(19)
(11) EP 3 340 658 B1

(12) EUROPEAN PATENT SPECIFICATION

(45) Mention of the grant of the patent:
23.12.2020 Bulletin 2020/52

(21) Application number: 18156397.4

(22) Date of filing: 30.11.2012
(51) International Patent Classification (IPC): 
H04R 25/00(2006.01)

(54)

HEARING DEVICE WITH ANALOG FILTERING AND ASSOCIATED METHOD

HÖRGERÄT MIT ANALOGFILTERUNG UND ZUGEHÖRIGES VERFAHREN

DISPOSITIF D'AIDE AUDITIVE AVEC FILTRAGE ANALOGIQUE ET PROCÉDÉ ASSOCIÉ


(84) Designated Contracting States:
AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

(43) Date of publication of application:
27.06.2018 Bulletin 2018/26

(62) Application number of the earlier application in accordance with Art. 76 EPC:
12195007.5 / 2739069

(73) Proprietor: GN Hearing A/S
2750 Ballerup (DK)

(72) Inventor:
  • SIEGUMFELDT, Peter
    2000 Frederiksberg (DK)

(74) Representative: Zacco Denmark A/S 
Arne Jacobsens Allé 15
2300 Copenhagen S
2300 Copenhagen S (DK)


(56) References cited: : 
EP-A2- 1 258 865
US-A- 5 170 434
US-A1- 2012 207 315
WO-A1-2011/006496
US-A1- 2004 175 012
   
       
    Note: Within nine months from the publication of the mention of the grant of the European patent, any person may give notice to the European Patent Office of opposition to the European patent granted. Notice of opposition shall be filed in a written reasoned statement. It shall not be deemed to have been filed until the opposition fee has been paid. (Art. 99(1) European Patent Convention).


    Description


    [0001] The present invention relates to a hearing device or hearing aid with analog filtering and associated method. In particular, the present invention relates to a hearing aid having improved wind noise reduction.

    BACKGROUND



    [0002] Wind noise is experienced as very unpleasant by a hearing device user and considerably reduces the userfriendliness of a hearing device. Known methods for reducing wind noise in hearing devices include filtering in the digital domain. Further, it is known to reduce the gain of a preamplifier to remove the uncomfortable sound levels. This however is at the expence of normal sound processing basically getting destroyed rendering the hearing device somewhat unusable.

    [0003] US 2004/175012 A1 discloses a method for manufacturing an acoustical device. A filter arrangement with adjustable high-pass characteristic has a control input for the characteristic.

    [0004] US 5,170,434 A discloses a hearing aid that generally provides greater amplification for speech signals than noise signals. The hearing aid includes a microphone, variable highpass filter, transducer, and sensor assembly. The sensor assembly detects the amplitude of a band of low frequencies of the highpass filtered microphone signal, and provides a feedback signal to the variable filter to influence its cutoff frequency based on the characterisics of the highpass filtered microphone signal.

    [0005] WO 2011/006496 A1 discloses a processing unit that adaptively suppresses wind noise in a hearing aid. The output of a first A/D converter is operationally connected to a first input of a subtraction node. The output of a second A/D converter is operationally connected to the input of an adaptive filter.

    [0006] EP 1 258 865 A2 discloses a variable high-pass filter that can be altered in its cut-off frequency, for which purpose it has a controlling input where a control signal can be applied to alter the cut-off frequency.

    [0007] US 2012/0207315 A1 discloses an audio processing apparatus including first and second audio pickup units. The second audio pickup unit includes an audio resistor provided to cover a sound receiving portion to suppress external wind introduction while passing an external audio.

    SUMMARY



    [0008] Despite the known solutions, there is still a need for improving the hearing device processing during windy conditions and to improve the signal to noise ratio (SNR) in the hearing device.

    [0009] Accordingly, a hearing device as defined in claim 1 is provided.

    [0010] Also provided is a method as defined in claim 11.

    [0011] It is an advantage of the present invention that saturation of A/D converter of the hearing device is reduced thereby providing improved SNR in the hearing device processing.

    [0012] Further, the hearing device and method enable a more efficient use of signal processing ressources by removing undesired noise at an early stage in the signal processing of the hearing device. Thereby, improved power management is provided.

    BRIEF DESCRIPTION OF THE DRAWINGS



    [0013] The above and other features and advantages of the present invention will become readily apparent to those skilled in the art by the following detailed description of exemplary embodiments thereof with reference to the attached drawings, in which:
    Fig. 1
    schematically illustrates an exemplary hearing device,
    Fig. 2
    schematically illustrates an exemplary preprocessing circuit of the hearing device in Fig. 1,
    Fig. 3
    schematically illustrates an exemplary preprocessing circuit of the hearing device in Fig. 1,
    Fig. 4
    shows an exemplary resistance circuit with a variable resistance value,
    Fig. 5
    shows an exemplary capacitance circuit with a variable capacitance value,
    Fig. 6
    shows exemplary first and second transfer functions,
    Fig. 7
    is a flow diagram of an exemplary method,
    Fig. 8
    is a flow diagram of an exemplary method, and
    Fig. 9
    shows an exemplary processing unit.

