

(11) **EP 3 358 087 A1**

(12)

DEMANDE DE BREVET EUROPEEN

(43) Date de publication:

08.08.2018 Bulletin 2018/32

(51) Int Cl.:

E02F 3/28 (2006.01)

E02F 9/20 (2006.01)

(21) Numéro de dépôt: 18152866.2

(22) Date de dépôt: 23.01.2018

(84) Etats contractants désignés:

AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

Etats d'extension désignés:

BA ME

Etats de validation désignés:

MA MD TN

(30) Priorité: 03.02.2017 FR 1750901

(71) Demandeur: MANITOU BF 44150 Ancenis (FR)

(72) Inventeur: RIOT, Antoine 44150 Ancenis (FR)

(74) Mandataire: Godineau, Valérie

Ipsilon

3, rue Edouard Nignon 44300 Nantes (FR)

(54) ENGIN DE TRAVAUX, NOTAMMENT DE CHANTIER, ET PROCÉDÉ DE COMMANDE D'UN TEL ENGIN

(57) Engin (1) de travaux comprenant :

- un châssis (2) roulant,
- un bras (4) porté par ledit châssis (2), pivotant à l'aide d'un premier actionneur (5), et de longueur ajustable à l'aide d'un deuxième actionneur (6),
- un porte-godet (7) pivotant monté à l'aide d'un troisième actionneur (8),
- un premier organe (9) de commande du bras (4) et du porte-godet (7),
- un deuxième organe (10) de commande de la sortie du bras (4),
- une unité (11) de pilotage configurée pour commander

les actionneurs en fonction des données fournies par lesdits organes (9, 10) de commande. L'engin (1) comprend deux modes de fonctionnement sélectivement activables, l'unité (11) de pilotage est configurée pour, dans le premier mode de fonctionnement, commander le troisième actionneur (8) à partir des données du premier organe (9) de commande, et le deuxième actionneur (6) à partir du deuxième organe (10) de commande, et, dans le deuxième mode de fonctionnement, commander les deuxième (6) et troisième (8) actionneurs à partir du premier organe (9) de commande.

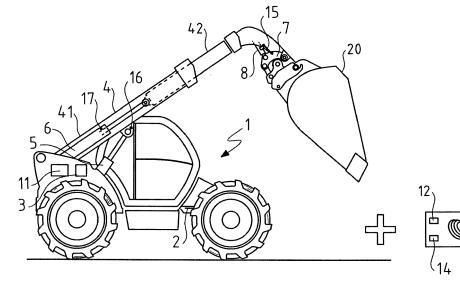


FIG.4

EP 3 358 087 A1

20

25

35

40

45

DOMAINE DE L'INVENTION

[0001] L'invention concerne un engin de travaux, notamment de chantier, ainsi qu'un procédé de commande d'un tel engin.

1

[0002] Elle concerne plus particulièrement un engin de travaux, notamment de chantier, comprenant :

- un châssis équipé d'un groupe motopropulseur, un bras porté par ledit châssis et monté par l'intermédiaire d'un premier actionneur mobile à pivotement entre une position haute et une position basse, ledit bras formé d'au moins deux sections de bras, étant un bras télescopique de longueur ajustable entre une position rentrée et une position sortie du bras par l'intermédiaire d'un actionneur d'entraînement en déplacement relatif des sections de bras appelé deuxième actionneur,
- un porte-godet disposé à l'extrémité libre du bras, ce porte-godet, couplable à un godet, étant monté, par l'intermédiaire d'un actionneur, appelé troisième actionneur, mobile à pivotement autour d'un axe orthogonal à l'axe longitudinal du bras entre une position de cavage et une position de déversement, la position de déversement correspondant à la position extrême de pivotement vers le sol du porte-godet;
- un premier organe, tel qu'un joystick, de commande d'entraînement en déplacement du bras et du portegodet, actionnable par le conducteur de l'engin;
- un deuxième organe de commande d'entraînement en déplacement du bras entre une position rentrée et une position sortie, actionnable par le conducteur de l'engin et;
- une unité de pilotage configurée pour commander les premier, deuxième et troisième actionneurs en fonction des données fournies par lesdits organes de commande.

ART ANTÉRIEUR

[0003] Un tel engin de travaux est connu comme l'illustre le brevet EP 2.805.910. Dans un tel engin, lors de l'opération de déversement, il existe un risque d'endommagement de la benne à l'intérieur de laquelle le contenu du godet doit être déversé, comme l'illustre la figure 1 qui correspond à l'état de la technique. En effet, généralement, pour procéder à une opération de déversement du contenu du godet dans une benne, le conducteur de l'engin commande en élévation le bras porte-godet pour amener la base du godet, dans une position dans laquelle elle s'étend parallèlement au plan du fond de la benne et au-dessus de la benne. Le porte-godet est ensuite entraîné en déplacement à pivotement vers la position de déversement. Pour ce faire, le conducteur de l'engin actionne l'organe de commande d'entraînement en déplacement du porte-godet formé généralement par un

joystick. Au cours de ce déplacement à pivotement, il existe un risque que le godet vienne heurter la paroi de la benne et l'endommager si le godet n'a pas été suffisamment écarté du dessus de la benne.

BUT ET RÉSUMÉ

[0004] Un but de l'invention est de proposer un engin de travaux et un procédé de commande dudit engin dont les conceptions permettent de réduire les risques d'endommagement d'une benne lors des opérations de déversement de matière dans la benne.

