

(11) **EP 3 336 650 A1**

(12)

EUROPÄISCHE PATENTANMELDUNG

(43) Veröffentlichungstag:

20.06.2018 Patentblatt 2018/25

(51) Int Cl.:

G05F 1/14 (2006.01)

(21) Anmeldenummer: 16204981.1

(22) Anmeldetag: 19.12.2016

(84) Benannte Vertragsstaaten:

AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

Benannte Erstreckungsstaaten:

BA ME

Benannte Validierungsstaaten:

MA MD

(71) Anmelder: ABB Schweiz AG

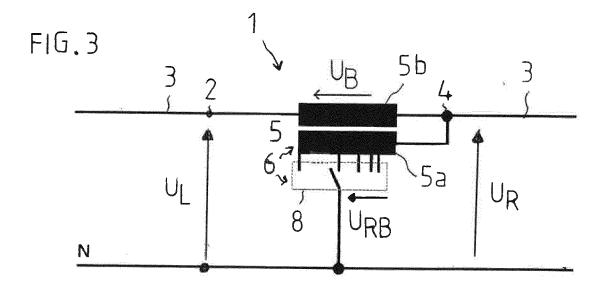
5400 Baden (CH)

(72) Erfinder:

 CORNELIUS, Frank 59929 Brilon (DE)

CARLEN, Martin
 5443 Niederrohrdorf (CH)

(74) Vertreter: Marks, Frank


ABB AG GF-IP

Wallstadter Strasse 59 68526 Ladenburg (DE)

(54) LÄNGSSPANNUNGSREGLER

(57) Die Erfindung betrifft einen Längsspannungsregler, welcher eine Spannungsquelle zur Erzeugung einer Zusatzspannung und einen Transformator zur Einkopplung der Zusatzspannung in eine Eingangsspan-

nung aufweist, wobei der Transformator sowohl zur Erzeugung der Zusatzspannung als auch zur Einkopplung der Zusatzspannung in die Eingangsspannung ausgebildet ist.

EP 3 336 650 A1

Technisches Gebiet

[0001] Die Erfindung betrifft einen Längsspannungsregler, insbesondere zur Verwendung in einem ein- oder mehrphasigen Stromverteilungsnetz, beispielsweise einem Mittelspannungsnetz oder einem Niederspannungsnetz.

1

Hintergrund

[0002] In den letzten Jahren ist der Anteil der erneuerbaren Energien an der Energieversorgung stark angestiegen. Zu diesen erneuerbaren Energien gehören mittels Photovoltaikanlagen oder mittels anderer alternativer Energiequellen erzeugte Energien. Es gibt Regionen, in denen die erzeugte Energiemenge wesentlich größer ist als der Energiebedarf, sodass überschüssige Energie in das bestehende Energienetz eingespeist und über vergleichsweise große Strecken an Orte weitergeleitet werden muss, an denen der Energiebedarf größer ist als die dort erzeugte Energiemenge.

[0003] Diese Einspeisung von Energie in das bestehende Energieverteilungsnetz bringt viele herkömmliche Energieverteilungsnetze an ihre Grenzen und erfordert zusätzliche Eingriffe in diese herkömmlichen Energieverteilungsnetze, wobei diese zusätzlichen Eingriffe mit hohen Kosten und hohem Aufwand verbunden sind.

[0004] Insbesondere im Hinblick auf die beabsichtigte Abschaltung weiterer Atomkraftwerke ist zu erwarten, dass der Anteil erneuerbarer Energien weiter ansteigt, so dass abzusehen ist, dass das genannte Verteilproblem ebenfalls größer wird.

[0005] Der europäische Standard EN 50160 definiert die Anforderungen an die Spannung in Verteilnetzen und schreibt unter anderem vor, dass die Spannung innerhalb von +/-10% der Nominalspannung verbleiben muss.
[0006] Im Allgemeinen treten in den Versorgungsleitungen von Mittelspannungsnetzen gegenwärtig Spannungserhöhungen von lediglich 2% auf. Der exakte Wert dieser Spannungserhöhungen ist von den Einstellungen seitens der jeweiligen Netzoperatoren und von der momentanen Last- und/oder Einspeisesituation in der jeweiligen Versorgungsleitung abhängig.

[0007] Auf längeren Versorgungsleitungen, bei denen in unterschiedlichen Abständen bzw. Leitungspositionen Einspeisungen vorgenommen werden, kann der jeweils vorgegebene Planungswert für die Spannungstoleranz ohne weiteres in unerwünschter Weise überschritten werden und es besteht die Notwendigkeit, Gegenmaßnahmen zu ergreifen, beispielsweise einige der Generatoren vom Netz zu trennen. Dies kann an Tagen, an denen nur ein vergleichsweise geringer Energiebedarf vorliegt, verstärkt auftreten. Dies bedeutet, dass in vielen Fällen Versorgungsleitungen von Mittelspannungsnetzen nicht aufgrund ihrer Kapazität, sondern aufgrund von unerwünschten Spannungserhöhungen limi-

tiert sind. Diese Problematik kann durch einen Umbau der Netzarchitektur reduziert werden. Dies ist jedoch kostenaufwändig und auch zeitaufwändig.

[0008] Alternativ zu einem Umbau der Netzarchitektur besteht die Möglichkeit, im Bereich der Versorgungsleitungen der Mittelspannungsnetze Längsspannungsregler einzusetzen.

[0009] Bei gegenwärtigen Stromverteilungsnetzen erfolgt eine Spannungsregelung durch einen HV-MV-Transformator, der eine angelieferte Hochspannung in eine Mittelspannung umsetzt. Diese Spannungsregelung kann sicherstellen, dass die bei angeschlossenen Verbrauchern ankommende Spannung im Bereich von +/- 10% der Nominalspannung liegt.