    DETAILED DESCRIPTION



    [0014] The figures are schematic and simplified for clarity, and they merely show details which are essential to the understanding of the invention, while other details have been left out. Throughout, the same reference numerals are used for identical or corresponding parts.

    [0015] The preprocessing unit processes the audio signal from the microphone and has an input and an output. The input comprises a first input terminal connected to an output, e.g. a first output terminal, of the microphone. The preprocessing unit may comprise one or more control terminals for receiving and/or sending control signal(s) from/to the processing unit.

    [0016] The preprocessing unit may comprise a first capacitor circuit with a first capacitance value. The first capacitance value may be variable, e.g. the first capacitance value may depend on the control signal from the processing unit. The preprocessing unit may comprise a second capacitor or second capacitor circuit having a second capacitance value. The second capacitance value may be variable, e.g. the second capacitance value may depend on the control signal from the processing unit. A variable first and/or second capacitance circuit may reduce the microphone requirements with regard to DC biasing or drifting. A capacitor or capacitor circuit has a first and a second terminal having a capacitance value therebetween.

    [0017] The preprocessing unit may comprise a first resistor circuit with a first resistance value. The first resistance value may be variable, e.g. the first resistance value may depend on the control signal from the processing unit. The preprocessing unit may comprise a second resistor circuit with a second resistance value. The second resistance value may be variable, e.g. the second resistance value may depend on the control signal from the processing unit. A resistor or resistor circuit has a first and a second terminal having a resistance value therebetween.

    [0018] The preprocessing unit may be a passive unit or an active unit. Accordingly, the preprocessing unit may comprise an amplifier. The amplifier has a first and optionally a second input terminal and an output terminal. The preprocessing unit may comprise a first part or unit and a second part or unit, where the first part is a passive filter part with adjustable filter parameters via the control signal and the second part is an active part with an amplifier. Accordingly, the preprocessing unit may comprise a passive adjustable filter unit followed by an active amplifier unit with adjustable gain.

    [0019] The processing unit comprises an input with one or more input terminals including a first input terminal. The processing unit comprises one or more control terminals connected to corresponding control terminals of the preprocessing unit for sending and/or receiving control signal(s) indicative of mode of operation to/from the preprocessing unit.

    [0020] The processing unit is configured to send a control signal to the preprocessing unit indicative of a mode of operation. The control signal may comprise one or more bits, e.g. depending on the number number of modes/transfer functions. The control signal may have a first value indicative of the first transfer function (e.g. Bit1 =0) and a second value indicative of a second transfer function (e.g. Bit1=1). The processing unit may comprise a detector unit configured to determine one or more noise parameters including a first noise parameter and/or a second noise parameter. The noise parameter(s) may be indicative of the amount of wind noise in the audio signal. The processing unit may be configured to send a control signal indicative of mode of operation to the preprocessing unit depending on a noise criterion based on one or more of the noise parameters. The detector unit may be configured to determine a saturation parameter indicative of whether the A/D converter is close to or in saturation. The processing unit may be configured to send a control signal indicative of mode of operation to the preprocessing unit based on the saturation parameter.

    [0021] A noise criterion may be applied for determining the mode of operation. For example, a first mode (first transfer function) may be selected when a noise criterion, e.g. a first noise criterion, based on noise parameter(s) is not fulfilled, e.g. if a first noise parameter is less than, equal to or larger than a noise threshold (e.g. a first noise threshold). Further, a second mode (second transfer function) may be selected when a noise criterion, e.g. the first noise criterion or a second noise criterion, based on the noise parameter(s) is fulfilled, e.g. if the first noise parameter is less than, equal to or larger than a noise threshold (e.g. the first noise threshold or a second noise threshold). Different criteria may be applied depending on the mode of operation.

    [0022] In an exemplary hearing device, a noise parameter may be based on the sound pressure level (SPL) of the digital audio signal and/or the sound pressure level (SPL) in one or more frequency bands of the digital audio signal, e.g. a first frequency band F1 and/or a second frequency band F2. It is contemplated that a noise criterion and/or the noise parameter may be based on SPL or other suitable input signal properties determined by the detector unit or other sound classification units in the hearing device.

    [0023] In an exemplary hearing device, a noise criterion in the first mode of operation is given by

    where the first noise parameter SPLtotal is the sound pressure level of the digital audio signal and T1 is a first noise threshold. A first transfer function is applied (first mode of operation) if the noise criterion is not fulfilled (false, indicative of no or little wind noise) and a second transfer function is applied (second mode of operation) if the noise criterion is fulfilled (true, indicative of wind noise present).