[0005] À cet effet, l'invention a pour objet un engin de travaux, notamment de chantier, comprenant :

- un châssis équipé d'un groupe motopropulseur,
- un bras porté par ledit châssis et monté par l'intermédiaire d'un premier actionneur mobile à pivotement entre une position haute et une position basse, ledit bras formé d'au moins deux sections de bras, étant un bras télescopique de longueur ajustable entre une position rentrée et une position sortie du bras par l'intermédiaire d'un actionneur d'entraînement en déplacement relatif des sections de bras appelé deuxième actionneur,
- un porte-godet disposé à l'extrémité libre du bras, ce porte-godet, couplable à un godet, étant monté, par l'intermédiaire d'un actionneur appelé troisième actionneur, mobile à pivotement autour d'un axe orthogonal à l'axe longitudinal du bras entre une position de cavage et une position de déversement, la position de déversement correspondant à la position extrême de pivotement vers le sol du porte-godet,
- un premier organe, tel qu'un joystick, de commande d'entraînement en déplacement du bras et du portegodet, actionnable par le conducteur de l'engin,
- un deuxième organe de commande d'entraînement en déplacement du bras entre une position rentrée et une position sortie, actionnable par le conducteur de l'engin,
- une unité de pilotage configurée pour commander les premier, deuxième et troisième actionneurs en fonction des données fournies par lesdits organes de commande,

caractérisé en ce que l'engin comprend au moins un premier et un deuxième mode de fonctionnement sélectivement activables, en ce que l'unité de pilotage est configurée pour, dans le premier mode de fonctionnement, commander le troisième actionneur en fonction au moins des données fournies par ledit premier organe de commande et le deuxième actionneur en fonction au moins des données fournies par le deuxième organe de commande, et en ce que l'unité de pilotage est configurée pour, dans le deuxième mode de fonctionnement, commander les deuxième et troisième actionneurs en fonction au moins des données fournies par ledit premier organe de commande.

40

45

[0006] Ainsi, l'unité de pilotage est configurée pour, dans le deuxième mode de fonctionnement, commander les deuxième et troisième actionneurs en fonction au moins des données fournies par le premier organe de commande pour permettre, à l'état sollicité dudit premier organe de commande, en parallèle d'un déplacement à pivotement du porte-godet, un déplacement relatif des sections de bras. L'unité de pilotage est donc configurée pour, dans le deuxième mode de fonctionnement, commander en parallèle les deuxième et troisième actionneurs à partir du premier organe de commande formant un organe de commande commun au premier et deuxième actionneurs pour permettre, à l'état couplé du godet au porte-godet, une rotation du godet, en particulier du bord d'attaque du godet autour d'un centre de rotation instantané sensiblement constant. En effet, grâce à la commande simultanée des premier et deuxième actionneurs à partir du premier organe de commande formant un organe de commande commun aux premier et deuxième actionneurs, il est possible de déporter le centre de rotation de déversement au niveau du bord d'attaque du godet. Ainsi, tout risque d'endommagement de la benne est évité.

[0007] Selon un mode de réalisation de l'invention, le premier organe de commande, actionnable par le conducteur de l'engin, est monté mobile entre une position neutre et une zone de commande en déplacement à pivotement du porte-godet dans le sens d'un déversement et appelée première zone de commande, et l'unité de pilotage est configurée pour, dans le deuxième mode de fonctionnement, à l'état sollicité dudit premier organe de commande correspondant à l'état positionné dudit premier organe de commande, commander au moins les deuxième et troisième actionneurs en fonction au moins des données fournies par ledit premier organe de commande.

[0008] Ainsi, l'unité de pilotage est configurée pour, dans le deuxième mode de fonctionnement, à l'état sollicité dudit premier organe de commande correspondant à l'état positionné dudit premier organe de commande dans ladite première zone de commande, commander au moins les deuxième et troisième actionneurs à partir et en fonction des données fournies par ledit premier organe de commande formant un organe de commande commun aux deuxième et troisième actionneurs.

[0009] De préférence, dans le deuxième mode de fonctionnement, à l'état positionné du premier organe de commande dans ladite première zone de commande, l'unité de pilotage est configurée pour commander le deuxième actionneur dans le sens d'un allongement du bras et le troisième actionneur dans le sens d'un déplacement à pivotement du porte-godet vers la position de déversement, la longueur d'allongement du bras et l'angle de pivotement du porte-godet étant, pour une position donnée du premier organe de commande à l'intérieur de ladite première zone de commande, définis en correspondance.

[0010] À nouveau, cette conception permet, à l'état

couplé du godet au porte-godet, une rotation du godet et, en particulier, du bord d'attaque du godet, autour d'un centre de rotation instantané sensiblement constant.

[0011] Selon un mode de réalisation de l'invention, l'engin comprend une interface d'entrée ou de sélection d'une donnée relative à la dimension du godet et l'unité de pilotage est configurée pour, dans le deuxième mode de fonctionnement, commander au moins les deuxième et troisième actionneurs en fonction au moins des données fournies par ledit premier organe de commande et de la dimension du godet.

[0012] La prise en compte de la dimension du godet permet, dans le cadre d'une possibilité de montage de godets de dimensions différentes sur l'engin, de garantir à nouveau, à l'état couplé du godet au porte-godet, une rotation du godet et, en particulier, du bord d'attaque du godet, autour d'un centre de rotation instantané sensiblement constant.

[0013] Selon un mode de réalisation de l'invention, l'engin comprend au moins un capteur de mesure d'un paramètre représentatif de la position angulaire du portegodet par rapport au bras, et l'unité de pilotage est configurée pour, dans le deuxième mode de fonctionnement, commander les deuxième et troisième actionneurs en fonction au moins des données fournies par ledit premier organe de commande et de la position angulaire du portegodet.

[0014] La prise en compte des données fournies par un tel capteur permet de contrôler les mouvements du porte-godet et du bras en boucle fermée, et donc de corriger si nécessaire le décalage observé entre les déplacements du porte-godet et du bras.

[0015] De préférence, le ou au moins l'un des capteurs de mesure d'un paramètre représentatif de la position angulaire du porte-godet par rapport au bras est un capteur de mesure de l'angle formé entre le porte-godet et le bras ou un capteur de mesure de la course du troisième actionneur.

[0016] Selon un mode de réalisation de l'invention, l'unité de pilotage est configurée pour, dans le deuxième mode de fonctionnement, commander les premier, deuxième et troisième actionneurs en fonction au moins des données fournies par ledit premier organe de commande, à l'état positionné dudit premier organe de commande dans ladite première zone de commande.

[0017] Ainsi, l'unité de pilotage est configurée pour, dans le deuxième mode de fonctionnement, commander les premier, deuxième et troisième actionneurs au moins à partir et en fonction des données fournies par le premier organe de commande, ce premier organe de commande formant un organe commun aux premier, deuxième et troisième actionneurs pour permettre, en parallèle d'un déplacement à pivotement du porte-godet, un déplacement relatif des sections de bras et un déplacement en monte et baisse du bras.

