TECHNICAL FIELD
[0001] The present invention relates to a heat pump. More specifically, the present invention
relates to a heat pump using air as a refrigerant.
BACKGROUND ART
[0002] Conventional heat pumps mainly use a fluorocarbon-based refrigerant such as hydrofluorocarbon
(HFC) or CO
2 as a refrigerant. Therefore, there is a fear that leakage of refrigerants causes
global warming or increases CO
2 in the atmosphere. For this reason, heating and cooling systems using a natural refrigerant
having no negative environmental effects on the global environment have been studied.
[0003] The coefficients of performance (COPs) of existing heat pumps under heat supply conditions
of 90°C and 7°C are as follows.
Natural refrigerant (CO2) heat pumps: COP 3.0
Absorption heat pumps: COP 1.5
Adsorption heat pumps: COP 0.6 to 0.7
Alternative freon heat pumps: COP 4.5
Air-refrigerant refrigerators: COP 0.44
[0004] As heat pumps using air that is an ultimate natural refrigerant, air-refrigerant
refrigerators are known. However, the application of air-refrigerant refrigerators
is limited to freezing at ultralow temperature, and air-refrigerant refrigerators
have a COP of about 0.44 and are therefore not advantageous in terms of performance.
[0005] Further, a technique called "compressed air energy storage (CAES)" is known which
is a technique for smoothing an unstable generated power output that irregularly fluctuates,
such as renewable energy, with the use of air as a working fluid. A CAES generator
disclosed in Patent Document 1 stores compressed air discharged from a compressor
when surplus power is generated, and reconverts the compressed air into electricity
with the use of an air-turbine generator when necessary.
PRIOR ART DOCUMENT
PATENT DOCUMENT
SUMMARY OT THE INVENTION
PROBLEMS TO BE SOLVED BY THE INVENTION
[0007] The CAES generator disclosed in Patent Document 1 is intended to smooth an unstable
generated power output that irregularly fluctuates, such as renewable energy, and
Patent Document 1 does not particularly suggest the use of the CAES generator as a
heat pump using air as a refrigerant.
[0008] It is an object of the present invention to provide an air-refrigerant heat pump
that utilizes part of the technique of CAES to supply hot heat with the use of only
air and water. Further, it is also an object of the present invention to provide an
air-refrigerant heat pump improved to have higher efficiency than ever before.
MEANS FOR SOLVING THE PROBLEMS
[0009] The present invention provides a heat pump comprising: an electric motor driven by
input electric power; a first compressor mechanically connected to the electric motor
and compresses air; a first heat exchanger performing heat exchange between compressed
air produced by the first compressor and water; and a first hot water outlet through
which the water heated by heat exchange in the first heat exchanger is taken out.
[0010] By increasing the temperature of the air with the use of compression heat generated
by the first compressor and increasing the temperature of the water by heat exchange
with the heated air in the first heat exchanger, it is possible to produce hot water
and take out the hot water through the first hot water outlet. Further, since air
and water are used as working fluids, leakage of the working fluids into the atmosphere
has no negative environmental effects.
[0011] Preferably, the heat pump further comprises an expander driven by the compressed
air produced by the first compressor; a load generator mechanically connected to the
expander; a second heat exchanger performing heat exchange between air expanded by
the expander and water; and a cold water outlet through which the water cooled by
the heat exchange in the second heat exchanger is taken out. More preferably, the
air expanded by the expander and supplied to the second heat exchanger has a temperature
of -50°C to -110°C.
[0012] By decreasing the temperature of the air by absorption of heat during expansion in
the expander preferably to -50°C to -110°C and then cooling water by heat exchange
with the cooled air in the second heat exchanger, it is possible to take out cold
water from the cold water outlet. Since cold water as well as hot water can be taken
out, it is possible to increase COP and improve performance.
[0013] Preferably, the heat pump further comprises a first accumulator storing the compressed
air produced by the first compressor, wherein the expander is driven by the compressed
air supplied from the first accumulator, wherein the load generator is a power generator,
and wherein the power generator is driven by the expander to generate electric power.
[0014] By supplying the compressed air stored as energy in the first accumulator to the
expander when necessary to drive the power generator to generate electric power, it
is possible to simultaneously smooth electric power in addition to obtain cold heat
and hot heat.
