(12)

EUROPÄISCHE PATENTANMELDUNG

(43) Veröffentlichungstag:

20.06.2018 Patentblatt 2018/25

(51) Int Cl.:

H05B 6/06 (2006.01)

(21) Anmeldenummer: 17203736.8

(22) Anmeldetag: 27.11.2017

(84) Benannte Vertragsstaaten:

AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

Benannte Erstreckungsstaaten:

BA ME

Benannte Validierungsstaaten:

MA MD

(30) Priorität: 13.12.2016 ES 201631581

- (71) Anmelder: **BSH Hausgeräte GmbH** 81739 München (DE)
- (72) Erfinder:
 - Hernandez Blasco, Pablo Jesus 50019 Zaragoza (ES)
 - Lope Moratilla, Ignacio 50010 Zaragoza (ES)
 - Lucia Gil, Oscar
 50006 Zaragoza (ES)
 - Sarnago Andia, Hector 42110 Olvega (Soria) (ES)

(54) GARGERÄTEVORRICHTUNG UND VERFAHREN ZUM BETRIEB EINER GARGERÄTEVORRICHTUNG

(57) Die Erfindung geht aus von einer Gargerätevorrichtung, insbesondere einer Kochfeldvorrichtung, mit zumindest einer Heizeinrichtung (10a-d), welche zumindest eine Heizeinheit (12a), zumindest eine der Heizeinheit (12a) zugeordnete Resonanzkapazität (16a-d) und zumindest einen Wechselrichter (18a) umfasst, welcher dazu vorgesehen ist, wenigstens einen Heizstrom (i₀) bereitzustellen.

Um eine Effizienz zu verbessern wird vorgeschla-

gen, dass die Gargerätevorrichtung wenigstens eine Messeinrichtung (20a-d) umfasst, welche dazu vorgesehen ist, zu einer Bestimmung des Heizstroms (i $_0$) in zumindest einem Betriebszustand eine Kapazitätsspannung (v $_c$) der Resonanzkapazität (16a-d) zu erfassen und anhand der Kapazitätsspannung (v $_c$) ein mit dem Heizstrom (i $_0$) korreliertes Messsignal (S) bereitzustellen.

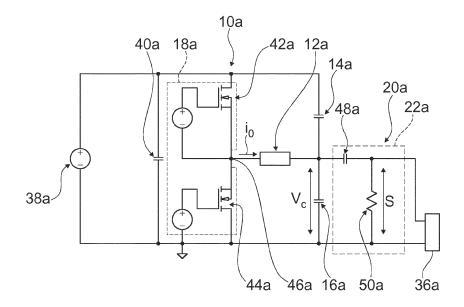


Fig. 2

Beschreibung

10

20

30

35

40

45

50

55

[0001] Die Erfindung geht aus von einer Gargerätevorrichtung nach dem Oberbegriff des Anspruchs 1 und von einem Verfahren zum Betrieb einer Gargerätevorrichtung gemäß Anspruch 14.

[0002] Aus dem Stand der Technik sind beispielsweise als Induktionskochfelder ausgebildete, Gargerätevorrichtungen bekannt, die eine Heizeinrichtung mit zumindest einem Induktor, zumindest einer dem Induktor zugeordneten Resonanzkapazität und zumindest einem Wechselrichter umfassen. Zur Detektion eines Heizstroms werden dabei in der Regel Stromwandler und/oder Messwiderstände eingesetzt.

[0003] Die Aufgabe der Erfindung besteht insbesondere darin, eine gattungsgemäße Vorrichtung mit verbesserten Eigenschaften hinsichtlich einer Effizienz bereitzustellen. Die Aufgabe wird durch die kennzeichnenden Merkmale des Anspruchs 1 und die Merkmale des Anspruchs 14 gelöst, während vorteilhafte Ausgestaltungen und Weiterbildungen der Erfindung den Unteransprüchen entnommen werden können.

[0004] Die Erfindung geht aus von einer Gargerätevorrichtung, insbesondere einer Kochfeldvorrichtung und vorteilhaft einer Induktionskochfeldvorrichtung, mit zumindest einer Heizeinrichtung, welche zumindest eine Heizeinheit, zumindest eine der Heizeinheit zugeordnete Resonanzkapazität und zumindest einen Wechselrichter umfasst, welcher dazu vorgesehen ist, wenigstens einen Heizstrom bereitzustellen.

[0005] Es wird vorgeschlagen, dass die Gargerätevorrichtung wenigstens eine Messeinrichtung umfasst, welche dazu vorgesehen ist, zu einer Bestimmung des Heizstroms in zumindest einem Betriebszustand eine Kapazitätsspannung der Resonanzkapazität zu erfassen und anhand der Kapazitätsspannung ein mit dem Heizstrom korreliertes Messsignal bereitzustellen, insbesondere zur, vorteilhaft direkten, Auswertung und/oder Überwachung des Heizstroms. Unter "vorgesehen" soll insbesondere speziell programmiert, ausgelegt und/oder ausgestattet verstanden werden. Darunter, dass ein Objekt zu einer bestimmten Funktion vorgesehen ist, soll insbesondere verstanden werden, dass das Objekt diese bestimmte Funktion in zumindest einem Anwendungs- und/oder Betriebszustand erfüllt und/oder ausführt.

[0006] Unter einer "Gargerätevorrichtung" soll in diesem Zusammenhang insbesondere zumindest ein Teil, insbesondere eine Unterbaugruppe, eines Gargeräts, insbesondere eines Backofens und/oder vorteilhaft eines Kochfelds, verstanden werden. Vorteilhaft ist das Gargerät dabei als Induktionsgargerät, insbesondere als Induktionsbackofen und/oder vorteilhaft als Induktionskochfeld ausgebildet. Unter einer "Heizeinrichtung" soll ferner insbesondere eine Schaltung und/oder eine Einheit verstanden werden, welche dazu vorgesehen ist, wenigstens ein Gargut und/oder Gargeschirr zu erhitzen und/oder eine Heizleistung zur Erhitzung wenigstens eines Garguts und/oder Gargeschirrs bereitzustellen. Die Heizeinheit weist dabei insbesondere ein, vorzugsweise als Induktor ausgebildetes, Heizelement auf und ist vorteilhaft dazu vorgesehen, durch Wirbelstrom- und/oder Ummagnetisierungseffekte das Gargut und/oder das Gargeschirr zu erhitzen. Insbesondere kann die Heizeinheit auch mehrere, insbesondere zumindest zwei, zumindest drei und/oder zumindest vier, Heizelemente und/oder wenigstens eine Schaltanordnung, insbesondere zu einem Zuschalten, Abschalten und/oder Umschalten der Heizelemente, umfassen. Der Wechselrichter ist insbesondere dazu vorgesehen, den Heizstrom, insbesondere einen oszillierenden elektrischen Strom, vorzugsweise mit einer Schaltfrequenz von zumindest 1 kHz, vorteilhaft von wenigstens 10 kHz und besonders vorteilhaft von mindestens 20 kHz und/oder von höchstens 160 kHz, vorteilhaft von höchstens 120 kHz und besonders vorteilhaft von höchstens 80 kHz, insbesondere zu einem Betrieb der Heizeinheit, bereitzustellen und/oder zu erzeugen. Die Resonanzkapazität ist vorteilhaft als Resonanzkondensator ausgebildet und bildet insbesondere in zumindest einem Betriebszustand mit der Heizeinheit zumindest einen Teil eines elektrischen Schwingkreises und/oder vorzugsweise einen elektrischen Schwingkreis. Insbesondere weist die Resonanzkapazität dabei in zumindest einem Betriebszustand die Kapazitätsspannung auf und/oder ist zu einer Bereitstellung der Kapazitätsspannung vorgesehen. Unter einer "Kapazitätsspannung" soll in diesem Zusammenhang insbesondere eine in einer Kapazität, insbesondere der Resonanzkapazität, gespeicherte Spannung und/oder eine über der Kapazität, insbesondere der Resonanzkapazität, abfallende Spannung verstanden werden. Die Kapazitätsspannung kann dabei insbesondere einer Spannung zwischen zwei definierten Potentialwerten und/oder einer Spannung zwischen einem definierten Potentialwert und einem, vorzugsweise geerdeten, Massepotential entsprechen. Unter der Wendung, dass "ein Objekt einem weiteren Objekt zugeordnet ist", soll insbesondere verstanden werden, dass in zumindest einem Betriebszustand zumindest eine, vorzugsweise direkte, elektrisch leitfähige Verbindung zwischen dem Objekt und dem weiteren Objekt existiert.

