# (11) **EP 3 369 883 A1**

(12)

## EUROPEAN PATENT APPLICATION

published in accordance with Art. 153(4) EPC

(43) Date of publication: **05.09.2018 Bulletin 2018/36** 

(21) Application number: 16859484.4

(22) Date of filing: 03.10.2016

(51) Int Cl.: E05F 15/74 (2015.01) E05F 15/665 (2015.01) E06B 9/68 (2006.01)

E05F 15/43 (2015.01) E05F 15/77 (2015.01)

(86) International application number: **PCT/JP2016/079321** 

(87) International publication number: WO 2017/073247 (04.05.2017 Gazette 2017/18)

(84) Designated Contracting States:

AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

**Designated Extension States:** 

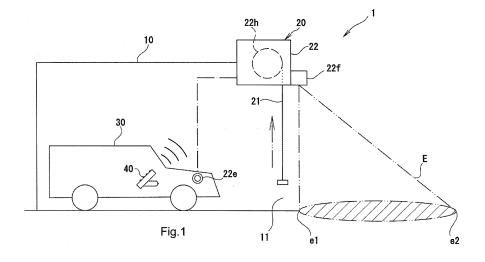
**BAME** 

**Designated Validation States:** 

MA MD

(30) Priority: 29.10.2015 JP 2015213364

(71) Applicant: Bunka Shutter Co., Ltd. Bunkyo-ku Tokyo 113-8535 (JP)


(72) Inventor: TAKAI Kuniharu Tokyo 113-8535 (JP)

(74) Representative: Wood, Graham Bailey Walsh & Co LLP 1 York Place Leeds, LS1 2DR (GB)

#### (54) OPENING AND CLOSING DEVICE CONTROL SYSTEM

(57) A further improvement is achieved in the operability of a shutter device when opening and closing the shutter device automatically. Provided are an opening and closing device 20 which opens and closes an opening 11 of a garage 10 by an opening and closing body 21, a transmitter 40 which is provided in a vehicle 30 and implements turn on/off to send an automatic transmitting signal in conjunction with turning on/off of a start switch of the vehicle 30, an inside-garage sensor 22e which outputs a vehicle sensing signal upon contactlessly sensing the vehicle 30 in the garage 10, an outside-garage

sensor 22f which outputs the vehicle sensing signal upon contactlessly sensing the vehicle in a specified area E outside the garage 10, and a controller 22c which controls the opening and closing device 20, wherein the controller 22c causes the opening and closing device 20 to perform an open operation when either a condition, under which the vehicle sensing signal from the inside-garage sensor 22e and said automatic transmitting signal are present, or a condition, under which the vehicle sensing signal from the outside-garage sensor 22f and the automatic transmitting signal are present, is satisfied.



## [Technical Field]

**[0001]** The present invention relates to an opening and closing device control system which is appropriate for controlling an opening and closing device such as a garage shutter device.

1

[Background Art]

[0002] As a prior art example of this type of invention, there is the garage shutter device described in PTL 1. In this garage shutter device, at the time of exit of a vehicle from a garage, when the engine of the vehicle is started by operating an ignition key, an automatic transmitting signal is automatically wirelessly transmitted from a controlling side wireless device in the vehicle in conjunction with the operation. The shutter device opens a shutter upon receiving the automatic transmitting signal using a controlled side wireless device and automatically closes the shutter when the vehicle travels away and the automatic transmitting signal is no longer received. It should be noted that the automatic transmitting signal continues to be sent as long as the ignition key is in an on state. [0003] On the other hand, at the time of entry of the vehicle into the garage, when the automatic transmitting signal transmitted from the controlling side wireless device of the vehicle approaching the shutter device is received by the receiver of the shutter device, the shutter devices opens the shutter. When the vehicle enters the garage and the engine of the vehicle is stopped by the operation of turning back the ignition key, the automatic transmitting signal is no longer transmitted from the controlling side wireless device. Consequently, the shutter device automatically closes the shutter after a predetermined time has elapsed since the automatic transmitting signal was no longer received by the controlling side wireless device.

[Citation List]

[Patent Literature]

[0004] [PTL 1] Japanese Patent Application Publication No. 2001-152749

[Summary of Invention]

[Technical Problem]

[0005] In a case where the vehicle has traveled a certain distance from the shutter device, whether or not the automatic transmitting signal transmitted from the controlling side wireless device in the vehicle is received by the controlled side wireless device of the shutter device depends on the environment in which the shutter device is placed such as the condition of the building having the

garage or the positional relationship between the shutter device and the building. Accordingly, with the prior art technique, the communicative distance between the controlling side wireless device and the controlled side wireless device may vary.

