
Printed by Jouve, 75001 PARIS (FR)

(19)
E

P
3

35
2

08
5

A
1

TEPZZ¥¥5 Z85A_T
(11) EP 3 352 085 A1

(12) EUROPEAN PATENT APPLICATION

(43) Date of publication:
25.07.2018 Bulletin 2018/30

(21) Application number: 17207826.3

(22) Date of filing: 15.12.2017

(51) Int Cl.:
G06F 11/36 (2006.01)

(84) Designated Contracting States:
AL AT BE BG CH CY CZ DE DK EE ES FI FR GB
GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO
PL PT RO RS SE SI SK SM TR
Designated Extension States:
BA ME
Designated Validation States:
MA MD TN

(30) Priority: 23.01.2017 US 201715412481

(71) Applicant: Accenture Global Solutions Limited
Dublin 4 (IE)

(72) Inventors:
• SAGINAW, Jonathan M.

New York, NY New York 10009 (US)
• DARIGO, Austin J.

Warminster, PA Pennsylvania 18974 (US)
• ANDERSON, John C.

Broadlands, VA Virginia 20148 (US)
• STEVENS, Alexis M.

Atlanta, GA Georgia 30306 (US)

(74) Representative: Boult Wade Tennant
Verulam Gardens
70 Gray’s Inn Road
London WC1X 8BT (GB)

(54) CLOUD CONNECTED AUTOMATED TESTING

(57) Cloud Connected automated testing (CCAT)
provides a low-cost, high-throughput, automated mul-
ti-thread testing platform for testing application with mul-
tiple test cases in a variety of operating environments.
The platform may be hosted on cloud infrastructure. Un-

like other test automation platforms, inputs to CCAT are
based on human readable formats, such as keyword en-
tries in a spreadsheet. CCAT thereby reduces the need
for testers to understand highly specialized and difficult
to use coding languages such as Java or Python.

EP 3 352 085 A1

2

5

10

15

20

25

30

35

40

45

50

55

Description

Technical Field

[0001] This application concerns automated testing of
applications.

Background

[0002] Explosive growth in computer hardware and
software capabilities has led to implementation of sophis-
ticated processing systems that impact nearly every as-
pect of day-to-day life. More recent developments have
allowed these systems to take virtualized forms, and to
be hosted on computing infrastructure anywhere in the
world. Efficiently testing these computer hardware and
software systems is a significant technical challenge.

Summary

[0003] Example implementations are provided in the
following numbered clauses:

1. A method comprising:

receiving a test suite comprising multiple inde-
pendent test cases for an application;
identifying test data for the multiple test cases
from the test suite;
identifying test steps to be performed for each
of the multiple test cases from the test suite;
identifying multiple different operating environ-
ments for running the independent test cases
from the test suite;
for each combination of one of the multiple test
cases in one of the multiple different operating
environments,

instantiating an independent test thread
comprising a remote test driver; and
copying the identified test data from the test
suite and the identified test steps for the one
of the independent test cases into the re-
mote test driver to create a thread-specific
test dataset for the independent test thread;
and

executing the multiple test cases against each
of the multiple different operating environments
independently by running the test threads based
on the thread-specific test datasets and the re-
mote test drivers.

2. The method of clause 1, where the application is
a website and the test suite comprises a set of test
descriptors.

3. The method of clause 2, where the set of descrip-

tors comprises a test master document and multiple
test script descriptors each corresponding to one of
the multiple test cases.

4. The method of clause 3, where each test script
descriptor comprises test step entries that specifies
test steps for a test case corresponding to the each
test script descriptor.

5. The method of clause 4, where each test step
entry comprises a predefined keyword specifying a
test action.

6. The method of clause 4 or clause 5, where at least
one test step entry of the test step entries further
comprises data items specifying test data for the at
least one test step entry.

7. The method according to any of clauses 4 to 6,
where at least one test step entry of the test step
entries further comprises a data item specifying ex-
pected test outputs for the at least one test step entry.

8. The method according to any of clauses 4 to 7,
where each test step entry further comprising a test
execution indicator indicating whether the each test
step entry is to be performed.

9. The method according to any of clauses 3 to 8,
where the test master document specifies operating
environments in which each test case is to be run
and where each operating environment comprises
at least a type of web browser.

10. The method according to any of clauses 2 to 9,
where each remote test driver comprises an inde-
pendent testing grid web driver in a pre-determined
testing grid environment.

11. A cloud-based platform, comprising:

a communication interface;
a memory ; and
circuitry in communication with the memory and
the communication interface, the circuitry con-
figured to:

receive, via the communication interface, a
test suite comprising multiple independent
test cases for an application;
identify test data for the multiple test cases
from the test suite;
identify test steps to be performed for each
of the multiple test cases from the test suite;
identify multiple different operating environ-
ments for running the independent test cas-
es from the test suite;
for each combination of one of the multiple

1 2

EP 3 352 085 A1

3

5

10

15

20

25

30

35

40

45

50

55

test cases in one of the multiple different
operating environments,

instantiate an independent test thread
comprising a remote test driver; and
copy the identified test data from the
test suite and the identified test steps
for the one of the independent test cas-
es into the remote test driver to create
a thread-specific test dataset for the in-
dependent test thread; and

execute the multiple test cases against
each of the multiple different operating en-
vironments independently by running the
test threads based on the thread-specific
test datasets and the remote test drivers.

12. The cloud-based platform of clause 11, where
the application is a website and the test suite com-
prises a set of test descriptors.

13. The cloud-based platform of clause 12, where
the set of descriptors comprises a test master doc-
ument and multiple test script descriptors each cor-
responding to one of the multiple test cases.