    [0024] In an exemplary hearing device, the noise criterion in the first mode of operation is given by

    where the first noise parameter SPLF1 is the sound pressure level of the digital audio signal in a first frequency band F1 and T1 is a first noise threshold. A first transfer function is applied (first mode of operation) if the noise criterion is not fulfilled (false, indicative of no or little wind noise) and the preprocessing unit switches to applying a a second transfer function (second mode of operation) if the noise criterion is fulfilled (true, indicative of wind noise present).

    [0025] The noise criterion may be based on a plurality of noise parameters. In an exemplary hearing device, the noise criterion in the first mode of operation is given by

    where the first noise parameter SPLtotal is the sound pressure level of the digital audio signal, T1 is a first noise threshold, the second noise parameter SPLF1 is the sound pressure level of the digital audio signal in a first frequency band F1, and T2 is a second noise threshold.

    [0026] A first noise criterion may be applied in a first mode of operation and a second noise criterion different from the first noise criterion may be applied in a second mode of operation. The hearing device may be configured to operate in the second mode for a predetermined time period and then switch back to the first mode. For example, the second noise criterion may consist of or include whether the hearing device has operated in the second mode for a certain period of time. A noise criterion may comprise one or more logical expressions.

    [0027] The preprocessing unit may be configured to apply a third transfer function with a third cutoff frequency to the audio signal in a third mode of operation depending on the control signal from the processing unit.

    [0028] The preprocessing unit is configured to apply a plurality of different transfer functions including a first transfer function and a second transfer function to the output signal from the microphone in different modes of operation, e.g. depending on control signal(s) from the processing unit.

    [0029] The first transfer function may be a high pass filter function having a first cutoff frequency f1. The first cutoff frequency may be selected in the range from 5 Hz to 1 kHz. Exemplary first cutoff frequencies are 20 Hz, 50 Hz, 80 Hz, 100 Hz, 200 Hz, 400 Hz, 600 Hz, 1 kHz or any ranges therebetween.

    [0030] The second transfer function may be a high pass filter function. The second cutoff frequency f2 may be selected in the range from 50 Hz to 2 kHz. Exemplary second cutoff frequencies are 50 Hz, 80 Hz, 100 Hz, 200 Hz, 400 Hz, 600 Hz, 800 Hz, 1 kHz, 2 kHz or any ranges therebetween. The first cutoff frequency may be less than the second cutoff frequency, e.g. f1=80Hz and f2=400 Hz .

    [0031] The transfer functions applied in different modes may be band-pass filter functions with lower cutoff corresponding to the first and second cutoff frequencies, respectively.

    [0032] The processing unit may be configured to send a control signal indicative of a second mode of operation to the preprocessing unit when a first noise criterion is fulfilled in a first mode of operation where a first transfer function is applied. Additionally or as an alternative, the processing unit may be configured to send a control signal indicative of a first mode of operation to the preprocessing unit when a second noise criterion is fulfilled in a second mode of operation where a second transfer function is applied.

    [0033] The method according to the present invention comprises applying, in the preprocessing unit, a second transfer function with a second cutoff frequency to the audio signal from the microphone if the noise parameter fullfils a criterion. The method may comprise determining the noise parameter(s) while applying the second transfer function, and applying, in the preprocessing unit, the first transfer function or a third transfer function to the audio signal from the microphone if the noise parameter(s) fullfils a criterion. A first criterion may be applied when the first transfer function is applied in the preprocessing unit and a second criterion different from the first criterion may be applied when the second transfer function is applied in the preprocessing unit.

    [0034] The hearing device according to the present invention provides improved degree of freedom in the design of the hearing device by reducing the requirements to microphone performance.

    [0035] Further, the present invention allows for utilizing low frequency audio signals for secondary applications not necessarily related to hearing loss compensation.

    [0036] Fig. 1 schematically illustrates an exemplary hearing device. The hearing device 2 comprises a microphone 4 for converting audio into an audio signal 5, and a preprocessing unit 6 for analog processing of the audio signal 5. The preprocessing unit has an input 8 for audio signal 5 and an output 10, wherein the input 8 is connected to an output 12 of the microphone 4. Further, the hearing device 2 comprises an A/D converter 14 for converting the processed analog audio signal 16 into a digital audio signal 18, the A/D converter 14 having an input 20 and an output 22, wherein the input 20 is connected to the output 10 of the preprocessing unit 6. The hearing device comprises a processing unit 24 for digital processing of the digital audio signal 18. The processed digital audio signal 26 is fed to a receiver device (not shown) for conversion of the processed digital audio signal 26 into a compensated audio signal. The processing unit 24 is connected to the preprocessing unit 6 on connection 28 for feeding and/or receiving control signal(s) to/from the preprocessing unit.

