[0001] The present invention relates to a lamination process for producing a multilayer
laminate, preferably to a lamination process for producing a photovoltaic (PV) module,
and to a PV module laminate.
Background
[0002] Lamination of polymer layers on a rigid or flexible substrate of various materials
is a well known technology and used in numerous technical fields. The polymer material
used for the polymer layer can vary depending on the end application of the article
comprising the multilayer laminate. For instance ethylene vinyl acetate (EVA) and
other thermoplastic based polymers are conventionally used layer materials in lamination
processes.
[0003] In general, the lamination of layer(s) to a substrate can be performed for instance
by 1) so called cast extrusion, wherein at least part of the layers are produced on
a premade substrate during the cast extrusion step or 2) by integrating premade substrate
and premade layer(s) together under heat and pressure, typically in a vacuum in a
laminator equipment.
[0004] For instance, lamination is one of the steps also used for producing well known photovoltaic
modules, also known as solar cell modules. Photovoltaic (PV) modules produce electricity
from light and are used in various kind of applications as well known in the field.
The type of the photovoltaic module can vary. The modules have typically a multilayer
structure, i.e. several different layer elements wich have different functions. The
layer elements of the photovoltaic module can vary with respect to layer materials
and layer structure. The final photovoltaic module can be rigid or flexible.
[0005] The rigid photovoltaic module can for example contain a rigid protective front layer
element, such as a glass element, front encapsulation layer element, a photovoltaic
element, rear encapsulation layer element, a protective back layer element, which
is also called a backsheet layer element and which can be rigid or flexible; and optionally
e.g. an aluminium frame.
[0006] In flexible modules all the above elements are flexible, whereby the protective front
layer element can be e.g. a fluorinated layer made from polyvinylfluoride (PVF) or
polyvinylidenefluoride (PVDF) polymer, and the backsheet layer element is typically
a polymeric layer element.
[0007] The above exemplified layer elements can be monolayer or multilayer elements.
[0008] All said terms have a well-known meaning in the art.
[0009] The state of the art encapsulation layers in flexible and rigid PV modules are typically
made from ethylene vinyl acetate (EVA).
[0010] Moreover, there may be adhesive layer(s) between the layers of an element or between
the different layer elements.
[0011] During the production of the PV module two or more premade elements of the PV module,
which elements can be monolayer or multilayer elements are conventionally laminated
together in a laminator equipment. Such lamination process normally comprises a step
of heating the system, which heating step typically involves evacuation of air from
the system, and a step pressurizing the system under heat and vacuum for the lamination
to occur between the functionally different layer elements. In case of a PV multilayer
element, the multilayer element, e.g. backsheet multilayer element, can be premade
completely or partly before lamination to a different functional element, like rear
encapsulation element.
[0012] Some end applications of laminated articles, like PV modules, bring demanding restrictions
to the lamination process. E.g. in case of lamination process of layer elements of
a PV module, it is always recommended that the application of pressure should be started
only when the encapsulant layer reaches a temperature greater than its melting temperature
and also after sufficient time that it is properly melted. This is very important
as otherwise applying the pressure on insufficiently molten polymer or very close
to its melting temperature will excert large stress on the fragile cells of the photovoltaic
element causing their rupture.
[0013] In a lamination process using conventional laminator equipments, one very important
and critical parameter for article manufacturers, like photovoltaic module manufacturers,
is the lamination cycle time. The lamination cycle time has a marked impact on the
expansion of production capacity and on the reduction of the production variable costs
of a multilayer laminate, like PV module. Therefore there has been a constant attempt
to develop various measures along the production value chain of a laminated article,
like PV module, which could eventually result in shorter cycle time during lamination
step.
[0014] One way to reduce the cycle time could be by starting the pressing immediate after
the polymer starts melting. However, this approach is not suitable e.g. for EVA based
layers, like encapsulant layers, even though EVA melts at temperature below 80 °C.
This is because EVA to be suitable e.g. as PV encapsulant material must usually have
high VA content to get feasible flowability/processability behaviour. The conventional
EVA with high VA content has then also very high MFR
2 (more than 15 g/10 min). If with such an encapsulant, pressing is started immediately
after the EVA melts, large amount of encapsulant will flow out of the system due to
its high melt flowability. Therefore EVA needs to be crosslinked simultaneously during
the application of pressure, typically by peroxide. Also other thermoplasts are conventionally
crosslinked during or before the lamination. Crosslinking of EVA and other thermoplasts
can be performed using e.g. irradiation or chemical crosslinker like peroxide or silane
condensation catalyst.