14. The cloud-based platform of clause 13, where
each test script descriptor comprises test step en-
tries that specifies test steps for a test case corre-
sponding to the each test script descriptor.

15. The cloud-based platform of clause 14, where
each test step entry comprises a predefined keyword
specifying a test action.

16. The cloud-based platform of clause 14 or clause
15, where at least one test step entry of the test step
entries further comprises data items specifying test
data for the at least one test step entry.

17. The cloud-based platform according to any of
clauses 14 to 16, where at least one test step entry
of the test step entries further comprises a data item
specifying expected test outputs for the at least one
test step entry.

18. The cloud-based platform according to any of
clauses 14 to 17, where each test step entry further
comprising a test execution indicator indicating
whether the each test step entry is to be performed.

19. The cloud-based platform according to any of
clauses 13 to 18, where the test master document
specifies operating environments in which each test
case is to be run where each operating environment
comprises at least a type of web browser.

20. A method comprising:

predefining a set of keywords each correspond-
ing to a test action among a set of test actions
for testing a website;
receiving a test suite comprising a test master
document and multiple test script descriptors
each for one of multiple independent test cases
for the website, where each test script descriptor
comprises multiple keywords of the set of key-
words arranged according to predefined gram-
matical rules;
identifying test data for the multiple test cases
from the test suite;
identifying test steps to be performed for the mul-
tiple test cases according to the multiple key-
words from the test script descriptors and a in-
dicator field in the test script descriptors indicat-
ing whether a test step is to be performed;
identifying multiple different operating environ-
ments for running the independent test cases
from the test master document where each op-
erating environment comprising at least a type
of web browser;
for each combination of one of the multiple test
cases in one of the multiple different operating
environments,

instantiating an independent test thread
comprising a remote test driver; and
copying the identified test data from the test
suite and the identified test steps for the one
of the independent test cases into the re-
mote test driver to create a thread-specific
test dataset for the independent test thread;
and

executing the multiple test cases against each
of the multiple different operating environments
independently by running the test threads based
on the thread-specific test datasets and the re-
mote test drivers.

Brief Description of the Drawings

[0004]

Figure 1 shows a cloud connected automated testing
system;
Figure 2 shows an alternative cloud connected au-
tomated testing system;
Figure 3 shows exemplary processing circuitry that
may be used in an cloud connected automated test-
ing system;
Figures 4A and 4B illustrate exemplary logical flow
diagrams for a code pipeline of the cloud connected
automated testing system;
Figure 5 illustrates a multi-thread implementation of

3 4

EP 3 352 085 A1

4

5

10

15

20

25

30

35

40

45

50

55

performing multiple test cases in multiple operating
environments;
Figure 6 illustrates an alternative multi-thread imple-
mentation of performing multiple test cases in mul-
tiple operating environments;
Figure 7 shows another alternative multi-thread im-
plementation of performing multiple test cases in
multiple operating environments;
Figure 8 shows a specific multi-thread implementa-
tion of performing multiple test cases in multiple op-
erating environments in a cloud infrastructure;
Figure 9 shows an exemplary keyword-based input
test script in a spreadsheet format for a test case;
Figure 10 shows an exemplary keyword-based input
test script in a spreadsheet format for a test case
including expected test outputs;
Figure 11 shows a test master in a spreadsheet for-
mat specifying instructions for performing multiple
test cases in multiple operating environments;
Figure 12 illustrates running of each combination of
test case and operating environment as an inde-
pendent thread using a cloud connected automated
testing system;
Figure 13 illustrates an implementation of multi-
thread testing having thread overlapping;
Figure 14 shows a comparison of an actual testing
for two test cases in three operating environments
between the implementations of Figure 12 and Fig-
ure 13, and illustrates an inadvertent effect of thread
overlapping in the implementation of Figure 13; and
Figure 15 shows a cloud connected automated test-
ing system implemented in AWS environment that
further includes components and interfaces for voice
and other remote activation of tests.

DETAILED DESCRIPTION

[0005] Successful deployment of software applica-
tions rely critically on comprehensive testing prior to their
releases. An application may contain internal functions
that need to be thoroughly tested using a comprehensive
set of independent test cases, where each test case may
be designed to verify one or more of multiple aspects or
functions of the application. In addition, because an ap-
plication may be developed based on layers of software
stacks and libraries that may be platform dependent, test-
ing of the application may need to be conducted in a wide
variety of operating environments that may be in place
at a wide variety of user locations of the application. As
such, full testing of an application can become resource-
intensive, error prone, and time consuming, involving
running a large number of independent test cases each
in multiple operating environments.
[0006] For example, an application may be a website
containing a collection of related webpages that are com-
plex from a testing standpoint. Specifically, a website
may be hosted on at least one webserver but accessed
and viewed by many different types of users using many

