(11) EP 3 367 399 A1

(12)

EUROPEAN PATENT APPLICATION

(43) Date of publication:

29.08.2018 Bulletin 2018/35

(51) Int Cl.: H01F 27/14 (2006.01)

(21) Application number: 17158498.0

(22) Date of filing: 28.02.2017

(72) Inventor: STIRL, Tobias 47918 Tönisvorst (DE)

(84) Designated Contracting States:

AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

Designated Extension States:

BA ME

Designated Validation States:

MA MD

(71) Applicant: General Electric Technology GmbH 5400 Baden (CH)

(74) Representative: Fischer, Michael Maria et al General Electric Technology GmbH GE Corporate Intellectual Property Brown Boveri Strasse 7 5400 Baden (CH)

(54) HIGH VOLTAGE ASSEMBLY

(57) It is proposed a hermetically sealed high voltage assembly (2) comprising: a hermetically sealed compartment (4) delimited by rigid walls, wherein the compartment (4) contains an active component (12) at least partly

surrounded by an insulation liquid (10); a hermetically sealed conservator (6) delimited by rigid walls; and a liquid connection (8) between the conservator (6) and the compartment (4).

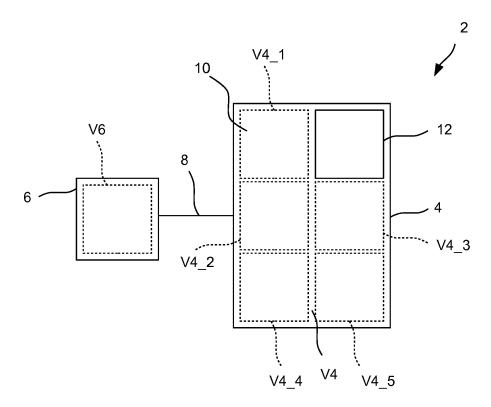


Fig. 1

EP 3 367 399 A1

15

25

40

FIELD OF THE INVENTION

[0001] The present invention relates to a high voltage assembly.

1

BACKGROUND

[0002] Known high voltage assemblies like oil immersed power transformers or oil immersed reactors comprise a conservator which is adapted to receive an expansion volume of an insulation liquid. The insulation liquid surrounds at least partly an active component in a compartment. Only by way of example reference is made to AT 96108 B.

SUMMARY

[0003] In view of the prior art, it is an object of the present disclosure to improve a high voltage assembly. [0004] It is proposed a hermetically sealed high voltage assembly comprising: a hermetically sealed compartment delimited by rigid walls, wherein the compartment contains an active component at least partly surrounded by an insulation liquid; a hermetically sealed conservator delimited by rigid walls, wherein a level of insulation liquid inside the conservator is at or below a level of a cover of the compartment; and a liquid connection between the conservator and the compartment.

[0005] Advantageously, an area above the cover of the compartment can be used for other purposes or simply remains free. Moreover, the proposed high voltage assembly may be constructed to present a more compact design in the sense that single components can be arranged close together. Therefore, it is established a degree of freedom with regard to the location of the conservator.

[0006] According to an embodiment a reception volume of the conservator is equal to or greater than one fifth, especially one quarter, and especially one third of a volume of the insulation liquid in the high voltage assembly.

[0007] The proposed volume of the conservator provides a sufficient fluid cushion for the expanding insulation liquid with a flexibility regarding the position of the conservator. This degree of freedom allows further components, for example the bushings, to be placed at a technically favorable position. The dimensions of the high voltage assembly may increase but can be favorably adapted. Advantageously the proposed high voltage assembly can be equipped with an oil-to-air cooler or an oil-to-water cooler. Furthermore, the hermetical seal of the high voltage assembly prevents ageing of the paper insulation as moisture and oxygen are kept away from the insulation liquid.

[0008] An advantageous embodiment is characterized in that the conservator is partly filled with a compressible

fluid in direct contact with the insulation liquid. In comparison with a rubber bag lifetime expectation is increased as there is no further component which may get brittle and porous. Moreover, a connection for permanent breathing of the high voltage assembly is avoided.

[0009] An advantageous embodiment is characterized in that operating conditions of the compressible fluid comprise an absolute pressure of the compressible fluid between a lower pressure limit and an upper pressure limit. These operating conditions allow operating the conservator with under pressure of the compressible fluid and therefore provide a limit for the size of the conservator.