[0018] Selon un mode de réalisation de l'invention, l'engin comprend au moins un capteur de mesure d'un paramètre représentatif de la position angulaire du bras

par rapport au châssis, et l'unité de pilotage est configurée pour, dans le deuxième mode de fonctionnement, commander les premier, deuxième et troisième actionneurs en fonction au moins des données fournies par ledit premier organe de commande et de la position angulaire du bras.

[0019] La prise en compte de données fournies par un tel capteur permet de contrôler les mouvements du portegodet et du bras, et de corriger si nécessaire des décalages observés.

[0020] De préférence, le ou au moins l'un des capteurs de mesure d'un paramètre représentatif de la position angulaire du bras par rapport au châssis est un capteur de mesure de l'angle formé entre le bras et le plan d'appui au sol du châssis ou un capteur de mesure de la course du premier actionneur.

[0021] Selon un mode de réalisation de l'invention, l'engin comprend au moins un capteur de mesure d'un paramètre représentatif de la longueur du bras, et l'unité de pilotage est configurée pour, dans le deuxième mode de fonctionnement, commander au moins les deuxième et troisième actionneurs en fonction au moins des données fournies par ledit premier organe de commande et de la longueur du bras.

[0022] Selon un mode de réalisation de l'invention, le premier et le deuxième mode de fonctionnement de l'engin sont sélectivement activables par l'intermédiaire d'un organe d'activation tel qu'un bouton actionnable par le conducteur de l'engin.

[0023] L'invention a encore pour objet un procédé de commande d'un engin de travaux, notamment de chantier du type précité, le porte-godet dudit engin étant couplé à un godet, caractérisé en ce que ledit procédé comprend, à l'état activé du deuxième mode de fonctionnement de l'engin, par actionnement par le conducteur de l'engin du premier organe de commande, une étape d'entraînement en déplacement relatif des sections de bras, de préférence dans le sens d'un allongement du bras et d'entraînement en déplacement à pivotement du portegodet vers la position de déversement.

BRÈVE DESCRIPTION DES FIGURES

[0024] L'invention sera bien comprise à la lecture de la description suivante d'exemples de réalisation, en référence aux dessins annexés dans lesquels :

- La figure 1 représente une vue schématique de côté d'un engin conforme à l'état de la technique.
- La figure 2 représente une vue schématique de côté d'un engin conforme à l'invention.
- La figure 3 représente une autre vue schématique de côté d'un engin conforme à l'invention.
- La figure 4 représente une vue schématique de côté, en transparence, d'un engin conforme à l'invention,

en position de déversement du godet, un détail du tableau de bord et des premier et deuxième organes de commande étant représenté.

- La figure 5 représente une vue partielle de l'intérieur de la cabine de l'engin.
- La figure 6 représente, de manière schématique, le déplacement du godet obtenu par déplacement en parallèle d'une section de bras et du porte-godet.

DESCRIPTION DÉTAILLÉE

[0025] Comme mentionné ci-dessus, l'invention a pour objet un engin 1 de travail, notamment de chantier, tel qu'une pelle mécanique hydraulique, encore appelé engin excavateur ou engin à godet comme représenté.

[0026] Cet engin 1 comprend un châssis 2 roulant équipé d'une cabine de pilotage de l'engin et d'un groupe 3 motopropulseur pour l'entraînement en déplacement au sol de l'engin.

[0027] Le groupe 3 motopropulseur comprend un moteur thermique, lui-même associé à une pompe hydraulique apte à alimenter en fluide une pluralité d'actionneurs qui seront décrits ci-après.

[0028] L'engin 1 comprend encore un bras 4 porté par le châssis 2.

[0029] Ce bras 4 est un bras pivotant monté à pivotement autour d'un axe dit horizontal, orthogonal à l'axe longitudinal du bras 4, et parallèle au plan d'appui au sol de l'engin 1, en configuration d'utilisation de l'engin 1 pour le passage du bras 4 d'une position basse à une position haute et inversement, à l'aide d'un actionneur, tel qu'un vérin, appelé premier actionneur 5 et disposé entre le bras 4 et le châssis 2 roulant. Dans l'exemple représenté, il est représenté un seul vérin double effet, alimenté en fluide par la pompe hydraulique. Une paire de vérins parallèles simple effet alimentés tour à tour en fluide aurait pu être utilisée de manière équivalente.

[0030] Ce bras 4 est un bras télescopique formé, dans l'exemple représenté, de deux sections 41, 42 de bras montées à emboîtement coulissant, et entraînées en déplacement relatif par un actionneur, appelé deuxième actionneur 6, pour le passage du bras d'une position rentrée à une position sortie et inversement.

[0031] Ce deuxième actionneur 6 est formé par un vérin hydraulique dont le corps est monté solidaire d'une section de bras et la tige, de l'autre section de bras.

[0032] Le bras 4 est équipé à son extrémité libre d'un porte-godet 7 destiné lui-même à porter un godet 20. Ce porte-godet 7 est monté par l'intermédiaire d'un actionneur, appelé troisième actionneur 8, mobile à pivotement autour d'un axe dit horizontal, orthogonal à l'axe longitudinal du bras 4 entre une position de cavage et une position de déversement. La position de déversement correspond à la position extrême de pivotement vers le sol du porte-godet 7, tandis que la position de cavage correspond à une position de pivotement vers le haut du

porte-godet 7 et du godet 20 associé. Le troisième actionneur 8 est disposé entre le porte-godet 7 et le bras 4 et peut à nouveau être constitué d'un vérin hydraulique double effet ou d'une paire de vérins simple effet. L'entraînement en déplacement à pivotement du porte-godet s'opère autour d'un axe parallèle à l'axe de pivotement du bras.

[0033] L'engin 1 comprend encore, disposés à l'intérieur de la cabine de pilotage, un premier organe 9 de commande d'entraînement en déplacement du bras 4 et du porte-godet 7 actionnable par le conducteur de l'engin, et un deuxième organe 10 de commande d'entraînement en déplacement du bras 4 entre une position rentrée et une position sortie actionnable par le conducteur de l'engin.

[0034] L'engin 1 comprend également une unité 11 de pilotage configurée pour commander les premier, deuxième et troisième actionneurs en fonction des données fournies par les organes 9 et 10 de commande.