[0015] When e.g. EVA or other peroxide crosslinkable thermoplastic based encapsulant layer(s)
of a PV module is crosslinked during lamination process with a peroxide, it is necessary
that lamination temperature is high enough so that peroxide decomposes effectively
to initiate the crosslinking reaction and it is also necessary to prolong the lamination
time in order to complete the crosslinking reaction. Therefore, even with most effective
peroxide, the total lamination time hardly can go below 10 minutes at lamination temperature
150°C. This means e.g. with EVA encapsulant layer, there is certain technical limitation
to reduce lamination cycle time beyond certain minimum value. Furthermore, in e.g.
peroxide crosslinked encapsulant layers (e.g. EVA), the formed volatiles and reactions
products are needed to be expelled from the laminate assemble to ensure non blisters,
bubble formation in the laminate, which volatiles removing step, again, increases
the lamination cycle time.
[0016] A second way of reducing the cycle time is to shorten the pressure holding time as
much as possible without sacrificing the module quality with respect to adhesion,
bubble formation, etc. Again this approach is not suitable e.g. for EVA or other peroxide
crosslinkable thermoplastic based layers that need crosslinking reaction and subsequent
removal step of volatiles and/or by-products formed during the crosslink reaction.
[0017] As a third attempt to reduce the lamination cycle time of e.g. PV modules, the producers
of laminator equipment have tried to design advanced laminator equipments with improved
heating process or forced cooling steps, encapsulant layer producers design encapsulant
layers (which are typically based on EVA) with faster crosslinking steps, etc. However,
in most of these cases the solutions either end up with more expensive equipment need,
like advanced laminator equipments or very limited lamination process robustness due
to very strict process guideline, like fast cure EVA solution for encapsulant layer.
[0018] WO2010124189 of Bemis Associates describes an encapsulation layer based on a blend of terpolymer
of ethylene with acrylate and glycidyl methacrylate comonomers together with a heat
resistant copolymer (ethylene with glycidyl methacrylate comonomer). The blend may
also comprise carrier polymer which is an ethylene polymer modified (copolymerized
or grafted) with silane. The formed layer can be crosslinked by irradiation. Also
a lamination process has been described, which is stated on p. 7 to be shorter than
that of EVA based encapsulant, in one embodiment lamination press cycle times of 1
minute at about 155°C and about 3 minutes at about 125°C were given. In the experimental
part, page 18 and 19, pressure of about 1 atm and temperature of about 110 to 175°C
for 1 to 15 minutes, preferably about 140 to 160°C for about 3 to 5 minutes, or alternatively
at 1 atm, temperature of about 120 to 140, or of 145 to 155, °C, were given, and stated
that lower temperatures will require longer times to ensure adequate adhesion. In
examples the lamination is effected in a vacuum laminator at 155°C, 1 atm, with 7
min pump time and 8 min press time.
EP2144301 of Borealis discloses the possibility to reduce lamination temperature in relation
to laminating of crosslinked ethylene copolymer with silane and optionally with acrylate
comonomer(s). On p.7, the temperature, pressure and total lamination time of the lamination
process has been indicated. The temperature during the lamination process means the
set temperature in the laminator. No specific conditions for different lamination
steps are given and, as already said, the benefits for the option for shorter lamination
cycle relate to crosslinked encapsulation material.
EP2508566 of Borealis is related to a silane crosslinkable polyolefin for power cable applications.
Since the layer structure of the cables described therein is obtained by means of
extrusion, no lamination process is described.
[0019] There is a continuous need to develop further lamination process solutions for producing
a multilayer laminates, like photovoltaic modules, to meet the demands required by
the multilaminate, like PV module, producers in the further developing lamination
industry, such as in the growing PV module industry.
Figures
[0020] Figure 1 illustrates the layer elements (separated) of the preferable embodiment
of the invention, namely a protective front layer element (1), a front encapsulation
layer element (2), a photovoltaic element (3), a rear encapsulation layer element
(4) and a protective back layer element (5) a photovoltaic module laminate.
