ile 145	Arg	Asp	Ile	Asp	Ala 150	Ile	Ala	Val	Gln	Leu 155	Lys	Arg	Leu	Arg	Asp 160
45	Ala	Lys	Val	Pro	Ile 165	Leu	Phe	Arg	Pro	Leu 170	His	Glu	Pro	Asp	Gly 175	Ala
50	Trp	Phe	Trp	Trp 180	Gly	Ala	Lys	Gly	Ser 185	Gly	Pro	Phe	Lys	Gln 190	Leu	Trp
	Asp	Ile	Leu 195	Tyr	Asp	Arg	Leu	Thr 200	Lys	Tyr	His	Gly	Leu 205	His	Asn	Met
55	Leu	Trp 210	Val	Cys	Asn	Thr	Glu 215	Lys	Ser	Asp	Trp	Tyr 220	Pro	Gly	Asn	Asn

	1ys 225	Cys	Asp	TTE	Ата	230	Thr	Asp	Val	Tyr	Val 235	Asn	Ala	GTA	Asp	H1S 240
5	Ser	Val	Gln	Lys	Ser 245	His	Trp	Asp	Ala	Leu 250	Tyr	Gly	Val	Ser	Gly 255	Gly
10	Gln	Arg	Ile	Leu 260	Ala	Leu	Gly	Glu	Val 265	Gly	Val	Ile	Pro	Asp 270	Pro	Glu
	Arg	Gln	Ala 275	Ser	Glu	Asn	Val	Pro 280	Trp	Ala	Tyr	Trp	Met 285	Thr	Trp	Asn
15	Gly	Tyr 290	Phe	Ile	Arg	Asp	Gly 295	Asn	Tyr	Asn	Ser	Arg 300	Asn	Phe	Leu	Gln
20	Ser 305	Thr	Phe	Ser	Asn	A la 310	Arg	Val	Val	Thr	Leu 315	Asp	Gly	Thr	Ser	Pro 320
25	Leu	Gly	Asn	Trp	Lys 325	Ser	Ser									
	<210 <211 <212	L> 1	5 LO9 PRT													
30	<213			llus	lich	enii	formi	İs								
30		3> I	Bacil	llus	lich	nenii	formi	is								
30 35	<213	3> E)> (Bacil	llus Asp					Phe	Pro 10	Ala	Ser	Arg	Tyr	Pro 15	Glu
	<213 <400 Ala 1	3>	Bacil S Tyr		Asp 5	Val	Leu	Tyr		10					15	
	<213 <400 Ala 1 Thr	3>	Bacil Tyr Ala	Asp	Asp 5	Val Ser	Leu Asp	Tyr Ala	I1e 25	10 Lys	Ala	Gly	His	A la 30	15 Asp	Val
35	<213 <400 Ala 1 Thr	3> i)> (Arg Gly	Tyr Ala Ile 35	Asp His 20	Asp 5 Ile Arg	Val Ser Ser	Leu Asp Gly	Tyr Ala Ala 40	Ile 25 Asp	10 Lys Lys	Ala Arg	Gly Arg	His Gln 45	Ala 30 Glu	15 Asp Ser	Val Leu
35 40	<213 <400 Ala 1 Thr Cys	3> I 0> G Arg Gly Thr	Tyr Ala Ile 35	Asp His 20 Glu	Asp 5 Ile Arg	Val Ser Ser Lys	Leu Asp Gly Pro 55	Tyr Ala Ala 40	Ile 25 Asp	10 Lys Lys Asp	Ala Arg	Gly Arg Asp 60	His Gln 45 Glu	Ala 30 Glu Trp	15 Asp Ser	Val Leu Met
35 40 45	<213 <400 Ala 1 Thr Cys Lys Ala 65	3> F D> 6 Arg Gly Thr Gly 50	Tyr Ala Ile 35 Ile	Asp His 20 Glu Pro	Asp 5 Ile Arg Thr	Val Ser Ser Lys Gly	Leu Asp Gly Pro 55	Tyr Ala Ala 40 Gly	Ile 25 Asp Phe	10 Lys Lys Asp	Ala Arg Arg Ser 75	Gly Arg Asp 60 Val	His Gln 45 Glu Arg	Ala 30 Glu Trp	Asp Ser Pro	Val Leu Met Ser 80

	<210 <211 <212 <213	L> : 2> I	7 109 PRT Bacil	.lus	subt	ilis	3									
5	<400)> '	7													
	Ala 1	Ser	Ser	Tyr	Asp 5	Lys	Val	Leu	Tyr	Phe 10	Pro	Leu	Ser	Arg	Tyr 15	Pro
10	Glu	Thr	Gly	Ser 20	His	Ile	Arg	Asp	Ala 25	Ile	Ala	Glu	Gly	His 30	Pro	Asp
15	Ile	Cys	Thr 35	Ile	Asp	Asp	Gly	Ala 40	Asp	Lys	Arg	Arg	Glu 45	Glu	Ser	Leu
20	Lys	Gly 50	Ile	Pro	Thr	Lys	Pro 55	Gly	Tyr	Asp	Arg	Asp 60	Glu	Trp	Pro	Met
	Ala 65	Val	Суз	Glu	Glu	Gly 70	Gly	Ala	Gly	Ala	Asp 75	Val	Arg	Tyr	Val	Thr 80
25	Pro	Ser	Asp	Asn	Arg 85	Gly	Ala	Gly	Ser	Trp 90	Val	Gly	Asn	Gln	Met 95	Ser
30	Ser	Tyr	Pro	Asp 100	Gly	Thr	Arg	Val	Leu 105	Phe	Ile	Val	Gln			
35	<210 <211 <212 <213	L> : 2> I	8 109 PRT Bacil	.lus	lich	nenii	Formi	is								
	<400			_	_		_	_	_,	_		_	_	_	_	
40	Ala 1	Arg	Tyr	Asp	Asp 5	IIe	Leu	Tyr	Phe	Pro 10	Ala	Ser	Arg	Tyr	Pro 15	GLu
	Thr	Gly	Ala	His 20	Ile	Ser	Asp	Ala	Ile 25	Lys	Ala	Gly	His	Ser 30	Asp	Val
45	Cys	Thr	Ile 35	Glu	Arg	Ser	Gly	Ala 40	Asp	Lys	Arg	Arg	Gln 45	Glu	Ser	Leu
50	Lys	Gly 50	Ile	Pro	Thr	Lys	Pro 55	Gly	Phe	Asp	Arg	Asp 60	Glu	Trp	Pro	Met
55	Ala 65	Met	Cys	Glu	Glu	Gly 70	Gly	Lys	Gly	Ala	Ser 75	Val	Arg	Tyr	Val	Ser 80
	Ser	Ser	Asp	Asn	Arg	Gly	Ala	Gly	Ser	Trp	Val	Gly	Asn	Arg	Leu	Ser