[0015] Preferably, the heat pump further comprises a second accumulator that fluidly connected
to at least one of the expander and the first accumulator; and a second compressor
compressing air to a pressure higher than that of the compressed air produced by the
first compressor and supplies the compressed air to the second accumulator.
[0016] By providing the second accumulator and the second compressor, it is possible to
supply emergency power and cold water over a long period of time in the event of an
interruption of commercial electric power system. This is particularly effective for
a demander, such as a data center or a large computer, which requires emergency power
and a large amount of cold heat when a power failure occurs.
[0017] Preferably, the heat pump further comprises a switching mechanism switching a supply
destination of the electric power generated by the power generator between the electric
motor and a demander.
[0018] By providing the switching mechanism, it is possible to change a power supply destination
when necessary. More specifically, electric power generated by the power generator
can be effectively used by supplying the electric power to the demander in normal
times and supplying the electric power to the electric motor to drive the first compressor
when there is no demand for electric power from the demander. In particular, when
there is no demand for electric power from the demander, electric power is cyclically
used in the system, and therefore electric power that needs to be supplied from the
outside of the system can be reduced. This can increase coefficient of performance
(COP) and improve performance.
[0019] The load generator is preferably the electric motor.
[0020] By integrating the electric motor and the load generator, it is possible to reduce
the number of components of the system. This can reduce the size of the system. In
particular, when the load generator is a power generator, the first compressor and
the expander may be mechanically connected to each other using a motor generator.
[0021] The heat pump preferably comprises a heat recovery mechanism recovering heat generated
by the electric motor and the load generator to increase a temperature of water by
the recovered heat to take out the water as hot water through a second hot water outlet.
[0022] This can recover heat generated by electric losses or mechanical losses caused by
the electric motor or the like to produce hot water.
EFFECT OF THE INVENTION
[0023] According to the present invention, it is possible to provide an air-refrigerant
heat pump that utilizes part of the technique of CAES to supply hot heat with the
use of only air and water. Further, it is possible to improve efficiency more than
ever.
BRIEF DESCRIPTION OF THE DRAWINGS
[0024]
Fig. 1 is a schematic configuration diagram of a heat pump according to a first embodiment
of the present invention;
Fig. 2A is a bar graph showing details of COP in the heat pump of Fig. 1 at an operation
mode in which heating and cooling and power generation are both performed;
Fig. 2B is a bar graph showing details of COP in the heat pump of Fig. 1 at an operation
mode in which only heating and cooling is performed;
Fig. 3 is a schematic configuration diagram of a heat pump according to a second embodiment
of the present invention;
Fig. 4 is a schematic configuration diagram of a heat pump according to a third embodiment
of the present invention.
DESCRIPTION OF EMBODIMENTS
[0025] Hereinbelow, embodiments of the present invention will be described with reference
to the accompanying drawings.
(First Embodiment)
[0026] Fig. 1 is a schematic configuration diagram of a heat pump 2 according to a first
embodiment of the present invention. The heat pump 2 according to this embodiment
receives input electric power from a power-generating unit 4, and produces two kinds
of hot water (hot water A and hot water B), cold water, and cold air with the use
of air as a refrigerant to use them for air heating and air cooling. Since air and
water are used as working fluids, leakage of the working fluids into the atmosphere
has no negative environmental effects.
[0027] The power-generating unit 4 used in this embodiment is one that utilizes renewable
energy, such as a wind power-generating unit or a solar power-generating unit in terms
of environmental friendliness, but the type of the power-generating unit 4 is not
particularly limited. Alternatively, the power-generating unit 4 may be an electric
power system or the like connected to a commercial power supply.
[0028] The heat pump 2 according to this embodiment includes a motor (electric motor) 6,
a first compressor 8, an expander 10, a power generator (load generator) 12, a first
heat exchanger 14, and a second heat exchanger 18 which are fluidly connected through
air pipes 20a to 20c and water supply pipes 22a to 22g.
[0029] First, the paths of the air pipes 20a to 20c will be described.
[0030] Electric power generated by the power-generating unit 4 is supplied to the motor
6. Hereinafter, the electric power supplied from the power-generating unit 4 to the
motor 6 is referred to as input electric power. The motor 6 is driven by the input
electric power.