Description of the invention
[0021] The present invention is thus directed to a process for producing a multilayer laminate
which comprises at least one substrate element and at least one polymeric layer element,
wherein the polymeric layer element comprises a polymer composition comprising:
- (a) a polymer, wherein said polymer (a) optionally bears functional group(s) containing
units; and
- (b) silane group(s) containing units;
and wherein the process comprises the steps of:
- (i) assembling step to arrange the at least one substrate element and the at least
one polymeric layer element in form of a multilayer assembly;
- (ii) heating step to heat up the multilayer assembly optionally in a chamber at evacuating
conditions;
- (iii) pressing step to build and keep pressure on the multilayer assembly at the heated
conditions for the lamination of the assembly to occur; and
- (iv) recovering step to cool and remove the obtained multilayer laminate for later
use;
- wherein the pressing step (iii) is started when the at least one polymeric layer element
reaches a temperature which is at least 3 to 10°C higher than the melting temperature
of the polymer (a) of said polymeric layer element; and
- wherein the duration of the pressing step (iii) is from 0.5 to 10 minutes;
wherein the polymer (a) has
- a melting temperature, Tm, of 100 °C or less, when measured as described below under
"Determination methods", and
- a melt flow rate, MFR2, of less than 20 g/10 min (according to ISO 1133 at 190 °C and at a load of 2.16
kg); and
- wherein no crosslinking agent selected from peroxide or silane condensation catalyst
(SCC), which is selected from the SCC group of carboxylates of tin, zinc, iron, lead
or cobalt or aromatic organic sulphonic acids, is introduced to the polymer (a) of
the polymer composition before or during the lamination process.
[0022] The process of the invention for producing a multilayer laminate as defined above,
below or in claims is referred herein also shortly as "lamination process".
[0023] The at least one polymeric layer element of the multilayer laminate of the lamination
process, which comprises the polymer composition comprising a polymer (a) and the
silane group(s) containing units (b), as defined above, below or in claims, is referred
herein also shortly as "polymeric layer element" or "polymeric layer".
[0024] The polymer composition comprising a polymer (a) and the silane group(s) containing
units (b), as defined above, below or in claims, is referred herein also shortly as
"polymer composition".
[0025] The polymer (a) , wherein said polymer (a) optionally bears functional group(s) containing
units (b), as defined above, below or in claims, is referred herein also shortly as
"polymer (a)".
[0026] The multilayer laminate of the lamination process which comprises the at least one
substrate element and the at least one polymeric layer element, as defined above,
below or in claims, is referred herein also shortly as "laminate"
[0027] The pressing step (iii) comprises two "substeps", 1) to build the pressure (also
referred herein as "pressure build up" step) and 2) to keep the pressure (also referred
herein as "holding the pressure"). The duration of the pressing step (iii) means thus
the total duration of pressing step (iii), i.e. the sum of 1) the duration of pressure
build up step and 2) the duration of holding the pressure step. The claimed expression
"the pressing step (iii) is started when" means the starting of pressure build up
"substep" of pressing step (iii).
[0028] Accordingly, the lamination process of the invention relates to the earlier mentioned
lamination by integrating premade substrate and premade layer(s) together under heat
and pressure, optionally in a vacuum in a laminator equipment.
[0029] The substrate element means herein a premade layer element which can be a monolayer
element or a multilayer element. The substrate element can be polymeric or non-polymeric
and flexible or rigid element, depending on the desired end application. Example of
non-polymeric and rigid substate element is e.g. a glass layer element. Polymeric
substrate element comprises a polymeric layer(s). If the polymeric substrate element
is a multilayer element, then the multilayer element may be rigid or flexible and
may consist of polymeric layers or polymeric and non-polymeric layers.
[0030] "Rigid" means herein that the element is stiff and can not be bended in a manner
as flexible elements, and if bended, then typically the integrity of the element typically
breaks easily causing permanet fractures, as is not the case with flexible element.
A skilled person can easily differentiate a rigid and flexible layer element.
[0031] The polymeric layer element means herein a premade layer element which can be a polymeric
monolayer element or a polymeric layer of a multilayer element. In case of such multilayer
element, then at least one layer thereof comprises the polymer composition of the
polymeric layer element. Moreover, in such polymeric multilayer element, then at least
one layer, preferably one or both of the outer layer(s), of the polymeric multilayer
element comprises the polymer composition.
[0032] It has been surprisingly found that the polymeric layer of the invention comprising
the polymer composition, as defined above, below or in claims, can be laminated on
a substrate element using markedly shorter lamination cycle time and preferably lower
lamination temperature compared to prior art lamination processes, while using conventionally
applied pressure and conventional lamination equipment.