different types of web browsers on many different types
of user devices. A webpage may refer to what a web
browser displays to a user when the webpage is ac-
cessed, or may alternatively refer to a set of files asso-
ciated with the webpage and downloaded from webserv-
ers and interpreted by web browsers. These files may
typically be in a HyperText Markup Language (HTML) or
other comparable markup languages. An HTML file may
be manually written or dynamically generated by a web-
server. Each HTML file may be identified by a unique
Uniform Resource Locator (URL). A webpage may be
embedded with contents such as texts, animations, vid-
eos, audios, and other applications. A webpage may fur-
ther include elements for user input, such as a box for
inputting texts, and a radio button or a dropdown menu
and the like for inputting user choices. These user inputs
may be submitted to the webservers for further process-
ing. For example, dynamic HTML files may be generated
by the webserver based on these user inputs. A webpage
may further contain hyperlinks (URLs) to other web pag-
es, allowing a user to traverse between various webpag-
es within a same website or between websites. A HTML
file may encapsulate one or more non-HTML element in
the form of, for example, an applet, written in languages,
such as JavaScript. These embedded non-HTML ele-
ments may be executed by corresponding engines in web
browsers to produce parts of the webpages displayed.
[0007] In addition to the complexity of websites and
webpages as described above, each user may choose
to install one or more of different web browsers on his/her
device, such as Firefox, Google Chrome, Internet Explor-
er/Microsoft Edge, Opera, and Safari. Each of these web
browsers may further run in different operating systems
(potentially virtualized), including but not limited to vari-
ous versions of Microsoft Windows, Apple Operating
System, and Linux-based operating systems. In addition,
these web browsers may include different sets of capa-
bilities for user devices of varying physical forms (mobile
phones, tablets, personal computers, etc.) and display
characteristics. The combination of types of browsers,
the operating systems in which the browsers run, and
the physical forms of user devices gives rise to a large
possible number of operating environments that need to
be tested for websites and webpages.
[0008] The disclosure below provides methods, appa-
ratus, and systems for carrying out multiple test cases
for complex applications in multiple operating environ-
ments using multiple parallel test threads running in a
cloud. Specific implementations for testing websites and
webpages are described as examples without losing gen-
eral applicability of this disclosure to various other appli-
cation testing contexts.
[0009] Figure 1 shows an exemplary system 100 for
implementing automated testing of websites or webpag-
es (generally referred to as webpages below) in cloud.
System 100 includes Cloud Connected Automated Test-
ing (CCAT) servers 108 for processing test tasks from
testers (referred to alternatively as clients) 102 including

5 6

EP 3 352 085 A1

5

5

10

15

20

25

30

35

40

45

50

55

102_1, 102_2, and 102_M and implementing processed
test tasks in a test harness 114 in cloud 112. The CCAT
servers 108 may be centralized at a single location or
distributed over multiple geographic locations. Clients
102 may communicate with the CCAT servers 108 via
communication network 110. Similarly, the CCAT serv-
ers 108 may communicate with the test harness 114 via
the communication network 110. The communication
network 110 may be based on, for example, the Internet
Protocol (IP), and may include a combination of wired or
wireless access networks, local area networks, wide area
networks, and other computer networks.
[0010] A tester may be a remote terminal device from
which tests can be submitted for automatic execution by
the CCAT servers. Tests may be submitted by a QA
(Quality Assurance) personnel of the providers of the
websites to be tested remotely via any tester. A tester
may be alternatively referred to as a tester device and
may be any suitable electronic devices including but not
limited to mobile phones, tablets, laptop computers, per-
sonal computers, and Personal Digital Assistants
(PDAs). A QA personnel may be separate from the de-
velopers and programmers of the website. In the partic-
ular implementations of webpage testing based on sys-
tem 100 as described below, a QA need not to be tech-
nically sophisticated as to coding of webpages. Further,
the CCAT servers 108 may be accessed from testers
remotely and from anywhere. For example, the CCAT
servers may include webservers hosting websites. As
such, testers 102 may contain web browsers for commu-
nicating with the CCAT servers and submit test tasks by
remotely accessing webpages hosted by the CCAT web-
servers from any location of the testers. Alternatively,
testers 102 may be installed with dedicated tester soft-
ware locally on tester devices for remotely accessing the
CCAT servers. In system 100, the cloud 114 and the
CCAT servers 108 may be operated by separate and
independent service providers.
[0011] Test steps and test data associated with the test
cases that are submitted from the testers may be spec-
ified as test scrips 120, such as 120_1, 120_2, and
120_M, in a predefined format. The CCAT servers 108
receive these formatted test scripts and process them
into test codes 140 via a code pipeline 130, exemplary
implementations of which will be described in more detail
below. The processed test codes 140 may be sent to the
cloud and executed by the test harness 114. Test results
150 may then be communicated back to testers 120 via
the CCAT servers.
[0012] Figure 2 shows an alternative system 200 for
implementing cloud connected automated testing of
webpages. System 200 is similar to system 100 except
that the functions of the CCAT servers may be imple-
mented in the cloud. As such, a CCAT service provider
may not need to maintain and operate its own servers.
Rather, a CCAT service provider may exploit hardware
and/or platforms in the cloud 112 from one or more cloud
service providers for implementing CCAT functions, in-