[0035] L'alimentation en fluide des actionneurs à l'aide de la pompe hydraulique est commandée en fonction des signaux de commande fournis par l'unité 11 de pilotage. Ces signaux de commande sont eux-mêmes fonction des données d'entrée reçues par l'unité 11 de pilotage. L'unité de pilotage comprend par exemple un microcontrôleur ou un microprocesseur associé à une mémoire. Ainsi, lorsqu'il est précisé que l'unité ou des moyens de ladite unité sont configurés pour réaliser une opération donnée, cela signifie que ladite unité comprend des instructions informatiques et les moyens d'exécution correspondants qui permettent de réaliser ladite opération

[0036] Les signaux de commande fournis par l'unité 11 de pilotage agissent généralement sur des organes, tels que distributeur ou valve, disposés sur la liaison entre pompe et actionneur, pour permettre une alimentation en fluide appropriée des actionneurs, de manière en soi connue.

[0037] Dans l'exemple représenté, notamment à la figure 5, le premier organe 9 de commande est un levier de commande encore appelé joystick. Ce premier organe 9 de commande est équipé à sa base de deux codeurs pour permettre la transmission de deux signaux de position dudit premier organe de commande à l'unité 11 de pilotage, de manière en soi connue. Un exemple d'un tel organe de commande est par exemple décrit dans le brevet FR 2 858 861. Ce premier organe 9 de commande peut ainsi être déplacé vers l'avant, vers l'arrière, vers la gauche, ou vers la droite de l'engin. Généralement, les déplacements, vers l'avant et l'arrière de l'engin, du premier organe 9 de commande commandent le déplacement en monte et baisse du bras 4, tandis que les déplacements, vers la gauche et vers la droite de l'engin, du premier organe 9 de commande commandent le déplacement à pivotement du porte-godet, comme illustré aux figures où la figure 4 illustre un déplacement vers la droite du premier organe 9 de commande et le positionnement du porte-godet en position de déversement.

[0038] Ces directions avant/arrière et gauche/droite correspondent aux directions principales, et le premier organe de commande peut être entraîné suivant une infinité de directions, le déplacement du premier organe de commande suivant une direction quelconque correspondant à une action combinée, proportionnellement à la position du premier organe de commande par rapport aux directions principales. Généralement, ce premier organe 9 de commande est rappelé par un ressort en position neutre, c'est-à-dire dans une position intermédiaire entre droite/gauche et avant/arrière, à l'état non sollicité. [0039] L'information de position adressée à l'unité de pilotage est donc généralement une information relative à la position angulaire du premier organe de commande, par rapport à la position qu'il occupe en position neutre. [0040] Dans cette position neutre, quand le premier organe de commande est déplacé angulairement vers la droite à l'intérieur d'un secteur angulaire prédéterminé, il commande le déplacement à pivotement du porte-godet dans le sens d'un déversement du porte-godet et du godet associé. Ce premier secteur angulaire est appelé première zone 13 de commande. Quand le premier organe de commande est, depuis la position neutre, déplacé angulairement vers la gauche à l'intérieur d'un secteur angulaire prédéterminé, il commande le déplacement à pivotement du porte-godet dans le sens d'un cavage du porte-godet et du godet associé. De la même manière, quand le premier organe de commande est, depuis la position neutre, déplacé angulairement vers l'avant à l'intérieur d'un secteur angulaire prédéterminé, il commande la montée du bras, tandis que lorsque le premier organe 9 de commande est, depuis la position neutre, déplacé angulairement vers l'arrière à l'intérieur d'un secteur angulaire prédéterminé, il commande la descente du bras. Bien évidemment, les positions droite/gauche, avant/arrière peuvent être inversées sans sortir du cadre de l'invention.

[0041] Ces secteurs angulaires peuvent se chevaucher pour permettre, par l'actionnement du premier organe 9 de commande, en parallèle d'un pivotement du porte-godet 7, un déplacement en monte et baisse du bras.

[0042] Le deuxième organe 10 de commande est quant à lui formé par une molette positionnée sur le premier organe 9 de commande. L'actionnement de cette molette permet d'entraîner en déplacement le bras entre une position rentrée et une position sortie. En effet, la rotation de la molette portée par le premier organe 9 de commande dans un sens permet la sortie du bras par déplacement à coulissement, dans le sens d'une extension du bras, de la deuxième section de bras, et la rotation de la molette portée par le premier organe 9 de commande dans un sens opposé permet la rentrée du bras.

[0043] Pour permettre de tels déplacements du bras et du porte-godet à partir du premier et du deuxième organe de commande, l'unité 11 de pilotage pilote l'alimentation en fluide hydraulique des premier, deuxième et troisième actionneurs en fonction des données de posi-

25

30

40

45

tion fournies par les premier et deuxième organes de commande. Ainsi, les premier, deuxième et troisième actionneurs sont chacun disposés sur un circuit hydraulique équipé d'au moins une valve ou d'un distributeur pilotable par l'unité 1 de pilotage.

[0044] Cette unité 11 de pilotage est ici réalisée sous forme d'un contrôleur ou microprocesseur dans lequel des jeux d'instructions informatiques ont été implémentés pour réaliser les fonctions de l'unité de pilotage. Toutefois, les fonctions de l'unité 11 de pilotage peuvent être réalisées par des composants électroniques dédiés ou des composants de type FPGA ou ASIC. Il est aussi possible de combiner des parties informatiques et des parties électroniques.

[0045] Les programmes d'ordinateur ou instructions informatiques peuvent être contenus dans des dispositifs de stockage de programme, par exemple des supports de stockage de données numériques lisibles par ordinateur ou des programmes exécutables. Les programmes ou instructions peuvent aussi être exécutés à partir de périphériques de stockage de programmes.

[0046] De manière générale, une unité 11 de pilotage est configurée pour recevoir les signaux de position qui lui sont adressées par les premier et deuxième organes de commande et pour émettre des signaux de sortie aux valves ou distributeurs équipant les circuits hydrauliques des premier, deuxième et troisième actionneurs, généralement via des solénoïdes équipant lesdites valves ou distributeurs.

[0047] Les premier, deuxième et troisième actionneurs commandent, en fonction de leur alimentation en flux hydraulique, un déplacement du bras pour les premier et deuxième actionneurs, ou un déplacement du porte-godet pour le troisième actionneur.