    [0037] The preprocessing unit 6 is configured to apply a first transfer function H1 to the audio signal in a first mode of operation and a second transfer function H2 with a second cutoff frequency to the audio signal in a second mode of operation, depending on a control signal 30 on connection 28 from the processing unit 24.

    [0038] Fig. 2 shows an exemplary preprocessing unit 6' of the hearing aid 2. The preprocessing unit 6' comprises a first capacitance circuit 40 with a variable first capacitance value C1 depending on a control signal on control terminal(s) 42. Further, the preprocessing unit 6' comprises a second capacitance circuit 44 with a second capacitance value C2. The preprocessing unit 6' comprises a first resistance circuit 46 with a variable first resistance value R1 depending on a control signal on control terminal(s) 42'. The preprocessing unit 6' is an active unit comprising an amplifier or amplifier circuit 48 having a first input terminal 49A, a second input terminal 49B, and output terminal 50 coupled to the capacitance and resistance circuits 40, 44, 46. The first capacitance circuit 40 is coupled between a first input terminal 47 of the preprocessing unit input 8 and the first input terminal 49A. The second capacitance circuit 44 and the first resistance circuit 46 are coupled in parallel between the first input terminal 49A and the output terminal 50. The second input terminal 49B is connected to virtual ground.

    [0039] Fig. 3 shows an exemplary preprocessing unit 6" of the hearing aid 2. The preprocessing unit 6" comprises a first resistance circuit 46 with a variable first resistance value R1 depending on a control signal on control terminal(s) 42'. Further, the preprocessing unit 6" comprises a second resistance circuit 52 with a variable second resistance value R2 depending on a control signal on control terminal(s) 42". The preprocessing unit 6" is an active unit comprising an amplifier or amplifier circuit 48 having a first input terminal 49A, a second input terminal 49B, and output terminal 50. The first resistance circuit 46 is coupled between the second input terminal 49B and the output terminal 50. The second resistance circuit 52 is coupled between the second input terminal 49B and the second input terminal 47" of the preprocessing unit. A capacitance circuit (not shown) is coupled external to the preprocessing unit between the second input terminal 47' and ground. As an alternative or in combination, a first capacitance circuit (C1) may be incorporated in the preprocessing unit 6" in series with the second resistance circuit 52 between ground and the second input terminal 49B.

    [0040] Fig. 4 shows an exemplary resistance circuit with a variable resistance value. Different resistance values may be selected by controlling the switches 56 (open or closed) with a control signal in order to couple or decouple resistors 54.

    [0041] Fig. 5 shows an exemplary capacitance circuit with a variable capacitance value. Different capacitance values may be selected by controlling the switches 56 (open or closed) with a control signal in order to couple or decouple capacitors 58.

    [0042] Fig. 6 shows exemplary first and second transfer functions applied to the audio signal in first and second modes of operation, respectively. The first transfer function 90 is a high pass filter with a first cutoff frequency f1 of about 100 Hz. The second transfer function 92 is a high pass filter with a second cutoff frequency f2 of about 400 Hz.

    [0043] Fig. 7 illustrates an exemplary method for operating a hearing aid comprising a microphone, a preprocessing unit, an A/D converter, and a processing unit according to the present invention. The method 100 comprises applying 102, in the preprocessing unit, a first transfer function H1 to an audio signal from the microphone and converting 104 the preprocessed audio signal to a digital audio signal with the A/D converter.

    [0044] Further, the method comprises determining 106 one or more noise parameters including a first noise parameter and/or a second noise parameter of the digital audio signal, and applying 110, in the preprocessing unit, a second transfer function H2 with a second cutoff frequency f2 to the audio signal from the microphone depending on a noise criterion 108 based on the one or more noise parameters. In the method 100, the noise criterion applied in 108 depends on the mode of operation. If the preprocessing unit applies a first transfer function corresponding to the first mode of operation, a first criterion based on sound pressure levels is applied. If the first criterion is fulfilled, e.g. one or more sound pressure levels (total and/or selected bandwidths) are larger than respective thresholds, a control signal indicative of second mode is fed to the preprocessing unit and the preprocessing unit applies a second transfer function 110. If the first criterion is not fulfilled (indicative of no wind noise), the preprocessing unit continues applying the first transfer function corresponding to the hearing device operating in the first mode of operation. If the preprocessing unit applies a second transfer function corresponding to the second mode of operation, a second criterion is applied in 108. The second criterion may be fulfilled if the hearing device has operated in the second mode for a certain time period, i.e. if t2>T1, where t2 is the present time of operation in the second mode and T1 is a threshold time, e.g. in the range from 1 second to 60 seconds. If the second criterion is fulfilled, a control signal indicative of first mode is fed to the preprocessing unit and the preprocessing unit applies a first transfer function 102. If the second criterion is not fulfilled (indicative of wind noise present), the preprocessing unit continues applying the second transfer function and the hearing device continues operating in the second mode of operation.

