Field of application
[0001] The present invention relates to a plant and method for vacuum degassing liquid steel.
[0002] The plant and the method according to the invention can be used for vacuum degassing
with either the VD (Vacuum Degassing) technique or the VOD (Vacuum Oxygen Decarburisation)
technique and for all applications where a vacuum treatment of liquid steel is required.
State of the art
[0003] The vacuum degassing process (called for simplicity VD/VOD, from the English "Vacuum
Degassing " and "Vacuum Oxygen Decarburisation") respectively is a steel process that
has as its main objective that of producing steels that meet high quality standards
and stainless steels, e.g. as described in
EP 0 366 293 A2, makes it possible to achieve extremely low levels of sulphur, hydrogen and nitrogen,
improve the micro and macro purity of the steel, and, in the case of VOD, decarbonise
(reduce the carbon content) the steel.
[0004] Generally, VD/VOD systems are designed to operate round the clock and each treatment
lasts from 35 to 120 minutes depending on the productivity required of the plant and
on operating practices.
[0005] Although various plant solutions exist aimed at meeting specific requirements (available
installation space, required productivity), normally a steel degassing plant consists
of the following components, as shown in the general diagram in Figure 1:
- a vacuum chamber A, airtight to the outside, inside which the ladle L containing the
liquid steel is housed.
- a vacuum generator B, i.e. a system able to aspirate gases until a pressure of less
than 1 mbar absolute is achieved inside the vacuum chamber.
- an intake line C which places the vacuum Chamber A in communication with the vacuum
generator B and the latter with the stack D through which the gases generated by the
process are discharged;
- devices aimed at managing the process, installed along the intake line (valves illustrated
below and gas pressure and temperature measuring instruments, a heat exchanger for
cooling the process gas in output from the vacuum chamber);
- a dust separation unit F generally composed of a cyclone (to remove larger particles)
and a filter (to retain smaller particles);
- a gas insufflation system G, usually argon, in some cases even nitrogen, for the agitation
of the liquid steel and removal of impurities within it;
- an insufflation system E of inert gas into the intake duct in order to manage the
foamy slag, raising the pressure inside the isolated system;
- where the vacuum decarburisation of steel (VOD) is also provided for, an oxygen injector
controlled by an auxiliary system is installed on the lid of the vacuum chamber.
[0006] The vacuum chamber A consists of a lid A1 and a tank A2. Depending on which is the
fixed part and which is the mobile part there are two types of construction: a "wheeled
lid" when the tank is fixed and the lid mobile, and a "wheeled tank" in the opposite
case.
[0007] Generally speaking, depending on the operating principle the vacuum generator B may
be of two types: with a steam ejector/liquid ring (technical solution more popular
in the past) or mechanical pumps (technology becoming more widespread recently).
[0008] As shown in Figure 1, the devices for managing the process and installed along the
intake line C usually comprise a valve V1 to return the vacuum chamber to atmospheric
pressure, a main valve V2 to isolate the vacuum chamber from the vacuum generator,
a valve V3 for insufflating nitrogen to control the process.
[0009] The degassing plant in general is divided into two parts by the main valve V2. There
are thus two volumes: a tank volume and a retained volume.
[0010] The tank volume is returned to atmospheric pressure after every vacuum treatment
by opening the valve V1 which effectively places the vacuum chamber in communication
with the external environment. The retained volume, instead, is generally kept in
a vacuum thanks to the main valve V2, which keeps it isolated from the external environment.
The maintenance of the vacuum in the retained volume makes it possible to shorten
the time required to lower the pressure in the system by using it as a "plenum chamber"
equalising the pressure between the tank and retained volume at the moment of opening
the main valve V2. It should be noted that the tank is at atmospheric pressure before
opening the main valve V2.
[0011] Generally, a vacuum degassing process comprises the following steps:
- positioning the ladle containing liquid steel inside the vacuum chamber and closing
the lid;
- aspirating the gases contained inside the plant volume to achieve the required vacuum
level (typically < 1 mbar);
- permanence at the operating pressure for the time deemed appropriate (typically from
15 to 25 minutes) to achieve the metallurgical objectives;
- restoration of the atmospheric pressure inside the vacuum chamber (opening of valve
VI), and refining of the chemical analysis by additions of materials in precise quantities.
[0012] The intake gas is composed primarily of air up to a pressure of about 100-150 mbar,
then of metal vapours, hydrogen and nitrogen coming from the steel. The suction capacity
of the vacuum generation system automatically adjusts throughout the range of pressures.
The operator is requested to perform an adjustment only in the case of abnormal chemical
reactions inside the vacuum chamber (especially in cases of foaming of the slag, present
in the ladle with the molten steel, to avoiding leakages of incandescent material
from the ladle itself).
[0013] The control of the entire process passes through the movement of the lid and/or tank
and the command of the automatic cycles for the adjustment of the operating conditions
of the system (i.e. of the working points of the vacuum generator in order to control
the pressure inside the vacuum chamber).
[0014] It is also known that during the entire degassing process a large amount of dust
is produced.
[0015] The material constituting the dust derives mainly from the evaporation of metal elements
present in the liquid bath, subsequently condensed along the intake line ) and the
filter, from the reaction between the steel and the refractory and, to a lesser extent,
from iron-alloys and scorifiers.
[0016] During a VD process approximately 0.1-0.2 kg of dust is produced per tonne of treated
steel: during a complete treatment up to 20-40 kg may be produced (considering for
example a ladle of a capacity of 200 tonnes of liquid steel). A typical analysis of
the dust composition reveals a significant content of Zn, MgO, CaO, Pb, Mn.
[0017] In the VOD process ("Vacuum Oxygen Decarburisation", a vacuum process with insufflation
of oxygen to achieve low levels of carbon in the liquid steel) the amount of dust
generated may reach 800-1000 kg (for 200 tonnes of liquid steel).
[0018] It is essential to have an effective dust collection system to preserve the vacuum
generator from wear or clogging phenomena as well as to avoid dust emissions into
the atmosphere.
[0019] If pressure filtration is required, a cyclone separator (tangential air intake) and
a bag filter are installed in series on the intake line. However, filter installations
also exist with an integrated cyclone.
[0020] Typically, the dust from these processes, because of its composition, burns very
easily in the presence of oxygen. For this reason the bag filters (which are currently
the most common technology for such applications) require frequent and efficient cleaning,
which is typically done automatically after every treatment, by blowing inert gas
(nitrogen) in counterflow to the canvas bag, a technology known as "reverse pulse
jet".
[0021] Aside from environmental requirements concerning atmospheric emissions, the need
to install elements for dust abatement (bag filters and cyclone) or not, is determined
by the degree of dust tolerated by the vacuum system to be installed.
[0022] To date, there are two vacuum generation technologies based on completely different
operating principles: mechanical pumps and steam ejector systems.
Vacuum generation with mechanical pumps
[0023] In the terminology commonly used in the steel industry, mechanical pump vacuum generation
refers to a vacuum generator which provides for the installation in series of lobe
type blowers (root pumps) and screw pumps (screw pump) as illustrated in Fig.2. In
this case the screw pumps are also called "pre-vacuum pumps".
[0024] As a general principle, since each of these machines performs a compression of the
aspirated gas, a compression "stage" is spoken of referring to one or more machines
operating in the same pressure range between intake and discharge.
[0025] The current most widespread plant solutions consist of a series of a screw pump and
at least two root pumps in series, as shown in Figure 2.
[0026] The stages are conventionally named in ascending numerical order (stage 1, ..., stage
n) starting from those closest to the vacuum chamber A. The last stage is that which
finally discharges the gases into the atmosphere (pre-vacuum stage). Each stage may
consist of several pumps connected in parallel, as shown in Figure 3.
[0027] The criterion determining the arrangement in series is as follows: screw pumps are
capable of operating with very high compression ratios (up to 1:1000) but with low
volumetric flow rates; root pumps instead are able to dispose of large volumes of
gas, but do not permit high compression ratios (typically about 1:6).
[0028] In typical VD/VOD installations, operatively, the screw pump alone is able to maintain
a pressure of not less than 20-50 mbar inside the vacuum chamber, downloading the
gases into the atmosphere. In order to achieve a higher degree of depression (< 1mbar)
the upstream installation of at least two stages of root pumps is required. The latter,
thanks to the type of construction, (a double inner chamber alternately liberated
and obstructed by the rotating lobes) are most effective in moving very rarefied gases,
which gases at low pressures are.