5	Gly	Phe	Ala	Asp 100	Gly	Thr	Arg	Ile	Leu 105	Phe	Ile	Val	Gln			
10	<210 <211 <212 <213	L> 2 2> E	9 204 PRT Asper	rgill	lus (oryza	ae									
	<400)> 9	9													
15	Lys 1	Thr	Gly	Ser	Gly 5	Asp	Ser	Gln	Ser	Asp 10	Pro	Ile	Lys	Ala	Asp 15	Leu
	Glu	Val	Lys	Gly 20	Gln	Ser	Ala	Leu	Pro 25	Phe	Asp	Val	Asp	Cys 30	Trp	Ala
20	Ile	Leu	Cys 35	Lys	Gly	Ala	Pro	Asn 40	Val	Leu	Gln	Arg	Val 45	Asn	Glu	Lys
25	Thr	Lys 50	Asn	Ser	Asn	Arg	Asp 55	Arg	Ser	Gly	Ala	Asn 60	Lys	Gly	Pro	Phe
30	Lys 65	Asp	Pro	Gln	Lys	Trp 70	Gly	Ile	Lys	Ala	Leu 75	Pro	Pro	Lys	Asn	Pro 80
	Ser	Trp	Ser	Ala	Gln 85	Asp	Phe	Lys	Ser	Pro 90	Glu	Glu	Tyr	Ala	Phe 95	Ala
35	Ser	Ser	Leu	Gln 100	Gly	Gly	Thr	Asn	Ala 105	Ile	Leu	Ala	Pro	Val 110	Asn	Leu
40	Ala	Ser	Gln 115	Asn	Ser	Gln	Gly	Gly 120	Val	Leu	Asn	Gly	Phe 125	Tyr	Ser	Ala
	Asn	Lys 130	Val	Ala	Gln	Phe	Asp 135	Pro	Ser	Lys	Pro	Gln 140	Gln	Thr	Lys	Gly
45	Thr 145	Trp	Phe	Gln	Ile	Thr 150	Lys	Phe	Thr	Gly	Ala 155	Ala	Gly	Pro	Tyr	Cys 160
50	Lys	Ala	Leu	Gly	Ser 165	Asn	Asp	Lys	Ser	Val 170	Cys	Asp	Lys	Asn	Lys 175	Asn
55	Ile	Ala	Gly	Asp 180	Trp	Gly	Phe	Asp	Pro 185	Ala	Lys	Trp	Ala	Tyr 190	Gln	Tyr
	Asp	Glu	Lys	Asn	Asn	Lys	Phe	Asn	Tyr	Val	Gly	Lys				

5	<210 <211 <212 <213	L> 2> :	10 188 PRT Tricl	node	rma l	narzi	ianur	n								
	<400)>	10													
10	Ala 1	Pro	Ala	Pro	Met 5	Pro	Thr	Pro	Pro	Gly 10	Ile	Pro	Thr	Glu	Ser 15	Ser
15	Ala	Arg	Thr	Gln 20	Leu	Ala	Gly	Leu	Thr 25	Val	Ala	Val	Ala	Gly 30	Ser	Gly
	Thr	Gly	Tyr 35	Ser	Arg	Asp	Leu	Phe 40	Pro	Thr	Trp	Asp	Ala 45	Ile	Ser	Gly
20	Asn	Суs 50	Asn	Ala	Arg	Glu	Tyr 55	Val	Leu	Lys	Arg	Asp 60	Gly	Glu	Gly	Val
25	Gln 65	Val	Asn	Asn	Ala	Cys 70	Glu	Ser	Gln	Ser	Gly 75	Thr	Trp	Ile	Ser	Pro 80
30	Tyr	Asp	Asn	Ala	Ser 85	Phe	Thr	Asn	Ala	Ser 90	Ser	Leu	Asp	Ile	Asp 95	His
	Met	Val	Pro	Leu 100	Lys	Asn	Ala	Trp	Ile 105	Ser	Gly	Ala	Ser	Ser 110	Trp	Thr
35	Thr	Ala	Gln 115	Arg	Glu	Ala	Leu	Ala 120	Asn	Asp	Val	Ser	Arg 125	Pro	Gln	Leu
40	Trp	Ala 130	Val	Ser	Ala	Ser	Ala 135	Asn	Arg	Ser	Lys	Gly 140	Asp	Arg	Ser	Pro
45	Asp 145	Gln	Trp	Lys	Pro	Pro 150	Leu	Thr	Ser	Phe	Tyr 155	Суз	Thr	Tyr	Ala	Lys 160
40	Ser	Trp	Ile	Asp	Val 165	Lys	Ser	Phe	Tyr	Lys 170	Leu	Thr	Ile	Thr	Ser 175	Ala
50	Glu	Lys	Thr	Ala 180	Leu	Ser	Ser	Met	Leu 185	Asp	Thr	Cys				
55	<210 <211 <212 <213	L> 2> :	11 361 PRT Aggre	egat:	ibact	cer a	actir	nomyo	ceter	ncomi	itans	5				