    [0045] Fig. 8 illustrates an exemplary method for operating a hearing aid comprising a microphone, a preprocessing unit, an A/D converter, and a processing unit according to the present invention. The method 100' comprises applying 102, in the preprocessing unit, a first transfer function H1 to an audio signal from the microphone and converting 104 the preprocessed audio signal to a digital audio signal with the A/D converter.

    [0046] Further, the method comprises determining 106 one or more noise parameters including a first noise parameter and/or a second noise parameter of the digital audio signal. Further, an operation mode of the hearing device is determined based on the one or more noise parameters and the current mode of operation in 106. The operation mode may be selected from two or more operation modes with corresponding transfer functions. In 110, the transfer function corresponding to the mode of operation determined in 106 is applied to the audio signal and the method returns to determining the mode of operation and accordingly the transfer function to be applied in the preprocessing unit.

    [0047] Fig. 9 shows an exemplary processing unit 24. The processing unit 24 receives the digital audio signal 18 at input 93. The digital audio signal 18 is fed to detector unit 94 and hearing compensation processing unit 96. The detector unit 94 is configured to determine at least a first noise parameter of the digital audio signal 18. The noise parameter(s) are fed to mode selector 98 configured to determine the mode of operation of the hearing aid, e.g. based on the noise parameter(s) and/or current mode of operation. The mode selector 98 may be embedded in the hearing compensation processing unit 96. The mode selector 98 is configured to send a control signal 30 indicative of mode of operation to the preprocessing unit via processing unit control output 25.

    LIST OF REFERENCES



    [0048] 
    2
    hearing device
    4
    microphone
    5
    audio signal
    6
    preprocessing unit
    8
    preprocessing unit input
    10
    preprocessing unit output
    12
    microphone output
    14
    analog-digital (A/D) converter
    16
    processed analog audio signal
    18
    digital audio signal
    20
    A/D converter input
    22
    A/D converter output
    24
    processing unit
    25
    processing unit control output
    26
    processed digital audio signal
    28
    connection
    30
    control signal
    40
    first capacitance circuit
    42, 42', 42"
    control terminal(s)
    44
    second capacitance circuit
    46
    first resistance circuit
    47
    first input terminal
    48
    amplifier
    49A
    first input terminal of amplifier
    49B
    second input terminal of amplifier
    50
    output terminal of amplifier
    52
    second resistance circuit
    54
    resistor
    56
    switch
    58
    capacitor
    90
    first transfer function
    92
    second transfer function
    93
    digital audio input
    94
    detector unit
    96
    hearing compensation processing unit
    98
    mode selector



    Claims

    1. A hearing device (2) comprising:

    - a microphone (4) for converting audio into an audio signal (5);

    - a preprocessing unit (6) for analog processing of the audio signal (5) into a processed analog audio signal (16), the preprocessing unit (6) having an input (8) and an output (10), wherein the input (8) is connected to an output (12) of the microphone (4);

    - an A/D converter (14) for converting the processed analog audio signal (16) into a digital audio signal (18), the A/D converter (14) having an input (20) and an output (22), wherein the input (20) is connected to the output (10) of the preprocessing unit (6); and

    - a processing unit (24) for digital processing of the digital audio signal (18), wherein the processing unit (24) is connected to the preprocessing unit (6) for sending a control signal (30) to the preprocessing unit (6);

    wherein the preprocessing unit (6) is configured to apply a first transfer function to the audio signal (5) in a first mode of operation and a second transfer function with a second cutoff frequency to the audio signal (5) in a second mode of operation, depending on the control signal (30) from the processing unit (24);
    characterized in that the processing unit comprises:

    - a detector unit (94) configured to determine one or more noise parameters including at least a first noise parameter of the digital audio signal (18); and

    - a mode selector (98) configured to determine the mode of operation of the hearing aid based on the one or more noise parameters and to send the control signal (30) indicative of the mode of operation to the preprocessing unit (6) via processing unit control output (25).


     
    2. A hearing device according to claim 1, wherein the preprocessing unit comprises a first capacitor circuit with a variable first capacitance value, wherein the first capacitance value depends on the control signal from the processing unit.
     
    3. A hearing device according to any of claims 1-2, wherein the preprocessing unit comprises a first resistor circuit with a variable first resistance value, wherein the second resistance value depends on the control signal from the processing unit.
     
    4. A hearing device according to claim 3, wherein the preprocessing unit comprises a second resistor circuit with a variable second resistance value, wherein the second resistance value depends on the control signal from the processing unit.
     
    5. A hearing device according to any of the preceding claims, wherein the preprocessing unit comprises an amplifier.
     
    6. A hearing device according to any of the preceding claims, wherein the processing unit is configured to send a control signal indicative of a second mode of operation to the preprocessing unit when a first noise criterion is fulfilled in a first mode of operation, and the control signal indicative of a first mode of operation to the preprocessing unit when a second noise criterion is fulfilled in a second mode of operation.
     