cluding the code pipeline 130.
[0013] In another alternative system to the system 200
of Figures 1 and 2, test scripts 120_1, 102_2, and 102_M
may be stored in a depository in the cloud 112. The re-
mote tester devices 102 may be used to submit the test
scripts into the cloud depository. The remote tester de-
vices 102 may be further used to communicate instruc-
tions to initiate an automatic process for a test or a group
of tests stored in the cloud depository, via, for example,
a web browser accessing the CCAT web server.
[0014] The servers, including the CCAT servers, web-
servers, and servers configured in the cloud, and tester
devices may each be implemented as processing circuit-
ry 301, e.g., as shown in Figure 3. The processing cir-
cuitry 301 may include communication interfaces 302,
system resources 304, input/output (I/O) interfaces 306,
and display circuitry 308 that generates machine inter-
faces 310 locally or for remote displays. The machine
interfaces 310 and the I/O interfaces 306 may include
GUIs, touch sensitive displays, voice or facial recognition
inputs, buttons, switches, speakers and other user inter-
face elements. The I/O interfaces 306 may further include
magnetic or optical media interfaces (e.g., a CDROM or
DVD drive), serial and parallel bus interfaces, and key-
board and mouse interfaces.
[0015] The communication interfaces 302 may include
wireless transmitters and receivers ("transceivers") 312
and any antennas 314 used by the transmit/receive cir-
cuitry of the transceivers 312. The transceivers 312 and
antennas 314 may support Wi-Fi network communica-
tions, for instance, under any version of IEEE 802.11,
e.g., 802.11 n or 802.11 ac. The communication inter-
faces 302 may also include wireline transceivers 316.
The wireline transceivers 316 may provide physical layer
interfaces for any of a wide range of communication pro-
tocols, such as any type of Ethernet, data over cable
service interface specification (DOCSIS), digital sub-
scriber line (DSL), synchronous optical network (SON-
ET), or other protocol.
[0016] Processing circuitry 301 may be in communica-
tion with testers 102 via the communication network 110.
Processing circuitry 301 may further be in communication
with storage 318, either directly or via the communication
network 110. The storage 318 may comprise any type of
storage media, including but not limited to magnetic or
optical disks, solid state media, and magnetic tapes. The
storage 318 may be centralized or alternatively organized
as a distributed storage network.
[0017] As shown in Figure 3, the system resources 304
of the processing circuitry 301 may include hardware,
software, firmware, or other circuitry and resources in
any combination. The system resources 304, for exam-
ple, may include instruction processors 320. The system
resources 304 may further include memories 330. The
system resources 304 may be implemented, for example,
as one or more systems on a chip (SoC), application
specific integrated circuits (ASIC), microprocessors, in
combination with solid state memories, random access

7 8

EP 3 352 085 A1

6

5

10

15

20

25

30

35

40

45

50

55

memories, discrete analog and digital circuits, and other
circuitry. The system resources 304 provide the basic
platform for implementation of any desired functionality
in the processing circuitry 301. The memories 330 store,
for example, instructions that the processors 320 may
execute to carry out desired functionality of a CCAT serv-
er, a test harness server, or a tester device.
[0018] Figure 4A illustrates an exemplary code pipe-
line 130 of CCAT servers 108. In particular, the CCAT
servers run a CCAT engine 414 for transcoding, for ex-
ample, test scripts 120 submitted by testers 102, into test
codes 140. The CCAT engine 414 may be updated and
recompiled as frequently as needed. For example, the
CCAT engine 414 may be compiled and regenerated in
real time every time every test scripts are submitted. The
source code for the CCAT engine may be stored in a
source code server 410. A source code compiler 412
may be used for compiling the CCAT source code that
may be modified or updated at any time. The compiled
CCAT engine takes the test scripts 120 from testers 102
as input via the communication network 110 and trans-
codes the test script into test codes 140 that may be
interpreted and executed by the cloud-based test har-
ness 114 of Figure 1 or Figure 2. As an example, the
cloud-based test harness may be a test grid configured
in the cloud and containing test hubs and test nodes,
such as a Selenium (TM) grid.
[0019] Figure 4B illustrates an alternate implementa-
tion of the code pipeline 130. In the code pipeline of 130
of Figure 4B, the CCAT engine 414 and the source code
compiler 412 may be combined into a continuous inte-
gration compiler 412/414 that processes the source code
of the CCAT engine and the input test scripts 120 from
the tester 102 into the test codes 140 in a single step. As
such, the continuously updated CCAT engine source
codes may be utilized every time a test is submitted by
the tester.
[0020] The code pipeline 130 may be specifically con-
figured to transcode test scripts 120 into test codes 140
of multiple test cases each to be run as an independent
thread by the test harness 114. Furthermore, the code
pipeline may generate the test codes 140 such that each
test case may be run in parallel for different operating
environments. For example, as shown in Figure 5, the
test script 120 may be transcoded to run as multiple test
threads 502, 504, and 506, each corresponding to an
independent test case of N test cases. Test cases are
independent, when, for example, they have no data de-
pendence, i.e., running of one test case does not depend
on the status or output of any other test cases. Each test
case, including its test steps and test data specified in
the test scripts 120, may run in both operating environ-
ment 1 and operating environment 2, shown by 510, 520,
530, and 512, 522, 532, respectively. For simplicity of
description, two non-limiting operating environments are
referred to here. As discussed above, many operating
environments as combinations of different versions of
web browsers, operating systems, and user devices may