[0010] An advantageous embodiment is characterized in that the compartment and the conservator have a joint wall. This allows a more compact high voltage assembly. Furthermore, material consumption is reduced.

[0011] An advantageous embodiment is characterized in that the conservator comprises a pressure relief valve which is adapted to discharge the compressible fluid to the environment if an absolute pressure of the compressible fluid rises above the upper pressure limit.

[0012] An advantageous embodiment is characterized in that the conservator comprises an intake unit which is adapted to supply the conservator with fluid if an absolute pressure of the compressible fluid drops below the lower pressure limit. This ensures safe operation of the high voltage assembly by limiting the pressure of the compressible fluid.

[0013] An advantageous embodiment is characterized in that the supplied fluid is dry air or nitrogen originating from a fluid reservoir. The proposed supplied fluid advantageously does not negatively interfere with the insulation liquid.

[0014] An advantageous embodiment is characterized in that the conservator is arranged besides the compartment. Advantageously this embodiment provides a favorable position for the conservator as an area above the cover is not used for the conservator. Furthermore, the conservator can be arranged in direct neighborhood to the compartment.

[0015] An advantageous embodiment is characterized in that the conservator is arranged inside the compartment. Advantageously, this embodiment provides a compact design of the high voltage assembly.

5 [0016] An advantageous embodiment is characterized in that the conservator is arranged below the compartment

[0017] An advantageous embodiment is characterized in that a level of insulation liquid inside the conservator is above a level of the cover of the compartment.

[0018] An advantageous embodiment is characterized in that the conservator is arranged above the compartment

55 BRIEF DESCRIPTION OF THE FIGURES

[0019] Figures 1 to 5 show schematically a hermetically sealed high voltage assembly, respectively.

15

25

40

45

DESCRIPTION OF THE EMBODIMENTS

[0020] Figure 1 shows schematically a hermetically sealed high voltage assembly 2. The high voltage assembly 2 can be a high voltage transformer, a high voltage reactor or a vacuum-type tap changer. The high voltage assembly 2 comprises a hermetically sealed compartment 4 delimited by rigid walls, hermetically sealed conservator 6 and a liquid connection 8 connecting the conservator 6 with the compartment 4. The liquid connection 8 serves to exchange insulation liquid 10 surrounding at least partly an active component 12 in the compartment 4. In the case of an embodiment of the high voltage transformer or the high voltage reactor the active component 12 comprises a core and windings. Most of the insulation liquid 10 resides inside the compartment 4 and the conservator 6 is intended to receive an expansion volume of the insulation liquid 10 as the insulation liquid 10 is subject to temperature differences which results in changes of the volume of the insulation liquid 10. [0021] For illustration purposes only the volume V4 of the compartment 4 is split into a number of five volume parts V4_1 to V4_5. As the volume V4 receives a major part of the whole insulation liquid 10, the volume V4 approximately reflects a volume of the whole insulation liquid 10 in the high voltage assembly 2 including the insulation liquid 10 residing in the conservator 6 and the liquid connection 8. A reception volume V6 of the conservator 6 is equal or greater than one fifth especially one quarter. and especially one third of the volume V4 of the insulation liquid 10 in the whole high voltage assembly 2. The reception volume V6 is an inner volume for receiving the insulation liquid 10 and a compressible fluid. On the other hand, the reception volume V6 of the conservator 6 is smaller than one third of the volume V4 of the insulation liquid 10.

[0022] Figure 2 shows schematically the hermetically sealed high voltage assembly 2 according to an embodiment. The conservator 6 is partly filled with the compressible fluid 14. The compressible fluid 14 provides a fluid cushion in the sense that when temperature of the insulation liquid 10 rises the insulation liquid 10 expands. This expansion of the insulation liquid 10 results in the insulation liquid 10 flowing from the compartment 4 to the conservator 6. Therefore, the volume of the compressible fluid 14 in the conservator 6 decreases and the pressure of the compressible fluid 14 increases. The contrary applies to the reverse process in the sense of a contraction of the volume of the insulation liquid 10, i.e. the volume of the compressible fluid 14 increases and the pressure of the compressible fluid decreases.