[0007] Ferner soll unter einer "Messeinrichtung" insbesondere eine, insbesondere mit der Heizeinrichtung und vorteilhaft der Resonanzkapazität in Wirkverbindung stehende, Schaltung und/oder Einheit verstanden werden, welche zumindest dazu vorgesehen ist, insbesondere unter Verwendung der Kapazitätsspannung, ein mit dem Heizstrom korreliertes Messsignal zu erzeugen und/oder bereitzustellen, insbesondere zumindest zu einer Bestimmung wenigstens eines Werts des Heizstroms und/oder vorteilhaft zu einer Bestimmung eines, insbesondere zeitlichen, Verlaufs des Heizstroms. Vorteilhaft ist die Messeinrichtung dabei elektrisch mit der Heizeinrichtung verbunden. Unter einem "mit dem Heizstrom korrelierten Messsignal" soll in diesem Zusammenhang insbesondere ein Messsignal, insbesondere ein Stromsignal und/oder vorteilhaft ein Spannungssignal, verstanden werden, mittels welchem zumindest ein Wert des Heizstroms und/oder vorteilhaft ein, insbesondere zeitlicher, Verlauf des Heizstroms bestimmt werden kann und/oder,

welches wenigstens einen Wert des Heizstroms und/oder vorteilhaft einen, insbesondere zeitlichen, Verlauf des Heizstroms, vorteilhaft direkt, abbildet. Insbesondere kann das Messsignal dabei auch dem Heizstrom entsprechen. Darüber hinaus kann die Gargerätevorrichtung wenigstens eine weitere Einheit, insbesondere zumindest eine Detektionseinheit, zumindest eine Auswerteeinheit und/oder vorteilhaft eine Recheneinheit, umfassen, welche insbesondere zumindest zu einer Detektion, einer Verarbeitung, einer Weiterverarbeitung und/oder einer Auswertung des Messsignals vorgesehen sein kann. Unter einer "Recheneinheit" soll insbesondere eine elektrische und/oder elektronische Einheit verstanden werden, welche insbesondere einen Informationseingang, eine Informationsverarbeitung und eine Informationsausgabe aufweist. Vorteilhaft weist die Recheneinheit ferner zumindest einen Prozessor, zumindest einen Speicher, zumindest ein Ein- und/oder Ausgabemittel, zumindest ein Betriebsprogramm, zumindest eine Regelroutine, zumindest eine Steuerroutine und/oder zumindest eine Berechnungsroutine auf. Bevorzugt kann die Recheneinheit zumindest anhand des Messsignals auf wenigstens einen Wert des Heizstroms und/oder vorteilhaft einen, insbesondere zeitlichen, Verlauf des Heizstroms schließen und/oder wenigstens einen Wert des Heizstroms und/oder vorteilhaft einen, insbesondere zeitlichen, Verlauf des Heizstroms, vorteilhaft direkt, bestimmen. Darüber hinaus kann die Recheneinheit dazu vorgesehen sein, anhand des Messsignals weitere Größen der Gargerätevorrichtung zu ermitteln, wie beispielsweise eine Leistungsabgabe der Heizeinheit. Bevorzugt ist die Recheneinheit ferner dazu vorgesehen, einen Betrieb der Gargerätevorrichtung, insbesondere des Wechselrichters, zu steuern und/oder zu regeln. Durch diese Ausgestaltung kann eine Gargerätevorrichtung mit verbesserten Eigenschaften hinsichtlich einer Effizienz, insbesondere einer Zeiteffizienz, einer Messeffizienz, einer Leistungseffizienz, einer Bauteileeffizienz, einer Bauraumeffizienz und/oder einer Kosteneffizienz, bereitgestellt werden. Insbesondere kann eine Messgenauigkeit, insbesondere durch eine Verwendung einer Resonanzkapazität mit einem präzisen Kapazitätswert und/oder aufgrund einer vorteilhaft einfachen Kalibrierung der Resonanzkapazität, verbessert werden. Ferner kann auf zusätzliche Bauteile, wie beispielsweise Spannungs- und/oder Strommesseinheiten verzichtet werden, wodurch vorteilhaft Bauraum eingespart werden kann und/oder Kosten gesenkt werden können. Zudem kann ein Steueralgorithmus der Gargerätevorrichtung vereinfacht und/oder eine Betriebssicherheit verbessert werden.

[0008] Vorzugsweise ist das Messsignal ein mit dem Heizstrom korreliertes Spannungssignal, wodurch insbesondere eine vorteilhaft einfache Messung und/oder Weiterverarbeitung des Messsignals erreicht werden kann.

20

30

35

40

45

50

[0009] Ist das Messsignal proportional zu dem Heizstrom, insbesondere einem Verlauf des Heizstroms, kann insbesondere eine vorteilhaft einfache und/oder direkte Auswertung des Heizstroms erreicht werden, wobei auf eine Verwendung komplizierter Berechnungsalgorithmen vorteilhaft verzichtet werden kann.

[0010] Ferner wird vorgeschlagen, dass die Messeinrichtung wenigstens eine Wandlereinheit umfasst, welche, insbesondere zur Erzeugung des Messsignals, zu einer zumindest teilweisen Umwandlung, insbesondere Umformung und/oder Anpassung, der Kapazitätsspannung vorgesehen ist. Hierdurch kann insbesondere eine vorteilhaft direkte Bestimmung des Heizstroms erreicht werden.

[0011] Die Wandlereinheit könnte beispielsweise berührungslos mit der Resonanzkapazität verbunden sein und/oder in Serie zu der Resonanzkapazität geschalten sein und dabei beispielsweise in einen Schaltkreis der Heizeinrichtung integriert sein. Vorteilhaft wird jedoch vorgeschlagen, dass die Wandlereinheit zumindest teilweise parallel zu der Resonanzkapazität geschalten ist, wodurch insbesondere eine vorteilhaft betriebssichere Messung erreicht werden kann, insbesondere da eine Betriebsstromstärke in der Messeinrichtung und/oder zumindest der Wandlereinheit zumindest im Vergleich zu einer Stromstärke in der Heizeinrichtung vorteilhaft reduziert ist.

[0012] In einer besonders bevorzugten Ausgestaltung der Erfindung wird vorgeschlagen, dass die Wandlereinheit als ein Differenzierer ausgebildet ist und das Messsignal insbesondere einer, insbesondere mittels der Wandlereinheit erzeugten, zeitlichen Ableitung der Kapazitätsspannung entspricht. Hierdurch kann insbesondere eine besonders kostengünstige und/oder einfache Bestimmung des Heizstroms unter Verwendung der Kapazitätsspannung der Resonanzkapazität realisiert werden.

[0013] Die Wandlereinheit kann insbesondere aktiv ausgebildet sein und insbesondere wenigstens einen Operationsverstärker umfassen. Bevorzugt wird jedoch vorgeschlagen, dass die Wandlereinheit passiv ausgebildet ist. Unter einem "aktiven Objekt" soll dabei insbesondere ein Objekt verstanden werden, welches dazu vorgesehen ist, aktiv gesteuert und/oder angesteuert zu werden und/oder welches zu einem Betrieb wenigstens eine Versorgungsspannung benötigt. Ferner soll unter einem "passiven Objekt" insbesondere ein Objekt verstanden werden, welches, insbesondere bei einem Betrieb und/oder in einem Betriebszustand, frei von einer Ansteuermöglichkeit und/oder einer Versorgungsspannung ist. Hierdurch kann eine vorteilhaft effiziente Wandlereinheit bereitgestellt werden. Zudem kann vorteilhaft eine Dauerfestigkeit und/oder eine Standzeit der Gargerätevorrichtung erhöht werden.