	<400)> :	L1													
5	Asn 1	Cys	Cys	Val	Lys 5	Gly	Asn	Ser	Ile	Tyr 10	Pro	Gln	Lys	Thr	Ser 15	Thr
	Lys	Gln	Thr	Gly 20	Leu	Met	Leu	Asp	Ile 25	Ala	Arg	His	Phe	Tyr 30	Ser	Pro
10	Glu	Val	Ile 35	Lys	Ser	Phe	Ile	Asp 40	Thr	Ile	Ser	Leu	Ser 45	Gly	Gly	Asn
15	Phe	Leu 50	His	Leu	His	Phe	Ser 55	Asp	His	Glu	Asn	Tyr 60	Ala	Ile	Glu	Ser
20	His 65	Leu	Leu	Asn	Gln	Arg 70	Ala	Glu	Asn	Ala	V al 75	Gln	Gly	Lys	Asp	Gly 80
20	Ile	Tyr	Ile	Asn	Pro 85	Tyr	Thr	Gly	Lys	Pro 90	Phe	Leu	Ser	Tyr	Arg 95	Gln
25	Leu	Asp	Asp	Ile 100	Lys	Ala	Tyr	Ala	Lys 105	Ala	Lys	Gly	Ile	Glu 110	Leu	Ile
30	Pro	Glu	Leu 115	Asp	Ser	Pro	Asn	His 120	Met	Thr	Ala	Ile	Phe 125	Lys	Leu	Val
	Gln	Lys 130	Asp	Arg	Gly	Val	Lys 135	Tyr	Leu	Gln	Gly	Leu 140	Lys	Ser	Arg	Gln
35	Val 145	Asp	Asp	Glu	Ile	Asp 150	Ile	Thr	Asn	Ala	Asp 155	Ser	Ile	Thr	Phe	Met 160
40	Gln	Ser	Leu	Met	Ser 165	Glu	Val	Ile	Asp	Ile 170	Phe	Gly	Asp	Thr	Ser 175	Gln
	His	Phe	His	Ile 180	Gly	Gly	Asp	Glu	Phe 185	Gly	Tyr	Ser	Val	Glu 190	Ser	Asn
45	His	Glu	Phe 195	Ile	Thr	Tyr	Ala	Asn 200	Lys	Leu	Ser	Tyr	Phe 205	Leu	Glu	Lys
50	Lys	Gly 210	Leu	Lys	Thr	Arg	Met 215	Trp	Asn	Asp	Gly	Leu 220	Ile	Lys	Asn	Thr
55	Phe 225	Glu	Gln	Ile	Asn	Pro 230	Asn	Ile	Glu	Ile	Thr 235	Tyr	Trp	Ser	Tyr	Asp 240
	Gly	Asp	Thr	Gln	Asp	Lys	Asn	Glu	Ala	Ala	Glu	Arg	Arg	Asp	Met	Arg

					243					250					255	
5	Val	Ser	Leu	Pro 260	Glu	Leu	Leu	Ala	Lys 265	Gly	Phe	Thr	Val	Leu 270	Asn	Tyr
	Asn	Ser	Tyr 275	Tyr	Leu	Tyr	Ile	Val 280	Pro	Lys	Ala	Ser	Pro 285	Thr	Phe	Ser
10	Gln	Asp 290	Ala	Ala	Phe	Ala	Ala 295	Lys	Asp	Val	Ile	Lys 300	Asn	Trp	Asp	Leu
15	Gly 305	Val	Trp	Asp	Gly	Arg 310	Asn	Thr	Lys	Asn	A rg 315	Val	Gln	Asn	Thr	His 320
20	Glu	Ile	Ala	Gly	Ala 325	Ala	Leu	Ser	Ile	Trp 330	Gly	Glu	Asp	Ala	Lys 335	Ala
	Leu	Lys	Asp	Glu 340	Thr	Ile	Gln	Lys	Asn 345	Thr	Lys	Ser	Leu	Leu 350	Glu	Ala
25	Val	Ile	His 355	Lys	Thr	Asn	Gly	Asp 360	Glu							
30	<210 <210 <210	1> / 2> 1	12 463 PRT													
	<213	3> ;	Stre	ptomy	ces	dava	awens	sis								
	<21: <400		Stre <u>r</u> 12	ptomy	yces	dava	awens	sis								
35	<40	0> :							Gly	Thr 10	Arg	Туг	Gly	Thr	Trp 15	Glu
35 40	<400 Asp 1	0> : Ala	12	Ile	Val 5	Ile	Asn	Pro	_	10	_		_		15	
	<400 Asp 1	0> : Ala Trp	12 Thr	Ile Thr 20	Val 5	Ile Leu	Asn Ala	Pro Trp	Trp 25	10 Gly	Asn	Val	Phe	Gly 30	15 Thr	Arg
	<400 Asp 1 Gly	Ala Trp	Thr Gly	Ile Thr 20	Val 5 Ser Asp	Ile Leu Leu	Asn Ala Phe	Pro Trp Phe 40	Trp 25 Thr	10 Gly Thr	Asn Lys	Val Ser	Phe Val 45	Gly 30 Thr	Thr	Arg Asn
40	<400 Asp 1 Gly Asp	Ala Trp Asp Thr	Thr Gly Phe 35	Thr 20 Ala	Val 5 Ser Asp	Ile Leu Leu	Asn Ala Phe Leu 55	Pro Trp Phe 40 Gly	Trp 25 Thr	Gly Thr	Asn Lys Ile	Val Ser Ala	Phe Val 45	Gly 30 Thr	Thr Tyr Asn	Arg Asn Leu
40 45	<400 Asp 1 Gly Asp Gly 65	Ala Trp Asp Thr 50	Thr Gly Phe 35	Thr 20 Ala Leu	Val 5 Ser Asp Pro	Ile Leu Gly Asn 70	Asn Ala Phe Leu 55	Pro Trp Phe 40 Gly	Trp 25 Thr Leu	Gly Thr Asn	Asn Lys Ile Glu 75	Val Ser Ala 60	Phe Val 45 Arg	Gly 30 Thr Tyr	Thr Tyr Asn Lys	Arg Asn Leu Ser 80