[0023] The compressible fluid 14 is in direct contact with the insulation liquid 10. Examples for the compressible fluid 14 are dried air or nitrogen. In operation of the high voltage assembly 2 the conservator 6 is partly filled with the compressible fluid 14. The operating conditions of the compressible fluid comprise an absolute pressure of the compressible fluid 14 between a lower pressure

limit and an upper pressure limit, for example between 0.6 bar and 1.8 bar, especially between 0.8 bar and 1.6 bar, and especially between 0.9 bar and 1.5 bar.

[0024] The conservator 6 comprises a pressure relief valve 16 for discharging the compressible fluid 14 to the environment if an absolute pressure of the compressible fluid 14 rises above the upper pressure limit, for example 1.8 bar, especially above 1.6 bar, and especially above 1.5 bar. Furthermore, the conservator 6 comprises an intake unit 18 being adapted to supply the conservator 6 with fluid if an absolute pressure of the compressible fluid 14 drops below the lower pressure limit, for example 0.9 bar, especially below 0.8 bar, and especially below 0.6 bar. The intake unit 18 comprises a valve 20 which is adapted to open a liquid connection between the conservator 6 and a fluid reservoir 22 if the absolute pressure of the compressible fluid 14 inside the conservator 6 drops below the lower pressure limit, for example 0.9 bar, especially below 0.8 bar, and especially below 0.6 bar. The fluid reservoir 22 contains dry air or nitrogen with a pressure above the upper pressure limit, for example above 0.9 bar, especially above 0.8 bar, and especially above 0.6 bar. Of course the intake unit 18 can be omitted.

[0025] A pressure sensor 24 determines a pressure P of the compressible fluid 14 in the conservator 6. A level sensor 26 determines a level L of insulation liquid 10 inside the conservator 6. A control unit 28 monitors the pressure P and/or the level L and determines a failure F in dependence on the pressure P and/or the level L.

[0026] The compartment 4 comprises a ground 30 and a cover 32. A Buchholz relay 34 is arranged above a level L32 of the cover 32. The conservator 6 is arranged besides the compartment 4. The conservator 6 does not necessarily occupy an area 36 above the cover 32 of the compartment 4. The level L of insulation liquid 10 inside the conservator 6 remains below the level L32 of the cover 32. The conservator 6 and the compartment 4 share a joint wall 38. Of course the conservator 6 and the compartment 4 can be also embodied as separate containers. [0027] An opening 40 of the liquid connection 8 is arranged at a lower part of the conservator 6 to inhibit compressible fluid 14 from flowing into the compartment 4. An opening 42 of the liquid connection 8 is arranged at a lower part of the compartment 4. In another embodiment the opening 42 is arranged at the middle or upper part of the compartment 4.

[0028] Figure 3 is shows schematically an embodiment of the high voltage assembly 2. With difference to figure 2 the conservator 6 is arranged inside the compartment 4. [0029] Figure 4 shows schematically an embodiment of the high voltage assembly 2. With difference to figure 2 the conservator 6 is arranged above the compartment

[0030] Figure 5 shows schematically an embodiment of the high voltage assembly 2. With difference to figure 2 the conservator 6 is arranged below the compartment 4. [0031] All embodiments of the high voltage assembly

55

5

10

20

30

35

40

45

2 comprise a joint wall 38 shared between the conservator 6 and the compartment 4. Of course, the conservator 6 can be also arranged separately inside or outside the compartment 4 without having such a joint wall 38.

Claims

- **1.** A hermetically sealed high voltage assembly (2) comprising:
 - a hermetically sealed compartment (4) delimited by rigid walls, wherein the compartment (4) contains an active component (12) at least partly surrounded by an insulation liquid (10);
 - a hermetically sealed conservator (6) delimited by rigid walls, wherein a level (L) of insulation liquid (10) inside the conservator (6) is at or below a level (L32) of a cover (32) of the compartment (4); and
 - a liquid connection (8) between the conservator (6) and the compartment (4).
- 2. The high voltage assembly (2) according to claim 1, wherein a reception volume (V6) of the conservator (6) is equal to or greater than one fifth, especially one quarter, and especially one third of a volume (V4) of the insulation liquid (10) in the high voltage assembly (2).
- 3. The high voltage assembly (2) according to claim 1 or 2, wherein the conservator (6) is partly filled with a compressible fluid (14) in direct contact with the insulation liquid (10).
- 4. The high voltage assembly (2) according to claim 2, wherein operating conditions of the compressible fluid (14) comprise an absolute pressure of the compressible fluid (14) between a lower pressure limit and an upper pressure limit.
- **5.** The high voltage assembly (2) according to one of the preceding claims, wherein the compartment (4) and the conservator (6) have a joint wall (38).
- 6. The high voltage assembly (2) according to one of the preceding claims, wherein the conservator (6) comprises a pressure relief valve (16) which is adapted to discharge the compressible fluid (14) to the environment if an absolute pressure of the compressible fluid (14) rises above the upper pressure limit.
- 7. The high voltage assembly (2) according to one of the preceding claims, wherein the conservator (6) comprises an intake unit (18) which is adapted to supply the conservator (6) with fluid if an absolute pressure of the compressible fluid (14) drops below