[0048] À partir de ce fonctionnement général, l'engin 1 comprend deux modes de fonctionnement sélectivement activables. Dans l'exemple représenté, ces deux modes de fonctionnement sont sélectivement activables par l'intermédiaire d'un organe 12 d'activation formé ici par un bouton actionnable par le conducteur de l'engin. Ce bouton est disposé dans la cabine de l'engin, au niveau du tableau de bord. Au démarrage de l'engin, l'engin est dans le premier mode de fonctionnement. Dans ce premier mode de fonctionnement, à l'état sollicité par le conducteur de l'engin, c'est-à-dire à l'état entraîné en déplacement hors de sa position neutre, le premier organe 9 de commande adresse à l'unité 11 de pilotage des signaux. Cette unité 11 de pilotage est configurée pour, à partir des signaux reçus du premier organe de commande, en fonction desdits signaux, agir sur le circuit d'alimentation du premier et/ou du troisième actionneur, et commander ainsi le levage ou la descente du bras et/ou le déplacement à pivotement du porte-godet dans un sens ou dans l'autre, en fonction des signaux de position adressés par le premier organe de commande à l'unité 11 de pilotage.

[0049] Dans ce premier mode de fonctionnement, à l'état sollicité par le conducteur de l'engin, c'est-à-dire

entraîné en rotation, le deuxième organe 10 de commande formé par la molette disposée sur le joystick adresse à l'unité 11 de pilotage des signaux. L'unité 11 de pilotage est configurée pour, à partir des signaux reçus du deuxième organe 10 de commande, agir sur le circuit d'alimentation du deuxième actionneur et commander ainsi la rentrée ou la sortie du bras.

[0050] Dans ce premier mode de fonctionnement, l'actionnement par le conducteur de l'engin du premier organe 9 de commande n'entraîne aucun actionnement du deuxième actionneur et, par suite encore, aucune sortie ou rentrée du bras.

[0051] Lorsque le deuxième mode de fonctionnement est activé, par exemple par enfoncement du bouton 12 par le conducteur de l'engin, à l'état sollicité par le conducteur de l'engin, c'est-à-dire à l'état entraîné en déplacement hors de sa position neutre, le premier organe 9 de commande adresse à l'unité 11 de pilotage des signaux. Cette unité 11 de pilotage est configurée pour, à partir des signaux reçus du premier organe de commande, en fonction desdits signaux, agir sur le circuit d'alimentation au moins des deuxième et troisième actionneurs, pour permettre ainsi, en parallèle, un déplacement à pivotement du porte-godet et une variation de longueur du bras.

[0052] En particulier, l'unité 11 de pilotage est configurée pour, dans le deuxième mode de fonctionnement, à l'état sollicité du premier organe 9 de commande correspondant à l'état positionné du premier organe de commande dans la première zone 13 de commande, commander au moins les deuxième et troisième actionneurs, en fonction des données fournies par le premier organe 9 de commande.

[0053] Dans la plupart des cas, l'unité 11 de pilotage est, dans ces circonstances, configurée pour commander le deuxième actionneur 6 dans le sens d'un allongement du bras 4 et le troisième actionneur 8 dans le sens d'un déplacement à pivotement du porte-godet 7 vers la position de déversement.

[0054] La longueur d'allongement du bras 4 et l'angle de pivotement du porte-godet 7 pour une position donnée du premier organe 9 de commande à l'intérieur de la première zone 13 de commande sont définis en correspondance. Ainsi, si on prend comme hypothèse que, au moment de la commande de déversement, le bras 4 de l'engin forme un angle voisin de 45° avec le plan d'appui au sol de l'engin et que le fond du godet 20, c'est-à-dire la surface en appui au sol à l'état posé du godet s'étend parallèlement au plan d'appui au sol de l'engin et forme donc, avec le bras, un angle égal à 45° comme illustré à la figure 6, il est nécessaire, pour assurer un déplacement à pivotement de 90° du fond du godet via le porte-godet, d'augmenter la longueur du bras de L' = L/cosinus 45°, L correspondant à la distance prise entre deux plans parallèles perpendiculaires au plan d'appui au sol du godet et passant, l'un par le bord d'attaque du godet, l'autre par l'axe pivot de liaison du porte-godet au bras. Ainsi, des mouvements simultanés d'allongement du bras et

25

de pivotement du porte-godet peuvent être pré calibrés en usine, de sorte par exemple qu'une rotation de 1° du porte-godet correspond à une sortie du bras d'une longueur de L'/90.

[0055] On obtient ainsi un déplacement à pivotement du porte-godet et du godet associé autour d'un centre de rotation instantané quasi constant disposé au niveau du bord d'attaque du godet.

[0056] Dans le cas où l'engin est conçu pour pouvoir être équipé de godets de dimensions différentes, l'engin 1 comprend une interface 14 d'entrée ou de sélection d'une donnée relative à la dimension du godet 20, et l'unité 11 de pilotage est configurée pour, dans le deuxième mode de fonctionnement, commander les deuxième et troisième actionneurs en fonction des données fournies par ledit premier organe 9 de commande et la dimension du godet 20. La formule ci-dessus est appliquée avec L, fonction de la dimension sélectionnée ou entrée par le conducteur de l'engin. Cette interface peut comprendre un simple écran tactile sur lequel les différentes dimensions du godet peuvent être affichées, le conducteur de l'engin sélectionnant la dimension correspondant au godet équipant l'engin.

[0057] Pour obtenir de manière sûre en synchronisme un allongement du bras et un pivotement du porte-godet, l'engin 1 comprend un capteur 15 de mesure d'un paramètre représentatif de la position angulaire du porte-godet 7 par rapport au bras 4, et l'unité de pilotage est configurée pour, dans le deuxième mode de fonctionnement, commander les deuxième et troisième actionneurs en fonction des données fournies par le premier organe 9 de commande et la position angulaire du porte-godet.

[0058] Ce capteur 15 de mesure d'un paramètre représentatif de la position angulaire du porte-godet 7 par rapport au bras 4 peut être un capteur de mesure de l'angle formé entre le porte-godet 7 et le bras 4, ou un capteur de mesure de la course du troisième actionneur 8.