5	Thr	Gln	Arg 115	Ala	Met	Leu	Val	Lys 120	Ala	Thr	Gln	Arg	Gly 125	Ala	Val	Thr
10	Glu	Leu 130	Phe	Ala	Asn	Ser	Pro 135	Met	Trp	Trp	Met	Cys 140	Tyr	Asn	His	Asn
	Pro 145	Ser	Gly	Ala	Ala	Asp 150	Gly	Gly	Asn	Asn	Leu 155	Gln	Thr	Trp	Asn	Tyr 160
15	Arg	Gln	His	Ala	Ser 165	His	Leu	Ala	Ala	Val 170	Ala	Leu	Tyr	Ala	Arg 175	Thr
20	Asn	Trp	Gly	Val 180	Asn	Phe	Ala	Thr	Val 185	Asp	Pro	Phe	Asn	Glu 190	Pro	Ala
25	Ser	Ser	Trp 195	Trp	Thr	Ala	Ser	Gly 200	Thr	Gln	Glu	Gly	Cys 205	His	Leu	Asp
25	Pro	Ala 210	Val	Gln	Ala	Ala	Val 215	Leu	Pro	Tyr	Met	Arg 220	Ser	Glu	Leu	Asp
30	Lys 225	Arg	Gly	Leu	Thr	Gly 230	Val	Arg	Ile	Ser	Ala 235	Ser	Asp	Glu	Thr	Asn 240
35	Tyr	Asp	Thr	Ala	Arg 245	Ser	Thr	Trp	Ser	Ser 250	Phe	Gly	Ser	Ala	Thr 255	Lys
	Ala	Leu	Val	Ser 260	Gln	Val	Asn	Val	His 265	Gly	Tyr	Gln	Gly	Thr 270	Gly	Gly
40	Arg	Arg	Asp 275	Leu	Leu	Tyr	Thr	Asp 280	Val	Val	Thr	Thr	Ser 285	Gly	Lys	Lys
45	Leu	Trp 290	Asn	Ser	Glu	Thr	Gly 295	Asp	Ser	Asp	Gly	Thr 300	Gly	Leu	Ser	Met
50	Ala 305	Arg	Asn	Leu	Cys	Tyr 310	Asp	Phe	Arg	Trp	Leu 315	His	Pro	Thr	Ala	Trp 320
	Cys	Tyr	Trp	Gln	Val 325	Met	Asp	Pro	Ser	Thr 330	Gly	Trp	Ala	Met	Ile 335	Ala
55	Tyr	Asp	Ala	Asn 340	Thr	Leu	Gln	Pro	Thr 345	Thr	Val	Gln	Pro	Lys 350	Tyr	Tyr

	vai	Met	355	GIn	Phe	Ser	Arg	360	Ile	Arg	Pro	GTĀ	Met 365	Thr	Ile	Leu
5	Asp	Thr 370	Gly	Val	Ser	Phe	Ala 375	Ala	Ala	Ala	Tyr	Asp 380	Ala	Ser	Ala	Arg
10	Arg 385	Leu	Val	Leu	Val	Ala 390	Val	Asn	Thr	Ser	Thr 395	Ser	Pro	Gln	Thr	Phe 400
	Thr	Phe	Asp	Leu	Ser 405	Arg	Phe	Thr	Thr	Val 410	Thr	Gly	Gly	Ser	Gly 415	Gly
15	Leu	Val	Pro	Arg 420	Trp	Asn	Thr	Val	Thr 425	Gly	Gly	Gly	Asp	Met 430	Tyr	Arg
20	Ala	Tyr	Thr 435	Asn	Thr	Tyr	Val	Thr 440	Gly	Lys	Ser	Val	Ser 445	Ala	Thr	Phe
25	Ala	Ala 450	Gly	Ser	Val	Gln	Thr 455	Leu	Gln	Val	Asp	Gly 460	Val	Thr	Thr	
	<210 <211 <212	L> 4	.3 164 PRT													
30	<213			otomy	ces	avei	miti	ilis								
30	<213	3> \$		otomy	rces	avei	rmiti	ilis								
30	<400	3>	Strep .3					ilis Pro	Ser	Thr 10	Thr	Tyr	Gly	Lys	Trp 15	Glu
	<400 Asp 1	3>	Strep .3 Thr	Ile	Ala 5	Val	Asn			10				_	15	
	<400 Asp 1	3>	Streg .3 Thr Gly	Ile Thr 20	Ala 5 Ser	Val Leu	Asn Ala	Pro	Trp 25	10 Ala	Asn	Val	Phe	Gly 30	15 Ala	Arg
35	<400 Asp 1 Gly Asp	3> S Ala Trp Asp	.3 Thr Gly Phe 35	Thr 20	Ala 5 Ser Asp	Val Leu Leu	Asn Ala Phe	Pro Trp	Trp 25 Thr	10 Ala Thr	Asn Lys	Val Ser	Phe Val 45	Gly 30	15 Ala Tyr	Arg Asn
35 40	<400 Asp 1 Gly Asp	Asp Arg	Streg .3 Thr Gly Phe 35	Thr 20 Ala	Ala 5 Ser Asp	Val Leu Leu Gly	Asn Ala Phe Leu 55	Pro Trp Phe 40	Trp 25 Thr	10 Ala Thr Asn	Asn Lys Ile	Val Ser Ala	Phe Val 45	Gly 30 Thr	Ala Tyr Asn	Arg Asn Leu
35 40 45	<400 Asp 1 Gly Asp Gly 65	Asp Arg 50 Ala	Thr Gly Phe 35 Thr	Thr 20 Ala Leu	Ala 5 Ser Asp Pro	Val Leu Gly Asn 70	Asn Ala Phe Leu 55	Pro Trp Phe 40	Trp 25 Thr Leu Ser	10 Ala Thr Asn	Asn Lys Ile Glu 75	Val Ser Ala 60 Ser	Phe Val 45 Arg	Gly 30 Thr Tyr	Ala Tyr Asn	Arg Asn Leu Ser 80