[0031] The first compressor 8 is mechanically connected to the motor 6, and is driven by
the motor 6. The first compressor 8 has an outlet 8b fluidly connected to an air supply
port 10a of the expander 10 through the air pipe 20b. When driven by the motor 6,
the first compressor 8 sucks air through an air inlet 8a, compresses air, and pressure-feeds
the compressed air discharged through the outlet 8b to the expander 10 through the
air pipe 20b. The air pipe 20b is provided with the first heat exchanger 14.
[0032] In the first heat exchanger 14, heat exchange is performed between compressed air
in the air pipe 20b that extends from the first compressor 8 to the expander 10 and
water in the water supply pipe 22b that extends from a water supply unit 28 that will
be described later to a first hot water outlet 38 to heat water in the water supply
pipe 22b with the use of compression heat generated by the first compressor 8. That
is, the first heat exchanger 14 decreases the temperature of compressed air and increases
the temperature of water. The first heat exchanger 14 can adjust compressed air and
water to their respective predetermined temperatures by adjusting the amount of heat
exchange. In this embodiment, the first heat exchanger 14 increases the temperature
of water to ordinary temperature or higher and decreases the temperature of compressed
air to ordinary temperature or lower. Here, the ordinary temperature of water is,
for example, the temperature of industrial water or the temperature of water after
heat exchange with the atmosphere using a cooling tower, and is generally in the range
of 5 to 30°C, and varies depending on the region and season. The ordinary temperature
of air is the temperature of the atmosphere, and is generally in the range of 0 to
40°C, and varies depending on the region and season.
[0033] The expander 10 is mechanically connected to the power generator 12. When compressed
air is supplied to the expander 10 through the air supply port 10a, the expander 10
is operated by the supplied compressed air and drives the power generator 12. The
power generator 12 is electrically connected to an electric power system 16 and the
motor 6 through a switch 24 (see the dashed-dotted line in Fig. 1). Therefore, electric
power generated by the power generator 12 (hereinafter referred to as "generated power")
is supplied to the electric power system 16 or the motor 6. The supply destination
of generated power can be changed by operating the switch (switching mechanism) 24.
The switch 24 may be operated according to demand power required by the electric power
system 16. More specifically, when it is not necessary to supply electric power from
the power generator 12 to the electric power system 16, the switch 24 is operated
to supply generated power from the power generator 12 to the motor 6 of the first
compressor 8 so that the heat pump 2 is operated only for heating and cooling. When
it is necessary to supply electric power from the power generator 12 to the electric
power system 16, the switch 24 is operated to supply generated power from the power
generator 12 to the electric power system 16 so that the heat pump 2 is operated for
both heating and cooling and power generation. In particular, when there is no demand
for electric power from a demander and therefore it is not necessary to supply electric
power from the power generator 12 to the electric power system 16, the heat pump 2
is operated only for cooling and heating so that electric power is cyclically used
in the system. Therefore, electric power that needs to be supplied from the outside
of the system to drive the motor 6 can be reduced, which can increase coefficient
of performance (COP) and improve performance.
[0034] Air expanded by the expander 10 is cooled by absorption of heat during expansion
and then sent into the air pipe 20c through an air outlet 10b. Compressed air supplied
to the air supply port 10a of the expander 10, which has been cooled to ordinary temperature
or less by the first heat exchanger 14, is further cooled by the expander 10 and is
therefore reliably sent as cold air having ordinary temperature or less into the air
pipe 20c. The air pipe 20c is provided with the second heat exchanger 18. The cold
air cooled to ordinary temperature or less is supplied to the second heat exchanger
18 through the air pipe 20c.
[0035] In the second heat exchanger 18, heat exchange is performed between air having ordinary
temperature or lower in the air pipe 20c that extends from the expander 10 to a cold
air outlet 26 and water in the water supply pipe 22c that extends from a flow divider
36 that will be described later to a cold water outlet 30 to cool the water to ordinary
temperature or lower. That is, the second heat exchanger 18 increases the temperature
of air and decreases the temperature of water. However, the second heat exchanger
18 heats air so that the air is kept at ordinary temperature or lower by adjusting
the amount of heat exchange. After the heat exchange in the second heat exchanger
18, air kept at ordinary temperature or lower, that is, cold air is supplied to the
cold air outlet 26 through the air pipe 20c and taken out to the outside of the heat
pump through the cold air outlet 26 to be used for cooling. Examples of a demander
of cooling include a data center that requires a huge amount of cooling energy for
cooling computers and a precision machine factory and a semiconductor device factory
that are required to be adjusted to a constant temperature due to constraints imposed
by manufacturing processes.