need to be tested.
[0021] Alternatively to what was described above with
regard to Figure 5, test code 140 may be generated by
the code pipeline such that each test case in each oper-
ating environment may be run as an independent thread
by the test harness 114. This is shown by 610, 612, 620,
622, 630, and 632 in Figure 6. Specifically, rather than
running the test as N threads in Figure 5 each for one of
the N test cases, the test may be run as NxK independent
threads, where K denotes the number of operating envi-
ronments being tested.
[0022] Test codes generated by the code pipeline 130
may instantiate test instances via a testing grid, such as
a Selenium(TM) grid. The test codes thus may contain a
collection of test steps and test data formatted to invoking
test objects in the testing grid, such as Selenium(TM)
remote web driver objects. A testing grid includes a test
hub, and one or more test nodes pre-created in the cloud
112. Each of the test hub and test nodes may be identified
by an IP address and/or a port number, for instance. Cor-
responding to Figure 5, a test thread for each test case
may be independently instantiated to create test objects
in testing grid web drivers each for one of the multiple
operating environments. For example, for test thread 502
(for test case 1) in Figure 5, the operating environment
1 and 2 may be the latest version of Google Chrome in
Microsoft Windows 2006 and Safari 6.1.6 in Mac OS X
v. 10.7, respectively. Corresponding, the test codes gen-
erated by the code pipeline may contain commands for
creating an independent thread for test case 1. Within
that thread, the test codes generated by the code pipeline
may further contain function calls to appropriate testing
grid objects for creating Chrome and Safari web driver
objects (or web drivers of appropriate Chrome or Safari
capabilities) for running test steps and test data associ-
ated with test case 1 via, again, appropriate testing grid
function calls. The implementation above applies equally
to test threads for other test cases, such as test case 2
and test case N of Figure 5.
[0023] Alternatively, and corresponding to Figure 6,
test codes generated by the code pipeline may be con-
figured to create one test thread for each combination of
test case and operating environment. As such, test steps
and test data for each test case are in effect copied into
the independent test threads for various operating envi-
ronments. Specifically for a test thread, a testing grid web
driver corresponding to an operating environment to be
tested is created. Test steps and test data of a test case
are run in parallel for various operating environments in
the testing grid web drivers created in independent
threads.
[0024] In another implementation, as shown in Figure
7, test codes 140 may be generated by the code pipeline
for creating ’L’ independent test threads such as 702,
704 and 706 each instantiating a testing grid having a
test hub and at least one test node. Specifically, test
threads 702, 704, and 706 may respectively spawn pairs
of test hub and test nodes 710/712, 720/722, and 730/732

9 10

EP 3 352 085 A1

7

5

10

15

20

25

30

35

40

45

50

55

for running test steps of the corresponding test cases.
For example, each test thread 702, 704, or 706 may cor-
respond to one test case, and as such, various testing
grid web drivers may be instantiated for various operating
environments by each test thread in corresponding pair
of test hub/test nodes. Alternatively, each test thread 702,
704, or 706 may correspond to one combination of test
case and test environment, and accordingly, one appro-
priate testing grid web driver may be instantiated in each
pair of test hub and test nodes.
[0025] Figure 8 illustrates a specific example 800 of
the test system 200 of Figure 2 using CCAT code pipeline
and a test harness in the form of a testing grid imple-
mented in virtual and elastic test cloud 802. Test scripts
120 is input into code pipeline 130. As an example, the
code pipeline 130 may utilize an automation server 804,
a source code depository 806 and a build tool 808 in the
cloud for pulling the source code for the CCAT engine
from the source code depository, compiling the CCAT
source code and transcoding the input test scripts into
test codes suitable for testing grid 812 in a continuous
integration manner described above. Specifically, the
test cloud 802 may be, for example, the Amazon Web
Service (AWS); the automation server 804 may provide
automation service via Jenkins (TM); the source code
depository 806 may be provided via GitHub (TM); and
the build tool 808 may be provided via Gradle (TM). The
test codes generated by the code pipeline 130 may in-
stantiate multiple test threads containing remote web
drivers in testing grid 812, as described above. The test-
ing grid, for example, may be based on Selenium (TM)
grid. Output of the test, including test results for various
test cases in various operating environments, may be
stored in storage 810 in the cloud, in various formats,
such as spreadsheets 820 and screen shot images 830.
In implementing the code pipeline 130, the test harness
812, and the storage of test results 810 in the virtual and
elastic test cloud 802, other suitable cloud service tools
816 may be involved for enhancing, e.g., elasticity and
security. For example, for Amazon web Service, compo-
nents such as VPC (TM), EC2 (TM), AMI (TM), and IAM
(TM) as may be invoked as needed. The cloud and cloud
tools may be managed by operation personnel 855.
[0026] In the implementation of Figure 8, development
of test scripts and test output analysis may be performed
by QA personnel, as shown by 870. Code developer 880
may be involved in building and maintaining core codes,
including the CCAT codes and the test codes generated
for the testing grid 812.
[0027] The implementation of Figure 8 thus provide a
continuous integration of building CCAT code using an
automated code pipeline, as indicated by 860. In addition,
as indicated by 862, the implementation of Figure 8 utilize
a testing grid such as Selenium (TM) grid as automated
test harnesses. Further, the implementation provides a
distributed development and testing of websites, as
shown by 864. Finally, the entire code building and testing
is implemented in cloud optimized for virtualized testing,

as indicated by 866.
[0028] Grammatical rules for the test script 120 may
be designed to avoid technicalities of writing computer
codes. As such, all technicalities may be embedded into
the CCAT engine, and a QA personnel 818 of Figure 8
do not need to possess any specific coding skills. Spe-
cifically, test steps and test data for test cases may be
specified in a test script descriptor that is easy for humans
to read and write. For example, test scripts containing
test steps and test data for each of the test cases may
be written as a test script descriptor in the form of test
spreadsheet 840, or in a light weight data-interchange
format 850 such as JSON (Javascript Object Notation).
A collection of exemplary test scripts in test spreadsheet
format is shown by 1000 of Figure 9. Each spreadsheet
may correspond to, for example, one test case. Each row
of a test spreadsheet corresponds to, for example, one
entry for a test step containing multiple columns.
[0029] Further, meaningful keywords may be devel-
oped for test scripts for easy construction of test steps
by non-technical tester. In the test scripts shown in Figure
9, for example, a set of keywords 902 include "openURL",
"Wait", "Click", and the like. These keywords may carry
literal meanings that are easy to understand by non-tech-
nical person without grammatical rigor of various pro-
graming components. These keywords, for example,
may represent actions in test steps, such as opening a
webpage and clicking a button. These keywords may al-
so be used for controlling the timing of the test steps such
as waiting for a certain period of time between actions.
[0030] A keyword may be further associated with one
or more test data or parameters. These parameters may
be specified as one or more separate column in the
spreadsheet, such as 904 of Figure 9. For example, the
keyword "openURL" may be associates with a test data
representing the URL of the webpage to be tested, as
shown by 908. For another example, the keyword "wait"
may be associated with a number representing the
amount of time (e.g., in seconds) to wait between actions,
as shown by 910. For yet another example, the keyword
"click" may be associates with a parameter indicating the
name (or identifier) of the button or other object in the
webpage to be clicked, as shown by 912.
[0031] An additional column indicating whether a test
step in a particular row should be ignored by the code
pipeline when building the test codes may be included in
a test script spreadsheet, as illustrated by column 906
labeled as "RunMode" column in Figure 9. The advan-
tage of including this column in the test script spreadsheet
is that a test case may be conveniently modified to re-
move or include certain test steps. If a test step is desired
or required, the corresponding row may be flagged with
"Yes" under column "RunMode". If a test step becomes
unnecessary in further rounds of testing, the RunMode
flag of the corresponding row may simply be modified
from "Yes" to "No". For example, it may be decided at
one point that steps 920 of Figure 9 tare no longer nec-
essary. Instead of deleting these test steps, a tester may