[0010] Wird im Bereich der Versorgungsleitungen des Mittelspannungsnetzes zwischen dem genannten HV-MV-Transformator und den angeschlossenen Verbrauchern ein Längsspannungsregler eingesetzt, dann kann dadurch eine bessere Stabilisierung der Spannung im Bereich der Versorgungsleitungen erreicht werden und des Weiteren die Möglichkeit einer Einspeisung von mittels alternativer Energiequellen bereitgestellter Energie in die Versorgungsleitungen des Mittelspannungsnetzes verbessert werden.

[0011] Die optimale Positionierung eines Längsspannungsreglers hängt vom jeweils vorliegenden speziellen Mittelspannungsnetz und von den Einspeisestellen der Energie, die insbesondere von großen Photovoltaik-Anlagen oder anderen alternativen Energiequellen geliefert wird, ab.

[0012] Bei der Positionierung eines Längsspannungsreglers ist unter anderem auch zu beachten, dass in dem Falle, dass mehrere Versorgungsleitungen des Mittelspannungsnetzes an den HV-MV-Transformator angeschlossen sind, ein Wechsel des verwendeten Transformatorabgriffspunktes alle Versorgungsleitungen des Mittelspannungsnetzes beeinflusst, wohingegen ein Längsspannungsregler nur die Spannung auf derjenigen Versorgungsleitung regelt, auf welcher Probleme auftreten. Dies ist insbesondere wichtig im Hinblick darauf, dass die auf den verschiedenen Versorgungsleitungen auftretenden Einspeisungen und die Lasten der verschiedenen Versorgungsleitungen stark voneinander abweichen können.

[0013] Ein Längsspannungsregler ist üblicherweise in ein für eine Außenaufstellung geeignetes Gehäuse, beispielsweise in ein Betongehäuse, eingebaut und muss aufgrund seiner Dimensionen und seines Gewichtes mittels eines Tiefladers an den gewünschten Einsatzort gefahren werden. Ist eine Umpositionierung des Längsspannungsreglers im Bereich des Mittelspannungsnetzes notwendig oder sollen zusätzliche Längsspannungsregler in das Mittelspannungsnetz eingesetzt werden, dann ist dies mit einem vergleichsweise hohen Aufwand verbunden, da dazu wiederum Tieflader notwendig sind, die den jeweiligen Längsspannungsregler an den jeweils gewünschten Einsatzort transportieren. Dort wird er dann mittels eines Kranes auf eine vorbereitete Beton-

40

plattform aufgesetzt.

Zusammenfassung der Erfindung

[0014] Die Erfindung stellt einen Längsspannungsregler bereit, welcher eine Spannungsquelle zur Erzeugung einer Zusatzspannung und einen Transformator zur Einkopplung der Zusatzspannung in eine Eingangsspannung aufweist, wobei der Transformator sowohl zur Erzeugung der Zusatzspannung als auch zur Einkopplung der Zusatzspannung in die Eingangsspannung ausgebildet ist.

[0015] Ein derartiger Längsspannungsregler hat einen wesentlich kompakteren Aufbau als bekannte Längsspannungsregler, da er nur einen Transformator aufweist, der zur Generierung der Zusatzspannung und zur Einkopplung dieser Zusatzspannung in die Versorgungsleitung ausgebildet ist. Dieser kompaktere Aufbau ermöglicht eine Verkleinerung der Abmessungen des Längsspannungsreglers und eine Verringerung von dessen Gewicht. Durch diese Verringerung des Gewichtes und der Abmessungen des Längsspannungsreglers werden auch die Abmessungen und das Gewicht des Gehäuses, in welches der Längsspannungsregler eingebaut ist, reduziert. Dadurch ist die Transportierbarkeit des Längsspannungsreglers verbessert. So kann ein derartiger Längsspannungsregler zum gewünschten Aufstellungsort beispielsweise auch auf der Ladefläche eines Lastkraftwagens transportiert werden, was mit erheblich weniger Aufwand verbunden ist als der Transport eines Längsspannungsreglers mittels eines Tiefladers. Am Aufstellungsort selbst wird das Gehäuse des Längsspannungsreglers inklusive dem darin eingebauten Längsspannungsregler mittels eines Kranes auf ein vorbereitetes Fundament aufgesetzt. Weitere Vorteile eines Längsspannungsreglers gemäß der Erfindung bestehen darin, dass dessen Anschaffungskosten niedriger sind als die Anschaffungskosten bekannter Längsspannungsregler und dass seine Energieeffizienz signifikant erhöht ist.

[0016] In vorteilhafter Weise weist der Transformator eine Eingangswicklung und eine Ausgangswicklung auf, wobei die Ausgangswicklung in einer Versorgungsleitung angeordnet ist. Bei dieser Versorgungsleitung kann es sich um eine in einem Mittelspannungsnetz vorgesehene Versorgungsleitung oder um eine in einem Niederspannungsnetz vorgesehene Versorgungsleitung handeln. Eine derartige Versorgungsleitung kann beispielsweise einem einphasigen Stromverteilungsnetz oder einer Phase eines dreiphasigen Stromverteilungsnetzes zugeordnet sein. Ein dreiphasiges Stromverteilungsnetz benötigt drei derartige Stromversorgungsleitungen.

[0017] Vorzugsweise ist die Polarität der Zusatzspannung veränderbar. Dadurch kann die gewünschte Spannungsregelung positiv wie negativ erfolgen. Im erstgenannten Fall erfolgt eine gleichphasige Überlagerung der Eingangsspannung mit der Zusatzspannung, so dass die Zusatzspannung zur Eingangsspannung addiert wird. Im

zweitgenannten Fall erfolgt eine gegenphasige Überlagerung der Eingangsspannung mit der Zusatzspannung, so dass die Zusatzspannung von der Eingangsspannung subtrahiert wird.