[0014] Ferner könnte die Wandlereinheit beispielsweise als induktive Wandlereinheit ausgebildet sein und/oder wenigstens eine Induktivität umfassen. Bevorzugt wird jedoch vorgeschlagen, dass die Wandlereinheit als kapazitive Wandlereinheit ausgebildet ist. Insbesondere umfasst die Wandlereinheit dabei wenigstens eine Wandlerkapazität und vorteilhaft einen Wandlerkondensator. Besonders bevorzugt ist die Wandlereinheit als RC-Glied ausgebildet. Hierdurch können insbesondere Kosten und/oder ein benötigter Bauraum reduziert werden.

[0015] In einer weiteren Ausgestaltung der Erfindung wird vorgeschlagen, dass die Wandlereinheit eine Wandler-

grenzfrequenz definiert, welche zumindest einem 3-fachen, vorteilhaft zumindest einem 5-fachen, vorzugsweise zumindest einem 10-fachen und besonders bevorzugt wenigstens einem 20-fachen einer Schaltfrequenz des Wechselrichters, insbesondere der bereits zuvor genannten Schaltfrequenz des Wechselrichters, entspricht. Unter einer "Wandlergrenzfrequenz" soll in diesem Zusammenhang insbesondere eine Grenzfrequenz der Wandlereinheit verstanden werden, oberhalb welcher oder unterhalb welcher Signalfrequenzen, insbesondere der Kapazitätsspannung, zumindest teilweise blockiert und/oder abgeschwächt werden und/oder oberhalb welcher oder unterhalb welcher Signalfrequenzen, insbesondere der Kapazitätsspannung, zumindest teilweise frei von einer Umwandlung durch die Wandlereinheit sind. Hierdurch kann insbesondere eine vorteilhaft hohe Messgenauigkeit erreicht werden.

[0016] Eine vorteilhafte Unterdrückung von Störfrequenzen und/oder Signalrauschen und hierdurch insbesondere ein vorteilhaft einfach zu verarbeitendes Messsignal kann insbesondere erreicht werden, wenn die Messeinrichtung wenigstens eine Filtereinheit umfasst, welche dazu vorgesehen ist, Störfrequenzen und/oder Signalrauschen zumindest teilweise zu reduzieren. Bevorzugt ist die Filtereinheit dabei parallel zu der Wandlereinheit geschalten. Die Filtereinheit ist dabei bevorzugt der Wandlereinheit vorgeschalten und insbesondere zu einer Filterung der Kapazitätsspannung vorgesehen. In diesem Fall ist die Filtereinheit vorteilhaft zwischen der Resonanzkapazität und der Wandlereinheit angeordnet. Alternativ oder zusätzlich kann die Filtereinheit der Wandlereinheit nachgeschalten sein und insbesondere zu einer Filterung des Messsignals vorgesehen sein. In diesem Fall ist die Filtereinheit bevorzugt zwischen der Wandlereinheit und einer weiteren Einheit der Gargerätevorrichtung, vorteilhaft der zuvor genannten weiteren Einheit, angeordnet. Besonders bevorzugt kann die Messeinrichtung zumindest zwei Filtereinheiten umfassen.

[0017] Darüber hinaus wird vorgeschlagen, dass die Gargerätevorrichtung eine Entkopplungseinheit umfasst, welche dazu vorgesehen ist, die Heizeinrichtung und die Messeinrichtung galvanisch voneinander zu trennen. Die Entkopplungseinheit kann als beliebige Entkopplungseinheit ausgebildet sein, wie beispielsweise als induktive Entkopplungseinheit, als optische Entkopplungseinheit und/oder als kapazitive Entkopplungseinheit. Vorteilhaft umfasst die Entkopplungseinheit wenigstens eine Entkoppelkapazität. Insbesondere kann die Entkopplungseinheit auch als Entkoppelkapazität ausgebildet sein. Hierdurch können insbesondere Sicherheitsbestimmungen erfüllt und/oder eine Betriebssicherheit erhöht werden.

[0018] In einer weiteren bevorzugten Ausgestaltung der Erfindung wird vorgeschlagen, dass die Gargerätevorrichtung eine Anpasseinheit umfasst, insbesondere eine Messbereichanpasseinheit, welche dazu vorgesehen ist, das Messsignal mit einem konstanten Offset-Signal, vorteilhaft einer Offset-Spannung, zu überlagern. Insbesondere kann die Messeinrichtung dabei die Anpasseinheit umfassen. Hierdurch kann insbesondere eine vorteilhafte Anpassung eines Messbereichs erreicht werden.

[0019] Ferner wird ein Verfahren zum Betrieb einer Gargerätevorrichtung vorgeschlagen, welche zumindest eine Heizeinrichtung aufweist, welche zumindest eine Heizeinheit, zumindest eine der Heizeinheit zugeordnete Resonanzkapazität und zumindest einen Wechselrichter umfasst, welcher dazu vorgesehen ist, wenigstens einen Heizstrom bereitzustellen, wobei zu einer Bestimmung des Heizstroms, insbesondere mittels einer Messeinrichtung, in zumindest einem Betriebszustand eine Kapazitätsspannung der Resonanzkapazität erfasst und anhand der Kapazitätsspannung ein mit dem Heizstrom korreliertes Messsignal bereitgestellt wird, insbesondere zur, vorteilhaft direkten, Auswertung und/oder Überwachung des Heizstroms. Hierdurch kann insbesondere eine Effizienz, insbesondere eine Zeiteffizienz, eine Messeffizienz, eine Bauraumeffizienz und/oder eine Kosteneffizienz, verbessert werden. Insbesondere kann eine Messgenauigkeit, insbesondere durch eine Verwendung einer Resonanzkapazität mit einem präzisen Kapazitätswert und/oder aufgrund einer vorteilhaft einfachen Kalibrierung der Resonanzkapazität, verbessert werden. Ferner kann auf zusätzliche Bauteile, wie beispielsweise Spannungs- und/oder Strommesseinheiten verzichtet werden, wodurch vorteilhaft Bauraum eingespart werden kann und/oder Kosten gesenkt werden können. Zudem kann ein Steueralgorithmus der Gargerätevorrichtung vereinfacht und/oder eine Betriebssicherheit verbessert werden.

[0020] Die Gargerätevorrichtung und das Verfahren zum Betrieb der Gargerätevorrichtung sollen hierbei nicht auf die oben beschriebene Anwendung und Ausführungsform beschränkt sein. Insbesondere können die Gargerätevorrichtung und das Verfahren zum Betrieb der Gargerätevorrichtung zu einer Erfüllung einer hierin beschriebenen Funktionsweise eine von einer hierin genannten Anzahl von einzelnen Elementen, Bauteilen und Einheiten abweichende Anzahl aufweisen.

[0021] Weitere Vorteile ergeben sich aus der folgenden Zeichnungsbeschreibung. In der Zeichnung sind Ausführungsbeispiele der Erfindung dargestellt. Die Zeichnung, die Beschreibung und die Ansprüche enthalten zahlreiche Merkmale in Kombination. Der Fachmann wird die Merkmale zweckmäßigerweise auch einzeln betrachten und zu sinnvollen weiteren Kombinationen zusammenfassen.

[0022] Es zeigen:

10

20

30

35

40

45

50

- Fig. 1 ein beispielhaft als Induktionskochfeld ausgebildetes Gargerät mit einer Gargerätevorrichtung in einer schematischen Draufsicht.
- Fig. 2 ein vereinfachtes Schaltbild der Gargerätevorrichtung,

- Fig. 3 ein schematisches Schaubild einiger Signale der Gargerätevorrichtung,
- Fig. 4 ein schematisches weiteres Schaubild einiger Signale der Gargerätevorrichtung,
- Fig. 5 ein vereinfachtes Schaltbild einer weiteren Gargerätevorrichtung,
- Fig. 6 ein vereinfachtes Schaltbild einer weiteren Gargerätevorrichtung und
- Fig. 7 ein vereinfachtes Schaltbild einer weiteren Gargerätevorrichtung.