[0059] En effet, le débit hydraulique à l'intérieur des circuits hydrauliques d'alimentation des deuxième et troisième actionneurs peut varier de manière non souhaitée, du fait que la source hydraulique de l'engin est sollicitée par d'autres organes de l'engin tels que les freins, la direction, le ventilateur ou autres. La présence d'un capteur permet d'éviter une dérive des mouvements entre allongement du bras et déplacement à pivotement du portegodet.

[0060] Pour parfaire l'engin, l'unité 11 de pilotage peut être configurée pour, dans le deuxième mode de fonctionnement, commander en synchronisme et en parallèle non seulement les deuxième et troisième actionneurs, mais également le premier actionneur, en fonction des données fournies par le premier organe de commande à l'état positionné du premier organe de commande dans la première zone 13 de commande.

[0061] Dans ce cas, dans le deuxième mode de fonctionnement, à l'état positionné du premier organe 9 de commande dans ladite première zone 13 de commande,

l'unité 11 de pilotage est configurée pour commander le premier actionneur dans le sens d'un levage du bras, le deuxième actionneur dans le sens d'un allongement du bras et le troisième actionneur dans le sens d'un déplacement à pivotement du porte-godet vers la position de déversement, la longueur d'allongement du bras et les angles de pivotement du bras et du porte-godet étant, pour une position donnée du premier organe 9 de commande à l'intérieur de la première zone 13 de commande, définis en correspondance.

[0062] L'objectif est toujours d'obtenir, au niveau du bord d'attaque du godet, une rotation de ce dernier autour d'un centre de rotation instantané quasi constant.

[0063] À nouveau, et pour les mêmes raisons de risque de dérive de déplacement en synchronisme tel qu'évoqué ci-dessus, l'engin comprend un capteur 16 de mesure d'un paramètre représentatif de la position angulaire du bras 4 par rapport au châssis 2, et l'unité 11 de pilotage est configurée pour, dans le deuxième mode de fonctionnement, commander les premier, deuxième et troisième actionneurs en fonction des données fournies par le premier organe 9 de commande et la position angulaire du bras. Ce capteur 16 de mesure d'un paramètre représentatif de la position angulaire du bras par rapport au châssis peut être un capteur de mesure de l'angle formé entre le bras et le plan d'appui au sol du châssis, ou un capteur de mesure de la course du premier actionneur 5. Des capteurs supplémentaires peuvent être prévus pour affiner les réglages et commander les déplacements en synchronisme, en fonction des données fournies par lesdits capteurs. Ainsi, l'engin peut encore comprendre un capteur 17 de mesure d'un paramètre représentatif de la longueur du bras 4, et l'unité 11 de pilotage peut être configurée pour, dans le deuxième mode de fonctionnement, commander les deuxième et troisième actionneurs en fonction des données fournies par le premier organe 9 de commande et la longueur du bras 4.

40 Revendications

- **1.** Engin (1) de travaux, notamment de chantier, comprenant :
 - un châssis (2) équipé d'un groupe motopropulseur.
 - un bras (4) porté par ledit châssis (2) et monté par l'intermédiaire d'un premier actionneur (5) mobile à pivotement entre une position haute et une position basse, ledit bras (4) formé d'au moins deux sections (41, 42) de bras, étant un bras télescopique de longueur ajustable entre une position rentrée et une position sortie du bras (4) par l'intermédiaire d'un actionneur d'entraînement en déplacement relatif des sections de bras appelé deuxième actionneur (6),
 - un porte-godet (7) disposé à l'extrémité libre du bras (4), ce porte-godet (7), couplable à un

55

20

25

30

35

45

godet (20), étant monté, par l'intermédiaire d'un actionneur appelé troisième actionneur (8), mobile à pivotement autour d'un axe orthogonal à l'axe longitudinal du bras (4) entre une position de cavage et une position de déversement, la position de déversement correspondant à la position extrême de pivotement vers le sol du porte-godet (7),

- un premier organe (9), tel qu'un joystick, de commande d'entraînement en déplacement du bras (4) et du porte-godet (7), actionnable par le conducteur de l'engin,
- un deuxième organe (10) de commande d'entraînement en déplacement du bras (4) entre une position rentrée et une position sortie, actionnable par le conducteur de l'engin,
- une unité (11) de pilotage configurée pour commander les premier (5), deuxième (6) et troisième (8) actionneurs en fonction des données fournies par lesdits organes (9, 10) de commande,

caractérisé en ce que l'engin (1) comprend au moins un premier et un deuxième mode de fonctionnement sélectivement activables, en ce que l'unité (11) de pilotage est configurée pour, dans le premier mode de fonctionnement, commander le troisième actionneur (8) en fonction au moins des données fournies par ledit premier organe (9) de commande, et le deuxième actionneur (6) en fonction au moins des données fournies par le deuxième organe (10) de commande, et en ce que l'unité (11) de pilotage est configurée pour, dans le deuxième mode de fonctionnement, commander les deuxième (6) et troisième (8) actionneurs en fonction au moins des données fournies par ledit premier organe (9) de commande.

Engin (1) de travaux selon la revendication précédente.

caractérisé en ce que le premier organe (9) de commande, actionnable par le conducteur de l'engin, est monté mobile entre une position neutre et une zone de commande en déplacement à pivotement du porte-godet (7) dans le sens d'un déversement et appelée première zone (13) de commande, et en ce que l'unité (11) de pilotage est configurée pour, dans le deuxième mode de fonctionnement, à l'état sollicité dudit premier organe (9) de commande correspondant à l'état positionné dudit premier organe (9) de commande, commander au moins les deuxième (6) et troisième (8) actionneurs en fonction au moins des données fournies par ledit premier organe (9) de commande.

Engin (1) de travaux selon la revendication précédente,

caractérisé en ce que, dans le deuxième mode de fonctionnement, à l'état positionné du premier organe (9) de commande dans ladite première zone (13) de commande, l'unité (11) de pilotage est configurée pour commander le deuxième actionneur (6) dans le sens d'un allongement du bras (4) et le troisième actionneur (8) dans le sens d'un déplacement à pivotement du porte-godet (7) vers la position de déversement, la longueur d'allongement du bras (4) et l'angle de pivotement du porte-godet (7) étant, pour une position donnée du premier organe (9) de commande à l'intérieur de ladite première zone (13) de commande, définis en correspondance.