[Solution to Problem]

**[0006]** In view of such a problem, the present invention includes the following configuration.

[0007] An opening and closing device control system includes: an opening and closing device which opens and closes an opening of a garage by an opening and closing body; a transmitter which is provided in a vehicle and turns on/off sending an automatic transmitting signal in conjunction with turning on/off of a start switch of the vehicle; an inside-garage sensor which outputs a vehicle sensing signal upon contactlessly sensing the vehicle in the garage; an outside-garage sensor which outputs the vehicle sensing signal upon contactlessly sensing the vehicle in a specified area outside the garage, and a controller which controls the opening and closing device, wherein, the controller causes the opening and closing device to perform an open operation when either a condition, under which the vehicle sensing signal from the inside-garage sensor and the automatic transmitting signal are present or a condition, under which the vehicle sensing signal from the outside-garage sensor and automatic transmitting signal are present, is satisfied.

[Advantageous Effects of Invention]

**[0008]** Since the present invention is configured as described above, it is possible to further improve the operability of the shutter device when the shutter device is automatically opened and closed.

[Brief Description of Drawings]

40 [0009]

[Fig. 1]

Fig. 1 is a schematic diagram obtained by viewing an example of an opening and closing device control system according to the present invention in a lateral direction.

[Fig. 2]

Fig. 2 is a schematic diagram obtained by viewing the example of the opening and closing device control system in a front-to-rear direction from within a garage.

[Fig. 3]

Fig. 3 is a schematic diagram showing an operation during exit of a vehicle from the garage in order of (a) to (c).

[Fig. 4]

Fig. 4 is a schematic diagram showing an operation during entry of the vehicle into the garage in order

50

25

40

45

50

4

of (a) to (c).

[Fig. 5]

Fig. 5 is a flow chart showing an example of the process performed by a controller.

[Fig. 6]

Fig. 6 is a flow chart showing another example of the process performed by the controller.

## [Description of Embodiments]

[0010] One of the characteristic features of the present embodiment is that an opening and closing device control system includes: an opening and closing device which opens and closes an opening of a garage by an opening and closing body; a transmitter which is provided in a vehicle and implements turn on/off to send an automatic transmitting signal in conjunction with turning on/off of a start switch of the vehicle; an inside-garage sensor which outputs a vehicle sensing signal upon contactlessly sensing the vehicle in the garage; an outside-garage sensor which outputs the vehicle sensing signal upon contactlessly sensing the vehicle in a specified area outside the garage, and a controller which controls the opening and closing device, wherein the controller causes the opening and closing device to perform an open operation when either a condition, under which the vehicle sensing signal from the inside-garage sensor and the automatic transmitting signal are present or a condition under which the vehicle sensing signal from the outside-garage sensor and automatic transmitting signal are present, is satisfied (See Fig. 5).

**[0011]** The "start switch" is the switch operated so as to start the engine of the vehicle. The start switch includes an ignition key, a card key, another electronic key, and the like.

[0012] Another of the characteristic features is that, to further improve the operability of the opening and closing device, the controller is configured to cause the opening and closing device to perform the open operation and then cause the opening and closing device to perform a close operation on condition that either the vehicle sensing signal or the automatic transmitting signal is absent. [0013] Still another of the characteristic features is that the opening and closing device control system further includes an obstacle sensing device which senses an obstacle in an opening and closing path of the opening and closing body and outputs an obstacle sensing signal. The controller is configured to cause the opening and closing device to perform the open operation and then cause the opening and closing device to perform a close operation on condition that either the vehicle sensing signal or the automatic transmitting signal is absent and the obstacle sensing signal is absent.

**[0014]** Next, a detailed description will be given of preferred embodiments having the characteristic features on the basis of the drawings.

**[0015]** An opening and closing device control system 1 includes an opening and closing device 20 which opens

and closes an opening 11 of a garage 10 by an opening and closing body 21, a transmitter 40 which turns on/off sending an automatic transmitting signal in conjunction with turning on/off of the start switch of a vehicle 30, an inside-garage sensor 22e which outputs a vehicle sensing signal upon contactlessly sensing the vehicle 30 in the garage 10, and an outside-garage sensor 22f which outputs the vehicle sensing signal upon contactlessly sensing the vehicle 30 in a specified area E outside the garage 10. Using the controller of the opening and closing device 20, the open and close operations of the opening and closing body 21 are controlled.

**[0016]** The garage 10 in the illustrated example is formed in a cuboid shape having an opening 11 in the outwardly facing surface thereof, and is formed at the first floor portion of a building or the like. Above the opening 11, a storage part 22 of the opening and closing device 20 is disposed.

**[0017]** The opening and closing device 20 includes the opening and closing body 21 which performs open and close operations in a vertical direction so as to define a space and open the space, the storage part 22 which stores and unwinds out the opening and closing body 21 in the opening direction thereof, and guide rails 23 which surround the respective end portions of the opening and closing body 21 in a lateral width direction and guide the opening and closing body 21 in opening and closing directions (see Fig. 2).