10

20

30

35

40

45

50

55

[0023] Figur 1 zeigt ein beispielhaft als Kochfeld, im vorliegenden Fall insbesondere als Induktionskochfeld, ausgebildetes Gargerät 32a in einer schematischen Draufsicht. Das Gargerät 32a ist zu einer Erhitzung wenigstens eines Garguts und/oder Gargeschirrs (nicht dargestellt) vorgesehen. Grundsätzlich könnte ein Gargerät jedoch auch als Backofen und bevorzugt als Induktionsbackofen ausgebildet sein.

[0024] Das Gargerät 32a umfasst eine Gargerätevorrichtung. Die Gargerätevorrichtung weist eine Bedieneinheit 34a auf. Die Bedieneinheit 34a dient zur Eingabe und/oder Auswahl verschiedener Parameter, wie beispielsweise einer Leistungsstufe, durch einen Benutzer. Zur Steuerung eines Betriebs umfasst die Gargerätevorrichtung ferner eine Recheneinheit 36a. Die Recheneinheit 36a weist einen Prozessor, einen Speicher und ein in dem Speicher hinterlegtes Betriebsprogramm auf, das dazu vorgesehen ist, von dem Prozessor ausgeführt zu werden.

[0025] Figur 2 zeigt ein schematisches Schaltbild der Gargerätevorrichtung. Die Gargerätevorrichtung umfasst eine Energiequelle 38a. Die Energiequelle 38a ist im vorliegenden Fall beispielhaft als Netzanschluss ausgebildet. Ferner umfasst die Gargerätevorrichtung eine Gleichrichtereinheit (nicht dargestellt). Die Gleichrichtereinheit ist dazu vorgesehen, eine Netzspannung der Energiequelle 38a gleichzurichten und einer Energiespeichereinheit 40a der Gargerätevorrichtung zuzuführen. Alternativ ist denkbar, eine von einem Netzanschluss verschiedene Energiequelle, insbesondere Spannungsquelle, zu verwenden. Ferner könnte, insbesondere bei Verwendung einer Gleichspannungsquelle, auf eine, insbesondere zusätzliche, Gleichrichtereinheit auch verzichtet werden.

[0026] Darüber hinaus umfasst die Gargerätevorrichtung eine Heizeinrichtung 10a. Die Heizeinrichtung 10a steht in Wirkverbindung mit der Energiequelle 38a. Die Heizeinrichtung 10a ist dazu vorgesehen, in zumindest einem Betriebszustand eine Heizleistung, insbesondere zur Erhitzung des Garguts und/oder Gargeschirrs bereitzustellen.

[0027] Die Heizeinrichtung 10a weist eine Heizeinheit 12a auf. Im vorliegenden Fall umfasst die Heizeinheit 12a beispielhaft genau ein Heizelement. Das Heizelement ist als Induktor ausgebildet. Die Heizeinheit 12a ist im vorliegenden Fall wenigstens einer Heizzone zugeordnet. Die Heizeinheit 12a ist zu einer unmittelbaren Erhitzung des Garguts und/oder des Gargeschirrs durch Wirbelstrom- und/oder Ummagnetisierungseffekte vorgesehen. Alternativ ist denkbar, dass eine Heizeinheit mehrere, vorteilhaft als Induktoren ausgebildete, Heizelemente umfasst und/oder eine Schaltanordnung zum Umschalten zwischen den Heizelementen. Ferner könnte wenigstens ein Heizelement einer Heizeinheit und/oder sämtliche Heizelemente einer Heizeinheit auch als Heizwiderstand ausgebildet sein.

[0028] Zudem umfasst die Heizeinrichtung 10a einen Wechselrichter 18a. Der Wechselrichter 18a umfasst zwei Wechselrichterschalter 42a, 44a. Die Wechselrichterschalter 42a, 44a sind zueinander identisch. Die Wechselrichterschalter 42a, 44a sind als bidirektionale, unipolare Halbleiterschalter ausgebildet. Jeder der Wechselrichterschalter 42a, 44a umfasst im vorliegenden Fall ein als IGBT ausgebildetes Wechselrichterschaltelement. Jeder der Wechselrichterschalter 42a, 44a ist mit einem Mittelabgriff 46a des Wechselrichters 18a elektrisch leitend verbunden. Der Wechselrichter 18a ist dazu vorgesehen, eine pulsierende gleichgerichtete Netzspannung der Energiespeichereinheit 40a in einen hochfrequenten Heizstrom i₀ umzuwandeln, an dem Mittelabgriff 46a bereitzustellen und insbesondere der Heizeinheit 12a zuzuführen. Eine Schaltfrequenz des Wechselrichters 18a liegt im vorliegenden Fall zwischen 10 kHz und 100 kHz und vorteilhaft zwischen 20 kHz und 80 kHz. Alternativ ist auch denkbar, Wechselrichterschalter verschieden auszubilden und/oder eine zu einem Wechselrichterschaltelement parallel geschaltete Diode und/oder Pufferkapazität zu verwenden. Darüber hinaus könnte wenigstens ein Wechselrichterschalter auch ein als Transistor, FET und/oder MOSFET ausgebildetes Wechselrichterschaltelement umfassen.

[0029] Ferner umfasst die Heizeinrichtung 10a wenigstens eine Resonanzkapazität 14a, 16a. Im vorliegenden Fall umfasst die Gargerätevorrichtung beispielhaft zwei Resonanzkapazitäten 14a, 16a, insbesondere eine erste Resonanzkapazität 14a und eine zweite Resonanzkapazität 16a, wobei jede der Resonanzkapazitäten 14a, 16a mit wenigstens einem der Wechselrichterschalter 42a, 44a zusammenwirkt. Die Resonanzkapazitäten 14a, 16a sind baugleich ausgebildet. Die Resonanzkapazitäten 14a, 16a sind jeweils als Kondensator ausgebildet. Die Resonanzkapazitäten 14a, 16a weisen im vorliegenden Fall jeweils einen Kapazitätswert von 520 nF auf. Die Resonanzkapazitäten 14a, 16a sind der Heizeinheit 12a zugeordnet. Die Resonanzkapazitäten 14a, 16a sind mit der Heizeinheit 12a verbunden. Unter dem Ausdruck "verbunden" soll hier und im Folgenden, insbesondere direkt, elektrisch leitend verbunden verstanden werden. Demnach sind die Resonanzkapazitäten 14a, 16a jeweils Bestandteil eines elektrischen Schwingkreises und können über den Wechselrichter 18a aufgeladen werden. Grundsätzlich könnte eine Heizeinrichtung jedoch auch genau eine Resonanzkapazität aufweisen. Zudem ist denkbar, Resonanzkapazitäten verschieden voneinander auszubilden.

[0030] Im vorliegenden Fall ist ein erster Anschluss des Wechselrichters 18a mit einem ersten Anschluss der Energiespeichereinheit 40a verbunden. Ferner ist der erste Anschluss des Wechselrichters 18a mit einem ersten Anschluss der ersten Resonanzkapazität 14a verbunden. Ein zweiter Anschluss des Wechselrichters 18a ist mit einem zweiten

Anschluss der Energiespeichereinheit 40a verbunden. Ferner ist der zweite Anschluss des Wechselrichters 18a mit einem zweiten Anschluss der zweiten Resonanzkapazität 16a verbunden. Der Mittelabgriff 46a des Wechselrichters 18a ist mit einem ersten Anschluss der Heizeinheit 12a verbunden. Ein zweiter Anschluss der Heizeinheit 12a ist mit einem zweiten Anschluss der ersten Resonanzkapazität 14a verbunden. Ferner ist der zweite Anschluss der Heizeinheit 12a mit einem ersten Anschluss der zweiten Resonanzkapazität 16a verbunden. Darüber hinaus ist der zweite Anschluss der ersten Resonanzkapazität 14a mit dem ersten Anschluss der zweiten Resonanzkapazität 16a verbunden. Somit ist die Heizeinheit 12a im Brückenzweig zwischen dem Mittelabgriff 46a und den Resonanzkapazitäten 14a, 16a angeordnet. Die Heizeinheit 12a wird im vorliegenden Fall in einer Halbbrückenschaltung betrieben. Alternativ ist denkbar, eine Heizeinheit in einer Vollbrückenschaltung zu betreiben.