[0036] Hereinbelow, the paths of the water supply pipes 22a to 22g will be described.
[0037] Water supplied from the water supply unit 28 is allowed to flow by being pressurized
by a pump 32a in the water supply pipe 22a. The water supply pipe 22a is provided
with a cooling tower 34, and water in the water supply pipe 22a is cooled to a certain
temperature by the cooling tower 34. The cooling temperature may be, for example,
about ordinary temperature or may be determined on the basis of the amount of heat
exchange in each of the heat exchanger 14, the heat exchange 18, a heat exchanger
40, and a heat exchanger 42. The water supply pipe 22a is divided into the water supply
pipes 22b to 22e by the flow divider 36 provided downstream from the cooling tower
34.
[0038] One end and the other end of the water supply pipe 22b are connected to the flow
divider 36 and the first hot water outlet 38, respectively. Water heated to ordinary
temperature or higher by the first heat exchanger 14 provided in the water supply
pipe 22b is taken out through the first hot water outlet 38 to the outside of the
heat pump as hot water A, and the hot water A is used for heating etc.
[0039] One end and the other end of the water supply pipe 22c are connected to the flow
divider 36 and the cold water outlet 30, respectively. Water cooled to ordinary temperature
or lower by the second heat exchanger 18 provided in the water supply pipe 22c is
taken out through the cold water outlet 30 to the outside of the heat pump as cold
water, and the cold water is used for cooling etc. In this way, cold water as well
as hot water can be taken out, which can increase coefficient of performance (COP)
and improve performance.
[0040] One end and the other end of the water supply pipe 22d are connected to the flow
divider 36 and a second hot water outlet 44. One end of the water supply pipe 22e
is connected to the flow divider 36, and the water supply pipe 22e joins the water
supply pipe 22d, which is provided downstream from the third heat exchanger 40, at
the other end thereof. The water supply pipe 22d and the water supply pipe 22e are
provided with the third heat exchanger 40 and the fourth heat exchanger 42, respectively
to heat water inside thereof.
[0041] In this embodiment, the third heat exchanger 40 and the fourth heat exchanger 42
ae provided to recover heat that is less than compression heat such as electric losses
or mechanical losses caused by the motor 6 and the power generator 12 but can be used
to produce hot water. The electric losses include losses in inverters (not shown)
and losses in converters (not shown) caused by the motor 6 and the power generator
12. In the third heat exchanger 40, heat exchange is performed between water in the
water supply pipe 22d and a heat medium such as lubricant oil that is circulated in
a heat medium pipe 21a by a pump 32b to recover heat from the motor 6. In the fourth
heat exchanger 42, heat exchange is performed between water in the water supply pipe
22e and a heat medium such as lubricant oil that is circulated in a heat medium pipe
21b by a pump 32c to recover heat from the power generator 12. That is the third heat
exchanger 40 and the fourth heat exchanger 42 increase the temperature of water and
decrease the temperature of a heat medium. Water heated to a predetermined temperature
is taken out as hot water B through the second hot water outlet 44 to the outside
of the heat pump. Therefore, the heat medium pipes 21a and 21b, the third heat exchanger
40, and the fourth heat exchanger 42 are included in a heat recovery mechanism 46
used in the present invention. The hot water B taken out through the second hot water
outlet 44 usually has a temperature lower than that of the hot water A taken out through
the first hot water outlet 38. Therefore, it is thought that the hot water B can be
used for heating in bathing facilities, heated pools, agricultural facilities, etc.
that can use hot water having a relatively low temperature.
[0042] The cold water, the hot water A, and the hot water B used for cooling and heating
are collected through the water supply pipes 22f and 22g into a drainage unit 48.
The drainage unit 48 and the water supply unit 28 are connected to each other through
a pipe not shown. Water collected into the drainage unit 48 is again supplied from
the water supply unit 28 to each of the heat exchangers 14, 18, 40, and 42 through
the water supply pipe 22a and the cooling tower 34. That is, water used in this embodiment
is circulated through the water supply pipes 22a to 22g.