[0018] The opening and closing body 21 includes an opening-and-closing-body main body 21a having a generally rectangular shape in plan view and a bottom plate member 21b to be brought into contact with a contact target portion P (such as a floor surface, the ground surface, or a frame member) which is connected to the lower end of the opening-and-closing-body main body 21a (see Fig. 2). The opening and closing body 21 is wound up and unwound out by a winding shaft 22h (see Fig. 1) in the storage part 22 to perform open and close operations. [0019] The storage part 22 includes a store case 22a having a generally cuboid shape elongated in the lateral width direction of the opening and closing body, the winding shaft 22h which winds up and unwinds out the opening and closing body 10 in the store case 22a, and an opening and closing machine 22b which drives the winding shaft 22h to rotate via power transmission means (not shown) such as a chain or a sprocket.

**[0020]** The opening and closing machine 22b includes an electric motor which rotates the winding shaft 22h in a winding direction and an unwinding direction, a braking mechanism which brakes the rotation of the electric motor, and the like.

**[0021]** The controller 22c is an electric circuit including, e.g., a microcomputer, a memory device, a relay circuit, and the like and operates on the basis of a program stored in advance. To the controller 22c, a receiver 22d, the inside-garage sensor 22e, the outside-garage sensor 22f, an opening and closing position detector 22g, an obstacle sensing device 22i, and the like are connected.

25

30

35

40

**[0022]** The receiver 22d is an electric circuit which receives the transmitting signal transmitted from the transmitter 40 and transfers a control instruction included in the transmitting signal to the controller 22c and is formed of a specified low-power wireless module or the like.

[0023] The inside-garage sensor 22e is the sensor which contactlessly senses the vehicle 30 when the vehicle 30 is stored in the garage 10 and outputs the resulting vehicle sensing signal. In the illustrated example, the inside-garage sensor 22e is formed of a phototube sensor including a light emitter and a light receiver which are disposed on both sides of the vehicle 30 in the garage 10. The inside-garage sensor 22e transmits the vehicle sensing signal to the controller 22c by wire or wireless.

**[0024]** As another example of the inside-garage sensor 22e, it is possible to use a contactless sensor of another type such as a vehicular ultrasonic sensor, a magnetism detection sensor or the like.

[0025] The outside-garage sensor 22f is an area sensor of a near infrared reflection type which is configured to form a three-dimensional specified area E using a near infrared beam emitted toward the outside of the garage 10 and collect the reflected beam of the infrared beam. The outside-garage sensor 22f senses the entry of the vehicle 30 into the specified area E on the basis of a change in the reflected beam and transmits the resulting vehicle sensing signal to the controller 22c.

**[0026]** In the specified area E, a boundary e1 in a direction approaching the opening and closing body 21 is set to be located in the vicinity of the outwardly facing surface of the opening and closing body 21, as shown in Fig. 1. In the specified area E, a boundary e2 in a direction away from the opening and closing device 20 is set to be located within a communicative range between the transmitter 40 and the receiver 22d.

**[0027]** As another example of the outside-garage sensor 22f, it is also possible to use a microwave Doppler sensor designed to obtain a sensing signal proportional to the moving speed of the vehicle 30 through a frequency comparison between the microwave sent therefrom and the reflected wave thereof, a laser sensor which emits a laser beam into a curtain-like configuration and senses the vehicle which enters the laser beam, or the like.

[0028] The opening and closing position detector 22g is formed of a counter limit switch which outputs a contact signal when the number of rotations of the output shaft of the opening and closing machine 22b reaches a predetermined value. In another example, the opening and closing position detector 22g may also be formed of an encoder device designed to count the number of rotations of the output shaft or winding shaft 22h, a proximity switch designed to sense the position of the bottom plate member 21b, or the like.

**[0029]** The obstacle sensing device 22i may be any sensing device as long as the sensing device senses an obstacle in the opening and closing path of the opening and closing body 21 and transfers an obstacle sensing signal to the controller 22c.

**[0030]** The obstacle sensing device 22i illustrated by way of example in Fig. 2 is an infrared sensor having an emitter provided closer to the lower end of one of the guide rails 23 and a collecting collector provided closer to the lower end of the other guide rail 23 so as to sense the interruption of the path of an obstacle sensing medium (which is an infrared beam in the present example) which is emitted from the emitter and collected by the collector by an obstacle.

**[0031]** In another example, the obstacle sensing device 22i may also be formed of an infrared sensor provided closer to the lower end of the opening and closing body 21, a pyroelectric sensor provided in the outer surface of the store case 22a to face downward, or the like.

**[0032]** The transmitter 40 includes a wireless transmission circuit using a specified power saving wireless method in a case (not shown) which is attachable/detachable to/from the cigarette lighter socket of the vehicle 30. Upon receiving a power supply from the cigarette lighter socket, the transmitter 40 continues to transmit the automatic transmitting signal including a control signal in a predetermined format. The control signal includes a specific ID code set for each of the transmitters 40, an instruction to start the open operation of the opening and closing device 20, and the like.