[0029] In short, in stable operating conditions (i.e. disregarding the initial evacuation
transient of the vacuum chamber starting from atmospheric pressure), the early-stage
root pumps aspirate the process gases at very low pressures (< 1mbar) and deliver
them to the screw pumps in the pressure range in which the latter operate with higher
compression efficiency.
[0030] The main drawback of using mechanical pumps in a configuration as described above
is related to the need to perform filtration of the aspirated gases in order to retain
the solid particulate which could block and/or damage the rotating mechanical bodies
(seizure) and possibly contaminate the lubrication oil (contained in the gear chamber
in the case of deterioration of the gaskets) . The root pumps - while not meant for
use in a pulverulent environment - would theoretically be capable of treating pulverulent
gases without running into operational problems of seizure. In the long run however
oil contamination problems would arise. The biggest problem relates to the screw pumps
which would be forced - without filtration - to treat the pulverulent gases discharged
by the root pumps, incurring in the aforesaid seizure problems and leading to immediate
blocking of the system.
[0031] In describing the typical operating conditions of a vacuum generation system with
mechanical pumps reference is generally made to 4 automatic cycles which determine
the functioning of the main devices installed (valves, filter, pumps):
- activation cycle of the system: the pumps are started and the volume until the main
valve ("retained volume") is evacuated reaching a final pressure typically < 5 mbar;
the vacuum chamber at this stage remains at atmospheric pressure and the pumps are
kept at a minimum rotation speed;
- Degassing cycle: the main valve opens to equalise pressure in a controlled manner
between the vacuum chamber and the "retained" volume; the slow equalisation is designed
not to overstress the system from a mechanical point of view (pumps and filterbags)
and avoid the instantaneous and violent oxidation of the pyrophoric dust remaining
on the surface of the filter bags after the previous treatments. The pumps gradually
speed up to reach the maximum rotation speed. During the lowering of the pressure
the vacuum level in the system can be controlled by slowing down/by-passing the pumps
or by insufflating nitrogen. Typically the process pressure (< 1mbar) is reached in
6-8 minutes.
- Stop vacuum cycle: when degassing is complete, the main valve closes and the vacuum
chamber is returned to atmospheric pressure (permitting the subsequent opening of
the lid and addition of materials).
- Cleaning cycle: with the pumps isolated, the filter bags are cleaned by means of a
system of nitrogen blows, the cleaning cycle being then followed by a dust discharge
cycle as necessary.
[0032] Once the cleaning cycle of the bags is compete, the retained volume is again evacuated
(up to pressures < 5mbar) preparing the system for the next degassing cycle.
[0033] The cleaning of the filter bags is a crucial aspect for the performance of the mechanical
pump system because:
- an excessive accumulation of dust on the bags increases the pressure losses through
the filter, limiting the minimum pressure which can be reached inside the vacuum chamber;
- possible damage of the bags causes large quantities of dust to reach the pumps. The
operation of the system may thus be jeopardised if the cleaning and maintenance of
filters is not properly conducted (correct setting of the wash cycle with nitrogen,
regular inspections of the bags ...).
Vacuum generation with ejector pumps
[0034] Ejector vacuum generators use as a propellent fluid the superheated steam generated
in a boiler or coming from other sources. As a result of the acceleration of the steam
and the architecture of the ejector, the process gas is aspirated and compressed.
[0035] Each ejector is sized to compress a given quantity of gas, achieving a specific ratio
between the intake and discharge pressure (typically to the order of 1:5/1:15). To
operate between the pressure required by the process (1 mbar) and atmospheric pressure
(1000 mbar) several different ejectors operating in series are therefore required.
[0036] In this case too, in the arrangement in series, each ejector is considered as a compression
"stage". A stage may however be composed of several ejectors in parallel to increase
the suction capacity of the system at higher pressures (typically required during
the evacuation phase of the vacuum chamber).
[0037] Figure 4 shows a plant layout of a typical ejector pumping station where S1, S2,
S3 and S4 indicate ejector stages, C1, C2 and C3 inter-stage condensers and P a collection
tank or "hot pit". The S3 and S4 stages, in this particular case, consist of pairs
of A/B ejectors operating in parallel. The activation sequence of the individual stages
is usually controlled by the pressure reached by the vacuum chamber, and is as follows
(with reference to Fig. 4): S4-S3-S2-S1.
[0038] To ensure maximum efficiency of the ejector system (disposal of the maximum flow
of process gas), heat exchangers are installed in series with the ejectors to condense
the steam contained in the main gas flow.
[0039] The steam, in fact, acts only as a propeller to aspirate the process gases and condense
as the pressure increases and the temperature decreases.
[0040] The steam is thus made to condense inside the "condensers" which are drained into
a tank, called a "hot pit".
[0041] It is clear that, in the absence of filtering systems upstream of the ejector groups,
the condensed water has a higher concentration of dust, thus requiring appropriate
wastewater treatment plants and maintenance operations for the disposal of the sludge
channelled into the "hot pit".
[0042] Fig. 4 shows a diagram of a typical ejector consisting of four compression stages.
[0043] A variation of this diagram provides that the fourth stage, or alternatively a possible
fifth stage, consists of a liquid ring pump in place of an ejector. This solution
is generally preferred in systems with limited steam availability or where required
by plant or process requirements (limited space for installation, need to operate
stably at pressures above 100 mbar for VOD systems).
[0044] The liquid ring pump is a mechanical, centrifugal-type pump in which the compression
of the gas, by means of its confinement in a variable (gradually reduced) volume,
is consequential to the rotation of a liquid ring generated by a centrifugal effect
of a rotor, eccentric to the casing (body) of said pump.
[0045] With the exception of the composition of the pumping system and of the dust abatement
group connected thereto, the operation of an ejector/liquid ring plant passes through
operational sequences entirely similar to those described for the mechanical pumps.
[0046] For the ejector systems it is not necessary, for the purpose of protecting the pumping
system, to abate the dust to the extent of requiring the installation of a bag filter
since it lacks the geometric tolerances required by the mechanical system, typical
of root or screw pumps.
[0047] On the other hand, in some systems, to minimise maintenance (cleaning of the ejectors
and hot pit water treatment) a cyclone or even a bag filter with related automatic
cleaning system may be installed.
[0048] Lastly, it is to be noted that in. the absence of filter elements, a large amount
of dust is retained by the injected steam and by the water of possible liquid ring
pumps. The condensed steam between one ejector stage and another helps to retain some
of the dust generated during the process. The condensed water is drained, as mentioned
above, into the "hot pit" (indicated as P in Fig. 4). Also the possible liquid ring
in its contact with the process gas helps to retain part of the residual dust. It
follows that in a liquid ring/ ejector system the amount of dust contained in the
gases discharged to the stack is very low.
[0049] In conclusion, the main difference as regards the system layout between ejector systems
and mechanical pump systems lies in the presence of a bag filter (with all the auxiliary
elements for cleaning the bags and discharging the dust), required in the latter case
to preserve the integrity of the machines.
[0050] The main limitation of injector vacuum generation systems lies in their complexity
and high plant and running costs.
Presentation of the invention
[0051] Consequently, the purpose of the present invention is to eliminate entirely or in
part the drawbacks of the prior art mentioned above, by providing a plant and method
for vacuum degassing liquid steel combining the engineering/operational simplicity
of a mechanical pump plant with the possibility to operate without filter systems
of an ejector plant.
[0052] A further purpose of the present invention is to make available a plant for vacuum
degassing liquid steel which is operatively more reliable.
[0053] A further purpose of the present invention is to make available a plant for vacuum
degassing liquid steel which is cheaper to run.
[0054] A further purpose of the present invention is to make available a plant for vacuum
degassing liquid steel which is at least comparable to conventional systems with mechanical
pumps, in terms of plant costs.