	Ala	Gln	Arg 115	Thr	Met	Leu	Val	Lys 120	Ala	Thr	Ala	Arg	Gly 125	Ala	Thr	Thr
5	Glu	Leu 130	Phe	Ala	Asn	Ser	Pro 135	Met	Trp	Trp	Met	Cys 140	Leu	Asn	His	Asn
10	Pro 145	Ser	Gly	Ala	Ser	Gly 150	Gly	Gly	Asn	Asn	Leu 155	Gln	Ser	Trp	Asn	Tyr 160
	Arg	Gln	His	Ala	Ser 165	His	Leu	Ala	Ala	Val 170	Ala	Leu	Tyr	Ala	Lys 175	Ser
15	Asn	Trp	Gly	Val 180	Asn	Phe	Ala	Thr	Val 185	Asp	Pro	Phe	Asn	Glu 190	Pro	Ser
20	Ser	Ser	Trp 195	Trp	Thr	Ala	Thr	Gly 200	Thr	Gln	Glu	Gly	Cys 205	His	Met	Asp
25	Ala	Ser 210	Val	Gln	Ala	Ala	Val 215	Leu	Pro	Tyr	Leu	Arg 220	Ser	Glu	Leu	Asp
	Arg 225	Arg	Gly	Leu	Thr	Gly 230	Thr	Lys	Ile	Ser	Ala 235	Ser	Asp	Glu	Thr	Ser 240
30	Tyr	Asp	Leu	Ala	Arg 245	Thr	Thr	Trp	Gly	Ser 250	Phe	Gly	Ser	Ser	Thr 255	Lys
35	Ala	Leu	Val	Asn 260	Arg	Val	Asn	Val	His 265	Gly	Tyr	Gln	Gly	Ser 270	Gly	Gly
40	Arg	Arg	Asp 275	Leu	Leu	Tyr	Thr	_		Val		Thr	Ala 285	Gly	Lys	Ala
40	Leu	Trp 290	Asn	Ser	Glu	Thr	Gly 295	Asp	Ser	Asp	Gly	Thr 300	Gly	Leu	Thr	Leu
45	Ala 305	Ser	Asn	Leu	Cys	Leu 310	Asp	Phe	Arg	Trp	Leu 315	His	Pro	Thr	Ala	Trp 320
50	Val	Tyr	Trp	Gln	Val 325	Met	Asp	Pro	Ser	Ser 330	Gly	Trp	Ala	Met	Ile 335	Ala
	Tyr	Asp	Ala	Ser 340	Thr	Leu	Gln	Pro	Gly 345	Ala	Val	Gln	Thr	Lys 350	Tyr	Tyr
55	Val	Met	Ala 355	Gln	Phe	Ser	Arg	His 360	Ile	Arg	Ala	Gly	Met 365	Thr	Ile	Val

	Asp Thr Gly Va 370	l Gly Tyr	Ala Ala Ala 375	Ala Tyr Asp 380	Ala Thr Ala Arg
5	Arg Leu Val II 385	e Val Ala 390	Val Asn Thr	Ser Thr Ser 395	Ala Gln Thr Leu 400
10	Thr Phe Asp Le	u Ser Arg 405	Phe Ser Thr	Val Thr Gly 410	Gly Thr Gly Gly 415
	Leu Val Arg Aı 42		Thr Val Thr 425	Gly Gly Gly	Gly Asp Leu Tyr 430
15	Ala Ala His Se 435	r Asp Thr	Tyr Leu Ser 440	Gly Lys Ser	Leu Ser Val Pro 445
20	Phe Ala Ala Gl 450	_	Gln Thr Leu 455	Glu Val Asp 460	Gly Val Thr Val
25	<210> 14 <211> 458 <212> PRT <213> Trichoo	erma harzi	.anum		
	<400> 14				
30	Asp Thr Thr Le	u Ser Ile 5	Asp Pro Thr	Ser Asn Trp 10	Gly Thr Trp Glu 15
35	Gly Trp Gly Va		Ala Trp Trp 25	Ala Lys Ala	Phe Gly Asn Arg
	Asp Asp Leu Al	a Asn Val	Phe Phe Thr 40	Arg Asn Asn	Gln Val Ile Asn 45
40	Gly Gln Asn Le	u Pro Gly	Leu Gly Phe 55	Asn Ile Ala 60	Arg Tyr Asn Ala
45	Gly Ala Cys Se 65	r Thr Asn 70	Thr Tyr Asn	Gly Ser Ser 75	Met Val Val Ser 80
50	Ser Ser Ile Ly	s Pro Ser 85	Arg Gln Val	Asp Gly Tyr 90	Trp Leu Asp Trp 95
	Ala Ser Thr As		Ser Ser Ser 105	Trp Asn Trp	Asn Val Asp Ala 110
55	Asn Gln Arg Al 115	a Met Leu	Gln Lys Ala 120	Lys Ala Asn	Gly Ala Asn Ile 125