 4. Engin (1) de travaux selon l'une des revendications précédentes,

caractérisé en ce que l'engin (1) comprend une interface (14) d'entrée ou de sélection d'une donnée relative à la dimension du godet (20) et en ce que l'unité (11) de pilotage est configurée pour, dans le deuxième mode de fonctionnement, commander au moins les deuxième (6) et troisième (8) actionneurs en fonction au moins des données fournies par ledit premier organe (9) de commande et de la dimension du godet (20).

Engin (1) de travaux selon l'une des revendications précédentes,

caractérisé en ce que l'engin (1) comprend au moins un capteur (15) de mesure d'un paramètre représentatif de la position angulaire du porte-godet (7) par rapport au bras (4), et en ce que l'unité (11) de pilotage est configurée pour, dans le deuxième mode de fonctionnement, commander les deuxième (6) et troisième (8) actionneurs en fonction au moins des données fournies par ledit premier organe (9) de commande et de la position angulaire du portegodet (7).

Engin (1) de travaux selon la revendication précédente.

caractérisé en ce que le ou au moins l'un des capteurs (15) de mesure d'un paramètre représentatif de la position angulaire du porte-godet (7) par rapport au bras (4) est un capteur de mesure de l'angle formé entre le porte-godet (7) et le bras (4) ou un capteur de mesure de la course du troisième actionneur (8).

 7. Engin (1) de travaux selon l'une des revendications précédentes prises en combinaison avec la revendication 2,

> caractérisé en ce que l'unité (11) de pilotage est configurée pour, dans le deuxième mode de fonctionnement, commander les premier (5), deuxième (6) et troisième (8) actionneurs en fonction au moins des données fournies par ledit premier organe (9) de commande, à l'état positionné dudit premier or-

15

25

40

45

gane (9) de commande dans ladite première zone (13) de commande.

Engin (1) de travaux selon la revendication précédente.

caractérisé en ce que l'engin (1) comprend au moins un capteur (16) de mesure d'un paramètre représentatif de la position angulaire du bras (4) par rapport au châssis (2), et en ce que l'unité (11) de pilotage est configurée pour, dans le deuxième mode de fonctionnement, commander les premier (5), deuxième (6) et troisième (8) actionneurs en fonction au moins des données fournies par ledit premier organe (9) de commande et de la position angulaire du bras (4).

Engin (1) de travaux selon la revendication précédente.

caractérisé en ce que le ou au moins l'un des capteurs (16) de mesure d'un paramètre représentatif de la position angulaire du bras (4) par rapport au châssis (2) est un capteur (16) de mesure de l'angle formé entre le bras (4) et le plan d'appui au sol du châssis (2) ou un capteur (16) de mesure de la course du premier actionneur (5).

 Engin (1) de travaux selon l'une des revendications précédentes,

caractérisé en ce que l'engin (1) comprend au moins un capteur (17) de mesure d'un paramètre représentatif de la longueur du bras (4), et en ce que l'unité (11) de pilotage est configurée pour, dans le deuxième mode de fonctionnement, commander au moins les deuxième (6) et troisième (8) actionneurs en fonction au moins des données fournies par ledit premier organe (9) de commande et de la longueur du bras (4).

- 11. Engin (1) de travaux selon l'une des revendications précédentes, caractérisé en ce que le premier et le deuxième mode de fonctionnement de l'engin (1) sont sélectivement activables par l'intermédiaire d'un organe (12) d'activation, tel qu'un bouton, actionnable par le conducteur de l'engin.
- 12. Procédé de commande d'un engin (1) de travaux, notamment de chantier, conforme à l'une des revendications précédentes, le porte-godet (7) dudit engin (1) étant couplé à un godet (20),

caractérisé en ce que ledit procédé comprend, à l'état activé du deuxième mode de fonctionnement de l'engin (1), par actionnement par le conducteur de l'engin du premier organe (9) de commande, une étape d'entraînement en déplacement relatif des sections (41, 42) de bras (4), de préférence dans le sens d'un allongement du bras (4), et d'entraînement en déplacement à pivotement du porte-godet (7) vers la position de déversement.