Brief description of the drawings
[0055] The technical characteristics of the invention, according to the aforesaid purposes,
can be seen clearly from the contents of the following claims and the advantages of
the same will be more clearly comprehensible from the detailed description below,
made with reference to the appended drawings, showing one or more embodiments by way
of non-limiting examples, wherein:
- Figure 1 shows a general diagram of a steel degassing plant;
- Figure 2 shows a general diagram of a conventional vacuum generation system with mechanical
pumps of the root and screw type;
- Figure 3 shows a general diagram of a conventional vacuum generation system with mechanical
pumps of the root and screw type, with each stage composed of several pumps in parallel;
- Figure 4 is a diagram of a conventional ejector vacuum generation system;
- Figure 5 shows a general diagram of a liquid steel vacuum degassing plant according
to a preferred embodiment of the present invention;
- Figure 6 shows a general diagram of a liquid steel vacuum degassing plant according
to an alternative embodiment of the present invention;
- Figure 7 shows a general diagram of the vacuum generation system in a liquid steel
vacuum degassing plant according to a preferred embodiment of the present invention;
and
- Figure 8 shows a general diagram of a liquid ring pump.
Detailed description
[0056] With reference to the appended drawings reference numeral 1 globally denotes a plant
for vacuum degassing liquid steel according to the invention.
[0057] The plant 1 according to the invention can be used for vacuum degassing with either
the VD (Vacuum Degassing) technique or the VOD (Vacuum Oxygen Decarburisation) technique
and for all applications where a vacuum treatment of liquid steel is required.
[0058] Here and henceforth in the description and the claims, reference will be made to
the vacuum degassing plant of liquid steel 1 in conditions of use.
[0059] According to a general embodiment of the invention, the plant for vacuum degassing
liquid steel comprises:
- at least one vacuum chamber 2, suitable to temporarily receive liquid steel inside
it; and
- a vacuum generation system 10, connected to the aforesaid at least one vacuum chamber
2 via an intake duct 20.
[0060] The vacuum chamber 2 may be of any type suitable for the purpose.
[0061] Preferably, the vacuum chamber 2 is configured so that the liquid steel is brought
inside via a ladle L, but it may also be used directly to receive the liquid steel.
[0062] In the first case, as shown in Figures 5 and 6, the vacuum chamber 2 comprises a
tank 3, which defines the volume of the chamber 2 and is suitable to receive therein
the ladle L, and a lid 4 suitable to seal the tank 3 tight when the ladle L is housed
therein. The vacuum chamber may be of the "wheeled lid" type when the tank is fixed
and the lid mobile or of the "wheeled tank" type in the opposite case.
[0063] Advantageously, as shown in Figures 5 and 6, the vacuum chamber may be fitted with
an insufflation system 30 of a washing gas, in some cases even nitrogen, for the agitation
of the liquid steel and removal of impurities within it. In particular, this insufflation
system 30 is designed to feed one or more porous septums located on the bottom of
the ladle.
[0064] In the second case, according to an embodiment not illustrated in the appended Figures,
the vacuum chamber 2 may be configured to directly house within it the liquid steel
acording to an RH process. In this case, the liquid steel is transferred temporarily
from the ladle inside the chamber. To such purpose the vacuum chamber is connected
to a ladle via two ducts: a delivery duct through which the molten steel from the
ladle is driven by the difference in pressure inside the vacuum chamber, and a return
duct, through which the treated molten steel flows back from the vacuum chamber inside
the ladle.
[0065] According to the invention, as shown in Figures 5 and 6, the vacuum generation system
10 comprises at least two compression stages connected to each other in series, of
which:
- a first compression stage 11 works closer to the aforesaid at least one vacuum chamber
2 and consists of one or more screw pumps 110; and
- a second compression stage 12 works farther away from the aforesaid at least one vacuum
chamber 2 to bring the gas at least to atmospheric pressure and consists of one or
more liquid ring pumps 120.
[0066] The aforesaid one or more screw pumps 110 are sized to be able to operate with compression
ratios not exceeding 1:12 if the discharge pressure is atmospheric, and with compression
ratios not exceeding 1:200 if the discharge pressure is comprised between 50 and 120
mbar absolute.
[0067] As will be specified below, the aforesaid one or more screw pumps 110 are thus sized
in a radically different manner to conventional screw pumps.
[0068] Preferably the aforesaid one or more screw pumps 110 are sized to be able to operate
with compression ratios comprised between 1:3 and 1:10 if the discharge pressure is
atmospheric and, if the discharge pressure is between 50 and 120 mbar absolute, with
compression ratios of between 1:25 and 1:200, and preferably between 1:70 and 1: 90.
[0069] Thanks to the fact of operating in the aforesaid compression ratio ranges, the aforesaid
one or more screw pumps 110 are sized imposing internal tolerances (rotor/rotor and
rotor/case), much higher than those provided for in the conventional screw pumps used
as pre-vacuum stages as described above. This way, the aforesaid screw pumps 110 are
able to operate in direct contact with pulverulent gases with high concentrations
of dust without contraindications for the moving mechanical parts and thus without
incurring in the typical problems of screw pumps used as pre-vacuum stages in conventional,
mechanical degassing systems.
[0070] This is made possible by the fact that according to the invention the screw pumps
are used at stages closer to the vacuum chamber and by the choice to operate such
pumps in the aforesaid compression ranges.
[0071] Operationally, the work of compressing the gas is completed by the aforesaid one
or more liquid ring pumps which define the second compression stage (final), further
away from the vacuum chamber, exploiting the fact that the liquid ring pumps are insensitive
to dust.
[0072] Advantageously, the liquid ring pumps also perform an important function of retaining
the solid particles dragged along by the main flow of the gases. The pump service
water is therefore used to trap the dust generated by the degassing process and then
collect it in a single point. This way the dust emission at a possible discharge stack
40 is minimised, ensuring low environmental impact.
[0073] Thanks to the invention the vacuum generation system 10 is thus able to aspirate
directly from the aforesaid at least one vacuum chamber 2 gases containing dust in
high concentrations, without the contraindications typical of a conventional mechanical
pump system.
[0074] Conventionally, contrary to the provisions of the present invention, screw pumps
are instead used in the vacuum generation systems of degassing plants to define the
compression stages furthest away from the vacuum chamber A. These pumps (pre-vacuum),
despite operating with compression ratios between 1:1 and 1:50, and preferably between
1:2 and 1:40, are designed to work with compression ratios up to 1:1000 with discharge
at atmospheric pressure. Conversely, the screw pumps 110 according to the invention
are sized to operate at maximum compression ratios of 1:12 with discharge at atmospheric
pressure. The traditional screw pumps must therefore be built with very strict internal
tolerances (rotor/rotor and rotor/case). This makes them particularly sensitive to
the presence of dust in the gases treated.
[0075] Thanks to the present invention, it is therefore possible on the one hand to liberate
the design of a liquid steel degassing plant from the installation of a filtration
device (usually a bag filter) required in the case of mechanical pumps, and on the
other to drastically reduce the plant costs entailed by a conventional steam ejector
system.
[0076] Advantageously, the vacuum generation system 10 is sized to bring the vacuum chamber
2 to a degree of vacuum between 0.2 and 5 mbar, and preferably between 0.5 and 1.5
mbar. As a result, the vacuum generation system 10 is sized to generate total compression
ratios between 1:5,000 and 1:200.
[0077] As regards the sizing of the vacuum generation system 10 according to the present
invention, the possible combinations in terms of number of screw pumps 110 and liquid
ring pumps 120 are dictated by the design choices from time to time made so as to
minimise the number of machines installed to get the level of performance required
by the process, i.e. evacuation times of the vacuum chamber limited and degree of
final vacuum approximately < 1 mbar.
[0078] Advantageously, the vacuum generation system 10 may comprise one or more intermediate
compression stages, positioned in series between the first stage 11 and the second
stage 12 and each composed of one or more screw pumps 110 having similar characteristics
to those of the first stage 11.
[0079] The term "similar characteristics" is taken to mean that said one or more screw pumps
of the intermediate stages are sized to operate in the same compression ranges as
the screw pumps of the first stages, thus making it possible to adopt internal tolerances
(rotor/rotor and rotor/case) much higher than those provided for in conventional screw
pumps. The size of the screw pumps of the intermediate stages may be the same or different
to that of the screw pumps of the first stages. The choice of size is dictated by
the sizing of the vacuum generation system.
[0080] One or more of the aforesaid compression stages (first, second or intermediate) may
each consist of two or more pumps connected in parallel.
[0081] According to embodiments not shown in the appended figures, the vacuum generation
system may consist of two or more parallel pumping modules, each of which is composed
at least of a first compression stage 11 with screw pumps and a second compression
stage 12 with liquid ring pumps.