[0033] When the start switch of the vehicle 30 is turned on, the transmitter 40 operates upon receiving a power supply from the vehicle 30 and continues to transmit the automatic transmitting signal. In the vehicle 30, when the start switch of the vehicle 30 is turned off, the power supply from the vehicle 30 is also cut off, and consequently transmission of the automatic transmitting signal stops. [0034] In Fig. 2, the reference numeral 24 denotes a push button switch for effecting the opening and closing, stopping, or the like of the opening and closing body 21. The push button switch 24 is disposed at a position within reach of a person on the inner wall surface of the garage 10 and connected to the controller 22c by wire or wireless. Next, a control operation performed by the [0035] opening and closing device control system 1 having the configuration will be described in detail along the flow chart shown in Fig. 5.

**[0036]** First, in an initial state, the opening and closing body 21 is assumed to be in a fully closed state.

45 [0037] The controller 22c determines whether or not the vehicle sensing signal from the inside-garage sensor 22e is input thereto and the automatic transmitting signal received by the receiver 22d is input thereto (Step 1). When the both signals are input thereto, the controller
 50 22c advances the process to Step 2 or otherwise moves the process to Step 1a.

[0038] In Step 1a, it is determined whether or not the vehicle sensing signal from the outside-garage sensor 22f is input thereto and the automatic transmitting signal received with the controller 22c is input thereto. When the both signals are input thereto, the controller 22c advances the process to Step 2 and otherwise returns the process to Step 1.

35

40

**[0039]** In Step 2, the controller 22c activates the opening and closing machine 22b to cause the winding shaft 22h to rotate in the winding direction and thus cause the opening and closing body 21 to perform the open operation. The open operation is stopped when it is determined that the opening and closing body 21 is at a fully opened position on the basis of the sensing signal from the opening and closing position detector 22g.

**[0040]** As a result, at the time of exit of the vehicle from the garage, when the engine of the vehicle 30 is started in the state where the vehicle 30 in the garage 10 is sensed by the inside-garage sensor 22e and the automatic transmitting signal is transmitted from the transmitter 40 and received by the receiver 22d as shown in, e.g., Fig. 3(b), Step 1 and Step 2 are performed so that the opening and closing body 21 performs the open operation.

**[0041]** On the other hand, at the time of entry of the vehicle into the garage, when the vehicle 30 outside the garage 10 is sensed by the outside-garage sensor 22f and the automatic transmitting signal from the transmitter 40 is received by the receiver 22d as shown in, e.g., Fig. 4(b), Step 1a and Step 2 are performed so that the opening and closing body 21 performs the open operation.

**[0042]** Next, in Step 3, the controller 22c waits until the vehicle sensing signal from the outside-garage sensor 22f is no longer input thereto and the automatic transmitting signal from the transmitter 40 is no longer input thereto. When the both signals are no longer input thereto, the controller 22c advances the process to Step 4.

**[0043]** In Step 4, the controller 22c determines whether or not an obstacle is sensed by the obstacle sensing device 22i. When there is no sensed obstacle, the controller 22c advances the process to Step 5 or otherwise returns the process to Step 3.

[0044] In Step 5, the controller 22c determines whether or not a predetermined time has elapsed after Step 4. When the predetermined time has elapsed, the controller 22c advances the process to Step 6 subsequent thereto or otherwise returns the process to Step 3.

[0045] In Step 6, the controller 22c activates the opening and closing machine 22b to cause the winding shaft 22h to rotate in the unwinding direction and thus cause the opening and closing body 21 to perform the close operation. The close operation is stopped when it is determined that the opening and closing body 21 is at a fully closed position on the basis of the sensing signal from the opening and closing position detector 22g or when an obstacle is sensed by the obstacle sensing device 22i.

**[0046]** Accordingly, when the vehicle 30 that has exited from the garage travels out of the specified area E formed by the outside-garage sensor 22f as shown in, e.g., Fig. 3(c), Steps 3 to 6 described above are performed, and the opening and closing body 21 performs the close operation after a predetermined time has elapsed since the absence of an obstacle was recognized.

[0047] On the other hand, when the vehicle 30 that has

entered the garage turns off the start switch (such as an ignition key) and consequently the automatic transmitting signal is no longer transmitted from the inside-garage sensor 22e as shown in, e.g., Fig. 4(c), the opening and closing body 21 performs the close operation after a predetermined time has elapsed since the absence of an obstacle was recognized.

**[0048]** The predetermined time is set appropriately on the basis of the time required by a driver in the vehicle 30 to move out of the vehicle 30 after the entry of the vehicle into the garage.

**[0049]** Then, after Step 6, the process performed by the controller 22c is returned to Step 1.

**[0050]** Thus, with the opening and closing device control system 1 having the configuration, even when the communicative distance between the transmitter 40 and the receiver 22d varies at the time of exit of the vehicle from the garage depending on the environment in which the shutter device is placed, the vehicle 30 that has traveled away from the specified area E allows the opening and closing body 21 to be closed.

**[0051]** Also, even when the communicative distance between the transmitter 40 and the receiver 22d varies at the time of entry of the vehicle into the garage, the vehicle 30 that has entered the specified area E allows the opening and closing body 21 to be opened.