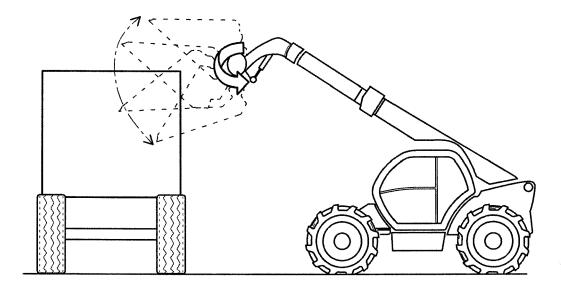


FIG.1

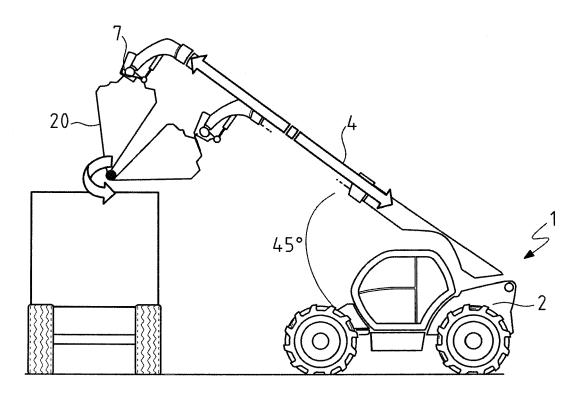


FIG.2

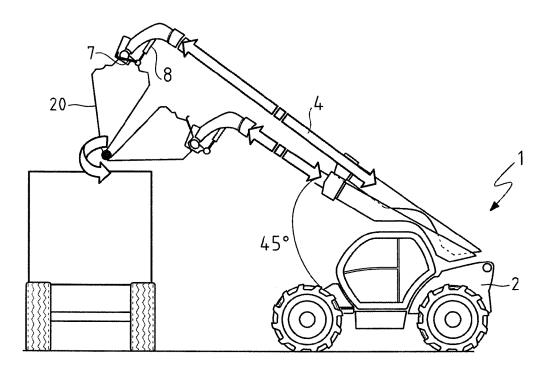
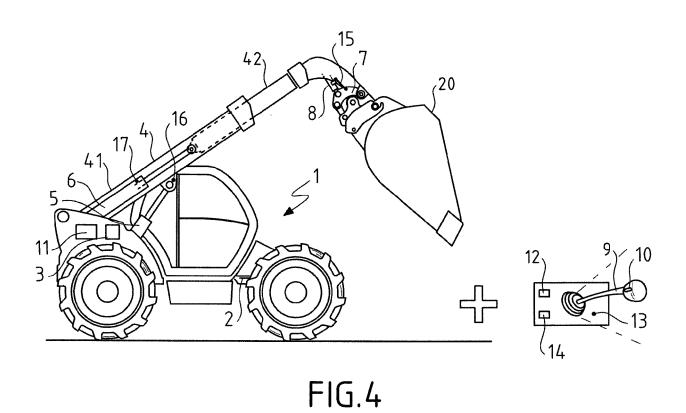
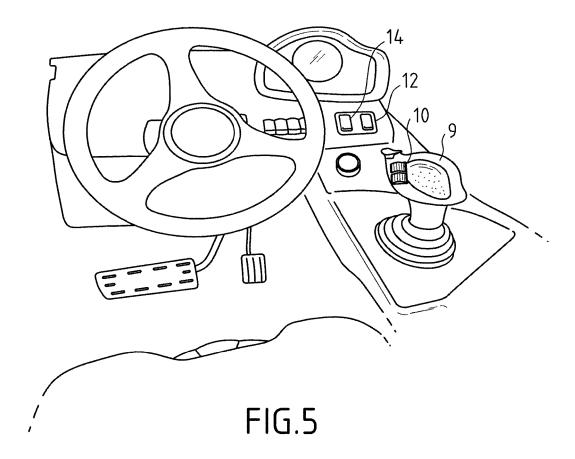
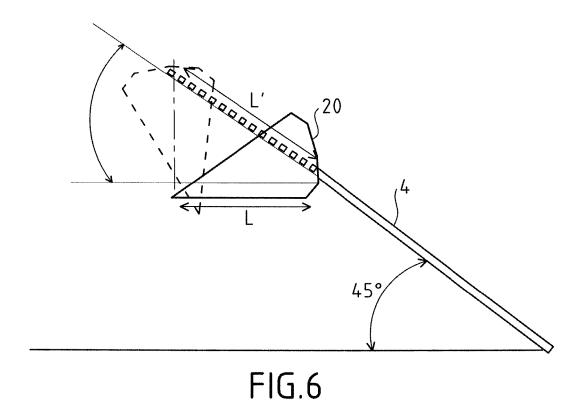





FIG.3

DOCUMENTS CONSIDERES COMME PERTINENTS

Citation du document avec indication, en cas de besoin,

EP 2 805 910 A1 (BAMFORD EXCAVATORS LTD

[GB]) 26 novembre 2014 (2014-11-26)

GB 2 433 095 A (HUSCO INT INC [US]) 13 juin 2007 (2007-06-13)

* alinéa [0016] - alinéa [0020] * * alinéa [0032] - alinéa [0036] * * figures 1,2 *

* alinéa [0082]; figures 1,2 * * alinéa [0052] - alinéa [0056] *

des parties pertinentes

Catégorie

Α

Α

RAPPORT DE RECHERCHE EUROPEENNE

Numéro de la demande

EP 18 15 2866

CLASSEMENT DE LA DEMANDE (IPC)

DOMAINES TECHNIQUES RECHERCHES (IPC)

E02F B66F

Examinateur

Faymann, L

INV.

E02F3/28

E02F9/20

Revendication

concernée

1-12

1-12

10	

5

15

20

25

30

35

40

45

50

1

(P04C02)

1503 03.82

55

Munich	
CATEGORIE DES DOCUMENTS CITE	s

Le présent rapport a été établi pour toutes les revendications

Lieu de la recherche

- X : particulièrement pertinent à lui seul Y : particulièrement pertinent en combinaison avec un
- autre document de la même catégorie
- A : arrière-plan technologique
 O : divulgation non-écrite
 P : document intercalaire

Т	: théorie	ou	principe	à la	base	de l	l'inver	ition
_								1 11 1

- E : document de brevet antérieur, mais publié à la date de dépôt ou après cette date D : cité dans la demande
- L : cité pour d'autres raisons
- & : membre de la même famille, document correspondant

Date d'achèvement de la recherche

9 avril 2018

EP 3 358 087 A1

ANNEXE AU RAPPORT DE RECHERCHE EUROPEENNE RELATIF A LA DEMANDE DE BREVET EUROPEEN NO.

5

10

15

20

25

30

35

40

45

50

55

EP 18 15 2866

La présente annexe indique les membres de la famille de brevets relatifs aux documents brevets cités dans le rapport de

recherche européenne visé ci-dessus. Lesdits members sont contenus au fichier informatique de l'Office européen des brevets à la date du Les renseignements fournis sont donnés à titre indicatif et n'engagent pas la responsabilité de l'Office européen des brevets.

09-04-2018

Document brevet of au rapport de reche		Date de publication	Membre(s) de la famille de brevet(s)	Date de publication
EP 2805910	A1	26-11-2014	AU 2014202689 A1 CN 104179217 A EP 2805910 A1 GB 2514346 A JP 2014227828 A US 2014343804 A1 US 2017016207 A1	04-12-2014 03-12-2014 26-11-2014 26-11-2014 08-12-2014 20-11-2014 19-01-2017
GB 2433095	A	13-06-2007	DE 102006055629 A1 GB 2433095 A JP 2007162938 A US 2007130935 A1	21-06-2007 13-06-2007 28-06-2007 14-06-2007
M P0460				
EPO FORM P0460				

Pour tout renseignement concernant cette annexe : voir Journal Officiel de l'Office européen des brevets, No.12/82

EP 3 358 087 A1

RÉFÉRENCES CITÉES DANS LA DESCRIPTION

Cette liste de références citées par le demandeur vise uniquement à aider le lecteur et ne fait pas partie du document de brevet européen. Même si le plus grand soin a été accordé à sa conception, des erreurs ou des omissions ne peuvent être exclues et l'OEB décline toute responsabilité à cet égard.

Documents brevets cités dans la description

• EP 2805910 A **[0003]**

• FR 2858861 [0037]