[0043] In order to obtain hot water A, hot water B, cold water, and cold air each having
a predetermined temperature, the first heat exchanger 14 and the second heat exchanger
18 are preferably plate heat exchangers that can perform large capacity heat exchange.
[0044] The types of the first compressor 8 and the expander 10 used in this embodiment are
not limited, and the first compressor 8 and the expander 10 may be of a screw type,
a scroll type, a turbo type, or a reciprocating type. However, in order to highly
responsively and linearly follow input electric power that irregularly fluctuates,
such as renewable energy, the first compressor 8 and the expander 10 are preferably
of a screw type to respond to the power-generating unit 4 used in this embodiment.
Although the number of each of the first compressor 8 and the expander 10 used in
this embodiment is one, the number of each of the first compressor 8 and the expander
10 is not particularly limited. The first compressor 8 may be one in which two or
more compressors are provided in parallel, and the expander 10 may be one in which
two or more expanders are provided in parallel.
[0045] The performance of the heat pump 2 will be described.
[0046] A coefficient of performance (COP) is known as a coefficient used to evaluate the
performance of a heating and cooling system such as the heat pump 2. The COP is determined
by dividing electric power Li supplied to the system by the amount of generated electric
power and heat LQ (COP = LQ/Li). The operation mode of the heat pump 2 according to
this embodiment can be switched by the switch 24 between a mode in which heating and
cooling and power generation are both performed and a mode in which only heating and
cooling is performed. Hereinbelow, both the operation modes will be described while
the electric power Li supplied to the system and the breakdown of the amount of recovered
heat represented as the amount of generated electric power and heat LQ will be exemplified.
However, exemplified numerical values are not particularly intended to limit the scope
of the present invention.
[0047] Fig. 2A is a bar graph showing the breakdown of COP in the case of the operation
mode in which heating and cooling and power generation are both performed according
to this embodiment, and Fig. 2B is a bar graph showing the breakdown of COP in the
case of the operation mode in which only heating and cooling is performed according
to this embodiment.
[0048] First, the operation mode in which heating and cooling and power generation are both
performed will be described with reference to Fig. 2A.
[0049] The electric power Li to be supplied to the system is generated by the power-generating
unit 4 and supplied from the power-generating unit 4 as an electric power of about
90 kW to drive the motor 6.
[0050] The amount of generated electric power and heat LQ is represented as a sum of the
total amount of heat of hot water A, hot water B, cold water, and cold air taken out
from the heat pump 2 and the amount of electric power Lg generated by the power generator
12 and supplied to the electric power system 16.
[0051] The hot water A taken out through the first hot water outlet 38 is hot water heated
by the first heat exchanger 14 with the use of compression heat generated by the first
compressor 8. In this embodiment, hot water A at, for example, about 90°C can be collected,
and the amount of recovered heat is about 65 kW. The temperature of the collected
hot water A may be determined by adjusting the specifications of the first heat exchanger
14 so that the temperature of air discharged from the first compressor 8 is about
-10°C to 60°C.
[0052] The how water B taken out through the second hot water outlet 44 is hot water heated
by the third heat exchanger 40 and the fourth heat exchanger 42 with the use of heat
generated by electric losses and mechanical losses in the motor 6 and the power generator
12. In this embodiment, hot water B at, for example, about 70°C can be collected,
and the amount of recovered heat is about 15 kW.
[0053] The cold air taken out through the cold air outlet 26 is cold air cooled by absorption
of heat during expansion in the expander 10. In this embodiment, cold air at, for
example, about -50°C to -110°C is discharged through the air outlet 10b of the expander
10 and then heated by the second heat exchanger 18 so that cold air at about 10°C
to 17°C can be finally collected. The amount of recovered heat is about 7 kW.
[0054] The cold water taken out through the cold water outlet 30 is cold water cooled in
the second heat exchanger 18 by cold air sent from the expander 10. In this embodiment,
cold water at, for example, about 7°C can be collected, and the amount of recovered
heat is about 40 kW.
[0055] The amount of electric power Lg generated by the power generator 12 and supplied
to the electric power system 16 is about 40 kW.
[0056] The amount of generated electric power and heat LQ is defined as the sum of these,
and is therefore 167 (= 15 + 65 + 40 + 7 + 40) kW.