	Phe	Glu 130	Leu	Phe	Ser	Asn	Ser 135	Pro	Met	Trp	Trp	Met 140	Cys	Leu	Asn	His
5	Asn 145	Pro	Ser	Gly	Ser	Gly 150	Ser	Ser	Asp	Asn	Leu 155	Gln	Ser	Trp	Asn	Tyr 160
10	Gln	Asn	His	Ala	Val 165	Tyr	Leu	Ala	Asn	Ile 170	Ala	Gln	His	Ala	Gln 175	Gln
45	Asn	Trp	Gly	Ile 180	Gln	Phe	Gln	Ser	Val 185	Glu	Ala	Phe	Asn	Glu 190	Pro	Ser
15	Ser	Gly	Trp 195	Gly	Pro	Thr	Gly	Thr 200	Gln	Glu	Gly	Cys	His 205	Phe	Ala	Val
20	Ser	Thr 210	Met	Ala	Thr	Val	Ile 215	Gly	Tyr	Leu	Asn	Thr 220	Glu	Leu	Ala	Gln
25	Arg 225	Gly	Leu	Ser	Ser	Phe 230	Ile	Ser	Ala	Ser	Asp 235	Glu	Thr	Ser	Tyr	Asp 240
	Leu	Ala	Ile	Ser	Thr 245	Trp	Gln	Gly	Leu	Gly 250	Ser	Ser	Ala	Gln	As n 255	Ala
30	Val	Lys	Arg	Val 260	Asn	Val	His	Gly	Tyr 265	Gln	Gly	Gly	Gly	Gly 270	Arg	Arg
35	Asp	Thr	Leu 275	Tyr	Ser	Leu	Val	Ser 280	Gln	Ala	Gly	Lys	Arg 285	Leu	Trp	Asn
40	Ser	Glu 290	Tyr	Gly	Asp	Ala				Gly	_	Ser 300	Met	Tyr	Thr	Asn
	Leu 305	Leu	Leu	Asp	Phe	Thr 310	Trp	Leu	His	Pro	Thr 315	Ala	Trp	Val	Tyr	Trp 320
45	Gln	Ala	Ile	Asp	Gly 325	Ser	Gly	Trp	Gly	Leu 330	Ile	Val	Gly	Asp	Asn 335	Asp
50	Gln	Leu	Thr	Leu 340	Ser	Ser	Ala	Ser	Thr 345	Lys	Tyr	Phe	Val	Leu 350	Ala	Gln
	Leu	Thr	Arg 355	His	Ile	Arg	Pro	Gly 360	Met	Gln	Ile	Leu	Thr 365	Thr	Pro	Asp
55	Gly	Asn 370	Thr	Val	Ala	Ala	Tyr 375	Asp	Ser	Gly	Ser	Gln 380	Lys	Leu	Val	Ile

Val Ala Ala Asn Trp Gly Ser Ala Gln Thr Ile Thr Phe Asp Leu Thr 385 390 395 400

Arg Ala Lys Thr Ala Gly Ser Asn Gly Ala Thr Val Pro Arg Trp Ser 405 410 415

Thr Gln Thr Ser Gly Gly Asp Gln Tyr Lys Ser Tyr Ser Asp Thr Lys
420 425 430

Ile Asn Asn Gly Lys Phe Ser Val Ser Phe Ser Thr Gly Gln Val Gln 435 440 445

Thr Phe Glu Ile Ser Gly Val Val Leu Lys 450 455

Claims

5

10

15

20

25

30

35

50

55

- 1. A cleaning composition comprising a mannanase enzyme comprising a polypeptide having mannan endo-1,4-beta-mannosidase activity (EC 3.2.1 .78) that catalyzes the hydrolysis of 1 ,4-3-D-mannosidic linkages in mannans, galactomannans and/or glucomannans; and an amine selected from the group consisting of etheramines, cyclic amines, polyamines, oligoamines, and combinations thereof.
- **2.** A cleaning composition according to claim 1 wherein the mannansase enzyme is a member of glycoside hydrolase family 26.
- 3. A cleaning composition comprising a mannanase enzyme having at least 60% sequence identity to SEQ ID NO:1, and/or having at least 81% sequence identity to SEQ ID NO: 2 and/or having at least 75% identity to SEQ ID NO: 3, and/or having at least 65% identity to SEQ ID NO: 4, and/or having at least 75% identity to SEQ ID NO: 5; and an amine selected from the group consisting of etheramines, cyclic amines, polyamines, oligoamines, and combinations thereof.
- **4.** A cleaning composition according to any preceding claim, wherein the composition further comprises a β-N-acetylglu-cosaminidase enzyme from E.C. 3.2.1.52, preferably an enzyme having at least 70% identity to SEQ ID NO:11.
- **5.** A cleaning composition according to any preceding claim, wherein the amine is selected from the group consisting of oligoamines, etheramines, cyclic amines, and combinations thereof, more preferably wherein the amine is an etheramine, more preferably wherein the etheramine is a polyetheramine.
- **6.** A cleaning composition according to claim 5, wherein the polyetheramine is selected from the group consisting of poly etheramines of Formula (I), Formula (II), and mixtures thereof:

$$Z_{1}-A_{1} + OA_{2} + OA_{3} + OA_{3$$

Formula (I)

$$\begin{array}{c} (A_{7}O) \xrightarrow{(x_{1}-1)+(y_{1}-1)+1} (A_{8}O) \xrightarrow{(x_{1}-1)+(y_{1}-1)+1} A_{9}-Z_{4} \\ R_{7} \xrightarrow{Z_{3}} O \xrightarrow{R_{12}} R_{11} \\ R_{8} \xrightarrow{R_{9}} R_{10}^{R_{11}} \end{array}$$

Formula (II)

wherein each of R_1 - R_{12} is independently selected from H, alkyl, cycloalkyl, aryl, alkylaryl, or arylalkyl, wherein at least one of R_1 - R_6 and at least one of R_7 - R_{12} is different from H, each of A_1 - A_9 is independently selected from linear or branched alkylenes having about 2 to about 18 carbon atoms, each of Z_1 - Z_4 is independently selected from OH or NH₂, wherein at least one of Z_1 - Z_2 and at least one of Z_3 - Z_4 is NH₂, wherein the sum of x+y is in the range of about 2 to about 200, wherein $x_1 \ge 1$ and $x_2 \ge 1$ and $x_3 \ge 1$ and $x_4 \ge 1$;

Formula (III)

wherein

5

10

15

20

25

30

35

40

45

50

R is selected from H or a C1-C6 alkyl group, each of k_1 , k_2 , and k_3 is independently selected from 0, 1, 2, 3, 4, 5, or 6, each of A_1 , A_2 , A_3 , A_4 , A_5 , and A_6 is independently selected from a linear or branched alkylene group having from about 2 to about 18 carbon atoms or mixtures thereof, $x \ge 1$, $y \ge 1$, and $z \ge 1$, and the sum of $z \ge 1$, and the sum of $z \ge 1$ is in the range of from about 3 to about 100, each of $z \ge 1$, and $z \ge 1$,