[0033] Furthermore unexpectedly, the polymeric layer of the invention does not require any
crosslinking reaction aided by a conventional crosslinking means. I.e. the lamination
process can be carried out without crosslinking the polymeric layer element of the
invention using peroxide or a conventional silane condensation catalyst (SCC), as
defined above, below or in claims. Accordingly, the long lamination cycle time, which
is required for lamination of e.g. EVA crosslinked polymer layers, can be avoided
with the process of the invention and a final multilayer laminate can be obtained
with desirable quality.
[0034] The present invention has unique features that not only enable very short lamination
cycle time, but also such low cycle time is possible at temperatures at which EVA
and other e.g. peroxide crosslinkable thermoplastic based encapsulant are usually
not recommended for. Moreover, any drawbacks relating to silane-crosslinked/crosslinkable
material, like premature crosslinking (scorch) or a further step of crosslinking,
when heating in the presence of moisture is needed, can be avoided. Moroever, since
no removal of volatile reaction products of the crosslinking reaction is needed, also
the recovering step (iv) including cooling can be shortened
[0035] Naturally, in the lamination process of the invention a laminate can be produced
which comprises more than one such substrate element and more than one polymeric layer
element. Furthermore, a laminate can comprise other layer elements, which are different
form said substrate element and polymeric layer element and which can be polymeric
or non-polymeric.
[0036] The term "polymeric" means herein that the element comprises at least 50wt% of polymer
(a) or a mixture of polymer (a) with other polymer(s), preferably at least 50wt% of
polymer (a).
[0037] It is preferred that the polymer (a) of the polymeric layer element is other than
EVA.
[0038] In a preferable embodiment said at least one substrate element is adjacent to said
at least one polymeric layer element.
[0039] The term "adjacent" means herein that said substrate element and the polymeric layer
comprising the polymer composition are facing at each other. In some embodiments there
can be an adhesive layer between the substrate and polymeric layer elements. Such
adhesive layers has the function to improve the adhesion between the two elements
and have a well known meaning in the lamination field. Preferably, there are no adhesive
layer between the substrate and polymeric layer elements, i.e. the substrate element
and polymeric layer element are in direct contact to each other.
[0040] In a preferable embodiment the lamination process a photovoltaic module is produced.
Accordingly, the process is preferably a process as defined above, below or in claims
for producing a photovoltaic module laminate comprising, in the given order, a protective
front layer element, a front encapsulation layer element, a photovoltaic element,
a rear encapsulation layer element and a protective back layer element; wherein at
least one of the front encapsulation layer element or the rear encapsulation layer
element, or both the front encapsulation layer element and the rear encapsulation
layer element, comprise(s) a polymer composition comprising:
- (a) a polymer, wherein said polymer (a) optionally bears functional group(s) containing
units; and
- (b) silane group(s) containing units;
and wherein the process comprises the steps of:
- (i) assembling step to arrange the protective front layer element, the front encapsulation
layer element, the photovoltaic element, the rear encapsulation layer element and
the protective back layer element, in given order, to form of a photovoltaic module
assembly;
- (ii) heating step to heat up the photovoltaic module assembly optionally in a chamber
at evacuating conditions;
- (iii) pressing step to build and keep pressure on the photovoltaic module assembly
at the heated conditions for the lamination of the assembly to occur; and
- (iv) recovering step to cool and remove the obtained photovoltaic module assembly
for later use;
- wherein the pressing step (iii) is started when at least of front encapsulation layer
element, back encapsulation layer element, or both encapsulation layer element and
back encapsulation layer element, reache(s) a temperature which is at least 3 to 10°C
higher than the melting temperature of the polymer (a) of said respective encapsulation
layer element; and
- wherein the duration of the pressing step (iii) is from 0.5 to 10 minutes;
wherein the polymer (a) has
- a melting temperature, Tm, of 100 °C or less, when measured as described below under
"Determination methods", and
- a melt flow rate, MFR2, of less than 20 g/10 min (according to ISO 1133 at 190 °C and at a load of 2.16
kg); and
- wherein no crosslinking agent selected from peroxide or silane condensation catalyst
(SCC), which is selected from the SCC group of carboxylates of tin, zinc, iron, lead
or cobalt or aromatic organic sulphonic acids, is introduced to the polymer (a) of
the polymer composition before or during the lamination process.