**[0052]** Also, even when the vehicle 30 has entered the vehicle 30, it is possible to cause the opening and closing body 21 to promptly perform the close operation.

**[0053]** Therefore, it is possible to improve the operability and reliability of the opening and closing device 20 when the opening and closing device 20 is automatically opened and closed.

[0054] Next, a description will be given of another example (see Fig. 6) of control performed by the controller

**[0055]** Since the following example of control is obtained by partly modifying the flow chart (see Fig. 5) of the example of control described above, the modified portion thereof will be mainly described in detail, while a repeated detailed description thereof is omitted appropriately.

**[0056]** In the example of control (see Fig. 6), the controller 22c first waits until the vehicle sensing signal from the inside-garage sensor 22e or the vehicle sensing signal from the outside-garage sensor 22f is input thereto (Step 11). When at least either one of the vehicle sensing signals is input thereto, the controller 22c advances the process to Step 12 subsequent thereto.

50 [0057] In Step 12, the controller 22c determines whether or not the automatic transmitting signal is input thereto. When the automatic transmitting signal is input thereto, the controller 22c advances the process to Step 13 subsequent thereto or otherwise returns the process to Step 15
 55 11.

**[0058]** In Step 13, the controller 22c activates the opening and closing machine 22b to cause the winding shaft 22h to rotate in the winding direction and thus cause the

opening and closing body 21 to perform the open operation.

**[0059]** As a result, at the time of exit of the vehicle from the garage, when the start button of the vehicle 30 is operated in the state where the vehicle 30 in the garage 10 is sensed by the inside-garage sensor 22e and the automatic transmitting signal transmitted from the transmitter 40 is received by the receiver 22d as shown in, e.g., Fig. 3(b), Steps 11 to 13 are performed to cause the opening and closing body 21 to perform the open operation.

**[0060]** At the time of entry of the vehicle into the garage, when the vehicle 30 outside the garage 10 is sensed by the outside-garage sensor 22f and the automatic transmitting signal from the transmitter 40 is received by the receiver 22d as shown in, e.g., Fig. 4(b) also, Steps 11 to 13 are performed to cause the opening and closing body 21 to perform the open operation.

**[0061]** Then, in Steps 14 to 17, the controller 22c performs the same process as in Steps 3 to 6 described above.

**[0062]** Next, in Step 18, the controller 22c determines whether or not the vehicle sensing signal from the insidegarage sensor 22e is input thereto. When the vehicle sensing signal is input thereto, the controller 22c advances the process to Step 19 or otherwise moves the process to Step 18a.

**[0063]** In Step 19, an entry notification notifying that the vehicle 30 has entered the garage 10 is made. On the other hand, in Step 18a, an exit notification notifying that the vehicle 30 has exited from the garage 10 and traveled away therefrom is made.

**[0064]** More specifically, each of the entry notification and the exit notification is a wireless or wired signal transmitted from the controller 22c to a notification device in the building where the opening and closing device control system 1 is placed.

**[0065]** Upon receiving the signal, the notification device notifies a person in the building of the situation of entry into the garage or exit from the garage using a sound or voice and light emission, image display, or the like.

[0066] In another example, it is also possible to omit Steps 18, 18a and 19 described above from the flow chart in Fig. 6 and keep the notification from being made or add Steps 18, 18a and 19 described above to the flow chart in Fig. 5 and allow the notification to be made.

[0067] In the embodiment described above, after the opening and closing body 21 is caused to perform the open operation, the opening and closing body 21 is caused to perform the close operation on condition that either one of the vehicle sensing signal from the outsidegarage sensor 22f and the automatic transmitting signal from the transmitter 40 is absent (Steps 3 and 14). However, in another example, it is also possible to cause the opening and closing body 21 to perform the close operation on condition that each of the two signals is absent. [0068] The present invention is not limited to the em-

bodiments described above and can appropriately be modified within the scope which does not change the gist of the present invention.

10

5 [Reference Signs List]

#### [0069]

- 1 Opening and closing device control system
- 0 10 Garage
  - 11 Opening
  - 21 Opening and closing body
  - 20 Opening and closing device
  - 22c Controller
- 22e Inside-garage sensor
  - 22f Outside-garage sensor
  - 30 Vehicle
  - 40 Transmitter
  - E Specified area

#### **Claims**

25

35

40

45

**1.** An opening and closing device control system, comprising:

an opening and closing device which opens and closes an opening of a garage by an opening and closing body;

a transmitter which is provided in a vehicle and turns on/off sending of an automatic transmitting signal in conjunction with turning on/off of a start switch of the vehicle;

an inside-garage sensor which outputs a vehicle sensing signal upon contactlessly sensing the vehicle in the garage;

an outside-garage sensor which outputs the vehicle sensing signal upon contactlessly sensing the vehicle in a specified area outside the garage; and

a controller which controls the opening and closing device, wherein

the controller causes the opening and closing device to perform an open operation when either a condition, under which the vehicle sensing signal from the inside-garage sensor and the automatic transmitting signal are present, or a condition, under which the vehicle sensing signal from the outside-garage sensor and the automatic transmitting signal are present, is satisfied.