11 12

EP 3 352 085 A1

8

5

10

15

20

25

30

35

40

45

50

55

simply modify the RunMode indicators of these steps to
"No". If these test steps are ever required again, they
RunMode indicators are simply modified back to "Yes".
[0032] A test script and test script descriptor described
above may contain additional information that may help
generating test results. For example, the spreadsheet
1000 for the test script descriptor shown in Figure 10
contains additional columns such as 1008, 1010, and
1012. These columns may indicate expected output for
the test steps. Specifically expected test outputs of test
steps for various operating environment, such as FireFox
(FF), Chrome, and Internet Explorer (IE), may be sepa-
rately specified as 1008, 1010, and 1012, as the expected
outputs may be different between different operating en-
vironments. This information may be useful for the CCAT
system to construct more understandable testing results
820 of Figure 8. For example, the CCAT engine may be
configured to compare the returned text from the test to
expected text and generates a pass or fail indictor to the
tester, rather than returning the actual text generated
from the test.
[0033] Multiple test script descriptors, such as test
spreadsheets of test scripts may be constructed as de-
scribed in detail above and each test script descriptor
may correspond to one independent test case. One ad-
ditional test document, referred to as the test master doc-
ument, may be further constructed by the tester and
transcoded by the CCAT code pipeline to specify various
operating environments in which each test case is to be
performed. An exemplary test master document may be
a spreadsheet 1100, as shown in Figure 11. Each row
of the test master spreadsheet 1100 corresponds to a
test case and operating environment pair. For example,
the column 1102 of the test master spreadsheet 1100
labeled as "Test-Case" specifies the test cases, using,
for example, identifiers or file names for test script de-
scriptors such as spreadsheets corresponding to the test
cases. In Figure 11, as an example, nine different test
cases are involved.
[0034] The "Browser" column 1104 of the test master
spreadsheet in Figure 11 specifies various browsers for
testing the test cases. While the example of Figure 11
only specifies the operating environments by general cat-
egories of web browsers to be tested, it is understood
that these categories may be refined into levels of smaller
granularity. For example, the category of "chrome" may
be further refined into chrome of various versions running
in various operating systems. Alternatively, these de-
tailed version or operating system information may be
specified in additional columns of the spreadsheet of Fig-
ure 11.
[0035] The "RunMode" column 1106 of the test master
spreadsheet in Figure 11 specifies whether a specific
test case and web browser combination (or test case and
operating environment combination) is to be performed.
For example, the test master of Figure 11 specifies that
20 tests are to be performed involving 7 of the 9 test
cases, each in all three major web browsers of Firefox,

Chrome, and Internet Explorer. The test master spread-
sheet of Figure 11 thus provides a convenient way to
specify any test combination.
[0036] The test scripts for the test cases and the op-
erating environments to be tested are collectively re-
ferred to as a test suite. The formatted test script descrip-
tors (such as test script spreadsheets, e.g., Figure 9) and
test master document (such as test master spreadsheet
of Figure 11) descripted above are collectively referred
to as test descriptors. A test suite, may be input into the
code pipeline 130 of Figures 1, 2, and 8 for creating mul-
tiple test threads as described in Figures 5-7, optionally
invoking a testing grid and web drivers as described in
Figure 8. Figure 12 further shows six threads for 2 test
cases in three different browsers (Chrome, Internet Ex-
plorer, and Firefox) created by the CCAT system in the
form of independent CCAT test diver objects, 1201-1206.
Each CCAT test driver object further contains a remote
web driver (a Selenium web driver object, for example)
with appropriate browser capability, as shown by
1211-1216. These remote web drivers do not share re-
sources. Instead, each of the CCAT test diver objects
1201-1206 maintains its autonomy by having its own test
steps and test data, as shown by 1221-1226.
[0037] In comparison, Figure 13 shows an alternative
implementation for running two test cases 1321-1322
and three different browsers in three threads 1301-1303,
each corresponding to one browser capability. For ex-
ample, different remote web driver objects 1311-1316 in
the testing grid may be instantiated with appropriate ca-
pabilities. Because of a sharing of common data resourc-
es within each thread, there may be thread overlap be-
tween the two test cases within each thread, leading to
unintended and inadvertent consequences.
[0038] This may be illustrated in Figure 14 for running
two exemplary test cases. For both test cases, a same
webpage is first opened. The webpage contains an input
box "User Name". The first test case contains the step
of inputting "XYZ" as user name. The second test case
contains the step of inputting "abc" as user name. In the
6-thread CCAT test driver object implementation of Fig-
ure 12, remote web drivers of the same browser capability
are independently invoked in separate threads and thus
each remote web drivers runs one instance of web brows-
er and the user names are correctly input into each web
browser, as shown by 1401 of Figure 14. However, in
the 3-thread implementation of Figure 13, the testing grid
may not be able to distinguish between the two test cases
due to thread overlapping between 1411 and 1414, 1412
and 1415, 1413 and 1416 of 1402 in Figure 14. As a
result, the user name for test case 1 ("XYZ") and the user
name for test case 2 ("abc") may be both inadvertently
entered into the same web browser, as shown
by1411-1413 of 1402 in Figure 14.
[0039] Figure 15 further illustrates using voice com-
mand or single-click for activating the multi-thread testing
in cloud 1503 as described above. For example, Voice
Input/Output Circuitry 1501 in communication with a cor-