[0018] Die Änderung der Polarität der Zusatzspannung kann in vorteilhafter Weise durch eine Änderung der Stromrichtung vorgenommen werden.

[0019] Gemäß einer Ausführungsform kann ein Anschluss der Eingangswicklung des Transformators mit einem Bezugspotential und der andere Anschluss der Eingangswicklung mit einem Ausgangsanschluss des Längsspannungsreglers verbunden und ein Anschluss der Ausgangswicklung des Transformators mit einem Eingangsanschluss des Längsspannungsreglers und der andere Anschluss der Ausgangswicklung mit dem Ausgangsanschluss des Längsspannungsreglers verbunden sein. Bei dieser Ausführungsform erfolgt eine gleichphasige Überlagerung der Zusatzspannung mit der Eingangsspannung.

[0020] Gemäß einer weiteren Ausführungsform kann ein Anschluss der Eingangswicklung des Transformators mit dem Bezugspotential und der andere Anschluss der Eingangswicklung mit dem Eingangsanschluss des Längsspannungsreglers verbunden und ein Anschluss der Ausgangswicklung des Transformators mit dem Eingangsanschluss des Längsspannungsreglers und der andere Anschluss der Ausgangswicklung mit dem Ausgangsanschluss des Längsspannungsreglers verbunden sein.

[0021] Gemäß einer vorteilhaften Ausgestaltung kann die Eingangswicklung des Transformators mehrere Anzapfungen aufweisen, die mit Ausgangsanschlüssen eines Stufenschalters verbunden sind, wobei der Eingangsanschluss des Stufenschalters mit einem Bezugspotential verbunden ist. Dies erlaubt eine stufenweise Veränderung der bereitgestellten Zusatzspannung. Diese Möglichkeit einer stufenweisen Zuschaltung der Zusatzspannung erlaubt eine Anpassung der Zusatzspannung an die Schwankungsbreite der angelieferten Eingangsspannung.

[0022] Gemäß einer bevorzugten Ausführungsform kann die Eingangswicklung des Transformators fünf Anzapfungen aufweisen. Diese Anzahl von Anzapfungen hat sich in der Praxis als sinnvoll und ausreichend erwiesen und bietet einen guten Kompromiss zwischen Aufwand und Wirkung. Alternativ kann die Anzahl der Anzapfungen beispielsweise auch sieben betragen.

[0023] Es hat sich als vorteilhaft erwiesen, die Positionen der Anzapfungen über die Anzahl der Windungen der Primärwicklung des Transformators derart nichtlinear zu verteilen, dass eine fortlaufende Veränderung der Auswahl der Anzapfung eine lineare Veränderung der Zusatzspannung ermöglicht.

[0024] Alternativ dazu kann die Eingangswicklung des Transformators gemäß einer anderen Ausführungsform, bei welcher kein Stufenschalter verwendet wird, auch anzapfungsfrei ausgebildet sein.

[0025] Weitere Vorteile der Erfindung ergeben sich

20

35

40

45

aus deren nachfolgender beispielhafter Erläuterung anhand der Zeichnungen.

Kurzbeschreibung der Zeichnungen

[0026]

Die Figur 1 zeigt eine Skizze zur Erläuterung des grundsätzlichen Aufbaus eines Längsspannungsreglers.

Die Figur 2 zeigt eine Skizze eines Längsspannungsreglers, bei welchem die in der Figur 1 gezeigte Spannungsquelle mittels eines Versorgungstransformators realisiert ist.

Die Figur 3 zeigt eine Skizze eines Längsspannungsreglers gemäß einem ersten Ausführungsbeispiel für die Erfindung.

Die Figur 4 zeigt eine Skizze eines Längsspannungsreglers gemäß einem zweiten Ausführungsbeispiel für die Erfindung.

Detaillierte Beschreibung

[0027] Das Funktionsprinzip eines Längsspannungsreglers besteht darin, eine Zusatzspannung zu einer Eingangsspannung zu addieren oder von ihr zu subtrahieren. Die Zusatzspannung wird unter Verwendung einer variablen Spannungsquelle bereitgestellt, die von der Versorgungsleitung energieversorgt wird. Die von der Spannungsquelle bereitgestellte Zusatzspannung wird unter Verwendung eines Booster-Transformators in die Versorgungsleitung eingekoppelt. Mittels eines derartigen Längsspannungsreglers erfolgt demnach eine Regelung der Eingangsspannung und ein Einkoppeln einer von einer Spannungsquelle bereitgestellten Zusatzspannung in die Eingangsspannung.

[0028] Die Figur 1 zeigt eine Skizze zur Erläuterung des vorstehend beschriebenen grundsätzlichen Aufbaus eines Längsspannungsreglers. Dieser Längsspannungsregler 1 ist in eine Versorgungsleitung 3 eines Mittelspannungsnetzes eingesetzt, die beispielsweise zwischen einem nicht gezeichneten Hochspannungs-Mittelspannungs-Transformator (HV-MV-Transformator) und einem ebenfalls nicht gezeichneten Niederspannungsnetz, in welchem Verbraucher angeordnet sind, vorgesehen ist. Am Eingangsanschluss 2 des Längsspannungsreglers 1 liegt eine Spannungsschwankungen unterworfene Eingangsspannung bzw. Systemspannung U_I vor. Am Ausgangsanschluss 4 des Längsspannungsreglers 1 wird eine geregelte Ausgangsspannung bzw. eine geregelte Systemspannung U_R bereitgestellt. Es gilt:

$$U_R = U_I - U_R$$

[0029] Bei UB handelt es sich dabei um eine Spannung, die über der in die Versorgungsleitung 3 eingesetzten Ausgangswicklung 5b eines Booster-Transformators 5 abfällt. Diese Spannung U_B ist eine in die Versorgungsleitung 3 eingekoppelte Zusatzspannung. Zur Erzeugung dieser Zusatzspannung weist der Längsspannungsregler 1 eine variable Spannungsquelle 6 und den bereits genannten Booster-Transistor 3 auf. Die Spannungsquelle 6, die von der Versorgungsleitung 3 energieversorgt wird, ist eine veränderliche Spannungsquelle, mittels welcher eine Zusatzspannung URB generiert wird, die an der Eingangswicklung 5a des Booster-Transformators 5 anliegt und mittels des Booster-Transformators in die Versorgungsleitung 3 eingekoppelt wird. [0030] Als variable Spannungsquelle 6 kann ein weiterer Transformator verwendet werden, der nachfolgend als Versorgungstransformator bezeichnet wird. Dies ist in der Figur 2 veranschaulicht. Diese zeigt eine Skizze eines Längsspannungsreglers, bei dem die in der Figur 1 gezeigte Spannungsquelle 6 von einem derartigen Versorgungstransformator 7 gebildet ist.

[0031] Auch bei dem in der Figur 2 gezeigten Längsspannungsregler 1 liegt am Eingangsanschluss 2 des Booster-Transformators 5 auf einer Versorgungsleitung 3 eine Schwankungen unterworfene Eingangs- bzw. Systemspannung U_L vor. Am Ausgangsanschluss 4 des Längsspannungsreglers 1 wird eine geregelte Ausgangsspannung bzw. eine geregelte Systemspannung U_R bereitgestellt. Für diese gilt ebenso wie in der Figur 1 die folgende Beziehung:

$$U_R = U_L - U_B$$
.

[0032] Der Längsspannungsregler 1 weist eine variable Spannungsquelle 6 und einen Booster-Transformator 5 auf. Über die mit der variablen Spannungsquelle 6 verbundene Eingangswicklung 5a des Booster-Transformators 5 fällt eine Zusatzspannung U_{RB} ab. Diese wird mittels des Booster-Transformators 5 in die in die Versorgungsleitung 3 eingesetzte Sekundärwicklung 5b des Booster-Transformators 5 eingekoppelt, an welcher eine Spannung U_R abfällt, bei der es sich um die auf die Sekundärseite des Booster-Transformators 5 gekoppelte Zusatzspannung U_{RB} handelt.

[0033] Die variable Spannungsquelle 6 des Längsspannungsreglers 1 wird von einem Versorgungstransformator 7 gebildet. Dieser weist eine Primärwicklung 7a und eine Sekundärwicklung 7b auf. Die Primärwicklung 7a des Versorgungstransformators 7 ist mit einem ihrer Anschlüsse mit der Versorgungsleitung 3 verbunden. Der andere Anschluss der Primärwicklung 7a ist mit einem Bezugspotenzial N verbunden. Die Sekundärwick-

25

lung 7b des Versorgungstransformators 7 ist mit einem Anschluss der Primärwicklung 5a des Booster-Transformators 5 und mit ihrem zweiten Anschluss mit dem anderen Anschluss der Primärwicklung 5a des Booster-Transformators 5 verbunden. Dieser zweite Anschluss der Sekundärwicklung 7b des Versorgungstransformators wirkt mit einem unterbrechungsfreien Stufenschalter 8 mit fünf Anschlüssen derart zusammen, dass der an der Sekundärwicklung 7b verwendete Anzapfungspunkt unterbrechungsfrei umschaltbar ist.

[0034] Nachteilig bei dem anhand der Figur 2 erläuterten Längsspannungsregler 1 ist, dass er aufgrund des Umstandes, dass er zwei Transformatoren benötigt, zusammen mit dem Gehäuse, in das er eingesetzt ist, vergleichsweise große Abmessungen und ein vergleichsweise hohes Gewicht aufweist.

[0035] Die Figur 3 zeigt eine Skizze eines Längsspannungsreglers 1 gemäß einem ersten Ausführungsbeispiel für die Erfindung. Bei diesem Längsspannungsregler sind im Vergleich zu dem in der Figur 2 gezeigten Längsspannungsregler die Abmessungen und das Gewicht verringert.

[0036] Dieser Längsspannungsregler 1 kann in eine Versorgungsleitung 3 eines Mittelspannungsnetzes eingesetzt sein, die beispielsweise zwischen einem nicht gezeichneten Hochspannungs-Mittelspannungs-Transformator (HV-MV-Transformator) und einem ebenfalls nicht gezeichneten Niederspannungsnetz, in welchem Verbraucher angeordnet sind, vorgesehen ist. Am Eingangsanschluss 2 des Längsspannungsreglers 1 liegt eine Spannungsschwankungen unterworfene Eingangsspannung bzw. die Schwankungen unterworfene Systemspannung U_I vor. Am Ausgangsanschluss 4 des Längsspannungsreglers 1 wird eine geregelte Ausgangsspannung bzw. eine geregelte Systemspannung U_R bereitgestellt. Es gilt:

$U_R = U_L - U_B$.

[0037] Bei UB handelt es sich dabei um eine Spannung, die über der in die Versorgungsleitung 3 eingesetzten Ausgangswicklung 5b eines Booster-Transformators 5 abfällt. Diese Spannung UB ist eine in die Versorgungsleitung 3 eingekoppelte bzw. in die Versorgungsleitung 3 transformierte Zusatzspannung. Zur Erzeugung dieser Zusatzspannung weist der Längsspannungsregler 1 eine variable Spannungsquelle 6 auf, die vom bereits genannten Booster-Transistor 5 gebildet wird, der mit einem Stufenschalter 8 zusammenwirkt. Die Spannungsquelle 6, die von der Versorgungsleitung 3 energieversorgt wird, ist eine variable Spannungsquelle, mittels welcher eine Zusatzspannung U_{RB} generiert wird, die an der Eingangswicklung 5a des Booster-Transformators 5 anliegt und mittels des Booster-Transformators 5 in die Versorgungsleitung 3 eingekoppelt bzw. in die Versorgungsleitung 3 transformiert wird.