[0082] The total number of pumps installed per module and the number of modules is defined
in the design phase with the objective of optimising the installation and minimising
the consumption of auxiliary elements (water, nitrogen, electricity).
[0083] Advantageously, modular configurations may be adopted for the vacuum generation system
10, i.e. separable into units installed in parallel, or "hybrid" installations where
the pumps are grouped on two stages without modularity.
[0084] Preferably, the vacuum generation system 10 can be isolated from the rest of the
system by closing appropriate isolation valves installed immediately upstream of the
pumps.
[0085] Preferably, as shown in Figures 5 and 6, the intake duct 20 comprises a by-pass duct
21 able to exclude from the gas flow the compressor stages formed of the screw pumps
110. This solution can be adopted both in the case of a modular structure, and a non-modular
structure.
[0086] Operatively, as will be resumed below, the presence of the aforesaid by-pass 21 may
be used to exclude the screw pumps from functioning in some stages of the degassing
process.
[0087] Preferably, each of the screw pumps 110 used in the degassing plant 1 according to
the invention comprises two screw rotors, kinematically synchronised with each other
via an electric axis.
[0088] For the connection and synchronization of the two screw rotors these pumps do not
use the conventional "mechanical axis", where an engine transmits movement to a screw
rotor while the other rotor is dragged/ synchronised by means of a series of gears
in oil bath.
[0089] The term "electric axis" means the software synchronisation of a pair of engines
by means of an inverter (one for each screw) and a pair of encoders. The software
instantly manages the parameters of the two inverters so that the rotors are constantly
synchronised. Furthermore the two encoders control the angular deviation of the axes
of the screw rotors, so that these are perfectly parallel to each other.
[0090] Operatively, any functional anomaly (e.g. internal friction due to dust build-up)
results in an increase in torque and current absorption of the motors (or of one of
them) and, consequently, a possible deviation in the angular speed of the rotors.
Advantageously, the software can act on the speed in real time until equilibrium is
restored, avoiding stresses and overheating of the pump.
[0091] Compared to a solution with a mechanical axis, this electric axis configuration does
not require oil for the lubrication of the gears. The absence of lubrication oil is
an advantage. In fact, due to the possible difference in pressure between the compression
chamber (lower pressure) and possible (concurrent) gear chambers (higher pressure),
the oil can be aspirated into the process gas, mixing with the dust and generating
obstructions. Similarly, in certain operating phases, dusty gases can inundate the
gear chambers polluting the oil.
[0092] The liquid ring pumps 120 used in the degassing plant 1 according to the present
invention are of the type known per se and their operation is therefore well known
to a technician of the sector. A detailed description of the same is therefore not
provided but merely reference to a number of concepts useful for introducing some
particular elements.
[0093] In particular, the liquid ring pumps used in the present invention may have the structure
shown in Figure 8.
[0094] As shown in Figure 8, a liquid ring pump compresses the process gas G' between an
eccentric vane rotor 121 and a ring 122 of water, called service water W. Operatively,
the dust carried by the process gas G' necessarily comes into contact with the service
water W which acts as a collector. The pump 120 ejects the compressed gas G" together
with a minimum amount of pulverulent service water. The mixture G " + W of gas and
pulverulent water reaches a separator 123 which separates the gas (now at atmospheric
pressure and directed to the stack) from the "dirty "water which is collected in the
lower part of the separator 123. Advantageously, a replenishment 124 of. the water
W is provided to offset the losses from evaporation.
[0095] More specifically, the service water W can be handled in two ways: in an open circuit
or closed circuit.
[0096] With closed-circuit management the water W is recirculated until the saturation limit
of dust, at which the pump performance drops. At this point all the service water
W is discharged and replaced with clean water.
[0097] With open circuit management, the water is continuously discharged from the separator
(through the opening 125 illustrated in Figure 8), while a line of clean water 124
continuously tops up the service circuit of the liquid ring pump.
[0098] Advantageously, the resulting water contains dust which is now inert and can be handled
in two different ways.
[0099] According to a first method, the pulverulent water is collected in a decanting bath
with an overflow which leads to a second bath. From here the pulverulent water is
sent on to a water treatment plant, by means of centrifugal pumps, and treated therein
in the conventional way.
[0100] According to a second method, as shown schematically in Figure 7, the pulverulent
water leaving the separator can be filtered on site using known methods.
[0101] Advantageously, as shown in Figure 7, the plant 1 comprises an auxiliary unit 50,
which, in addition to replenishing the water dispersed by the liquid ring pumps in
the process gases, separates the dust contained in the water and recirculates it to
the pump.
[0102] A continuous cycle operation guarantees both the controlled removal of the dust (avoiding
internal build-up) and optimal operation of the liquid ring pump 120 thanks to the
cooling and cleaning of the top-up water.
[0103] The auxiliary unit 50 may be centralised or located on board of each liquid ring
pump or module, maintaining however the same functions.
[0104] Alternatively to the aforesaid auxiliary unit 50, the plant 1 may comprise at least
one continuous replacement device of the service water used by the liquid ring pump,
without recirculation, with non-returnable water.
[0105] Advantageously, as shown in Figures 5 and 6, in the section comprised between the
vacuum chamber 2 and the vacuum generation system 10 the intake duct 20 comprises'
a connection branch 28 to the atmosphere equipped with a first control valve 23. This
first control valve 23 is opened at the end of the degassing process to return the
vacuum chamber 2 to atmospheric pressure before taking out the treated liquid steel.
[0106] Advantageously, as shown in Figures 5 and 6, in the section comprised between the
vacuum chamber 2 and the vacuum generation system 10 the intake duct 20 may comprise
a connection branch 29 to a tank (not shown) containing inert gas (nitrogen or argon),
equipped with a second control valve 24. The inert gas can be insufflated by opening
the second valve 24 in order to manage the foamy slag, raising the internal pressure.
[0107] According to a preferred embodiment illustrated in Figure 5, the degassing plant
1 does not comprise a filtration device of the gases, which leave the vacuum chamber
2 and have to pass through the vacuum generation system 10. Regardless of the concentration
level of the dust in said gases, the gases in output from the vacuum chamber 2 are
aspirated directly by the vacuum generation system without a preventive gas filtration
step. As noted previously, this is possible thanks to the present invention.
[0108] According to an alternative embodiment illustrated in Figure 6 the degassing plant
1 may comprise at least one filtration device 25 of the gases leaving the vacuum chamber
2 and passing through the vacuum generation system 10. Such a filtration device 25
is arranged between the vacuum chamber 2 and the vacuum generation system 10.
[0109] Operatively, the gases exiting the vacuum chamber 2, before being aspirated by the
vacuum generation system, are subjected to filtration in order to abate at least partially
the dust content present in the gases. Thanks to the present invention, the abatement
of the dust may be partial and bland, given that the possible presence of dust does
not affect the operation of the vacuum generation system 10. The preventive filtration
step may be provided so as to optimise the management of dust in the system, reducing
the load of dust to be managed by means of the liquid ring pumps.
[0110] The aforesaid filtration device 25 may consist of a bag filter, a cyclone or of an
integrated bag filter and cyclone system.
[0111] In particular, according to the alternative embodiment illustrated in Figure 6, the
plant 1 comprises at least an isolation valve 22 which is installed on the intake
duct 20 between the vacuum chamber 2 and the filtration device 25. Such isolation
valve 22 is placed downstream of the branching point of the intake duct 20 into the
aforesaid connection branch 28 to the atmosphere. The isolation valve 22 divides the
plant 1 into two parts, thus identifying two volumes. A first part comprises the vacuum
chamber (tank volume); the second part comprises the filtration device and the vacuum
generation system (retained volume).
[0112] Operatively, the tank volume is returned to atmospheric pressure after every vacuum
treatment by opening the aforesaid first control valve 23 which places the vacuum
chamber in communication with the external environment. The retained volume may, instead,
be always kept in a vacuum thanks to the isolation valve 22 which effectively keeps
it airtight. The maintenance of the vacuum of the retained volume makes it possible
to shorten the time required to lower the pressure in the system by using it as a
"plenum chamber" equalising the pressure between the tank and retained volume at the
moment of opening the isolation valve 22.