the lower pressure limit.

- **8.** The high voltage assembly (2) according to claim 7, wherein the supplied fluid is dry air or nitrogen originating from a fluid reservoir (22).
- **9.** The high voltage assembly (2) according to one of the preceding claims, wherein the conservator (6) is arranged besides the compartment (4).
- **10.** The high voltage assembly (2) according to claims 1 to 8, wherein the conservator (6) is arranged inside the compartment (4).
- 5 11. The high voltage assembly (2) according to claims 1 to 8, wherein the conservator (6) is arranged below the compartment (4).
 - **12.** The high voltage assembly (2) according to one of the preceding claims, wherein a level (L) of insulation liquid (10) inside the conservator (6) is above a level (L32) of the cover (32) of the compartment (4).

4

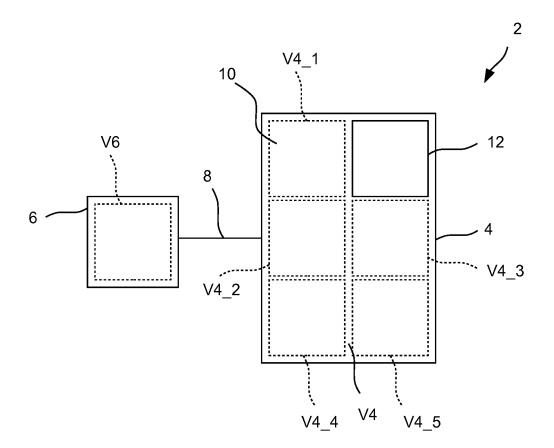


Fig. 1

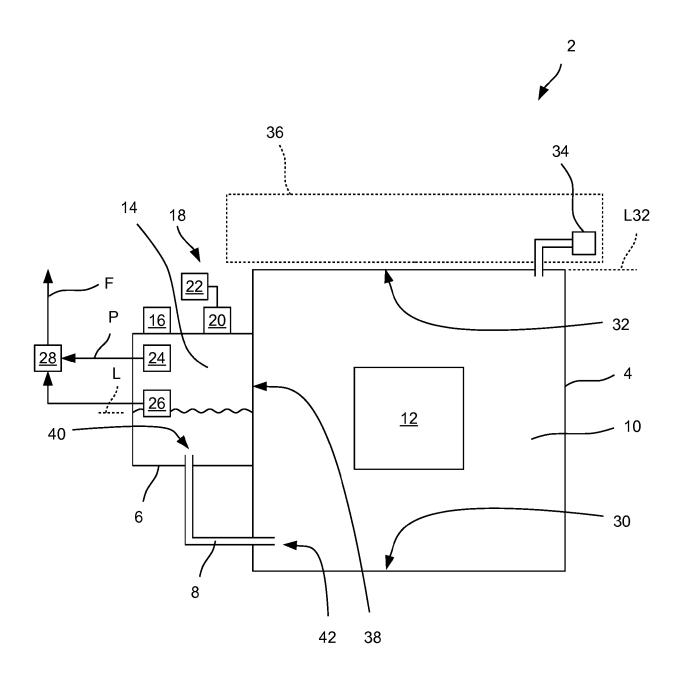


Fig. 2

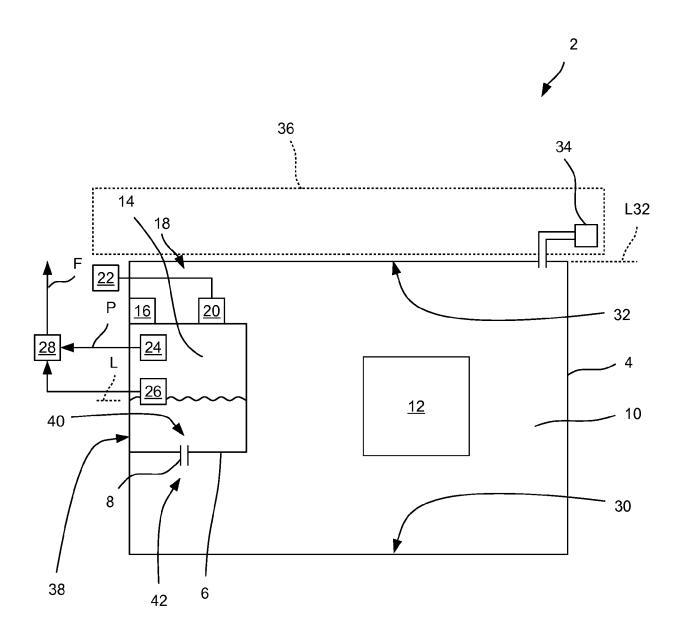


Fig. 3

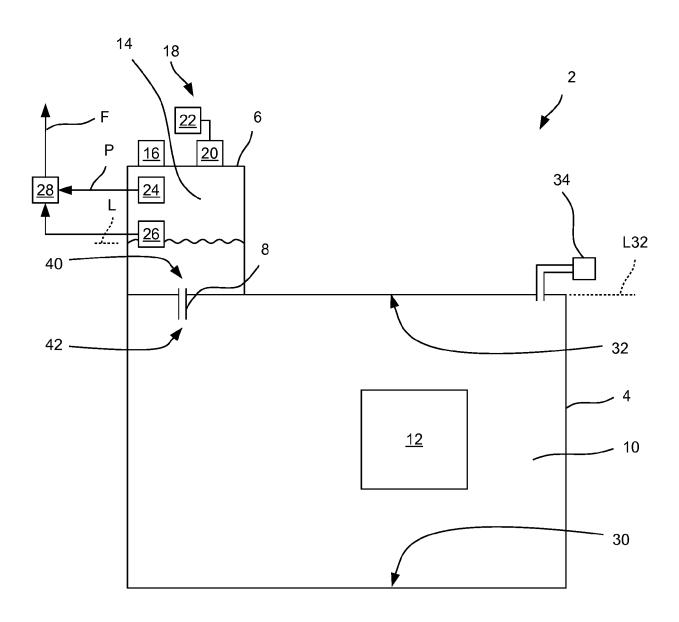
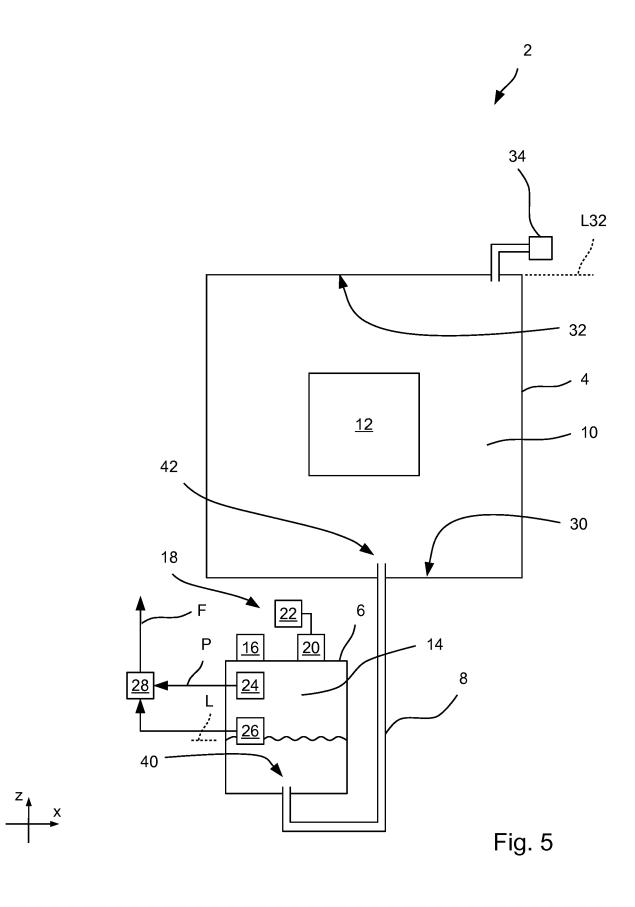