Der Booster-Transformator 5 ist folglich derart ausgebildet, dass er sowohl die Erzeugung der Zusatzspannung als auch deren Einkopplung in die Versorgungsleitung 3 vornimmt.

[0039] Zu diesem Zweck ist beim gezeigten ersten Ausführungsbeispiel ein Anschluss der Eingangswicklung 5a des Booster-Transformators 5 über den Stufenschalter 8 mit dem Bezugspotential N und der andere Anschluss der Eingangswicklung 5a des Booster-Transformators 5 mit einem Ausgangsanschluss 4 des Längsspannungsreglers 1 verbunden. Des Weiteren ist ein Anschluss der Ausgangswicklung 5b des Booster-Transformators 5 mit einem Eingangsanschluss 2 des Längsspannungsreglers 1 und der andere Anschluss der Ausgangswicklung 5b mit dem Ausgangsanschluss 4 des Längsspannungsreglers 1 verbunden. Über der Ausgangswicklung 5b des Booster-Transformators 5 fällt die in die Versorgungsleitung 3 eingekoppelte bzw. in die Versorgungsleitung 3 transformierte Zusatzspannung 20 U_B ab.

[0040] Die variable Spannungsquelle 6 des Längsspannungsreglers 1 wird von der Primärwicklung 5a des Booster-Transformators 5 gebildet, die mit dem Stufenschalter 8 zusammenwirkt. Die Primärwicklung 5a hat beim gezeigten Ausführungsbeispiel fünf Anzapfungen, die an Ausgangsanschlüsse des Stufenschalters 8 angeschlossen sind. Der Eingang des Stufenschalters 8 ist mit dem Bezugspotential N verbunden. Der Stufenschalter 8 ist derart umschaltbar, dass einer seiner insgesamt 5 Ausgangsanschlüsse über die zwischen dem Bezugspotential N und dem Ausgangsanschluss 4 verbleibenden Windungen der Primärwicklung 5a mit dem Ausgangsanschluss 4 verbunden ist. Durch eine Umschaltung des Stufenschalters 8 ist die mittels der variablen Spannungsquelle generierte Zusatzspannung veränderbar, beispielsweise von Anzapfung zu Anzapfung der Primärwicklung 5a um 2%. Zu diesem Zweck sind die Anzapfungen der Primärwicklung 5a des Booster-Transformators 5 bzw. die zugehörigen Ausgangsanschlüsse des Stufenschalters 8 über die Anzahl der Windungen der Primärwicklung 5a derart nichtlinear verteilt, dass eine Veränderung der Auswahl der jeweils verwendeten Anzapfung von Anzapfung zu Anzapfung eine lineare Veränderung der bereitgestellten Zusatzspannung URB ermöglicht. Diese Möglichkeit, die Zusatzspannung zu verändern, erlaubt in vorteilhafter Weise eine Anpassung der Zusatzspannung an die auf der Versorgungsleitung 3 auftretenden Spannungsschwankungen.

[0041] Die Figur 4 zeigt eine Skizze eines Längsspannungsreglers 1 gemäß einem zweiten Ausführungsbeispiel für die Erfindung. Auch bei diesem Längsspannungsregler sind im Vergleich zu dem in der Figur 2 gezeigten Längsspannungsregler die Abmessungen und das Gewicht verringert.

[0042] Auch dieser Längsspannungsregler 1 kann in eine Versorgungsleitung 3 eines Mittelspannungsnetzes eingesetzt sein, die beispielsweise zwischen einem nicht gezeichneten Hochspannungs-Mittelspannungs-Trans-

35

40

50

55

formator (HV-MV-Transformator) und einem ebenfalls nicht gezeichneten Niederspannungsnetz, in welchem Verbraucher angeordnet sind, vorgesehen ist. Am Eingangsanschluss 2 des Längsspannungsreglers 1 liegt eine Spannungsschwankungen unterworfene Eingangsspannung bzw. die Schwankungen unterworfene Systemspannung $\rm U_L$ vor. Am Ausgangsanschluss 4 des Längsspannungsreglers 1 wird eine geregelte Ausgangsspannung bzw. eine geregelte Systemspannung $\rm U_R$ bereitgestellt. Es gilt:

$U_R = U_L - U_B$.

[0043] Bei U_R handelt es sich dabei um eine Spannung, die über der in die Versorgungsleitung 3 eingesetzten Ausgangswicklung 5b eines Booster-Transformators 5 abfällt. Diese Spannung $U_{\rm B}$ ist eine in die Versorgungsleitung 3 eingekoppelte bzw. in die Versorgungsleitung 3 transformierte Zusatzspannung. Zur Erzeugung dieser Zusatzspannung weist der Längsspannungsregler 1 eine variable Spannungsquelle 6 auf, die vom bereits genannten Booster-Transistor 5 gebildet wird, der mit einem Stufenschalter 8 zusammenwirkt. Die Spannungsquelle 6, die von der Versorgungsleitung 3 energieversorgt wird, ist eine variable Spannungsquelle, mittels welcher eine Zusatzspannung U_{RB} generiert, die an der Eingangswicklung 5a des Booster-Transformators 5 anliegt und mittels des Booster-Transformators 5 in die Versorgungsleitung 3 eingekoppelt bzw. in die Versorgungsleitung 3 transformiert wird.

[0044] Der Booster-Transformator 5 ist folglich derart ausgebildet, dass er sowohl die Erzeugung der Zusatzspannung als auch deren Einkopplung in die Versorgungsleitung 3 vornimmt.