[0031] Des Weiteren umfasst die Gargerätevorrichtung eine Messeinrichtung 20a. Die Messeinrichtung 20a steht mit der Heizeinrichtung 10a, im vorliegenden Fall insbesondere der zweiten Resonanzkapazität 16a, in Wirkverbindung. Im vorliegenden Fall ist die Messeinrichtung 20a mit der Heizeinrichtung 10a, insbesondere der zweiten Resonanzkapazität 16a, verbunden. Zudem steht die Messeinrichtung 20a in Wirkverbindung mit der Recheneinheit 36a. Im vorliegenden Fall ist die Messeinrichtung 20a mit der Recheneinheit 36a verbunden.

[0032] Die Messeinrichtung 20a ist zu einer Bestimmung des Heizstroms io, im vorliegenden Fall insbesondere eines zeitlichen Verlaufs des Heizstroms io, vorgesehen. Hierzu ist die Messeinrichtung 20a dazu vorgesehen, in zumindest einem Betriebszustand eine Kapazitätsspannung v_c der zweiten Resonanzkapazität 16a zu erfassen und anhand der Kapazitätsspannung v_c der zweiten Resonanzkapazität 16a ein mit dem Heizstrom io korreliertes Messeignal S bereitzustellen. Das Messsignal S ist dabei ein mit dem Heizstrom io korreliertes Spannungssignal. Zudem ist das Messsignal S im vorliegenden Fall proportional zu dem Heizstrom i₀. Zur Verarbeitung und/oder Weiterverarbeitung des Messsignals S kann die Recheneinheit 36a zudem beispielsweise einen der Messeinrichtung 20a nachgeschalteten Analog-Digital-Wandler umfassen. Alternativ könnte eine Messeinrichtung jedoch auch mit einer, insbesondere von einer Recheneinheit abweichenden weiteren Einheit einer Gargerätevorrichtung verbunden sein, wie beispielsweise mit einer Detektionseinheit, einer Messeinheit und/oder einer Auswerteeinheit. Zudem könnte eine Messeinrichtung zusätzlich oder alternativ auch mit einer ersten Resonanzkapazität verbunden sein. Ferner könnte ein Messeinrichtung zusätzlich oder alternativ auch mit einer Besonanzkapazität verbunden sein. Ferner könnte ein Messeinrichtung zusätzlich zu einer Messeinrichtung, weitere Messeinheiten insbesondere Spannungs- und/oder Strommesseinheiten, umfassen, insbesondere um eine Betriebssicherheit zu erhöhen. Bevorzugt ist eine Gargerätevorrichtung jedoch frei von weiteren Messeinheiten.

20

30

35

50

55

[0033] Zur Erzeugung des Messsignals S aus der Kapazitätsspannung v_c der zweiten Resonanzkapazität 16a umfasst die Messeinrichtung 20a eine Wandlereinheit 22a. Die Wandlereinheit 22a ist parallel zu der zweiten Resonanzkapazität 16a geschalten. Die Wandlereinheit 22a schließt im vorliegenden Fall unmittelbar an die zweite Resonanzkapazität 16a an, insbesondere derart, dass zwischen der Wandlereinheit 22a und der zweiten Resonanzkapazität 16a keine weiteren Bauteile angeordnet sind. Die Wandlereinheit 22a ist als Differenzierer ausgebildet. Die Wandlereinheit 22a ist im vorliegenden Fall zudem passiv ausgebildet und insbesondere frei von aktiven Bauteilen. Die Wandlereinheit 22a ist als kapazitive Wandlereinheit ausgebildet. Die Wandlereinheit 22a ist ferner als RC-Glied ausgebildet. Die Wandlereinheit 22a ist zu einer zumindest teilweisen Umwandlung der Kapazitätsspannung v_c der zweiten Resonanzkapazität 16a vorgesehen.

[0034] Dazu umfasst die Wandlereinheit 22a wenigstens eine Wandlerkapazität 48a. Im vorliegenden Fall umfasst die Wandlereinheit 22a genau eine Wandlerkapazität 48a. Die Wandlerkapazität 48a ist als Kondensator ausgebildet. Die Wandlerkapazität 48a weist einen Kapazitätswert zwischen 10 nF und 0,1 pF und vorteilhaft zwischen 1 nF und 1 pF auf. Im vorliegenden Fall weist die Wandlerkapazität 48a beispielhaft einen Kapazitätswert von 33 pF auf.

[0035] Zudem umfasst die Wandlereinheit 22a wenigstens einen Wandlerwiderstand 50a. Im vorliegenden Fall umfasst die Wandlereinheit 22a genau einen Wandlerwiderstand 50a. Der Wandlerwiderstand 50a entspricht einem Messwiderstand. Der Wandlerwiderstand 50a ist parallel zu der zweiten Resonanzkapazität 16a geschalten. Eine über dem Wandlerwiderstand 50a abfallende Spannung entspricht im vorliegenden Fall dem Messsignal S. Der Wandlerwiderstand 50a weist einen Widerstandswert zwischen 100 k Ω und 10 Ω und vorteilhaft zwischen 10 k Ω und 100 Ω auf. Im vorliegenden Fall weist der Wandlerwiderstand 50a beispielhaft einen Widerstandswert von 1,6 k Ω auf.

[0036] Des Weiteren ist ein erster Anschluss der Wandlerkapazität 48a mit dem zweiten Anschluss der ersten Resonanzkapazität 14 verbunden. Der erste Anschluss der Wandlerkapazität 48a ist zudem mit dem zweiten Anschluss der Heizeinheit 12a verbunden. Ferner ist der zweite Anschluss der Wandlerkapazität 48a mit dem ersten Anschluss der zweiten Resonanzkapazität 16a verbunden. Ein zweiter Anschluss der Wandlerkapazität 48a ist mit einem ersten Anschluss des Wandlerwiderstands 50a verbunden. Zudem ist der zweite Anschluss der Wandlerkapazität 48a mit einem ersten Anschluss der Recheneinheit 36a verbunden. Darüber hinaus ist ein zweiter Anschluss des Wandlerwiderstands 50a mit dem zweiten Anschluss der zweiten Resonanzkapazität 16a verbunden. Der zweite Anschluss des Wandlerwiderstands 50a ist ferner mit einem zweiten Anschluss der Recheneinheit 36a verbunden. Alternativ könnte eine Wandlereinheit auch mehrere Wandlerkapazitäten und/oder Wandlerwiderstände umfassen. Zudem könnte eine Wandlereinheit auch aktiv ausgebildet sein und beispielsweise wenigstens einen Operationsverstärker umfassen. Ferner könnte

eine Wandlereinheit prinzipiell auch wenigstens eine zusätzliche Induktivität umfassen.

[0037] Zur Erzeugung des Messsignals S ist die Wandlereinheit 22a im vorliegenden Fall zu einer zeitlichen Ableitung der Kapazitätsspannung v_c der zweiten Resonanzkapazität 16a vorgesehen. Es gilt:

$$i_0 = C_2 \cdot d/dt(v_c) \tag{1}$$

[0038] Dabei entspricht C₂ dem Kapazitätswert der zweiten Resonanzkapazität 16a.