    7. A hearing device according to any of the preceding claims, wherein the preprocessing unit is configured to apply a third transfer function with a third cutoff frequency to the audio signal in a third mode of operation depending on the control signal from the processing unit.
     
    8. A hearing device according to any of the preceding claims, wherein the first transfer function is a high pass filter function and having a first cutoff frequency, wherein the first cutoff frequency is selected in the range from 100 Hz to 1 kHz.
     
    9. A hearing device according to claim 8, wherein the second cutoff frequency is larger than the first cutoff frequency.
     
    10. A hearing device according to any of the preceding claims, wherein the second transfer function is a high pass filter function and wherein the second cutoff frequency is selected in the range from 100 Hz to 2 kHz.
     
    11. A method (100,100') for operating a hearing aid comprising a microphone, a preprocessing unit, an A/D converter, and a processing unit, the method comprising:

    - Applying (102), in the preprocessing unit, a transfer function to an audio signal from the microphone, thereby analog processing the audio signal into a preprocessed audio signal;

    - Converting (104) the preprocessed audio signal to a digital audio signal,

    - Determining (106) one or more noise parameters including at least a first noise parameter of the digital audio signal, and

    - Applying (110) to the audio signal from the microphone, in the preprocessing unit, as said transfer function, a first transfer function in a first mode of operation and a second transfer function with a second cutoff frequency in a second mode of operation, the mode of operation depending on a noise criterion based on the one or more noise parameters.


     
    12. Method according to claim 11, the method comprising determining the one or more noise parameters while applying the second transfer function, and applying, in the preprocessing unit, the first transfer function or a third transfer function to the audio signal from the microphone depending on said noise criterion.
     


    Ansprüche

    1. Hörgerät (2) umfassend:

    - ein Mikrofon (4) zum Umwandeln von Schall in ein Audiosignal (5);

    - eine Vorverarbeitungseinheit (6) zum analogen Verarbeiten des Audiosignals (5) zu einem verarbeiteten analogen Audiosignal (16), wobei die Vorverarbeitungseinheit (6) einen Eingang (8) und einen Ausgang (10) aufweist, wobei der Eingang (8) mit einem Ausgang (12) des Mikrofons (4) verbunden ist;

    - einen A/D-Wandler (14) zum Umwandeln des verarbeiteten analogen Audiosignals (16) in ein digitales Audiosignal (18), wobei der A/D-Wandler (14) einen Eingang (20) und einen Ausgang (22) aufweist, wobei der Eingang (20) mit dem Ausgang (10) der Vorverarbeitungseinheit (6) verbunden ist;

    - eine Verarbeitungseinheit (24) zum digitalen Verarbeiten des digitalen Audiosignals (18), wobei die Verarbeitungseinheit (24) mit der Vorverarbeitungseinheit (6) verbunden ist, um ein Steuersignal (30) an die Vorverarbeitungseinheit (6) zu senden;

    wobei die Vorverarbeitungseinheit (6) dazu ausgestaltet ist, in einem ersten Betriebsmodus eine erste Übertragungsfunktion auf das Audiosignal (5) anzuwenden und in einem zweiten Betriebsmodus eine zweite Übertragungsfunktion mit einer zweiten Grenzfrequenz auf das Audiosignal (5) anzuwenden, abhängig vom Steuersignal (30) von der Verarbeitungseinheit (24);
    dadurch gekennzeichnet, dass die Verarbeitungseinheit umfasst:

    - eine Detektoreinheit (94), ausgestaltet zum Bestimmen von einem oder mehreren Rauschparametern, umfassend mindestens einen ersten Rauschparameter des digitalen Audiosignals (18); und

    - eine Betriebsart-Auswahlvorrichtung (98), ausgestaltet zum Bestimmen der Betriebsart des Hörgeräts basierend auf dem einem oder mehreren Rauschparametern, und zum Senden des den Betriebsmodus anzeigenden Steuersignals (30) an die Vorverarbeitungseinheit (6) über Verarbeitungseinheitssteuerausgabe (25).


     
    2. Hörgerät nach Anspruch 1, wobei die Vorverarbeitungseinheit eine erste Kondensatorschaltung mit einem variablen ersten Kapazitätswert umfasst, wobei der erste Kapazitätswert vom Steuersignal der Verarbeitungseinheit abhängig ist.
     
    3. Hörgerät nach einem der Ansprüche 1 bis 2, wobei die Vorverarbeitungseinheit eine erste Widerstandsschaltung mit einem variablen ersten Widerstandswert umfasst, wobei der zweite Widerstandswert vom Steuersignal der Verarbeitungseinheit abhängig ist.
     