[0113] The presence of the isolation valve 22 is preferred in the case in which the plant
1 is equipped with a filtration device 25 (in particular if it is a bag filter) as
shown in Figure 6. In this case, the retained volume is very high due to the presence
of the filtration device.
[0114] Advantageously, in the case in which the plant 1 is not equipped with a filtration
device 25 (see Figure 5), the isolation valve 22 need not be installed, since, in
the absence of the filtration device, the retained volume is reduced and therefore
the advantages associated with maintaining said volume in a vacuum are limited.
[0115] Advantageously, in the case in which the plant 1 is used for the vacuum degassing
with VOD (Vacuum Oxygen Decarburisation) technique it may comprise a heat exchanger
(not shown in the appended figures) for cooling the process gases. In fact, with the
VOD technique, as a result of the injection of oxygen and consequent decarburisation
of the steel, the temperatures involved increase significantly. The heat exchanger
should be placed upstream of the possible filtration device 22 and downstream of the
possible isolation valve (if present), in the second part of the system (retained
volume).
[0116] The present invention also relates to a method for vacuum degassing liquid steel.
[0117] In particular, the method according to the invention may be implemented in a degassing
system according to the invention, in particular as described above. The parts in
common with the plant 1 described above have been indicated using the same alpha-numerical
references.
[0118] According to a general embodiment of the invention, the method for vacuum degassing
liquid steel comprises the following operating steps:
- a) providing at least one vacuum chamber 2 suitable to temporarily receive liquid
steel inside it;
- b) placing liquid steel in said vacuum chamber 2;
- c) evacuating the vacuum chamber 2 through a vacuum generation system 10 creating
in said chamber a predefined degree of vacuum and maintaining it for a predetermined
period of time so as to complete the operation of degassing the liquid steel; and
- d) bringing again the vacuum chamber 2 to atmospheric pressure and withdrawing the
degassed liquid steel.
[0119] According to the invention, the vacuum evacuation step c) is conducted by means of
a vacuum generation system 10 comprising at least two compression stages connected
together in series, of which:
- a first compression stage 11 works closer to the aforesaid at least one vacuum chamber
2 and consists of one or more screw pumps 110; and
- a second compression stage 12 works farther away from the aforesaid at least one vacuum
chamber 2 to bring the gas at least to atmospheric pressure and consists of one or
more liquid ring pumps 120.
[0120] The aforesaid one or more screw pumps 110 are sized to be able to operate with compression
ratios not exceeding 1:12, if the discharge pressure is atmospheric, and with compression
ratios not exceeding 1:200, if the discharge pressure is comprised between 50 and
120 mbar absolute.
[0121] Preferably, the aforesaid one or more screw pumps 110 are sized to be able to operate
with compression ratios comprised between 1:3 and 1:10 if the discharge pressure is
atmospheric, and, if the discharge pressure is between 50 and 120 mbar absolute, with
compression ratios of between 1:25 and 1:200, and preferably between 1:70 and 1:90.
[0122] Preferably, in the aforesaid evacuation step c), the vacuum chamber 2 is brought
to work at a degree of vacuum between 0.2 and 5 mbar, and preferably between 0.5 and
1.5 mbar.
[0123] According to a preferred embodiment of the method, the evacuation step c) provides
for the direct aspiration of the gases from the vacuum chamber 2 through the aforesaid
vacuum generation system 10 without a preventive filtration step of the gases, independently
of the level of dust concentration in the gases themselves.
[0124] According to an alternative embodiment of the method, the evacuation step c) provides
for the aspiration of the gases from the vacuum chamber 2 through the aforesaid vacuum
generation system 10 with a preventive filtration step of the gases, to reduce the
dust concentration in said gases before their passage through the vacuum generation
system 10.
[0125] Preferably, the evacuation step c) comprises:
- an initial evacuation step c1) wherein the vacuum chamber 2 is brought from atmospheric
pressure up to about 300 mbar using only the liquid ring pumps of the vacuum generation
system 10; and
- a final evacuation step c2), wherein the vacuum chamber 2 is brought from the pressure
of about 300 mbar to the predefined degree of vacuum, also using the screw pumps.
[0126] This operating mode makes it possible to minimise the amount of dust which the screw
pumps must handle, to the benefit of the operation of such pumps. This operating mode
takes advantage of the presence of the by-pass 21 which is present on the intake duct
and which permits the exclusion of the screw pumps from the passage of the gases.
[0127] Advantageously, during the evacuation step c) the suction capacity of the vacuum
generation system 10 can be varied to reduce any phenomena of foaming of the slag
in the liquid steel. The suction capacity is varied by slowing or excluding one or
more of the pumps of the vacuum generation system 10, preferably the liquid ring pumps
120.
[0128] Preferably, the above change in suction capacity is carried out when the internal
pressure of the vacuum chamber 2 is between 300 mbar and 1 mbar, i.e. during the final
evacuation step c2).
[0129] Preferably, the method according to the invention comprises a step f) of treating
the service water used by the aforesaid one or more liquid ring pumps 120. This treatment
step f) is carried out preferably during the evacuation step c). The treatment consists
of filtering the dust from the water or of continuously replacing the water.
[0130] Advantageously, the method comprises a step e) of mixing the molten steel at least
during the evacuation step c), in particular by insufflating inert gases into said
steel.
[0131] The invention permits numerous advantages to be achieved, in part already described.
[0132] The plant 1 for vacuum degassing liquid steel according to the invention combines
the plant simplicity of a mechanical pump plant with the possibility to operate without
the filter systems of an ejector plant.
[0133] Thanks to the invention it is therefore possible to minimise the equipment installed
in a degassing plant.
[0134] This way it ensures greater flexibility in the design phase (layout and auxiliaries)
as well as allowing operation of the system while minimising maintenance costs and
possible repairs of the parts most subject to wear in a conventional system. In particular,
it reduces periodic inspections and eliminates the need to replace the filter bags.
[0135] The plant 1 for vacuum degassing liquid steel according to the invention is therefore:
- operatively more reliable; and
- cheaper to run.
[0136] In terms of plant costs, the plant 1 for vacuum degassing liquid steel is at least
comparable to conventional systems with mechanical pumps and certainly less expensive
than conventional systems with ejectors.
[0137] The advantages set forth above for the plant 1 according to the invention extend
to the degassing method according to the invention.
[0138] The invention thus conceived thereby achieves the intended objectives.
[0139] Obviously, its practical embodiments may assume forms and configurations different
from those described while remaining within the sphere of protection of the invention.
[0140] Furthermore, all the details may be replaced by technically equivalent elements and
the dimensions, shapes and materials used may be any as needed.
1. Plant for vacuum degassing liquid steel, comprising:
- at least one vacuum chamber (2), suitable to temporarily receive liquid steel inside
it;
- a vacuum generation system (10), connected to said at least one vacuum chamber (2)
via an intake duct (20), the vacuum generation system (10) comprises at least two
compression stages connected together in series, of which a first compression stage
(11) works closer to said at least one vacuum chamber (2) and is formed by one or
more screw pumps (110), characterized in that a second compression stage (12) works farther with respect to said at least one vacuum
chamber (2) to bring the gases at least to atmospheric pressure and is formed by one
or more liquid ring pumps (120) and in that said one or more screw pumps (110) are dimensioned to be able to operate with compression
ratios not exceeding 1:12, if the discharge pressure is atmospheric, and with compression
ratios not exceeding 1:200, if the discharge pressure is comprised between 50 and
120 mbar absolute.
2. Plant according to claim 1, wherein said one or more screw pumps (110) are dimensioned
to be able to work with compression ratios comprised between 1:3 and 1:10, if the
discharge pressure is atmospheric, and, if the discharge pressure is between 50 and
120 mbar absolute, with compression ratios comprised between 1:25 and 1:200, and preferably
between 1:70 and 1:90.
3. Plant according to claim 1 or 2, wherein the vacuum generation system (10) is dimensioned
to bring the vacuum chamber (2) to a degree of vacuum between 0.2 and 5 mbar, and
preferably between 0.5 and 1.5 mbar.
4. Plant according to claim 1, 2 or 3, wherein the vacuum generation system (10) comprises
at least one intermediate compression stage, which is positioned between the first
stage (11) and the second stage (12) and is connected to them in series, said intermediate
compression stage being formed by one or more screw pumps (110) having similar characteristics
to those of the first stage (11).