2. The opening and closing device control system according to claim 1, wherein the controller is configured to cause the opening and closing device to perform the open operation and then cause the opening and closing device to perform a close operation on condition that either the vehicle sensing signal or the

55

automatic transmitting signal is absent.

3. The opening and closing device control system according to claim 1, further comprising:

> an obstacle sensing device which senses an obstacle in an opening and closing path of the opening and closing body and outputs an obstacle sensing signal, wherein

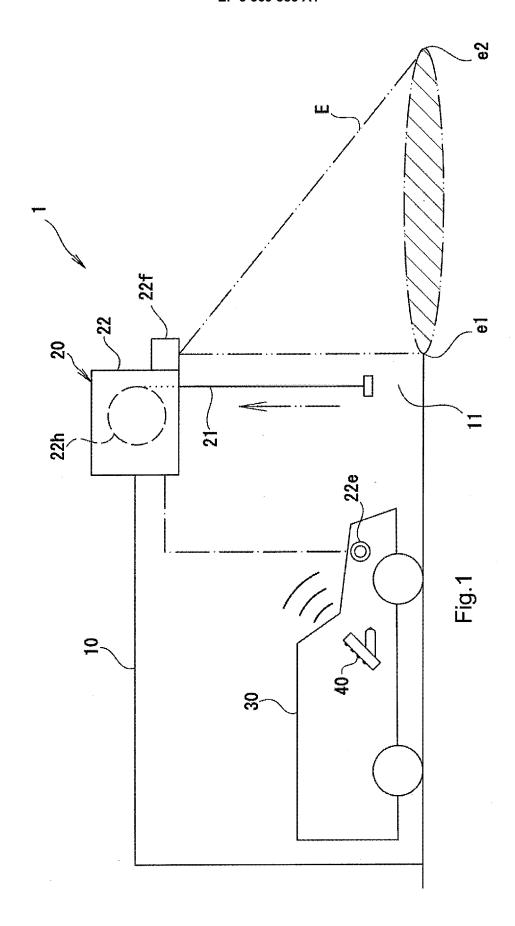
the controller is configured to cause the opening and closing device to perform the open operation and then cause the opening and closing device to perform a close operation on condition that either the vehicle sensing signal or the automatic transmitting signal is absent and the obstacle sensing signal is absent.