    4. Hörgerät nach Anspruch 3, wobei die Vorverarbeitungseinheit eine zweite Widerstandsschaltung mit einem variablen zweiten Widerstandswert umfasst, wobei der zweite Widerstandswert vom Steuersignal von der Verarbeitungseinheit abhängig ist.
     
    5. Hörgerät nach einem der vorgehenden Ansprüche, wobei die Vorverarbeitungseinheit einen Verstärker umfasst.
     
    6. Hörgerät nach einem der vorhergehenden Ansprüche, wobei die Verarbeitungseinheit dazu ausgestaltet ist, ein einen zweiten Betriebsmodus anzeigendes Steuersignal an die Vorverarbeitungseinheit zu senden, wenn ein erstes Rauschkriterium in einem ersten Betriebsmodus erfüllt ist, und das einen ersten Betriebsart anzeigende Steuersignal an die Vorverarbeitungseinheit zu schicken, wenn ein zweites Rauschkriterium in einem zweiten Betriebsmodus erfüllt ist.
     
    7. Hörgerät nach einem der vorhergehenden Ansprüche, wobei die Vorverarbeitungseinheit dazu ausgestaltet ist, in einem dritten Betriebsmodus eine dritte Übertragungsfunktion mit einer dritten Grenzfrequenz auf das Audiosignal abhängig vom Steuersignal der Verarbeitungseinheit anzuwenden.
     
    8. Hörgerät nach einem der vorgehenden Ansprüche, wobei die erste Übertragungsfunktion eine Hochpassfilterfunktion ist und eine erste Grenzfrequenz aufweist, wobei die erste Grenzfrequenz im Bereich von 100 Hz bis 1 kHz gewählt ist.
     
    9. Hörgerät nach Anspruch 8, wobei die zweite Grenzfrequenz größer als die erste Grenzfrequenz ist.
     
    10. Hörgerät nach einem der vorgehenden Ansprüche, wobei die zweite Übertragungsfunktion eine Hochpassfilterfunktion ist, und wobei die zweite Grenzfrequenz im Bereich von 100 Hz bis 2 kHz gewählt ist.
     
    11. Verfahren (100, 100') zum Betrieb eines Hörgeräts (2), umfassend ein Mikrofon (4), eine Vorverarbeitungseinheit, einen A/D-Wandler und eine Verarbeitungseinheit, wobei das Verfahren Folgendes umfasst:

    - Anwenden (102), in der Vorverarbeitungseinheit, einer Übertragungsfunktion auf ein Audiosignal vom Mikrofon und dadurch analoges Verarbeiten des Audiosignals zu einem vorverarbeiteten Audiosignal;

    - Umwandeln (104) des vorverarbeiteten Audiosignals in ein digitales Audiosignal,

    - Bestimmen (106) von einem oder mehreren Rauschparametern, umfassend zumindest einen ersten Rauschparameter des digitalen Audiosignals, und

    - Anwenden (110) auf das Audiosignal vom Mikrofon, in der Vorverarbeitungseinheit, als die Übertragungsfunktion, einer ersten Übertragungsfunktion in einem ersten Betriebsmodus und einer zweiten Übertragungsfunktion mit einer zweiten Grenzfrequenz in einem zweiten Betriebsmodus, wobei die Betriebsart abhängig ist von einem auf dem einen oder mehreren Rauschparametern basierenden Rauschkriterium.


     
    12. Verfahren nach Anspruch 11, wobei das Verfahren ferner Bestimmen des einen oder mehrerer Rauschparameter während der Anwendung der zweiten Übertragungsfunktion und Anwenden, in der Vorverarbeitungseinheit, der ersten Übertragungsfunktion oder einer dritten Übertragungsfunktion auf das Audiosignal vom Mikrofon, abhängig vom Rauschkriterium umfasst.
     


    Revendications

    1. Dispositif auditif (2) comprenant :

    - un microphone (4) pour convertir l'audio en un signal audio (5) ;

    - une unité de prétraitement (6) pour le traitement analogique du signal audio (5) en un signal audio analogue traité (16), l'unité de prétraitement (6) ayant une entrée (8) et une sortie (10), dans laquelle l'entrée (8) est connectée à une sortie (12) du microphone (4) ;

    - un convertisseur numérique analogique (14) pour convertir le signal audio analogique traité (16) en un signal audio numérique (18), le convertisseur numérique analogique (14) ayant une entrée (20) et une sortie (22), l'entrée (20) étant connectée à la sortie (10) de l'unité de prétraitement (6) ; et

    - une unité de traitement (24) pour le traitement numérique du signal audio numérique (18), l'unité de traitement (24) étant connectée à l'unité de prétraitement (6) pour envoyer un signal de commande (30) à l'unité de prétraitement (6) ;

    dans lequel l'unité de prétraitement (6) est configurée pour appliquer une première fonction de transfert au signal audio (5) dans un premier mode de fonctionnement et une deuxième fonction de transfert avec une deuxième fréquence de coupure au signal audio (5) dans un deuxième mode de fonctionnement, en fonction d'un signal de commande (30) provenant de l'unité de traitement (24) ;
    caractérisé en ce que le l'unité de traitement comprend :

    - une unité de détection (94) configurée pour déterminer un ou plusieurs paramètres de bruit incluant au moins un premier paramètre de bruit du signal audio numérique (18) ; et

    - un sélecteur de mode (98) configuré pour déterminer le mode de fonctionnement de la prothèse auditive sur la base de l'un ou plusieurs paramètre(s) de bruit et envoyer le signal de commande (30) indicatif du mode de fonctionnement à l'unité de prétraitement (6) via la sortie de commande de l'unité de traitement (25).