[0041] The following preferable embodiments, properties and subgroups of the lamination
process, including the process for producing a PV module, the polymeric layer element,
the polymer (a) and silane group(s) containing units (b) thereof as well as the PV
module laminate, are independently generalisable so that they can be used in any order
or combination to further define the suitable embodiments of the invention.
Polymer (a) and the silane group(s) containing units (b), as well as the polymer composition
of the at least one polymeric layer of the multilayer laminate
[0042] The polymer composition of the polymeric layer of the lamination process preferably
comprises
- a polymer of ethylene (a) selected from:
(a1) a polymer of ethylene which optionally contains one or more comonomer(s) other
than a polar comonomer of polymer (a2) and which bears functional groups containing
units;
(a2) a polymer of ethylene containing one or more polar comonomer(s) selected from
(C1-C6)-alkyl acrylate or (C1-C6)-alkyl (C1-C6)-alkylacrylate comonomer(s), and optionally
bears functional group(s) containing units other than said polar comonomer; or
(a3) a polymer of ethylene containing one or more alpha-olefin comonomer selected
from (C1-C10)-alpha-olefin comonomer; and optionally bears functional group(s) containing
units; and
- silane group(s) containing units (b).
[0043] The functional groups containing units of the polymer (a1) are other than said optional
comonomer(s).
[0044] Accordingly, silane group(s) containing units (b) are always in combination with
polymer (a) and with the preferable embodiments thereof.
[0045] It is preferred that the polymer composition of the polymeric layer of the lamination
process comprises, preferably consists of,
- a polymer of ethylene (a) as defined above below or in claims;
- silane group(s) containing units (b) as defined above below or in claims; and
- additive(s) and optionally filler(s), preferably additive(s), as defined below.
[0046] Further preferably the polymeric monolayer element or a polymeric layer of a multilayer
element of the invention consists of the polymer composition of the invention.
[0047] As well known "comonomer" refers to copolymerisable comonomer units.
[0048] It is preferred that the comonomer(s) of polymer (a), if present, is/are other than
vinyl acetate comonomer. Preferably, the polymeric layer is without (does not comprise)
a copolymer of ethylene with vinyl acetate comonomer.
[0049] It is preferred that the comonomer(s) of polymer (a), if present, is/are other than
glycidyl methacrylate comonomer. Preferably, the polymeric layer is without (does
not comprise) a copolymer of ethylene with acrylate and glycidyl methacrylate comonomers.
[0050] The content of optional comonomer(s), if present in polymer (a1), polar commoner(s)
of polymer (a2) or alpha-olefin comonomer(s) of polymer (a3), is preferably of 4.5
to 18 mol%, preferably of 5.0 to 18.0 mol%, preferably of 6.0 to 18.0 mol%, preferably
of 6.0 to 16.5 mol%, more preferably of 6.8 to 15.0 mol%, more preferably of 7.0 to
13.5 mol%, when measured according to "Comonomer contents" as described below under
the "Determination methods".
[0051] The silane group(s) containing units (b) and the polymer (a) can be present as a
separate components, i.e. as blend (composition), in the polymer composition of the
polymeric layer of the invention, or the silane group(s) containing units (b) can
be present as a comonomer of the polymer (a) or as a compound grafted chemically to
the polymer (a). In general, copolymerisation and grafting of the silane group(s)
containing units to ethylene are well known techniques and well documented in the
polymer field and within the skills of a skilled person.
[0052] In case of a blend, the silane group(s) containing units (b) component (compound)
may, at least partly, be reacted chemically with the polymer (a), e.g. grafted to
polymer (a), using optionally e.g. a radical forming agent, such as peroxide. Such
chemical reaction may take place before or during the lamination process of the the
invention.
[0053] Preferably the silane group(s) containing units (b) are present (bonded) in the polymer
(a), when the premade polymeric layer element is introduced to the assembling step
(i) of the lamination process of the invention. More preferably, the polymer (a) bears
functional group(s) containing units, whereby said functional group(s) containing
units are said silane group(s) containing units (b). In this embodiment the silane
group(s) containing units (b) can be copolymerised or grafted to the polymer (a).
The silane group(s) containing units (b) as the optional, and preferable, functional
group(s) containing units are preferably present in said polymer (a) in form of comonomer
units or in form of grafted compound.