5. Plant according to one or more of the preceding claims, wherein one or more of said
compression stages are each formed by two or more pumps connected in parallel.
6. Plant according to one or more of the preceding claims, wherein the intake duct (20)
comprises a by-pass duct (21) able to exclude from the gas flow the compressor stages
formed by screw pumps (110).
7. Plant according to one or more of the preceding claims, wherein each screw pump (110)
comprises two screw rotors, kinematically synchronised with each other via electric
axis.
8. Plant according to one or more of the preceding claims, comprising at least one filtration
device of the water used by said one or more liquid ring pumps (120) suitable to remove
dust accumulated in the water itself during operation of the pump or a replacement
device of the water itself.
9. Plant according to one or more of the preceding claims, wherein, in the section comprised
between the vacuum chamber (2) and the vacuum generation system (10) the intake duct
(20) comprises a connection branch (28) to the atmosphere equipped with a control
valve (23).
10. Plant according to one or more of the preceding claims, comprising at least one gas
filtration device (25) positioned between the vacuum chamber (2) and the vacuum generation
system (10).
11. Plant according to claims 9 and 10, comprising at least one shut-off valve (22) that
is installed in said intake duct (20) between the vacuum chamber (2) and the filtration
device (25), downstream of the branching point of the connection branch (28) to the
atmosphere.
12. Method for vacuum degassing liquid steel, comprising the following operating steps:
a) providing at least one vacuum chamber (2) suitable to temporarily receive liquid
steel inside it;
b) placing liquid steel in said vacuum chamber (2);
c) evacuating the vacuum chamber (2) through a vacuum generation system (10) creating
in said chamber a predefined degree of vacuum and maintaining it for a predetermined
period of time so as to complete the operation of degassing the liquid steel;
d) bringing again the vacuum chamber (2) to atmospheric pressure and withdrawing the
degassed liquid steel; characterised in that the vacuum evacuation step c) is conducted by means of a vacuum generation system
(10) comprising at least two compression stages connected together in series, of which
a first compression stage (11) works closer to said at least one vacuum chamber (2)
and is formed by one or more screw pumps (110), and a second compression stage (12)
works farther with respect to said at least one vacuum chamber (2) to bring the gases
at least to atmospheric pressure and is formed by one or more liquid ring pumps (120)
and in that said one or more screw pumps (110) are dimensioned to be able to operate with compression
ratios not exceeding 1:12, if the discharge pressure is atmospheric, and with compression
ratios not exceeding 1:200, if the discharge pressure is comprised between 50 and
120 mbar absolute.
13. Method according to claim 12, wherein said one or more screw pumps (110) are dimensioned
to be able to operate with compression ratios comprised between 1:3 and 1:10, if the
discharge pressure is atmospheric, and, if the discharge pressure is between 50 and
120 mbar absolute, with compression ratios of between 1:25 and 1:200, and preferably
between 1:70 and 1:90.
14. Method according to claim 12 or 13, wherein, in evacuation step c), the vacuum chamber
(2) is brought to working at a degree of vacuum between 0.2 and 5 mbar, and preferably
between 0.5 and 1.5 mbar.
15. Method according to one or more of claims 12 to 14, wherein said evacuation step c)
provides for the direct aspiration of the gases from said vacuum chamber (2) through
the said vacuum generation system without a preventive filtration step of the gases,
independently of the level of dust concentration in the gases themselves.
16. Method according to one or more of claims 12 to 14, wherein said evacuation step c)
provides for the aspiration of the gases from said vacuum chamber (2) through said
vacuum generation system with a preventive filtration step of the gases, to reduce
the dust concentration in the gases themselves before their passage through the vacuum
generation system (10).
17. Method according to one or more of claims 12 to 16, wherein evacuation step c) comprises:
- an initial evacuation step c1) wherein the vacuum chamber (2) is brought from atmospheric
pressure up to about 300 mbar using only the liquid ring pumps (120) of the vacuum
generation system (10); and
- a final evacuation step c2) wherein the vacuum chamber (2) is brought from the pressure
of about 300 mbar to the predefined degree of vacuum also using the screw pumps (110)
.
18. Method according to one or more of claims 12 to 17, wherein during evacuation step
c), the aspiration capacity of the vacuum generation system (10) is varied to reduce
foaming phenomena of the slag in the liquid steel, the aspiration capacity being varied
by slowing or excluding one or more of the pumps (110, 120) of the vacuum generation
system (10), preferably the liquid ring pumps (120), said variation of aspiration
capacity being preferably carried out when the internal pressure of the vacuum chamber
(2) is between 300 mbar and 1 mbar.
19. Method according to one or more of claims 12 to 18, comprising a treatment step f)
of the water used by said one or more liquid ring pumps (120), said step being preferably
carried out during evacuation step c), said treatment consisting in a filtration of
the water from the dust or a replacement of the water itself.
20. Method according to one or more of claims 12 to 19, comprising a mixing step e) of
the molten steel at least during the evacuation step c).
1. Eine Anlage zur Vakuumentgasung von flüssigem Stahl, die Folgendes umfasst:
- mindestens eine Vakuumkammer (2), die dazu geeignet ist, vorübergehend flüssigen
Stahl in ihrem Inneren aufzunehmen;
- ein Vakuumerzeugungssystem (10), das über einen Einlasskanal (20) mit der mindestens
einen Vakuumkammer (2) verbunden ist, wobei das Vakuumerzeugungssystem (10) mindestens
zwei in Reihe geschaltete Verdichtungsstufen umfasst, von denen eine erste Verdichtungsstufe
(11) näher an der genannten mindestens einen Vakuumkammer (2) arbeitet und von einer
oder mehreren Schraubenspindelpumpen (110) gebildet wird,
dadurch gekennzeichnet, dass eine zweite Verdichtungsstufe (12) bezüglich der genannten mindestens einen Vakuumkammer
(2) weiter entfernt arbeitet, um die Gase mindestens auf Atmosphärendruck zu bringen,
und von einer oder mehreren Flüssigkeitsringpumpen (120) gebildet wird,
und dadurch, dass die genannte eine oder mehreren Schraubenspindelpumpen (110) so bemessen sind, dass
sie mit Verdichtungsverhältnissen von höchstens 1:12 arbeiten können, falls der Förderdruck
atmosphärisch ist, und mit Verdichtungsverhältnissen von höchstens 1:200, wenn der
Förderdruck zwischen 50 und 120 mbar absolut liegt.
2. Die Anlage nach Anspruch 1, wobei die genannte eine oder die mehreren Schraubenspindelpumpen
(110) so ausgelegt sind, dass sie mit Verdichtungsverhältnissen zwischen 1:3 und 1:10
arbeiten können, falls der Förderdruck atmosphärisch ist, und, falls der Förderdruck
zwischen 50 und 120 mbar absolut liegt, mit Verdichtungsverhältnissen zwischen 1:25
und 1:200, und vorzugsweise zwischen 1:70 und 1:90.
3. Die Anlage nach Anspruch 1 oder 2, wobei das Vakuumerzeugungssystem (10) so bemessen
ist, dass es die Vakuumkammer (2) auf einen Vakuumgrad zwischen 0,2 und 5 mbar und
vorzugsweise zwischen 0,5 und 1,5 mbar bringt.
4. Die Anlage nach Anspruch 1, 2 oder 3, wobei das Vakuumerzeugungssystem (10) mindestens
eine Zwischenverdichtungsstufe umfasst, die zwischen der ersten Stufe (11) und der
zweiten Stufe (12) angeordnet und mit ihnen in Reihe geschaltet ist, wobei die genannte
Zwischenverdichtungsstufe durch eine oder mehrere Schraubenspindelpumpen (110) mit
ähnlichen Eigenschaften wie die der ersten Stufe (11) gebildet wird.
5. Die Anlage nach irgendeinem oder mehreren der vorstehenden Ansprüche, wobei eine oder
mehrere der genannten Verdichtungsstufen jeweils durch zwei oder mehrere parallel
geschaltete Pumpen gebildet werden.
6. Die Anlage nach irgendeinem oder mehreren der vorstehenden Ansprüche, wobei der Einlasskanal
(20) einen Bypass-Kanal (21) umfasst, der in der Lage ist, die von Schraubenpumpen
(110) gebildeten Verdichtungsstufen von der Gasströmung auszuschließen.