- and the polyetheramine has a weight average molecular weight of from about 150 to about 1000 grams/mole.
- 7. A composition according to claim 6, wherein in said polyetheramine of Formula (I) or Formula (II), each of A₁-A₉ is independently selected from ethylene, propylene, or butylene, preferably each of A₁-A₉ is propylene.
- **8.** A composition according to claim 6 or claim 7, wherein in said polyetheramine of Formula (I) or Formula (II), each of R₁, R₂, R₅, R₆, R₇, R₈, R₁₁, and R₁₂ is H and each of R₃, R₄, R₉, and R₁₀ is independently selected from a methyl group, an ethyl group, a propyl group, a butyl group, or a phenyl group.
- 9. A composition according to any of claims 6 to 8, wherein in said polyetheramine of Formula (I) or Formula (II), each of R₃ and R₉ is an ethyl group, each of R₄ and R₁₀ is a butyl group, and each of R₁, R₂, R₅, R₆, R₇, R₈, R₁₁, and R₁₂ is H.
 - 10. A composition according to claim 6, wherein the polyetheramine of Formula (I) has a structure according to Formula C:

Formula C

 $\bigcap_{n} \bigcap_{n} \bigcap_{n$

wherein n+m is from about 0 to about 8, preferably about 0 to about 6.

5

10

15

20

25

30

35

50

- 11. A composition according to claim 6, wherein in said polyetheramine of Formula (III), R is H or an alkyl group selected from methyl, ethyl, or propyl; each of k1, k2, and k3 is independently selected from 0, 1, or 2, preferably at least two of k1, k2, and k3 are 1; at least one of A₁, A₂, A₃, A₄, A₅, and A₆ is a linear or branched butylene group and the sum of x+y+z is in the range of from about 3 to about 30.
- **12.** A composition according to claim 9, wherein the polyetheramine of Formula (III) is selected from the group consisting of Formula D, Formula E, Formula F, and mixtures thereof:

Formula D

$$H_2N$$
 O
 NH_2
 NH_2
 NH_2

wherein the average n is from about 0.5 to about 5;

Formula E Formula F $H_2N \longrightarrow O \longrightarrow NH_2 \longrightarrow NH_2$ $H_2N \longrightarrow O \longrightarrow NH_2 \longrightarrow NH_2 \longrightarrow NH_2$

- **13.** A method of cleaning a surface, preferably a textile, comprising mixing the cleaning composition according to any preceding claim with water to form an aqueous liquor and contacting a surface, preferably a textile, with the aqueous liquor in a laundering step, optionally wherein prior to the laundering step, the surface comprises a greasy soil.
- 14. Use of a mannanase enzyme comprising a polypeptide having mannan endo-1,4-beta-mannosidase activity (EC 3.2.1 .78) that catalyzes the hydrolysis of 1 ,4-3-D-mannosidic linkages in mannans, galactomannans and/or glucomannans, and/or optionally having at least 60% sequence identity to SEQ ID NO:1 or having at least 81% sequence identity to SEQ ID NO: 2 and/or having at least 75% identity to SEQ ID NO: 3, and/or having at least 65% identity

to SEQ ID NO: 4, and/or having at least 75% identity to SEQ ID NO: 5; and an amine, such as an etheramine (e.g., a polyethermine), to enhance the stain-removal and/or malodor-reducing benefits preferably to enhance greasy-stain removal benefits.

5	15. Use according to claim 14 wherein the mannansase enzyme is a member of glycoside hydrolase family 26.
10	
15	
20	
25	
30	
35	
40	
45	
50	
55	

Category

EUROPEAN SEARCH REPORT

DOCUMENTS CONSIDERED TO BE RELEVANT Citation of document with indication, where appropriate, of relevant passages

Application Number EP 17 20 4802

CLASSIFICATION OF THE APPLICATION (IPC)

Relevant

to claim

5

10

15

20

25

35

30

40

45

50

55

Х		(KAUPPINEN MARKUS SAKARI Ober 2003 (2003-10-30)	1-15	INV. C11D3/386		
X	US 2014/135252 A1 (AL) 15 May 2014 (20 * paragraphs [0145] examples *		1-15			
X,D	WO 2015/040159 A2 (26 March 2015 (2015 * claims; examples)	5-03-26)	1-15			
X	WO 2016/079045 A1 (26 May 2016 (2016-(200-(20016-(200-(2016-(200-(200-(200-(200-(200-(200-(200-(20	5-26)	1-15			
A,D	US 2014/296127 A1 (ET AL) 2 October 20 * claims; examples		1-15			
				TECHNICAL FIELDS SEARCHED (IPC)		
				C11D		
	The present search report has	been drawn up for all claims				
	Place of search	Date of completion of the search		Examiner		
	Munich	15 January 2018	Ver	nier, Frédéric		
C	ATEGORY OF CITED DOCUMENTS	T : theory or principle E : earlier patent doc				
	ticularly relevant if taken alone	after the filing date	e n the application or other reasons			
Y : part docu	ticularly relevant if combined with anot ument of the same category nnological background	L : document cited fo	r other reasons			

ANNEX TO THE EUROPEAN SEARCH REPORT ON EUROPEAN PATENT APPLICATION NO.

EP 17 20 4802

This annex lists the patent family members relating to the patent documents cited in the above-mentioned European search report. The members are as contained in the European Patent Office EDP file on The European Patent Office is in no way liable for these particulars which are merely given for the purpose of information. 5