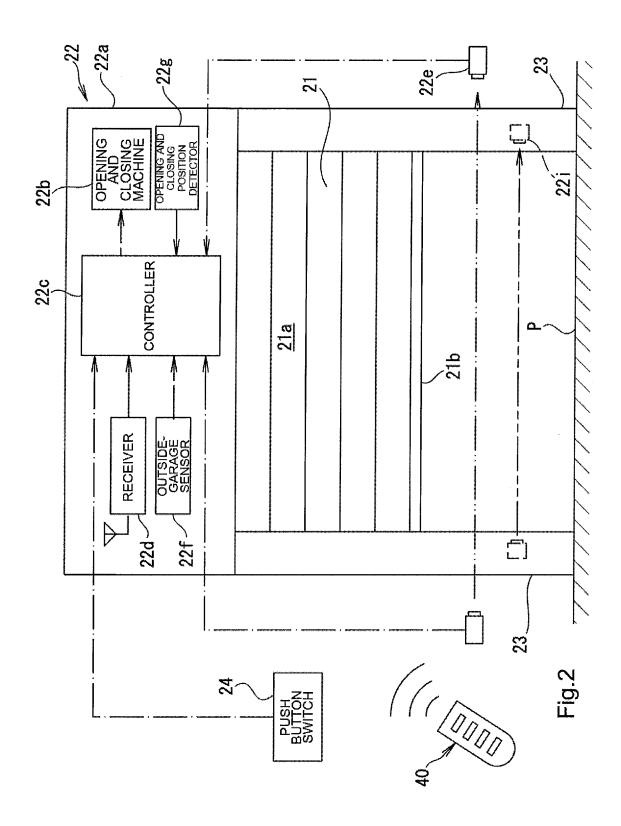
5

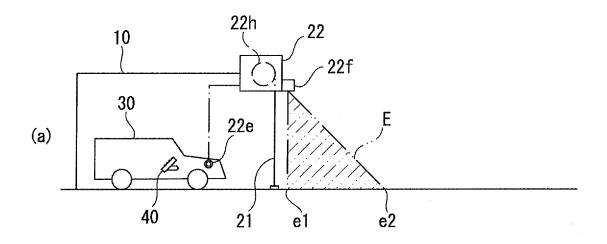
20

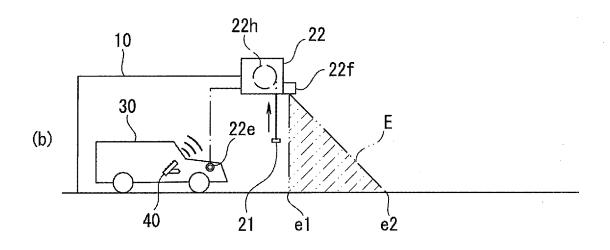
25

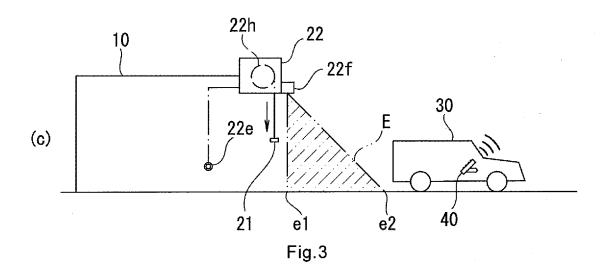
30

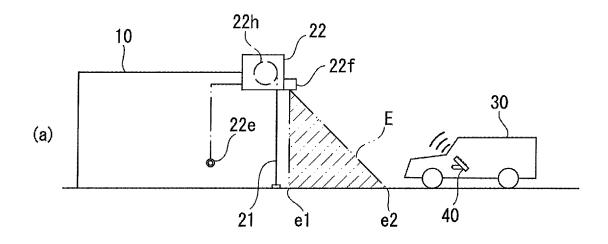

35

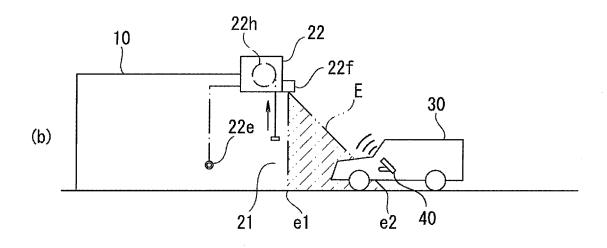

40

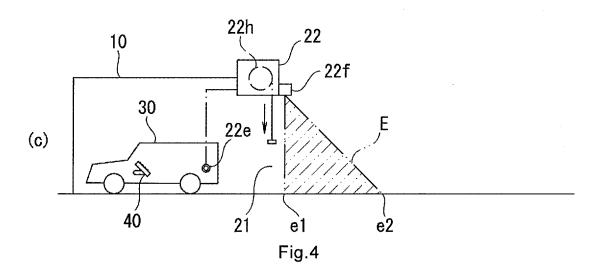

45


50


55













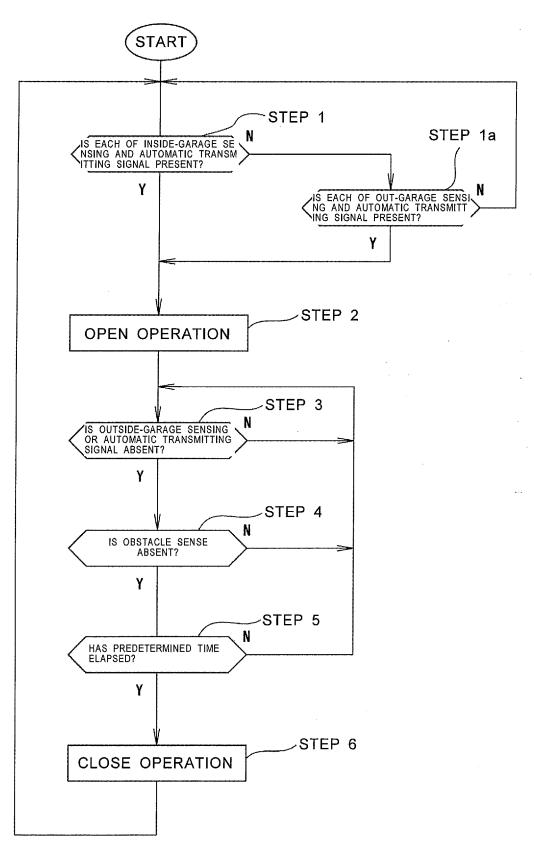




Fig.5

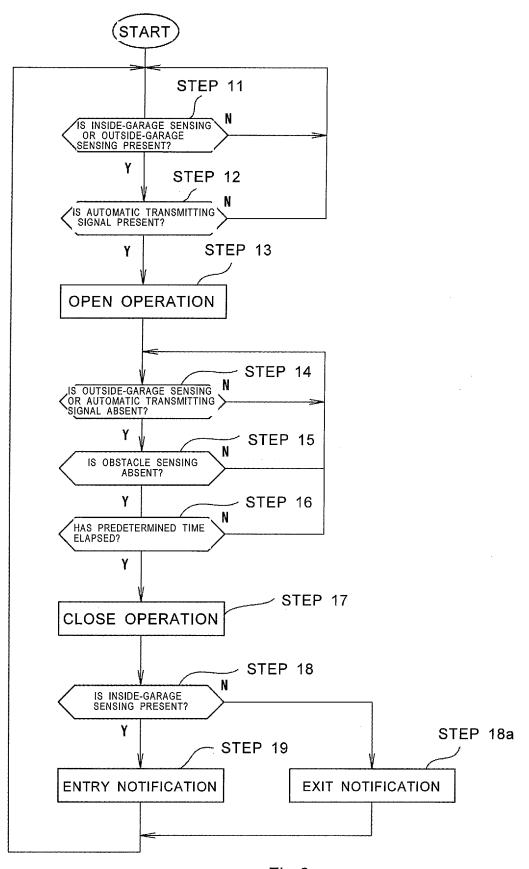



Fig.6

#### EP 3 369 883 A1

#### INTERNATIONAL SEARCH REPORT International application No. PCT/JP2016/079321 A. CLASSIFICATION OF SUBJECT MATTER E05F15/74(2015.01)i, E05F15/43(2015.01)i, E05F15/665(2015.01)i, E05F15/77 5 (2015.01)i, E06B9/68(2006.01)i According to International Patent Classification (IPC) or to both national classification and IPC FIELDS SEARCHED Minimum documentation searched (classification system followed by classification symbols) 10 E05F15/74, E05F15/43, E05F15/665, E05F15/77, E06B9/68 Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched Jitsuyo Shinan Toroku Koho Jitsuyo Shinan Koho 1922-1996 1996-2016 15 Kokai Jitsuyo Shinan Koho 1971-2016 Toroku Jitsuyo Shinan Koho 1994-2016 Electronic data base consulted during the international search (name of data base and, where practicable, search terms used) 20 DOCUMENTS CONSIDERED TO BE RELEVANT Category\* Citation of document, with indication, where appropriate, of the relevant passages Relevant to claim No. JP 2001-152749 A (Bunka Shutter Co., Ltd.), 1-3 05 June 2001 (05.06.2001), paragraphs [0043] to [0061], [0167]; fig. 1 to 25 (Family: none) JP 62-291385 A (Daifuku Co., Ltd.), Υ 1 - 318 December 1987 (18.12.1987), page 1, lower right column, line 15 to page 3, 30 lower right column, line 10; fig. 1 to 3 (Family: none) Υ JP 2015-4185 A (Bunka Shutter Co., Ltd.), 3 08 January 2015 (08.01.2015), paragraph [0061] 35 (Family: none) × Further documents are listed in the continuation of Box C. See patent family annex. 40 Special categories of cited documents: "T" later document published after the international filing date or priority date and not in conflict with the application but cited to understand the principle or theory underlying the invention document defining the general state of the art which is not considered to "A" be of particular relevance "E" earlier application or patent but published on or after the international filing document of particular relevance; the claimed invention cannot be considered novel or cannot be considered to involve an inventive step when the document is taken alone document which may throw doubts on priority claim(s) or which is cited to establish the publication date of another citation or other special reason (as specified) 45 document of particular relevance; the claimed invention cannot be considered to involve an inventive step when the document is combined with one or more other such documents, such combination being obvious to a person skilled in the art "O" document referring to an oral disclosure, use, exhibition or other means document published prior to the international filing date but later than the