[0045] Zu diesem Zweck ist beim gezeigten zweiten Ausführungsbeispiel ein Anschluss der Eingangswicklung 5a des Booster-Transformators 5 über den Stufenschalter 8 mit dem Bezugspotential N und der andere Anschluss der Eingangswicklung 5a des Booster-Transformators 5 mit dem Eingangsanschluss 2 des Längsspannungsreglers 1 verbunden. Des Weiteren ist ein Anschluss der Ausgangswicklung 5b des Booster-Transformators 5 mit dem Eingangsanschluss 2 des Längsspannungsreglers 1 und der andere Anschluss der Ausgangswicklung 5b mit dem Ausgangsanschluss 4 des Längsspannungsreglers 1 verbunden. Über der Ausgangswicklung 5b des Booster-Transformators 5 fällt die in die Versorgungsleitung 3 eingekoppelte bzw. in die Versorgungsleitung 3 transformierte Zusatzspannung U_B ab. [0046] Die variable Spannungsquelle 6 des Längsspannungsreglers 1 wird von der Primärwicklung 5a des Booster-Transformators 5 gebildet, der mit dem Stufenschalter 8 zusammenwirkt. Die Primärwicklung 5a hat beim gezeigten Ausführungsbeispiel fünf Anzapfungen, die an Ausgangsanschlüsse des Stufenschalters 8 angeschlossen sind. Der Eingang des Stufenschalters 8 ist mit dem Bezugspotential N verbunden. Der Stufenschalter 8 ist derart umschaltbar, dass einer seiner insgesamt 5 Ausgangsanschlüsse über die zwischen dem Bezugspotential N und dem Eingangsanschluss 2 verbleibenden Windungen der Primärwicklung 5a mit dem Eingangsanschluss 2 verbunden ist. Durch eine Umschaltung des Stufenschalters 8 ist die mittels der variablen Spannungsquelle generierte Zusatzspannung veränderbar, beispielsweise von Anzapfung zu Anzapfung der Primärwicklung 5a um 2%. Zu diesem Zweck sind die Anzapfungen der Primärwicklung 5a des Booster-Transformators 5 bzw. die zugehörigen Ausgangsanschlüsse des Stufenschalters 8 über die Anzahl der Windungen der Primärwicklung 5a derart nichtlinear verteilt, dass eine Veränderung der Auswahl der jeweils verwendeten Anzapfung von Anzapfung zu Anzapfung eine lineare Veränderung der bereitgestellten Zusatzspannung URB ermöglicht. Diese Möglichkeit, die Zusatzspannung zu verändern, erlaubt in vorteilhafter Weise eine Anpassung der Zusatzspannung an die auf der Versorgungsleitung 3 auftretenden Spannungsschwankungen.

[0047] Die anhand der vorstehend beschriebenen Ausführungsbeispiele beschriebene Erfindung weist mehrere Vorteile auf.

[0048] Ein wesentlicher Vorteil eines Längsspannungsreglers gemäß der Erfindung besteht darin, dass er nur einen Transformator benötigt. Dieser ist sowohl zur Generierung der Zusatzspannung als auch zur Einkopplung dieser Zusatzspannung in die Versorgungsleitung ausgebildet. Dies ermöglicht einen im Vergleich zu bekannten Längsspannungsreglern kompakteren Aufbau. Dieser kompaktere Aufbau wiederum geht mit einer Verkleinerung der Abmessungen des Längsspannungsreglers und einer Verringerung von dessen Gewicht einher. Durch diese Verringerung des Gewichtes und der Abmessungen des Längsspannungsreglers werden auch die Abmessungen und das Gewicht des Gehäuses, in welches der Längsspannungsregler eingebaut ist, reduziert. Beispielsweise hat ein Betongehäuse mit eingebautem Längsspannungsregler nach dem Stand der Technik eine Länge von 2,50 m, eine Breite von 6,00 m und eine Höhe von 3,20 m. Ein Betongehäuse mit eingebautem Längsspannungsregler gemäß der Erfindung hat demgegenüber bei gleichbleibender Länge und Höhe eine reduzierte Breite, die beispielsweise 4,00 m beträgt. [0049] Aufgrund der genannten Verringerung seines Gewichts und seiner Abmessungen ist die Transportierbarkeit eines in ein Gehäuse eingebauten Längsspannungsreglers verbessert. So kann ein derartiger Längsspannungsregler zum gewünschten Aufstellungsort beispielsweise auch auf der Ladefläche eines Lastkraftwagens transportiert werden, was mit erheblich weniger Aufwand verbunden ist als der Transport eines Längsspannungsreglers mittels eines Tiefladers, wie er bei bekannten Längsspannungsreglern notwendig war. Am Aufstellungsort selbst wird das Gehäuse des Längsspannungsreglers inklusive dem darin eingebauten Längsspannungsregler mittels eines Kranes auf ein vorberei-

20

25

30

35

tetes Fundament aufgesetzt.

[0050] Die verbesserte Transportierbarkeit eines Längsspannungsreglers ist insbesondere dann vorteilhaft, wenn beim Vorliegen einer Notwendigkeit einer Erweiterung eines Stromverteilungsnetzes zusätzliche Energiequellen, insbesondere alternative Energiequellen, an das Stromverteilungsnetz angeschlossen werden sollen. Dies bedeutet oftmals, dass im Bereich der Versorgungsleitungen nicht mehr tolerierbare Spannungsschwankungen auftreten, die durch eine geeignete Spannungsregelung reduziert werden müssen. Zu einer derartigen Spannungsregelung bietet sich an, einen oder mehrere Längsspannungsregler, die die erfindungsgemäßen Merkmale aufweisen, an geeigneten Positionen innerhalb des Stromverteilungsnetzes zu platzieren.