[0057] Therefore, the coefficient of performance (COP) of the heat pump 2 according to this
embodiment in the operation mode in which heating and cooling and power generation
are both performed is 1.86 (= 167 kW/90 kW).
[0058] Hereinbelow, the operation mode in which only heating and cooling is performed will
be described with reference to Fig. 2B.
[0059] The electric power Li to be supplied to the system is generated by the power-generating
unit 4 using renewable energy, such as a wind power-generating unit or a solar power-generating
unit, and is supplied as an electric power of about 50 kW to drive the motor 6. An
electric power of about 90 kW is required to drive the motor 6, but in the case of
the operation mode in which only heating and cooling is performed, a remaining electric
power of about 40 kW is cyclically supplied from the power generator 12 in the system.
Therefore, the electric power Li to be supplied to the system is about 50 kW.
[0060] As for the amount of generated electric power LQ and heat, the amount of heat individually
taken out (hot water A, hot water B, cold water, and cold air) is the same as that
in the operation mode in which heating and cooling and power generation are both performed.
However, electric power generated by the power generator 12 is not supplied to the
electric power system 16, and therefore the amount of electric power Lg is 0 kW. The
amount of generated electric power and heat LQ is defined as the total of these, and
is therefore 127 (= 15 + 65 + 40 + 7 + 0) kW.
[0061] Therefore, the coefficient of performance (COP) of the heat pump 2 according to this
embodiment in the operation mode in which only heating and cooling is performed is
2.54 (= 127 kW/50 kW). The heat pump 2 offers significantly improved performance than
conventional air-refrigerant heat pumps and has a COP exceeding 2.0 that was previously
difficult to achieve.
(Second Embodiment)
[0062] Fig. 3 is a schematic configuration diagram of a heat pump 2 according to a second
embodiment. The configuration of the heat pump 2 according to this embodiment is substantially
the same as that of the heat pump 2 according to the first embodiment shown in Fig.
1 except that a motor generator 50 in which a motor and a power generator are integrated
is used. Therefore, the description of the configuration that is the same as the configuration
shown in Fig. 1 will not be repeated.
[0063] In this embodiment, the first compressor 8 and the expander 10 are coaxially and
mechanically connected through the motor generator 50 in which a motor and a power
generator are integrated. By connecting the first compressor 8 and the expander 10
to each other using the motor generator 50, it is possible to use the atmospheric
expansion torque of compressed air as an aid for air compression torque. This can
reduce electric power input to the motor generator 50. The power generator 12 (see
Fig. 1) is substantially omitted from the first embodiment, which simplifies the heat
recovery mechanism 46. Further, the heat medium pipe 21b (see Fig. 1), the pump 32c,
and the fourth heat exchanger 42 (see Fig. 1) are omitted from the first embodiment.
This can reduce not only the system cost but also electric losses and mechanical losses
in the power generator and losses in an inverter and a converter for the power generator.
(Third Embodiment)
[0064] Fig. 4 is a schematic configuration diagram of a heat pump 2 according to a third
embodiment. The heat pump 2 according to this embodiment is a compressed air energy
storage (CAES) power-generating system 2. More specifically, the CAES power-generating
system 2 further comprises a first accumulator tank (first accumulator) 52 and a second
accumulator tank (second accumulator) 54 in addition to the components of the heat
pump 2 according to the first embodiment shown in Fig. 1. The CAES power-generating
system 2 can store energy in the form of compressed air and convert the compressed
air into electric power when necessary, and therefore can smooth unstable generated
electric power that irregularly fluctuates, such as electric power generated by the
power generating unit 4 using renewable energy such as a wind power-generating unit
or a solar power-generating unit. This embodiment and the first embodiment mostly
overlap each other in their configuration, and therefore the description of the configuration
that is the same as the configuration shown in Fig. 1 will not be repeated.
[0065] The CAES power-generating system 2 according to this embodiment is provided with
a first accumulator tank 52 that stores compressed air discharged from the first compressor
8 into the air pipe 20b that extends from the first compressor 8 to the expander 10.