priority date claimed "P document member of the same patent family Date of the actual completion of the international search Date of mailing of the international search report 50 09 November 2016 (09.11.16) 22 November 2016 (22.11.16) Name and mailing address of the ISA/ Authorized officer Japan Patent Office 3-4-3, Kasumigaseki, Chiyoda-ku, Tokyo 100-8915, Japan Telephone No. 55 Form PCT/ISA/210 (second sheet) (January 2015)

## EP 3 369 883 A1

# INTERNATIONAL SEARCH REPORT International application No. PCT/JP2016/079321

| 5  | C (Continuation) | C (Continuation). DOCUMENTS CONSIDERED TO BE RELEVANT                                                       |                       |
|----|------------------|-------------------------------------------------------------------------------------------------------------|-----------------------|
| J  | Category*        | Citation of document, with indication, where appropriate, of the relevant passages                          | Relevant to claim No. |
| 10 | A                | JP 3671833 B2 (Matsushita Electric Works, Ltd.), 13 July 2005 (13.07.2005), paragraph [0012] (Family: none) | 1-3                   |
| 15 |                  |                                                                                                             |                       |
| 20 |                  |                                                                                                             |                       |
| 25 |                  |                                                                                                             |                       |
| 30 |                  |                                                                                                             |                       |
| 35 |                  |                                                                                                             |                       |
| 40 |                  |                                                                                                             |                       |
| 45 |                  |                                                                                                             |                       |
| 50 |                  |                                                                                                             |                       |
| 55 |                  |                                                                                                             |                       |

Form PCT/ISA/210 (continuation of second sheet) (January 2015)

## EP 3 369 883 A1

#### REFERENCES CITED IN THE DESCRIPTION

This list of references cited by the applicant is for the reader's convenience only. It does not form part of the European patent document. Even though great care has been taken in compiling the references, errors or omissions cannot be excluded and the EPO disclaims all liability in this regard.

## Patent documents cited in the description

• JP 2001152749 A [0004]