10

20

30

35

40

45

50

55

[0039] Zudem definiert die Wandlereinheit 22a eine Wandlergrenzfrequenz f_c, welche zumindest einem 20-fachen der Schaltfrequenz des Wechselrichters 18a entspricht. Es gilt:

$$f_c = 1 / (2\pi \cdot R_d \cdot C_d) \tag{2}$$

[0040] Dabei entspricht R_d dem Widerstandswert des Wandlerwiderstands 50a und C_d dem Kapazitätswert der Wandlerkapazität 48a. Bevorzugt wird die Wandlergrenzfrequenz f_c dabei derart gewählt, dass zumindest die ersten fünf Harmonischen der Schaltfrequenz des Wechselrichters 18a erfasst werden können.

[0041] Figur 3 zeigt beispielhaft ein Schaubild einiger Signale der Gargerätevorrichtung. Eine Ordinatenachse 52a ist als Größenachse dargestellt. Auf der Ordinatenachse 52a sind das Messsignal S und die Kapazitätsspannung v_c der zweiten Resonanzkapazität 16a in Volt dargestellt. Auf einer Abszissenachse 54a ist die Zeit in Millisekunden dargestellt. Eine Kurve 56a veranschaulicht einen zeitlichen Verlauf des Messsignals S. Eine Kurve 58a veranschaulicht einen zeitlichen Verlauf der Kapazitätsspannung v_c der zweiten Resonanzkapazität 16a. Das Messsignal S weist dabei aufgrund der zeitlichen Ableitung eine Phasenverschiebung relativ zu der Kapazitätsspannung v_c der zweiten Resonanzkapazität 16a auf.

[0042] Figur 4 zeigt beispielhaft ein weiteres Schaubild einiger Signale der Gargerätevorrichtung. Im vorliegenden Fall zeigt Figur 4 einen Verlauf des Messsignals S im Vergleich zu einem Verlauf des Heizstroms io. Eine Ordinatenachse 60a ist als Größenachse dargestellt. Auf einer Abszissenachse 62a ist die Zeit in Millisekunden dargestellt. Die Kurve 56a veranschaulicht wiederum den zeitlichen Verlauf des Messsignals S. Eine Kurve 64a veranschaulicht einen zeitlichen Verlauf des Heizstroms io. Das Messsignal S bildet demnach einen Verlauf des Heizstroms io direkt ab.

[0043] In den Figuren 5 bis 7 sind weitere Ausführungsbeispiele der Erfindung gezeigt. Die nachfolgenden Beschreibungen und die Zeichnungen beschränken sich im Wesentlichen auf die Unterschiede zwischen den Ausführungsbeispielen, wobei bezüglich gleich bezeichneter Bauteile, insbesondere in Bezug auf Bauteile mit gleichen Bezugszeichen, grundsätzlich auch auf die Zeichnungen und/oder die Beschreibung der anderen Ausführungsbeispiele, insbesondere der Figuren 1 bis 4, verwiesen werden kann. Zur Unterscheidung der Ausführungsbeispiele ist der Buchstabe a den Bezugszeichen des Ausführungsbeispiels in den Figuren 1 bis 4 nachgestellt. In den Ausführungsbeispielen der Figuren 5 bis 7 ist der Buchstabe a durch die Buchstaben b bis d ersetzt.

[0044] In Figur 5 ist ein weiteres Ausführungsbeispiel der Erfindung gezeigt. Den Bezugszeichen des Ausführungsbeispiels der Figur 5 ist der Buchstabe b nachgestellt. Das weitere Ausführungsbeispiel der Figur 5 unterscheidet sich von dem vorherigen Ausführungsbeispiel zumindest im Wesentlichen durch ein eine Ausgestaltung einer Messeinrichtung 20b.

[0045] In diesem Fall umfasst die Messeinrichtung 20b wenigstens eine Filtereinheit 24b, 26b. Die Messeinrichtung 20b umfasst im vorliegenden Fall zwei Filtereinheiten 24b, 26b. Die Filtereinheiten 24b, 26b sind zumindest im Wesentlichen baugleich ausgebildet. Die Filtereinheiten 24b, 26b sind passiv ausgebildet und insbesondere frei von aktiven Bauteilen. Die Filtereinheiten 24b, 26b sind als Tiefpassfilter ausgebildet. Die Filtereinheiten 24b, 26b sind parallel zu einer Wandlereinheit 22b und zu einer zweiten Resonanzkapazität 16b geschalten.

[0046] Eine erste Filtereinheit 24b der Filtereinheiten 24b, 26b ist der Wandlereinheit 22b vorgeschalten. Die erste Filtereinheit 24b ist dabei zwischen der zweiten Resonanzkapazität 16b und der Wandlereinheit 22b angeordnet. Die erste Filtereinheit 24b ist zu einer Filterung einer Kapazitätsspannung $\mathbf{v_c}$ der zweiten Resonanzkapazität 16b vorgesehen. Dazu umfasst die erste Filtereinheit 24b einen ersten Filterwiderstand 66b und eine, insbesondere parallel zu der zweiten Resonanzkapazität 16b angeordnete, erste Filterkapazität 68b.

[0047] Eine zweite Filtereinheit 26b der Filtereinheiten 24b, 26b ist der Wandlereinheit 22b nachgeschalten. Die zweite Filtereinheit 26b ist dabei zwischen der Wandlereinheit 22b und einer weiteren Einheit der Gargerätevorrichtung angeordnet. Die zweite Filtereinheit 26b ist zu einer Filterung eines, insbesondere von der Wandlereinheit 22b erzeugten, Messsignals S vorgesehen. Dazu umfasst die zweite Filtereinheit 26b einen zweiten Filterwiderstand 70b und eine, insbesondere parallel zu der zweiten Resonanzkapazität 16b angeordnete, zweite Filterkapazität 72b. Alternativ könnte eine Messeinrichtung jedoch auch genau eine Filtereinheit, insbesondere eine erste Filtereinheit oder eine zweite Filtereinheit, und/oder zumindest drei Filtereinheiten aufweisen. Auch ist denkbar, wenigstens eine Filtereinheit als Band-

passfilter auszubilden.

5

10

20

[0048] In Figur 6 ist ein weiteres Ausführungsbeispiel der Erfindung gezeigt. Den Bezugszeichen des Ausführungsbeispiels der Figur 6 ist der Buchstabe c nachgestellt.

[0049] In diesem Fall umfasst eine Gargerätevorrichtung ferner eine Entkopplungseinheit 28c. Die Entkopplungseinheit 28c ist als kapazitive Entkopplungseinheit ausgebildet. Die Entkopplungseinheit 28c ist dazu vorgesehen, eine Heizeinrichtung 10c und eine Messeinrichtung 20c galvanisch voneinander zu trennen.

[0050] Dazu umfasst die Entkopplungseinheit 28c zumindest eine Entkoppelkapazität 74c. Im vorliegenden Fall umfasst die Entkopplungseinheit 28c genau eine Entkoppelkapazität 74c. Die Entkoppelkapazität 74c ist als Entkoppelkondensator ausgebildet. Die Entkoppelkapazität 74c ist parallel zu einer Wandlerkapazität 48c einer Wandlereinheit 22c geschalten. Ein erster Anschluss der Entkoppelkapazität 74c ist mit einem zweiten Anschluss einer zweiten Resonanzkapazität 16c verbunden. Ferner ist ein zweiter Anschluss der Entkoppelkapazität 74c mit einem zweiten Anschluss eines Wandlerwiderstands 50c der Wandlereinheit 22c verbunden.

[0051] Insbesondere ist auch denkbar, zumindest zwei und vorteilhaft sämtliche aufgeführten Ausführungsbeispiele in einer Gargerätevorrichtung zu kombinieren.

[0052] In Figur 7 ist ein weiteres Ausführungsbeispiel der Erfindung gezeigt. Den Bezugszeichen des Ausführungsbeispiels der Figur 7 ist der Buchstabe d nachgestellt.

[0053] In diesem Fall umfasst eine Gargerätevorrichtung ferner eine Anpasseinheit 30d. Die Anpasseinheit 30d ist als Messbereichanpasseinheit ausgebildet. Die Anpasseinheit 30d ist dazu vorgesehen, ein, insbesondere von einer Wandlereinheit 22d erzeugtes, Messsignal S mit einem konstanten Offset-Signal, im vorliegenden Fall insbesondere einer Offset-Spannung, zu überlagern.