[0054] In more preferable embodiment of the invention, the polymer (a) comprises functional
group(s) containing units which are the silane group(s) containing units (b) as comonomer
in the polymer (a). The copolymerisation provides more uniform incorporation of the
units (b). Moreover, the copolymerisation does not require the use of peroxide which
is typically needed for the grafting of said units to polyethylene. It is known that
peroxide brings limitations to the choice of MFR of the polymer used as a starting
polymer (during grafting the MFR of the polymer decreases) for a multilayer laminate
and the by-products formed from peroxide can deteriorate the quality of the polymer,
as discussed above.
[0055] The polymer composition more preferably comprises
- polymer (a) which is selected from
(a1) a polymer of ethylene which optionally contains one or more comonomer(s) other
than the polar comonomer of polymer (a2) and which bears functional groups containing
units other than said optional comonomer(s); or
(a2) a polymer of ethylene containing one or more polar comonomer(s) selected from
(C1-C6)-alkyl acrylate or (C1-C6)-alkyl (C1-C6)-alkylacrylate comonomer(s), and optionally
bears functional group(s) containing units other than said polar comonomer; and
- silane group(s) containing units (b).
[0056] Furthermore, the comonomer(s) of polymer (a) is/are preferably other than the alpha-olefin
comonomer as defined above.
[0057] In one preferable embodiment A1, the polymer composition comprises a polymer (a)
which is the polymer of ethylene (a1) which bears the silane group(s) containing units
(b) as the functional groups containing units (also referred herein as "polymer (a1)
which bears the silane group(s) containing units (b)" or "polymer (a1)"). In this
embodiment A1, the polymer (a1) preferably does not contain, i.e. is without, a polar
comonomer of polymer (a2) or an alpha-olefin comonomer.
[0058] In one equally preferable embodiment A2,
the polymer composition comprises
- a polymer (a) which is the polymer of ethylene (a2) containing one or more polar comonomer(s)
selected from (C1-C6)-alkyl acrylate or (C1-C6)-alkyl (C1-C6)-alkylacrylate, preferably
one (C1-C6)-alkyl acrylate, and bears functional group(s) containing units other than
said polar comonomer; and
- silane group(s) containing units (b): more preferably
the polymer composition comprises a polymer (a) which is the polymer of ethylene (a2)
containing one or more polar comonomer(s) selected from (C1-C6)-alkyl acrylate or
(C1-C6)-alkyl (C1-C6)-alkylacrylate comonomer(s), and bears the silane group(s) containing
units (b) as the functional group(s) containing units (also referred as "polymer (a2)
with the polar comonomer and the silane group(s) containing units (b)" or "polymer
(a2)").
[0059] The "polymer (a1) or polymer (a2)" is also referred herein as "polymer (a1) or (a2)".
[0060] The combination of polymer (a1) or polymer (a2) as defined above, below or in claims
, with silane group(s) containing units (b) further contributes to the benefit that
the polymer (a) does not need to be crosslinked due to feasible flowability/processability
properties thereof. Moreover, said combination does not form any significant volatiles
during lamination process. Any decomposition products thereof could be formed only
at a temperature close to 400 °C. Therefore, the holding time during lamination can
be shortented significantly. Also the quality of the obtained laminate is highly desirable,
since any premature crosslinking, presence and removal of by-products, which are formed
during the crosslinking reaction and may cause bubble formation, can be avoided.
[0061] The content of the polar comonomer present in the polymer (a2) is preferably of 4.5
to 18 mol%, preferably of 5.0 to 18.0 mol%, preferably of 6.0 to 18.0 mol%, preferably
of 6.0 to 16.5 mol%, more preferably of 6.8 to 15.0 mol%, more preferably of 7.0 to
13.5 mol%, when measured according to "Comonomer contents" as described below under
the "Determination methods". The polymer (a2) with the polar comonomer and the silane
group(s) containing units (b) contains preferably one polar comonomer as defined above,
below or in claims. In a preferable embodiment of A1, said polar comonomer(s) of polymer
of ethylene (a2) is a polar comonomer selected from (C1-C4)-alkyl acrylate or (C1-C4)-alkyl
methacrylate comonomer(s) or mixtures thereof. More preferably, said polymer (a2)
contains one polar comonomer which is preferably (C1-C4)-alkyl acrylate comonomer.