15-01-2018

	nt document search report		Publication date		Patent family member(s)		Publication date
US 20	03203466 A	1	30-10-2003	AT AU BR CA CN CN EP EP JP JP JP MX US WO	528394 755850 9911086 2331199 1310757 101024826 1086211 2261359 2284272 2287318 4047545 4047545 4047853 2004500004 2005160476 PA00012241 6566114 2003203466 9964619	B2 A A1 A A2 A1 A1 B2 B2 A A A B1 A1	15-10-2011 19-12-2002 20-02-2001 16-12-1999 29-08-2001 29-08-2007 28-03-2001 15-12-2010 16-02-2011 23-02-2011 13-02-2008 13-02-2008 08-01-2004 23-06-2005 04-06-2002 20-05-2003 30-10-2003 16-12-1999
US 20	14135252 A	1	15-05-2014	AR BR EP US WO	086215 112013027209 2712363 2014135252 2012149325	A2 A1 A1	27-11-2013 29-11-2016 02-04-2014 15-05-2014 01-11-2012
WO 20	15040159 A	2	26-03-2015	CN EP US WO	105916985 3047021 2017183643 2015040159	A2 A1	31-08-2016 27-07-2016 29-06-2017 26-03-2015
WO 20	16079045 A	1	26-05-2016	CA CN EP US WO	2965427 107075801 3221508 2017350072 2016079045	A A1 A1	26-05-2016 18-08-2017 27-09-2017 07-12-2017 26-05-2016
US 20	14296127 A	1	02-10-2014	AU CA CA CL CN CN EP JP JP	2014241193 2900645 2907499 2015002865 105073966 105102600 2978830 2978831 6081657 6081658	A1 A1 A A A A1 A1 B2	15-10-2015 02-10-2014 02-10-2014 13-05-2016 18-11-2015 25-11-2015 03-02-2016 03-02-2016 15-02-2017 15-02-2017

© For more details about this annex : see Official Journal of the European Patent Office, No. 12/82

55

10

15

20

25

30

35

40

45

50

page 1 of 2

ANNEX TO THE EUROPEAN SEARCH REPORT ON EUROPEAN PATENT APPLICATION NO.

EP 17 20 4802

This annex lists the patent family members relating to the patent documents cited in the above-mentioned European search report. The members are as contained in the European Patent Office EDP file on The European Patent Office is in no way liable for these particulars which are merely given for the purpose of information.

15-01-2018

Patent document cited in search report	Publication date		Patent family member(s)	Publication date
		JP JP US US WO WO	2016519184 A 2016519704 A 2014296124 A1 2014296127 A1 2016075970 A1 2014160820 A1 2014160821 A1	30-06-2016 07-07-2016 02-10-2014 02-10-2014 17-03-2016 02-10-2014 02-10-2014

 $\stackrel{ ext{O}}{ ext{L}}$ For more details about this annex : see Official Journal of the European Patent Office, No. 12/82

page 2 of 2

REFERENCES CITED IN THE DESCRIPTION

This list of references cited by the applicant is for the reader's convenience only. It does not form part of the European patent document. Even though great care has been taken in compiling the references, errors or omissions cannot be excluded and the EPO disclaims all liability in this regard.

Patent documents cited in the description

- WO 2015040159 A [0036]
- US 20140296127 A1 [0056]
- US 20150057212 A1 [0070]
- US 20120135498 A [0092]
- WO 2015185689 A [0102]
- WO 2004067737 A [0112]
- WO 2015091989 A [0112]
- WO 2015091990 A [0112]
- WO 2015024739 A [0112]
- WO 2015143360 A [0112]
- US 6312936 B1 [0112]
- US 5679630 A **[0112]**
- US 4760025 A [0112]
- US 7262042 B [0112]
- WO 09021867 A [0112]
- DE 102006022216 A1 [0112]
- DE 102006022224 A1 [0112]
- WO 2015089447 A [0112]
- WO 2015089441 A [0112]
- WO 2016066756 A [0112]
- WO 2016066757 A [0112]
- WO 2016069557 A [0112]
- WO 2016069563 A [0112]
- WO 2016069569 A [0112]
- WO 8906270 A [0112]
- WO 05052161 A [0112]
- WO 05052146 A [0112]
- WO 07044993 A2 [0112] WO 2014194032 A [0112]
- WO 2014194054 A [0112]
- WO 2014194117 A [0112]
- WO 2015193488 A [0112]
- WO 2016075078 A **[0112]**
- WO 9217577 A [0112]
- US 5352604 A [0114]
- WO 2009149144 A [0114]
- WO 2009149145 A **[0114]**
- WO 201056653 A [0114]
- WO 201056640 A [0114]
- WO 2011072117 A [0114]
- US 20110237487 A [0114]
- WO 2011140316 A [0114]
- WO 2012151480 A [0114]
- EP 2510092 A [0114]
- EP 2566960 A [0114]

- EP 2705145 A [0114]
- US 7153818 B [0115]
- WO 9700324 A [0115]
- EP 1022334 A [0115]
- WO 9402597 A [0115]
- WO 9418314 A [0115]
- WO 9623874 A [0115]
- WO 9743424 A [0115]
- US 5856164 A [0115]
- WO 9923211 A [0115]
- WO 9623873 A [0115]
- WO 0060060 A [0115]
- WO 06002643 A [0115]
- US 6093562 A [0115]
- WO 09149130 A [0115]
- EP 2540825 A [0115]
- EP 2357220 A [0115]
- EP 2534233 A [0115]
- WO 2009100102 A [0115]
- WO 2010115028 A [0115]
- US 6939702 B1 [0117]
- US 20090217464 A [0117]
- US 12001034 B [0117]
- EP 2623586 A [0117]
- US 7141403 B2 [0118]
- WO 2002099091 A [0121]
- WO 01062903 A [0123]
- WO 9902663 A [0123]
- WO 01064853 A [0123]
- WO 2002077242 A [0123]
- WO 03089598 A [0123]
- WO 9905243 A [0133]
- WO 9905242 A [0133]
- WO 9905244 A [0133]
- WO 9905082 A [0133]
- WO 9905084 A [0133]
- WO 9905241 A [0133]
- WO 9907656 A [0133]
- WO 0023549 A [0133]
- WO 0023548 A [0133]
- WO 0887497 A [0150]
- WO 9108281 A [0156] WO 9001815 A [0156]
- US 6020303 A [0193]
- US 6060443 A [0193]

Non-patent literature cited in the description

- A. B. BORASTON et al. *Biochemical Journal*, 2004, vol. 382, 769-781 [0120]
- Biochem J., 1991, 309-316 [0121]
- **NEEDLEMAN**; **WUNSCH**. *J. Mol. Biol.*, 1970, vol. 48, 443-453 **[0122]**
- RICE et al. The European Molecular Biology Open Software Suite. *Trends in Genetics*, 2000, vol. 16, 276-277 [0122]