[0054] Dazu umfasst die Anpasseinheit 30d zumindest einen Anpasswiderstand 76d. Im vorliegenden Fall umfasst die Anpasseinheit 30d genau einen Anpasswiderstand 76d. Der Anpasswiderstand 76d ist dabei in Reihe zu einem Wandlerwiderstand 50d der Wandlereinheit 22d geschalten. Alternativ könnte ein Anpasswiderstand jedoch auch als variabler Anpasswiderstand, beispielsweise als Potentiometer, ausgebildet sein.

²⁵ **[0055]** Insbesondere ist auch denkbar, zumindest zwei, vorzugsweise zumindest drei und vorteilhaft sämtliche aufgeführten Ausführungsbeispiele in einer Gargerätevorrichtung zu kombinieren.

Bezugszeichen

30 [0056]

- 10 Heizeinrichtung
- 12 Heizeinheit
- 14 Resonanzkapazität
- 35 16 Resonanzkapazität
 - 18 Wechselrichter
 - 20 Messeinrichtung
 - 22 Wandlereinheit
 - 24 Filtereinheit
- 40 26 Filtereinheit
 - 28 Entkopplungseinheit
 - 30 Anpasseinheit
 - 32 Gargerät
 - 34 Bedieneinheit
- 45 36 Recheneinheit
 - 38 Energiequelle
 - 40 Energiespeichereinheit
 - 42 Wechselrichterschalter
 - 44 Wechselrichterschalter
- 50 46 Mittelabgriff
 - 48 Wandlerkapazität
 - 50 Wandlerwiderstand
 - 52 Ordinatenachse
 - 54 Abszissenachse
- 55 56 Kurve
 - 58 Kurve
 - 60 Ordinatenachse
 - 62 Abszissenachse

- 64 Kurve
- 66 Filterwiderstand
- 68 Filterkapazität
- 70 Filterwiderstand
- 5 72 Filterkapazität
 - 74 Entkoppelkapazität
 - 76 Anpasswiderstand
 - i₀ Heizstrom
- 10 S Messsignal
 - v_c Kapazitätsspannung

Patentansprüche

ratentanspiud

15

20

- 1. Gargerätevorrichtung, insbesondere Kochfeldvorrichtung, mit zumindest einer Heizeinrichtung (10a-d), welche zumindest eine Heizeinheit (12a), zumindest eine der Heizeinheit (12a) zugeordnete Resonanzkapazität (16a-d) und zumindest einen Wechselrichter (18a) umfasst, welcher dazu vorgesehen ist, wenigstens einen Heizstrom (io) bereitzustellen, gekennzeichnet durch wenigstens eine Messeinrichtung (20a-d), welche dazu vorgesehen ist, zu einer Bestimmung des Heizstroms (io) in zumindest einem Betriebszustand eine Kapazitätsspannung (v_c) der Resonanzkapazität (16a-d) zu erfassen und anhand der Kapazitätsspannung (v_c) ein mit dem Heizstrom (io) korreliertes Messsignal (S) bereitzustellen.
- 2. Gargerätevorrichtung nach Anspruch 1, **dadurch gekennzeichnet, dass** das Messsignal (S) ein mit dem Heizstrom (io) korreliertes Spannungssignal ist.
 - **3.** Gargerätevorrichtung nach Anspruch 1 oder 2, **dadurch gekennzeichnet**, **dass** das Messsignal (S) proportional zu dem Heizstrom (io) ist.
- 4. Gargerätevorrichtung nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass die Messeinrichtung (20a-d) wenigstens eine Wandlereinheit (22a-d) umfasst, welche zu einer zumindest teilweisen Umwandlung der Kapazitätsspannung (v_c) vorgesehen ist.
- 5. Gargerätevorrichtung nach Anspruch 4, **dadurch gekennzeichnet, dass** die Wandlereinheit (22a-d) zumindest teilweise parallel zu der Resonanzkapazität (16a-d) geschalten ist.
 - **6.** Gargerätevorrichtung nach Anspruch 4 oder 5, **dadurch gekennzeichnet**, **dass** die Wandlereinheit (22a-d) als eine Differenzierer ausgebildet ist.
- Gargerätevorrichtung nach einem der Ansprüche 4 bis 6, dadurch gekennzeichnet, dass die Wandlereinheit (22ad) passiv ausgebildet ist.
 - **8.** Gargerätevorrichtung nach einem der Ansprüche 4 bis 7, **dadurch gekennzeichnet, dass** die Wandlereinheit (22a-d) als kapazitive Wandlereinheit ausgebildet ist.
 - Gargerätevorrichtung nach einem der Ansprüche 4 bis 8, dadurch gekennzeichnet, dass die Wandlereinheit (22ad) eine Wandlergrenzfrequenz definiert, welche zumindest einem 3-fachen einer Schaltfrequenz des Wechselrichters (18a) entspricht.
- 10. Gargerätevorrichtung nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass die Messeinrichtung (20b) wenigstens eine Filtereinheit (24b, 26b) umfasst, welche dazu vorgesehen ist, Störfrequenzen und/oder Signalrauschen zumindest teilweise zu reduzieren.
- 11. Gargerätevorrichtung nach einem der vorhergehenden Ansprüche, gekennzeichnet durch eine Entkopplungseinheit (28c), welche dazu vorgesehen ist, die Heizeinrichtung (10c) und die Messeinrichtung (20c) galvanisch voneinander zu trennen.
 - 12. Gargerätevorrichtung nach einem der vorhergehenden Ansprüche, gekennzeichnet durch eine Anpasseinheit

(30d), welche dazu vorgesehen ist, das Messsignal (S) mit einem konstanten Offset-Signal zu überlagern.

- 13. Gargerät (32a) mit zumindest einer Gargerätevorrichtung nach einem der vorhergehenden Ansprüche.
- 14. Verfahren zum Betrieb einer Gargerätevorrichtung, insbesondere nach einem der Ansprüche 1 bis 12, welche zumindest eine Heizeinrichtung (10a-d) aufweist, welche zumindest eine Heizeinheit (12a), zumindest eine der Heizeinheit (12a) zugeordnete Resonanzkapazität (16a-d) und zumindest einen Wechselrichter (18a) umfasst, welcher dazu vorgesehen ist, wenigstens einen Heizstrom (io) bereitzustellen, wobei zu einer Bestimmung des Heizstroms (io) in zumindest einem Betriebszustand eine Kapazitätsspannung (v_c) der Resonanzkapazität (16a-d) erfasst und anhand der Kapazitätsspannung (v_c) ein mit dem Heizstrom (io) korreliertes Messsignal (S) bereitgestellt wird.