[0051] Weitere Vorteile eines Längsspannungsreglers gemäß der Erfindung bestehen darin, dass dessen Anschaffungskosten niedriger sind als die Anschaffungskosten bekannter Längsspannungsregler, da er weniger Bauteile aufweist als herkömmliche Längsspannungsregler. Insbesondere werden die Kosten für den bei herkömmlichen Längsspannungsreglern verwendeten Versorgungstransformator eingespart, welcher bei bekannten Längsspannungsreglern zusätzlich zum Booster-Transformator verwendet wird.

[0052] Des Weiteren ist die Energieeffizienz eines Längsspannungsreglers gemäß der Erfindung im Vergleich zur Energieeffizienz herkömmlicher Längsspannungsregler signifikant erhöht. Ein Längsspannungsregler gemäß der Erfindung erzeugt weniger Abwärme als ein bekannter Längsspannungsregler, da er weniger Transformatoren benötigt, und hat deshalb weniger Verluste.

[0053] Des Weiteren ist aufgrund der Reduzierung der Anzahl der verwendeten Bauteile auch die Wahrscheinlichkeit eines Auftretens von Defekten reduziert.

[0054] Ferner ist der Aufbau eines Längsspannungsreglers gemäß der Erfindung im Vergleich zu einem Aufbau bekannter Längsspannungsregler vereinfacht.

[0055] Längsspannungsregler mit den erfindungsgemäßen Merkmalen sind insbesondere in ein- oder mehrphasigen Stromverteilungsnetzen wie Mittelspannungsnetzen oder Niederspannungsnetzen verwendbar.

Bezugszeichenliste

[0056]

- 1 Längsspannungsregler, Strangregler
- 2 Eingangsanschluss des Längsspannungsreglers
- 3 Versorgungsleitung
- 4 Ausgangsanschluss des Längsspannungsreglers
- 5 Booster-Transformator
- 5a Eingangswicklung des Booster-Transformators
- 5b Ausgangswicklung des Booster-Transformators
- 6 Variable Spannungsquelle

- 7 Versorgungstransformator
- 7a Eingangswicklung des Versorgungstransformators
- 7b Ausgangswicklung des Versorgungstransformators
 - 8 Stufenschalter
 - N Bezugspotential
 - U_B transformierte Zusatzspannung auf der Versorgungsleitung
- 10 U_I Eingangsspannung, Systemspannung
 - U_R Ausgangsspannung, geregelte Systemspannung
 - U_{RB} Zusatzspannung

Patentansprüche

- Längsspannungsregler, welcher eine Spannungsquelle zur Erzeugung einer Zusatzspannung und einen Transformator zur Einkopplung der Zusatzspannung in eine Eingangsspannung aufweist, wobei der Transformator (5) sowohl zur Erzeugung der Zusatzspannung als auch zur Einkopplung der Zusatzspannung in die Eingangsspannung ausgebildet ist.
- 2. Längsspannungsregler nach Anspruch 1, wobei der Transformator (5) eine Eingangswicklung (5a) und eine Ausgangswicklung (5b) aufweist und wobei die Ausgangswicklung (5b) in einer Versorgungsleitung (3) angeordnet ist.
- Längsspannungsregler nach Anspruch 1 oder 2, wobei die Polarität der Zusatzspannung veränderbar ist
- **4.** Längsspannungsregler nach Anspruch 3, wobei die Polarität der Zusatzspannung durch eine Änderung der Stromrichtung veränderbar ist.
- 40 5. Längsspannungsregler nach einem der Ansprüche 2 bis 4, wobei ein Anschluss der Eingangswicklung (5a) des Transformators (5) mit einem Bezugspotential (N) und der andere Anschluss der Eingangswicklung (5a) mit einem Ausgangsanschluss (4) des Längsspannungsreglers (1) verbunden ist und wobei ein Anschluss der Ausgangswicklung (5b) des Transformators (5) mit einem Eingangsanschluss (2) des Längsspannungsreglers (1) und der andere Anschluss der Ausgangswicklung (5b) mit dem Ausgangsanschluss (4) des Längsspannungsreglers (1) verbunden ist.
 - 6. Längsspannungsregler nach einem der Ansprüche 2 bis 4, wobei ein Anschluss der Eingangswicklung (5a) des Transformators (5) mit dem Bezugspotential (N) und der andere Anschluss der Eingangswicklung (5a) mit dem Eingangsanschluss (2) des Längsspannungsreglers (1) verbunden ist und wobei ein