Fig. 4

EUROPEAN SEARCH REPORT

Application Number EP 17 15 8498

Category	Citation of document with indic of relevant passage			Relevant o claim	CLASSIFICATION OF THE APPLICATION (IPC)	
Х	JP H10 149922 A (TOSH TOSHIBA CORP) 2 June * abstract * * paragraphs [0018],	1998 (1998-06-02)		1-9,11, INV. H01F27/14		
Х	JP 2002 184625 A (DAI 28 June 2002 (2002-06 * paragraphs [0017] -	HEN CORP) 5-28)	[0031] *			
х	GB 322 534 A (JOHN BE VICKERS ELECTRICAL CO 9 December 1929 (1929 * page 3, lines 5-11, * claim 2 *) LTD) 9-12-09)				
Х	GB 199 535 A (GEN ELE 28 June 1923 (1923-06 * page 1, lines 20-52 * page 1, line 56 - p	5-28) ´ 2 *	1,	4,5,11		
А	US 2008/197955 A1 (FI 21 August 2008 (2008- * abstract * * paragraphs [0023], [0031] *	-08-21)	1-	12	TECHNICAL FIELDS SEARCHED (IPC)	
A	US 2011/114364 A1 (BF 19 May 2011 (2011-05- * paragraphs [0018] - [0052] - [0059] *	·19)	1-	12		
А	JP H03 78216 A (DAIHEN CORP) 3 April 1991 (1991-04-03) * abstract * * claim 1 *		1-12			
	The present search report has bee	·				
	Place of search Munich	Date of completion of the search 31 August 2017		Go1	s, Jan	
CATEGORY OF CITED DOCUMENTS X: particularly relevant if taken alone Y: particularly relevant if combined with another document of the same category A: technological background		T : theory or prin E : earlier patent after the filing D : document cite L : document cite	T: theory or principle underlying the invention E: earlier patent document, but published on, or after the filling date D: document cited in the application L: document cited for other reasons			
	-written disclosure rmediate document	& : member of th document	e same p	atent family,	corresponding	

EP 3 367 399 A1

ANNEX TO THE EUROPEAN SEARCH REPORT ON EUROPEAN PATENT APPLICATION NO.

EP 17 15 8498

5

This annex lists the patent family members relating to the patent documents cited in the above-mentioned European search report. The members are as contained in the European Patent Office EDP file on The European Patent Office is in no way liable for these particulars which are merely given for the purpose of information.

31-08-2017

10	Patent document cited in search report	Publication date	Patent family member(s)	Publication date
	JP H10149922 A	02-06-1998	NONE	
15	JP 2002184625 A	28-06-2002	NONE	
10	GB 322534 A	09-12-1929	NONE	
	GB 199535 A	28-06-1923	NONE	
20	US 2008197955 A1	21-08-2008	CN 101223613 A EP 1905053 A1 US 2008197955 A1 WO 2007009961 A1	16-07-2008 02-04-2008 21-08-2008 25-01-2007
25	US 2011114364 A1	19-05-2011	AT 475974 T AU 2009237787 A1 BR PI0911202 A2 CA 2721603 A1 CN 102017029 A	15-08-2010 22-10-2009 13-10-2015 22-10-2009 13-04-2011
30			DK 2110822 T3 EP 2110822 A1 JP 5404770 B2 JP 2011517129 A KR 20100132077 A RU 2010146236 A	22-11-2010 21-10-2009 05-02-2014 26-05-2011 16-12-2010 20-05-2012
35			US 2011114364 A1 WO 2009127539 A1	19-05-2011 22-10-2009
	JP H0378216 A	03-04-1991 	NONE	
40				
45				
50				
55	OOHM P0459			

For more details about this annex : see Official Journal of the European Patent Office, No. 12/82

EP 3 367 399 A1

REFERENCES CITED IN THE DESCRIPTION

This list of references cited by the applicant is for the reader's convenience only. It does not form part of the European patent document. Even though great care has been taken in compiling the references, errors or omissions cannot be excluded and the EPO disclaims all liability in this regard.

Patent documents cited in the description

• AT 96108 B [0002]