13 14

EP 3 352 085 A1

9

5

10

15

20

25

30

35

40

45

50

55

responding Voice Processing Server 1502 may be uti-
lized for inputting voice command 1510 for building and
running the multi-thread test codes from the code pipeline
130 via an Event-Driven Computing Server 1520. Alter-
natively, the building and running of test codes may be
activated by an loT (Internet of Things) Single Click De-
vice 1530 in communication with an loT Server 1532 and
the Event Driven Computing Server 1520. The Voice
Processing Server 1502 may be further used for process-
ing a test result inquiry 1540 input from the Voice in-
put/Output Circuitry 1501 and converting test results into
voice and uttered by the Voice Input/Output Circuitry
1501 into voice 1550. Alternatively, test results may be
converted into predefined signal 1560 for conditional web
service such as IFTTT or IF 1570 for triggering a Web-
Connected LED Indicator 1580. As an example, the cloud
may be the Amazon Web Service (AWS); the Voice In-
put/Output Circuits 1501 may be an Amazon Echo de-
vice; the Voice Processing Server 1502 may be the Am-
azon Alexa server; the loT Single Click Device 1530 may
be an AWS loT single click device; the loT Server 1532
maybe the AWS loT server; and the Web-Connected
LED Indicator 1580 may be Phillips hue lines of smart
LEDs.
[0040] Using the implementation of Figure 15 and its
variations, test cases may be designed and stored in the
cloud as a test depository. Cloud services such as event-
driven computing services, conditional web services,
cloud code pipeline services, and cloud storages are in-
tegrally invoked for comprehensive and efficient testing
of applications. Specifically, integration of voice-activa-
tion or loT-driven interfaces to initiate an automatic proc-
ess of code build, multi-thread execution of a group of
tests in multiple operational environments, test result
processing, and test result feedback via voice and/or vis-
ual indicators offers non-technical QA personnel a con-
venient platform for conducting distributed and automat-
ed tests in any combination and from anywhere.
[0041] Various implementations have been specifical-
ly described above. However, many other implementa-
tions are also possible. Further, the described methods,
devices, processing, frameworks, circuitry, and logic de-
scribed above may be implemented in many different
ways and in many different combinations of hardware
and software. For example, all or parts of the implemen-
tations may be circuitry that includes an instruction proc-
essor, such as a Central Processing Unit (CPU), micro-
controller, or a microprocessor; or as an Application Spe-
cific Integrated Circuit (ASIC), Programmable Logic De-
vice (PLD), or Field Programmable Gate Array (FPGA);
or as circuitry that includes discrete logic or other circuit
components, including analog circuit components, digital
circuit components or both; or any combination thereof.
The circuitry may include discrete interconnected hard-
ware components or may be combined on a single inte-
grated circuit die, distributed among multiple integrated
circuit dies, or implemented in a Multiple Chip Module
(MCM) of multiple integrated circuit dies in a common

package, as examples.
[0042] Accordingly, the circuitry may store or access
instructions for execution, or may implement its function-
ality in hardware alone. The instructions may be stored
in a tangible storage medium that is other than a transitory
signal, such as a flash memory, a Random Access Mem-
ory (RAM), a Read Only Memory (ROM), an Erasable
Programmable Read Only Memory (EPROM); or on a
magnetic or optical disc, such as a Compact Disc Read
Only Memory (CDROM), Hard Disk Drive (HDD), or other
magnetic or optical disk; or in or on another machine-
readable medium. A product, such as a computer pro-
gram product, may include a storage medium and in-
structions stored in or on the medium, and the instructions
when executed by the circuitry in a device may cause
the device to implement any of the processing described
above or illustrated in the drawings.
[0043] The implementations may be distributed. For
instance, the circuitry may include multiple distinct sys-
tem components, such as multiple processors and mem-
ories, and may span multiple distributed processing sys-
tems. Parameters, databases, and other data structures
may be separately stored and controlled, may be incor-
porated into a single memory or database, may be logi-
cally and physically organized in many different ways,
and may be implemented in many different ways. Exam-
ple implementations include linked lists, program varia-
bles, hash tables, arrays, records (e.g., database
records), objects, and implicit storage mechanisms. In-
structions may form parts (e.g., subroutines or other code
sections) of a single program, may form multiple separate
programs, may be distributed across multiple memories
and processors, and may be implemented in many dif-
ferent ways. Example implementations include stand-
alone programs, and as part of a library, such as a shared
library like a Dynamic Link Library (DLL). The library, for
example, may contain shared data and one or more
shared programs that include instructions that perform
any of the processing described above or illustrated in
the drawings, when executed by the circuitry.
[0044] The principles described herein may be embod-
ied in many different forms. Not all of the depicted com-
ponents may be required, however, and some implemen-
tations may include additional components. Variations in
the arrangement and type of the components may be
made without departing from the spirit or scope of the
claims as set forth herein. Additional, different or fewer
components may be provided.