7. Die Anlage nach irgendeinem oder mehreren der vorstehenden Ansprüche, wobei jede Schraubenspindelpumpe
(110) zwei Schraubenrotoren umfasst, die über eine elektrische Achse kinematisch miteinander
synchronisiert sind.
8. Die Anlage nach irgendeinem oder mehreren der vorstehenden Ansprüche, umfassend mindestens
eine Filtrationsvorrichtung des Wassers, die von der genannten einen oder den mehreren
Flüssigkeitsringpumpen (120) verwendet wird und geeignet ist, Staub zu entfernen,
der sich im Wasser selbst während des Betriebs der Pumpe angesammelt hat, oder eine
Austauschvorrichtung des Wassers selbst.
9. Die Anlage nach irgendeinem oder mehreren der vorstehenden Ansprüche, wobei der Einlasskanal
(20), im Abschnitt zwischen der Vakuumkammer (2) und dem Vakuumerzeugungssystem (10),
einen Verbindungszweig (28) zur Atmosphäre mit einem Steuerventil (23) umfasst.
10. Die Anlage nach irgendeinem oder mehreren der vorstehenden Ansprüche, umfassend mindestens
eine Gasfiltrationsvorrichtung (25), die zwischen der Vakuumkammer (2) und dem Vakuumerzeugungssystem
(10) angeordnet ist.
11. Die Anlage nach den Ansprüchen 9 und 10, umfassend mindestens ein Absperrventil (22),
das im genannten Einlasskanal (20) zwischen der Vakuumkammer (2) und der Filtrationsvorrichtung
(25) stromabwärts des Abzweigpunktes des Verbindungszweigs (28) zur Atmosphäre installiert
ist.
12. Ein Verfahren zur Vakuumentgasung von flüssigem Stahl, das die folgenden Arbeitsschritte
umfasst:
a) Bereitstellen mindestens einer Vakuumkammer (2), die geeignet ist, vorübergehend
flüssigen Stahl in ihrem Inneren aufzunehmen;
b) Platzieren von flüssigem Stahl in der genannten Vakuumkammer (2);
c) Evakuieren der Vakuumkammer (2) durch ein Vakuumerzeugungssystem (10), das in der
genannten Kammer einen vorbestimmten Vakuumgrad erzeugt und das diesen für eine vorbestimmte
Zeitspanne aufrechterhält, um den Vorgang der Entgasung des flüssigen Stahls abzuschließen;
d) die Vakuumkammer (2) wieder auf Atmosphärendruck bringen und den entgasten flüssigen
Stahl entnehmen;
dadurch gekennzeichnet, dass der Vakuum-Evakuierungsschritt c) mittels eines Vakuumerzeugungssystems (10) durchgeführt
wird, das mindestens zwei in Reihe geschaltete Verdichtungsstufen umfasst, von denen
eine erste Verdichtungsstufe (11) näher an der genannten mindestens einen Vakuumkammer
(2) arbeitet und von einer oder mehreren Schraubenpumpen (110) gebildet wird, und
von denen eine zweite Verdichtungsstufe (12), bezüglich der genannten mindestens eine
Vakuumkammer (2) weiter entfernt arbeitet, um die Gase mindestens auf Atmosphärendruck
zu bringen, und von einer oder mehreren Flüssigkeitsringpumpen (120) gebildet wird,
und dadurch dass die genannte eine oder mehreren Schraubenspindelpumpen (110) so bemessen sind, dass
sie mit Verdichtungsverhältnissen von höchstens 1:12 arbeiten können, falls der Förderdruck
atmosphärisch ist, und mit Verdichtungsverhältnissen von höchstens 1:200, wenn der
Förderdruck zwischen 50 und 120 mbar absolut liegt.
13. Das Verfahren nach Anspruch 12, wobei die genannte eine oder mehreren Schraubenspindelpumpen
(110) so ausgelegt sind, dass sie mit Verdichtungsverhältnissen zwischen 1:3 und 1:10
arbeiten können, falls der Förderdruck atmosphärisch ist, und, falls der Förderdruck
zwischen 50 und 120 mbar absolut liegt, mit Verdichtungsverhältnissen zwischen 1:25
und 1:200, vorzugsweise zwischen 1:70 und 1:90.
14. Das Verfahren nach Anspruch 12 oder 13, wobei im Evakuierungsschritt c) die Vakuumkammer
(2) auf einen Vakuumgrad zwischen 0,2 und 5 mbar und vorzugsweise zwischen 0,5 und
1,5 mbar gebracht wird.
15. Das Verfahren nach irgendeinem oder mehreren der Ansprüche von 12 bis 14, wobei der
genannte Evakuierungsschritt c) für das direkte Ansaugen der Gase aus der genannten
Vakuumkammer (2) durch das genannte Vakuumerzeugungssystem ohne einen vorausgehenden
Schritt der Filtration der Gase sorgt, unabhängig vom Grad der Staubkonzentration
in den Gasen selbst.
16. Das Verfahren nach irgendeinem oder mehreren der Ansprüche von 12 bis 14, wobei der
genannte Evakuierungsschritt c) für das Absaugen der Gase aus der genannten Vakuumkammer
(2) durch das genannte Vakuumerzeugungssystem mit einem vorausgehenden Schritt der
Filtration der Gase sorgt, um die Staubkonzentration in den Gasen selbst vor ihrem
Durchgang durch das Vakuumerzeugungssystem (10) zu reduzieren.
17. Das Verfahren nach irgendeinem oder mehreren der Ansprüche von 12 bis 16, wobei der
Evakuierungsschritt c) Folgendes umfasst:
- einen ersten Evakuierungsschritt c1), wobei die Vakuumkammer (2) von Atmosphärendruck
auf bis zu etwa 300 mbar gebracht wird, wobei nur die Flüssigkeitsringpumpen (120)
des Vakuumerzeugungssystems (10) verwendet werden; und
- einen abschließenden Evakuierungsschritt c2), wobei die Vakuumkammer (2) auch unter
Verwendung der Schraubenspindelpumpen (110) von dem etwa 300 mbar betragenden Druck
auf den vorgegebenen Vakuumgrad gebracht wird.
18. Das Verfahren nach irgendeinem oder mehreren der Ansprüche von 12 bis 17, wobei während
des Evakuierungsschritts c) die Ansaugleistung des Vakuumerzeugungssystems (10) variiert
wird, um Schaumerscheinungen der Schlacke im flüssigen Stahl zu reduzieren, wobei
die Ansaugleistung durch Verlangsamen oder Ausschließen einer oder mehrerer der Pumpen
(110, 120) des Vakuumerzeugungssystems (10), vorzugsweise der Flüssigkeitsringpumpen
(120), variiert wird, wobei die genannte Variation der Ansaugleistung vorzugsweise
durchgeführt wird, wenn der Innendruck der Vakuumkammer (2) zwischen 300 mbar und
1 mbar liegt.
19. Das Verfahren nach irgendeinem oder mehreren der Ansprüche von 12 bis 18, umfassend
einen Behandlungsschritt f) des Wassers, das von der einen oder den mehreren genannten
Flüssigkeitsringpumpen (120) verwendet wird, wobei der genannte Schritt vorzugsweise
während des Evakuierungsschritts c) durchgeführt wird, wobei die genannte Behandlung
in einem Herausfiltern des Staubs aus dem Wassers oder einem Austausch des Wassers
selbst besteht.
20. Das Verfahren nach irgendeinem oder mehreren der Ansprüche von 12 bis 19, umfassend
einen Misch-Schritt e) des geschmolzenen Stahls zumindest während des Evakuierungsschritts
c).
1. Installation pour le dégazage sous vide d'acier liquide, comprenant :
au moins une chambre à vide (2), adaptée pour recevoir temporairement de l'acier liquide
à l'intérieur de celle-ci ;
un système de production de vide (10), relié à ladite au moins une chambre à vide
(2) par l'intermédiaire d'un conduit d'admission (20),
le système de production de vide (10) comprend au moins deux étages de compression
reliés l'un à l'autre en série, dont un premier étage de compression (11) fonctionne
plus près de ladite au moins une chambre à vide (2) et est formé par une ou plusieurs
pompes à vis (110),
caractérisée en ce qu'un deuxième étage de compression (12) fonctionne plus loin par rapport à ladite au
moins une chambre à vide (2) pour porter les gaz au moins à la pression atmosphérique
et est formé par une ou plusieurs pompes à anneau liquide (120) et en ce que lesdites une ou plusieurs pompes à vis (110) sont dimensionnées de façon à pouvoir
fonctionner avec des rapports de compression ne dépassant pas 1:12 si la pression
de refoulement est atmosphérique, et avec des rapports de compression ne dépassant
pas 1:200 si la pression de refoulement est comprise entre 50 et 120 mbar en valeur
absolue.