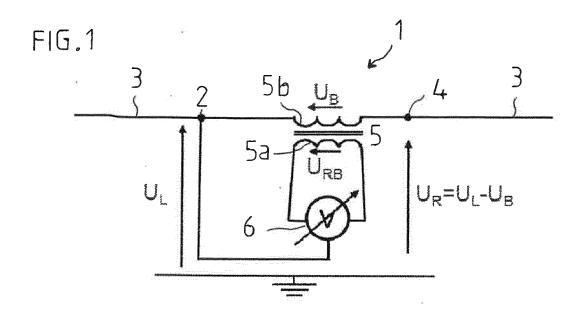
7

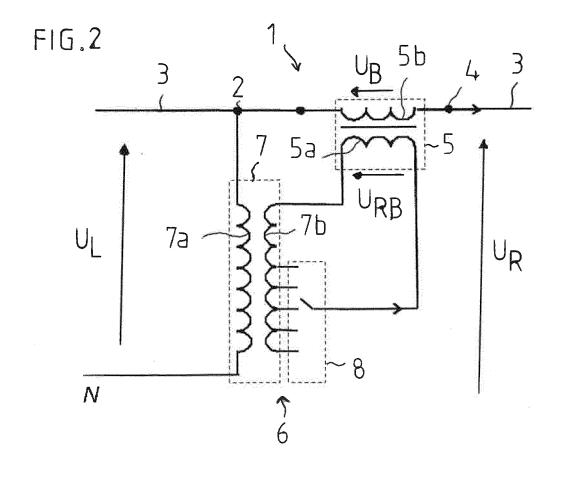
35

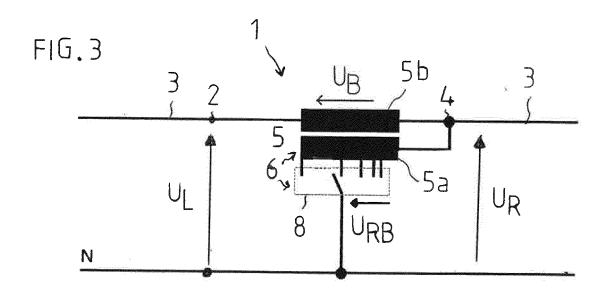
40

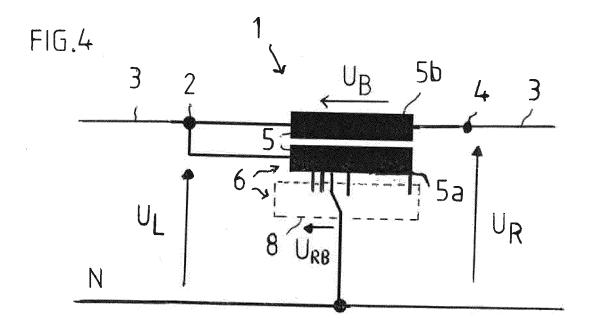
45

50


Anschluss der Ausgangswicklung (5b) des Transformators (5) mit dem Eingangsanschluss (2) des Längsspannungsreglers (1) und der andere Anschluss der Ausgangswicklung (5b) mit dem Ausgangsanschluss (4) des Längsspannungsreglers (1) verbunden ist.


7. Längsspannungsregler nach einem der Ansprüche 2 bis 6, wobei die Eingangswicklung (5a) des Transformators (5) mehrere Anzapfungen aufweist, die mit Ausgangsanschlüssen eines Stufenschalters (8) verbunden sind, und wobei ein Eingangsanschluss des Stufenschalters (8) mit dem Bezugspotential (N) verbunden ist.


8. Längsspannungsregler nach Anspruch 7, wobei die Anzahl der Anzapfungen der Eingangswicklung (5a) des Transformators (5) fünf ist.


Längsspannungsregler nach Anspruch 7 oder 8, wobei die Positionen der Anzapfungen über die Anzahl der Windungen der Primärwicklung (5a) des Transformators (5) derart nichtlinear verteilt sind, dass eine Veränderung der Auswahl einer Anzapfung eine lineare Veränderung der Zusatzspannung (U_{RB}) ermöglicht.

10. Verwendung eines Längsspannungsreglers mit den in einem der vorhergehenden Ansprüche angegebenen Merkmalen in einem ein- oder mehrphasigen Stromverteilungsnetz.

EUROPÄISCHER RECHERCHENBERICHT

Nummer der Anmeldung EP 16 20 4981

		EINSCHLÄGIGE	DOKUMENTE			
	Kategorie	Kennzeichnung des Dokun der maßgebliche	nents mit Angabe, sowe en Teile	it erforderlich,	Betrifft Anspruch	KLASSIFIKATION DER ANMELDUNG (IPC)
	X A	EP 3 043 362 A1 (AE 13. Juli 2016 (2016 * das ganze Dokumer	B TECHNOLOGY A	AG [CH])	1-4 5-10	INV. G05F1/14
	А	WO 2016/082704 A1 (2. Juni 2016 (2016- * Zusammenfassung *	06-02))	1-10	
						RECHERCHIERTE SACHGEBIETE (IPC)
2	Der vo	I orliegende Recherchenbericht wu				
		Recherchenort	Abschlußdatum		Cab	Prüfer
03.82 (P04C)		Den Haag ATEGORIE DER GENANNTEN DOKU besonderer Bedeutung allein betrach	JMENTE T	: der Erfindung zug : älteres Patentdok		
EPO FORM 1503 03.82 (P04C03)	X : von besonderer Bedeutung allein betrachtet Y : von besonderer Bedeutung in Verbindung mit einer anderen Veröffentlichung derselben Kategorie A : technologischer Hintergrund O : nichtschriftliche Offenbarung P : Zwischenliteratur nach dem Anmeldedatum veröffentlicht worden ist D : in der Anmeldung angeführtes Dokument L : aus anderen Gründen angeführtes Dokument & : Mitglied der gleichen Patentfamilie, übereinstimmendes Dokument					

EP 3 336 650 A1

ANHANG ZUM EUROPÄISCHEN RECHERCHENBERICHT ÜBER DIE EUROPÄISCHE PATENTANMELDUNG NR.

5

10

15

20

25

30

35

40

45

50

55

EP 16 20 4981

In diesem Anhang sind die Mitglieder der Patentfamilien der im obengenannten europäischen Recherchenbericht angeführten

Patentdokumente angegeben.
Die Angaben über die Familienmitglieder entsprechen dem Stand der Datei des Europäischen Patentamts am Diese Angaben dienen nur zur Unterrichtung und erfolgen ohne Gewähr.

13-06-2017

		Recherchenbericht ortes Patentdokumen	ŧ	Datum der Veröffentlichung	Mitglied(er) der Patentfamilie		Datum der Veröffentlichung
	EP 3043362 A1		13-07-2016	KEII	NE		
	WO	2016082704	A1	02-06-2016	CN WO WO	105632727 A 2016082704 A1 2017084634 A1	01-06-2016 02-06-2016 26-05-2017
0461							
EPO FORM P0461							
_							

Für nähere Einzelheiten zu diesem Anhang : siehe Amtsblatt des Europäischen Patentamts, Nr.12/82