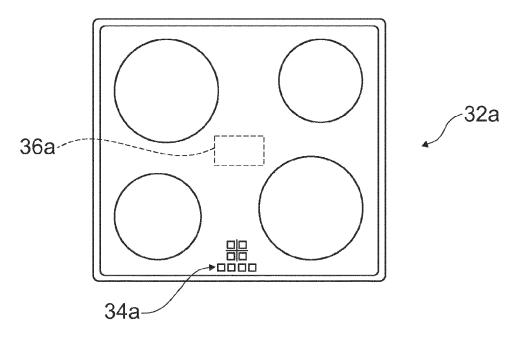


Fig. 1

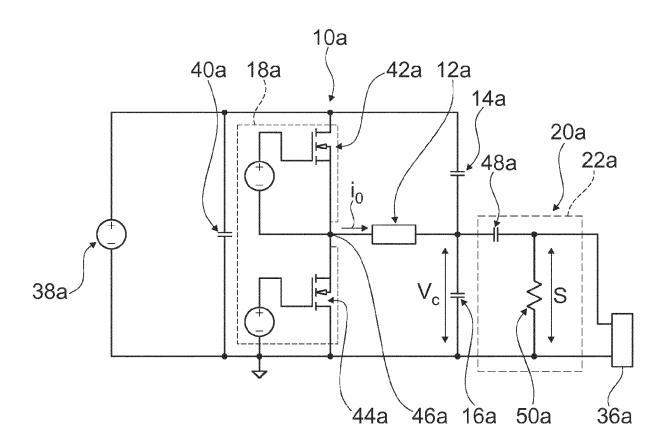


Fig. 2

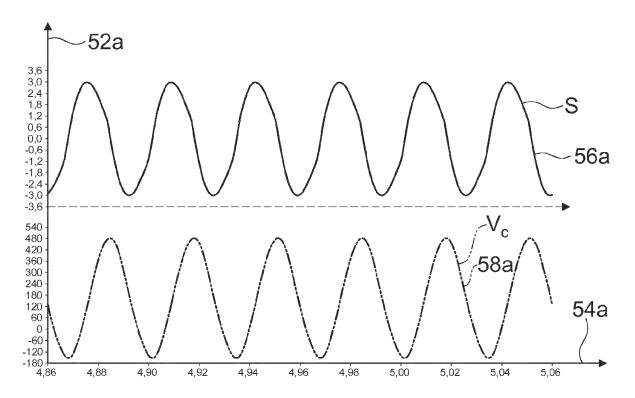


Fig. 3

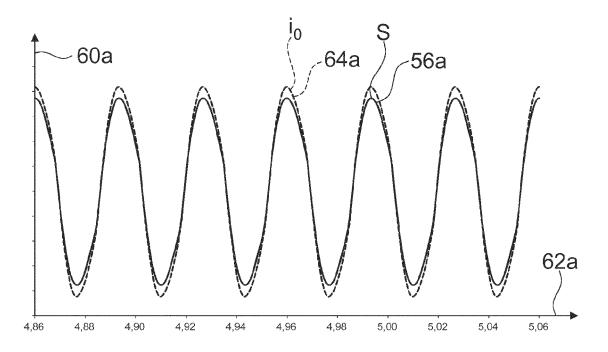


Fig. 4

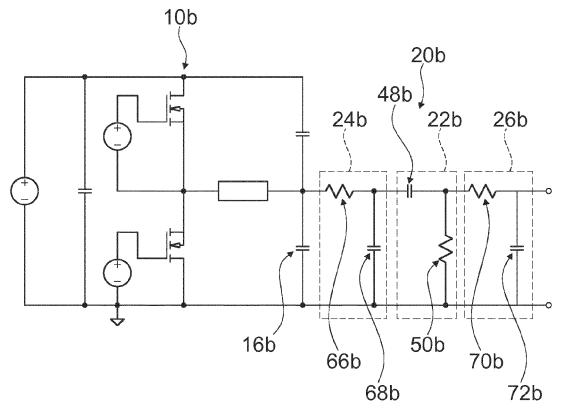


Fig. 5

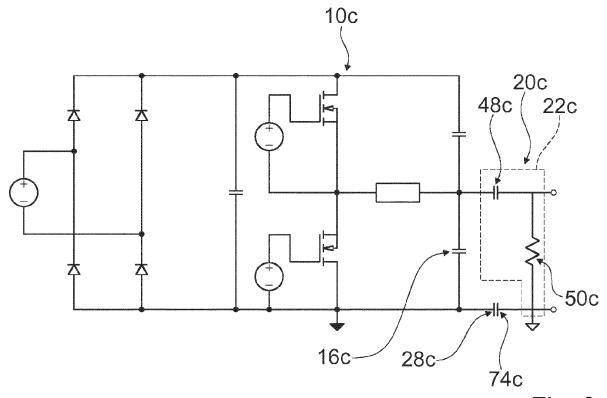


Fig. 6

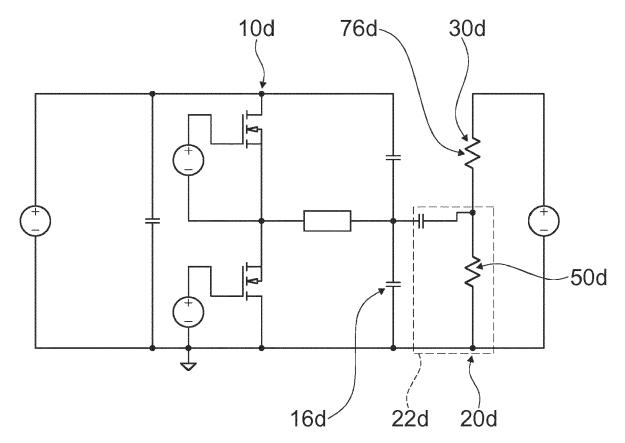


Fig. 7

EUROPÄISCHER RECHERCHENBERICHT

Nummer der Anmeldung EP 17 20 3736

		EINSCHLÄGIGE DO			
	Kategorie	Kennzeichnung des Dokuments der maßgeblichen Te		Betrifft Anspruch	KLASSIFIKATION DER ANMELDUNG (IPC)
10	X Y	EP 3 030 041 A1 (BSH H 8. Juni 2016 (2016-06- * Absätze [0004], [00 [0013], [0016], [002 [0027], [0033]; Abbil	08) 05], [0003], 4], [0025],	1-5,7, 12-14 6,8-11	INV. H05B6/06
15	X	EP 2 437 573 A1 (MITSU [JP]; MITSUBISHI ELECT 4. April 2012 (2012-04 * Absätze [0049], [00	RIC HOME APPL [JP]) 04)	1-5,7, 12-14 6,8-11	
20	Y	DE 10 2016 202775 A1 ([DE]) 22. September 20 * Absatz [0005] *	BSH HAUSGERÄTE GMBH	6,8-11	
25					
30					RECHERCHIERTE SACHGEBIETE (IPC)
35					
40					
45					
50		orliegende Recherchenbericht wurde für Recherchenort München	Abschlußdatum der Recherche 26. April 2018	Pie	Prüfer rron, Christophe
50 (800000) 28 80 800 H MBO3 Odd	X : von Y : von and A : tech O : nicl P : Zwi	ATEGORIE DER GENANNTEN DOKUMEN besonderer Bedeutung allein betrachtet besonderer Bedeutung in Verbindung mit ei eren Veröffentlichung derselben Kategorie unologischer Hintergrund utschriftliche Offenbarung schenliteratur	heorien oder Grundsätze ch erst am oder tlicht worden ist kument Dokument , übereinstimmendes		

ANHANG ZUM EUROPÄISCHEN RECHERCHENBERICHT ÜBER DIE EUROPÄISCHE PATENTANMELDUNG NR.

5

10

15

20

25

30

35

40

45

50

55

EP 17 20 3736

In diesem Anhang sind die Mitglieder der Patentfamilien der im obengenannten europäischen Recherchenbericht angeführten Patentdokumente angegeben.

Patentdokumente angegeben.
Die Angaben über die Familienmitglieder entsprechen dem Stand der Datei des Europäischen Patentamts am Diese Angaben dienen nur zur Unterrichtung und erfolgen ohne Gewähr.

26-04-2018

		Recherchenbericht hrtes Patentdokument		Datum der Veröffentlichung		Mitglied(er) der Patentfamilie		Datum der Veröffentlichung
	EP	3030041	A1	08-06-2016	EP ES ES	3030041 2573144 2643542	A1	08-06-2016 06-06-2016 23-11-2017
	EP	2437573	A1	04-04-2012	CN EP ES JP JP WO	102428750 2437573 2557329 5225465 W02010137498 2010137498	A1 T3 B2 A1	25-04-2012 04-04-2012 25-01-2016 03-07-2013 15-11-2012 02-12-2010
	DE	102016202775	A1	22-09-2016	DE ES	102016202775 2583206		22-09-2016 19-09-2016
EPO FORM P0461								

Für nähere Einzelheiten zu diesem Anhang : siehe Amtsblatt des Europäischen Patentamts, Nr.12/82