2. Installation selon la revendication 1, dans laquelle lesdites une ou plusieurs pompes
à vis (110) sont dimensionnées de façon à pouvoir fonctionner avec des rapports de
compression compris entre 1:3 et 1:10 si la pression de refoulement est atmosphérique
et, si la pression de refoulement est entre 50 et 120 mbar en valeur absolue, avec
des rapports de compression compris entre 1:25 et 1:200, et de préférence entre 1:70
et 1:90.
3. Installation selon la revendication 1 ou 2, dans laquelle le système de production
de vide (10) est dimensionné pour porter la chambre à vide (2) à un degré de vide
entre 0,2 et 5 mbar, et de préférence entre 0,5 et 1,5 mbar.
4. Installation selon la revendication 1, 2 ou 3, dans laquelle le système de production
de vide (10) comprend au moins un étage de compression intermédiaire, qui est positionné
entre le premier étage (11) et le deuxième étage (12) et est relié à ceux-ci en série,
ledit étage de compression intermédiaire étant formé par une ou plusieurs pompes à
vis (110) ayant des caractéristiques similaires à celles du premier étage (11).
5. Installation selon une ou plusieurs des revendications précédentes, dans laquelle
un ou plusieurs desdits étages de compression sont chacun formés par au moins deux
pompes reliées en parallèle.
6. Installation selon une ou plusieurs des revendications précédentes, dans laquelle
le conduit d'admission (20) comprend un conduit de dérivation (21) capable d'exclure
de l'écoulement de gaz les étages de compresseur formés par des pompes à vis (110).
7. Installation selon une ou plusieurs des revendications précédentes, dans laquelle
chaque pompe à vis (110) comprend deux rotors à vis, synchronisés de manière cinématique
l'un avec l'autre par l'intermédiaire d'un axe électrique.
8. Installation selon une ou plusieurs des revendications précédentes, comprenant au
moins un dispositif de filtration de l'eau utilisée par lesdites une ou plusieurs
pompes à anneau liquide (120) adapté pour éliminer la poussière accumulée dans l'eau
proprement dite pendant le fonctionnement de la pompe ou un dispositif de remplacement
de l'eau proprement dite.
9. Installation selon une ou plusieurs des revendications précédentes, dans laquelle,
dans la section comprise entre la chambre à vide (2) et le système de production de
vide (10), le conduit d'admission (20) comprend un raccord de connexion (28) à l'atmosphère
équipé d'une vanne de régulation (23).
10. Installation selon une ou plusieurs des revendications précédentes, comprenant au
moins un dispositif de filtration de gaz (25) positionné entre la chambre à vide (2)
et le système de production de vide (10).
11. Installation selon les revendications 9 et 10, comprenant au moins une vanne d'arrêt
(22) qui est installée dans ledit conduit d'admission (20) entre la chambre à vide
(2) et le dispositif de filtration (25), en aval du point de ramification du raccord
de connexion (28) à l'atmosphère.
12. Procédé pour le dégazage sous vide d'acier liquide, comprenant les étapes opérationnelles
suivantes :
a) mise à disposition d'au moins une chambre à vide (2) adaptée pour recevoir temporairement
de l'acier liquide à l'intérieur de celle-ci ;
b) placement d'acier liquide dans ladite chambre à vide (2) ;
c) mise sous vide de la chambre à vide (2) à travers un système de production de vide
(10) créant dans ladite chambre un degré prédéfini de vide et le maintenant pendant
une durée prédéterminée de façon à achever l'opération de dégazage de l'acier liquide
;
d) retour de la chambre à vide (2) à la pression atmosphérique et retrait de l'acier
liquide dégazé ;
caractérisé en ce que l'étape de mise sous vide c) est réalisée au moyen d'un système de production de
vide (10) comprenant au moins deux étages de compression reliés l'un à l'autre en
série, dont un premier étage de compression (11) fonctionne plus près de ladite au
moins une chambre à vide (2) et est formé par une ou plusieurs pompes à vis (110),
et un deuxième étage de compression (12) fonctionne plus loin par rapport à ladite
au moins une chambre à vide (2) pour porter les gaz au moins à la pression atmosphérique
et est formé par une ou plusieurs pompes à anneau liquide (120) et
en ce que lesdites une ou plusieurs pompes à vis (110) sont dimensionnées de façon à pouvoir
fonctionner avec des rapports de compression ne dépassant pas 1:12 si la pression
de refoulement est atmosphérique, et avec des rapports de compression ne dépassant
pas 1:200 si la pression de refoulement est comprise entre 50 et 120 mbar en valeur
absolue.
13. Procédé selon la revendication 12, dans lequel lesdites une ou plusieurs pompes à
vis (110) sont dimensionnées de façon à pouvoir fonctionner avec des rapports de compression
compris entre 1:3 et 1:10 si la pression de refoulement est atmosphérique et, si la
pression de refoulement est entre 50 et 120 mbar en valeur absolue, avec des rapports
de compression entre 1:25 et 1:200, et de préférence entre 1:70 et 1:90.
14. Procédé selon la revendication 12 ou 13, dans lequel, à l'étape de mise sous vide
c), la chambre à vide (2) est amenée à fonctionner à un degré de vide entre 0,2 et
5 mbar et de préférence entre 0,5 et 1,5 mbar.
15. Procédé selon une ou plusieurs des revendications 12 à 14, dans lequel ladite étape
de mise sous vide c) permet l'aspiration directe des gaz à partir de ladite chambre
à vide (2) à travers ledit système de production de vide sans étape de filtration
préventive des gaz, indépendamment du niveau de concentration de poussière dans les
gaz proprement dits.
16. Procédé selon une ou plusieurs des revendications 12 à 14, dans lequel ladite étape
de mise sous vide c) permet l'aspiration des gaz à partir de ladite chambre à vide
(2) à travers ledit système de production de vide avec une étape de filtration préventive
des gaz, pour réduire la concentration de poussière dans les gaz proprement dits avant
leur passage à travers le système de production de vide (10).
17. Procédé selon une ou plusieurs des revendications 12 à 16, dans lequel l'étape de
mise sous vide c) comprend :
une étape de mise sous vide initiale c1) dans laquelle la chambre à vide (2) est portée
de la pression atmosphérique jusqu'à environ 300 mbar en utilisant uniquement les
pompes à anneau liquide (120) du système de production de vide (10) ; et
une étape de mise sous vide finale c2) dans laquelle la chambre à vide (2) est portée
de la pression d'environ 300 mbar au degré de vide prédéfini également en utilisant
les pompes à vis (110).
18. Procédé selon une ou plusieurs des revendications 12 à 17, dans lequel, pendant l'étape
de mise sous vide c), la capacité d'aspiration du système de production de vide (10)
est modifiée pour réduire les phénomènes de moussage du laitier dans l'acier liquide,
la capacité d'aspiration étant modifiée en ralentissant ou en excluant une ou plusieurs
des pompes (110, 120) du système de production de vide (10), de préférence les pompes
à anneau liquide (120), ladite modification de la capacité d'aspiration étant de préférence
effectuée lorsque la pression interne de la chambre à vide (2) est entre 300 mbar
et 1 mbar.
19. Procédé selon une ou plusieurs des revendications 12 à 18, comprenant une étape de
traitement f) de l'eau utilisée par lesdites une ou plusieurs pompes à anneau liquide
(120), ladite étape étant de préférence réalisée pendant l'étape de mise sous vide
c), ledit traitement consistant en une filtration de la poussière de l'eau ou un remplacement
de l'eau proprement dite.
20. Procédé selon une ou plusieurs des revendications 12 à 19, comprenant une étape de
mélange e) de l'acier fondu au moins pendant l'étape de mise sous vide c).