That is, the first accumulator tank 52 can store energy in the form of compressed
air. The compressed air stored in the first accumulator tank 52 is supplied to the
expander 10 through the air pipe 20c. The air pipe 20c is provided with a valve 56,
and therefore the supply of compressed air to the expander 10 can be permitted or
shut off by opening or closing the valve 56. By storing energy in the form of compressed
air in the first accumulator tank 52 and supplying the compressed air to the expander
10 when necessary to drive the power generator 12 to generate electric power, it is
possible to smooth the generated power output of the power-generating unit 4 using
renewable energy.
[0066] Further, the CAES power generating system 2 according to this embodiment is provided
with a second compressor 58 that compresses air to a pressure higher than that of
compressed air produced by the first compressor 8 and a second accumulator tank 54
whose allowable accumulation pressure is higher than that of the first accumulator
tank 52. Here, the allowable accumulation pressure refers to a maximum working pressure
that does not lead to the breakdown or failure of the accumulator tank.
[0067] Similarly to the first compressor 8, the second compressor 58 is mechanically connected
to a motor 7. The second compressor 58 is driven by the motor 7, and sucks air through
an air inlet 58a and compresses the air to a pressure higher than that of compressed
air produced by the first compressor 8 to supply compressed air from an outlet 58b
to the second accumulator tank 54. Therefore, the pressure in the second accumulator
tank 54 is usually higher than that in the first accumulator tank 52. For example,
the pressure in the first accumulator tank 52 (accumulation pressure) may be less
than 0.98 MPa, and the pressure in the second accumulator tank 54 (accumulation pressure)
may be about 4.5 MPa.
[0068] The second accumulator tank 54 is fluidly connected to the first accumulator tank
52 and the expander 10 through an air pipe 20d. More specifically, one end of the
air pipe 20d is fluidly connected to the second accumulator tank 54, and the other
end of the air pipe 20d is fluidly connected to the air pipe 20c. The air pipe 20d
is provided with a flow control valve 60, and therefore the flow rate of air supplied
to the first accumulator tank 52 and the expander 10 can be adjusted by adjusting
the aperture of the flow control valve 60. By supplying decompressed high-pressure
air to the expander 10, it is possible to drive the power generator 12 to generate
electric power. By supplying decompressed high-pressure air to the first accumulator
tank 52, it is possible to compensate for a reduction in the amount of compressed
air stored in the first accumulator tank 52.
[0069] By providing the second accumulator tank 54 and the second compressor 58, it is possible
to supply emergency power and cooling over a long period of time in the event of emergency
such as a power failure. More specifically, the flow control valve 60 is closed in
normal times so that the pressure in the second accumulator tank 54 is kept high.
When a large amount of electric power needs to be generated due to a power failure
or the like or the pressure in the first accumulator tank 52 is reduced due to long-time
power generation, the flow control valve 60 is opened to supply a large amount of
compressed air from the second accumulator tank 54 to the expander 10. This can prevent
a reduction in the amount of electric power generated by the power generator 12 driven
by the expander 10 and to take out cold air and cold water at the same time. This
is particularly effective for a demander, such as a data center and a large computer,
which requires a large amount of cold heat.
REFERENCE SIGNS LIST
[0070] 2: Heat pump (Compressed air energy storage (CAES) power-generating system), 4: Power-generating
unit, 6; 7: Motor (Electric motor), 8: First compressor, 8a: Air inlet, 8b: Outlet,
10: Expander, 10a: Air supply port, 10b: Air outlet, 12: Power generator (Load generator),
14: First heat exchanger, 16: Electric power system, 18: Second heat exchanger, 20a;
20b; 20c; 20d: Air pipe, 21a; 21b: Heat medium pipe, 22a; 22b; 22c; 22d; 22e; 22f;
22g: Water supply pipe, 24: Switch (Switching mechanism), 26: Cold air outlet, 28:
Water supply unit, 30: Cold water outlet, 32;, 32b; 32c: Pump, 34: Cooling tower,
36: Flow divider; 38: First hot water outlet, 40: Third heat exchanger, 42: Fourth
heat exchanger, 44: Second hot water outlet, 46: Heat recovery mechanism, 48: Drainage
unit, 50: Motor generator, 52: First accumulator tank (First accumulator), 54: Second
accumulator tank (Second accumulator), 56: Valve, 58: Second compressor, 58a: Air
inlet, 58b: Outlet, 60: Flow control valve