     
    2. Dispositif auditif selon la revendication 1, dans lequel l'unité de prétraitement comprend un premier circuit de condensateur avec une première valeur de capacité variable, la première valeur de capacité dépendant du signal de commande provenant de l'unité de traitement.
     
    3. Dispositif auditif selon l'une quelconque des revendications 1 à 2, dans lequel l'unité de prétraitement comprend un premier circuit de résistance avec une première valeur de résistance variable, la deuxième valeur de résistance dépendant du signal de commande provenant de l'unité de traitement.
     
    4. Dispositif auditif selon la revendication 3, dans lequel l'unité de prétraitement comprend un deuxième circuit de résistance avec une deuxième valeur de résistance variable, la deuxième valeur de résistance dépendant du signal de commande provenant de l'unité de traitement.
     
    5. Dispositif auditif selon l'une quelconque des revendications précédentes, dans lequel l'unité de prétraitement comprend un amplificateur.
     
    6. Dispositif auditif selon l'une quelconque des revendications précédentes, dans lequel l'unité de traitement est configurée pour envoyer un signal de commande indicatif d'un deuxième mode de fonctionnement à l'unité de prétraitement lorsqu'un premier critère de bruit est rempli dans un premier mode de fonctionnement, et le signal de commande indicatif d'un premier mode de fonctionnement à l'unité de prétraitement lorsqu'un deuxième critère de bruit est rempli dans un deuxième mode de fonctionnement.
     
    7. Dispositif auditif selon l'une quelconque des revendications précédentes, dans lequel l'unité de prétraitement est configurée pour appliquer une troisième fonction de transfert avec une troisième fréquence de coupure au signal audio dans un troisième mode de fonctionnement en fonction du signal de commande provenant de l'unité de traitement.
     
    8. Dispositif auditif selon l'une quelconque des revendications précédentes, dans lequel la première fonction de transfert est une fonction de filtre passe-haut et ayant une première fréquence de coupure, la première fréquence de coupure étant sélectionnée dans la gamme de 100 Hz à 1 kHz.
     
    9. Dispositif auditif selon la revendication 8, dans lequel la deuxième fréquence de coupure est supérieure à la première fréquence de coupure.
     
    10. Dispositif auditif selon l'une quelconque des revendications précédentes, dans lequel la deuxième fonction de transfert est une fonction de filtre passe-haut, et dans lequel la deuxième fréquence de coupure est sélectionnée dans la gamme de 100 Hz à 2 kHz.
     
    11. Procédé (100, 100') pour faire fonctionner une prothèse auditive comprenant un microphone, une unité de prétraitement, un convertisseur numérique analogique, et une unité de traitement, ledit procédé comprenant :

    - l'application (102), dans l'unité de prétraitement, d'une fonction de transfert à un signal audio provenant du microphone pour le traitement analogue du signal audio en un signal audio analogue prétraité ;

    - la conversion (104) du signal audio analogue prétraité en un signal audio numérique,

    - la détermination (106) d'un ou de plusieurs paramètres de bruit incluant au moins un premier paramètre de bruit du signal audio numérique, et

    - l'application (110) au signal audio provenant du microphone, dans l'unité de prétraitement, en tant que ladite fonction de transfert, d'une première fonction de transfert dans un premier mode de fonctionnement et une deuxième fonction de transfert avec une deuxième fréquence de coupure dans un deuxième mode de fonctionnement, le mode de fonctionnement dépendant d'un critère de bruit basé sur l'un ou plusieurs paramètres de bruit.


     
    12. Procédé selon la revendication 11, le procédé comprenant la détermination de l'un ou plusieurs paramètres de bruit lors de l'application de la deuxième fonction de transfert et l'application, dans l'unité de prétraitement, de la première fonction de transfert ou une troisième fonction de transfert au signal audio provenant du microphone en fonction dudit critère de bruit.
     




    Drawing























    Cited references

    REFERENCES CITED IN THE DESCRIPTION



    This list of references cited by the applicant is for the reader's convenience only. It does not form part of the European patent document. Even though great care has been taken in compiling the references, errors or omissions cannot be excluded and the EPO disclaims all liability in this regard.

    Patent documents cited in the description