Claims

1. A method comprising:

receiving a test suite comprising multiple inde-
pendent test cases for an application;
identifying test data for the multiple test cases
from the test suite;

15 16

EP 3 352 085 A1

10

5

10

15

20

25

30

35

40

45

50

55

identifying test steps to be performed for each
of the multiple test cases from the test suite;
identifying multiple different operating environ-
ments for running the independent test cases
from the test suite;
for each combination of one of the multiple test
cases in one of the multiple different operating
environments,

instantiating an independent test thread
comprising a remote test driver; and
copying the identified test data from the test
suite and the identified test steps for the one
of the independent test cases into the re-
mote test driver to create a thread-specific
test dataset for the independent test thread;
and

executing the multiple test cases against each
of the multiple different operating environments
independently by running the test threads based
on the thread-specific test datasets and the re-
mote test drivers.

2. The method of claim 1, where the application is a
website and the test suite comprises a set of test
descriptors.

3. The method of claim 2, where the set of descriptors
comprises a test master document and multiple test
script descriptors each corresponding to one of the
multiple test cases.

4. The method of claim 3, where each test script de-
scriptor comprises test step entries that specifies test
steps for a test case corresponding to the each test
script descriptor.

5. The method of claim 4, where each test step entry
comprises a predefined keyword specifying a test
action.

6. The method of claim 4 or claim 5, where at least one
test step entry of the test step entries further com-
prises data items specifying test data for the at least
one test step entry.

7. The method according to any of claims 4 to 6, where
at least one test step entry of the test step entries
further comprises a data item specifying expected
test outputs for the at least one test step entry.

8. The method according to any of claims 4 to 7, where
each test step entry further comprising a test execu-
tion indicator indicating whether the each test step
entry is to be performed.

9. The method according to any of claims 3 to 8, where

the test master document specifies operating envi-
ronments in which each test case is to be run and
where each operating environment comprises at
least a type of web browser.

10. The method according to any of claims 2 to 9, where
each remote test driver comprises an independent
testing grid web driver in a pre-determined testing
grid environment.

11. A cloud-based platform, comprising:

a communication interface;
a memory ; and
circuitry in communication with the memory and
the communication interface, the circuitry con-
figured to:

receive, via the communication interface, a
test suite comprising multiple independent
test cases for an application;
identify test data for the multiple test cases
from the test suite;
identify test steps to be performed for each
of the multiple test cases from the test suite;
identify multiple different operating environ-
ments for running the independent test cas-
es from the test suite;
for each combination of one of the multiple
test cases in one of the multiple different
operating environments,

instantiate an independent test thread
comprising a remote test driver; and
copy the identified test data from the
test suite and the identified test steps
for the one of the independent test cas-
es into the remote test driver to create
a thread-specific test dataset for the in-
dependent test thread; and

execute the multiple test cases against
each of the multiple different operating en-
vironments independently by running the
test threads based on the thread-specific
test datasets and the remote test drivers.

12. The cloud-based platform of claim 11, where the ap-
plication is a website and the test suite comprises a
set of test descriptors.

13. The cloud-based platform of claim 12, where the set
of descriptors comprises a test master document and
multiple test script descriptors each corresponding
to one of the multiple test cases.

14. The cloud-based platform of claim 13, where each
test script descriptor comprises test step entries that

17 18

EP 3 352 085 A1

11

5

10

15

20

25

30

35

40

45

50

55

specifies test steps for a test case corresponding to
the each test script descriptor.

15. A method comprising:

predefining a set of keywords each correspond-
ing to a test action among a set of test actions
for testing a website;
receiving a test suite comprising a test master
document and multiple test script descriptors
each for one of multiple independent test cases
for the website, where each test script descriptor
comprises multiple keywords of the set of key-
words arranged according to predefined gram-
matical rules;
identifying test data for the multiple test cases
from the test suite;
identifying test steps to be performed for the mul-
tiple test cases according to the multiple key-
words from the test script descriptors and a in-
dicator field in the test script descriptors indicat-
ing whether a test step is to be performed;
identifying multiple different operating environ-
ments for running the independent test cases
from the test master document where each op-
erating environment comprising at least a type
of web browser;
for each combination of one of the multiple test
cases in one of the multiple different operating
environments,

instantiating an independent test thread
comprising a remote test driver; and
copying the identified test data from the test
suite and the identified test steps for the one
of the independent test cases into the re-
mote test driver to create a thread-specific
test dataset for the independent test thread;
and

executing the multiple test cases against each
of the multiple different operating environments
independently by running the test threads based
on the thread-specific test datasets and the re-
mote test drivers.

19 20

EP 3 352 085 A1

12

EP 3 352 085 A1

13

EP 3 352 085 A1

14

EP 3 352 085 A1

15

EP 3 352 085 A1

16

EP 3 352 085 A1

17

EP 3 352 085 A1

18

EP 3 352 085 A1

19

EP 3 352 085 A1

20

EP 3 352 085 A1

21

EP 3 352 085 A1

22

EP 3 352 085 A1

23

EP 3 352 085 A1

24

EP 3 352 085 A1

25

EP 3 352 085 A1

26

EP 3 352 085 A1

27

EP 3 352 085 A1

28

5

10

15

20

25

30

35

40

45

50

55

EP 3 352 085 A1

29

5

10

15

20

25

30

35

40

45

50

55

	bibliography
	abstract
	description
	claims
	drawings
	search report