[0062] The most preferred polar comonomer of polymer (a2) is methyl acrylate. The methyl
acrylate has very beneficial properties such as excellent wettability, adhesion and
optical (e.g. transmittance) properties, which contribute to the lamination process
and to the quality of the obtained laminate. Moreover, the thermostability properties
of methyl acrylate (MA) comonomer are also highly advantageous. For instance, methyl
acrylate is the only acrylate which cannot go through the ester pyrolysis reaction,
since does not have this reaction path. As a result, if the polymer (a2) with MA comonomer
degrades at high temperatures, then there is no harmful acid (acrylic acid) formation
which improves the quality and life cycle of the laminate, like PV module laminate.
This is not the case e.g. with vinyl acetate of EVA or with other acrylates like ethyle
acrylate (EA) or butyl acrylate (BA) which, on the contrary, can go through the ester
pyrolysis reaction, and if degrade, would form the harmful acid and for the acrylates
also volatile olefinic by-products.
[0063] MFR
2, of the polymer (a), preferably of the polymer (a1) or (a2), is preferably of less
than 15, preferably from 0.1 to 15, preferably from 0.2 to 13, preferably from 0.3
to 13, more preferably from 0.4 to 13, g/10 min (according to ISO 1133 at 190 °C and
at a load of 2.16 kg).
[0064] The polymer composition comprising the polymer (a) and the silane group(s) containing
units (b), more preferably the polymer (a1) or (a2), thus enables to decrease the
MFR of the polymer (a), preferably polymer (a1) or (a2), compared to prior art and
thus offers higher resistance to flow under pressing step (iii) and/or (iv) recovering
step. As a result, the preferable MFR can further contribute, if desired, to the quality
of the final multilayer laminate, such as the preferable final PV module, and to the
short lamination cycle time obtainable by the process of the invention.
[0065] The polymer composition comprising the polymer (a) and the silane group(s) containing
units (b), more preferably the polymer (a1) or (a2), present in the polymeric layer
has preferably a Shear thinning index, SHI
0.05/300, of 30.0 to 100.0, preferably of of 40.0 to 80.0, when measured according to "Rheological
properties: Dynamic Shear Measurements (frequency sweep measurements)" as described
below under "Determination Methods".
[0066] The preferable SHI range further contributes to the lamination process, e.g. the
lamination process of a photovoltaic module laminate of the invention, since such
preferable rheology property causes less stress on the PV cell element. Furthermore,
the preferable rheology property contributes to the option to use lower melt flow
rate, MFR, if desired. The preferable SHI thus further contributes to the quality
of the final multilayer laminate, such as of the preferable final PV module, and to
the short lamination cycle time of the process of the invention.
[0067] Furthermore, the combination of the preferable SHI and the preferable low MFR of
the polymer composition, preferably of the polymer (a), more preferably the polymer
(a1) or (a2), further contributes to a desirable high zero shear rate viscosity of
the polymer composition, thereby further contributes to the reduction or prevention
of the flow out of the material during lamination. And in this preferable embodiment
the melt of said polymer (a), more preferably the polymer (a1) or (a2), further contributes
to a proper wetting of various interfaces (layer elements) within the laminate. Accordingly,
the combination of the preferable SHI and the preferable MFR range of the polymer
composition, preferably of the polymer (a), more preferably the polymer (a1) or (a2),
further contributes to the quality of the final multilayer laminate, such as of the
preferable final PV module, and to the short lamination cycle time of the process
of the invention.
[0068] As already mentioned, with the present preferable polymer composition the crosslinking
of the polymeric layer element can be avoided which contributes to achieve the good
quality of the final multilayer laminate and, additionally, to shorten the lamination
cycle time without deteriorating the quality of the formed multilayer laminate. For
instance, the recovering step (iv) of the process can be short, since time consuming
removal of by-products, which are typically formed in the prior art peroxide crosslinking,
is not needed.
[0069] The polymer (a), preferably of the polymer (a1) or (a2), has preferably a Melt Temperature
of 70°C or more, preferably 75°C or more, more preferably 78°C or more, when measured
as described below under "Determination Methods". Preferably the upper limit of the
Melt Temperature is 100°C or below, preferably 95°C or below.
[0070] Typically, and preferably the density of the polymer of ethylene (a), preferably
of the polymer (a1) or (a2), is higher than 860 kg/m
3. Preferably the density is not higher than 970 kg/m
3, and preferably is from 920 to 960 kg/m
3, according to ISO 1872-2 as described below under "Determination Methods".
[0071] The silane group(s) containing comonomer unit or compound as the silane group(s)
containing units (b) is suitably a hydrolysable unsaturated silane compound represented
by the formula
R1SiR2qY3-q (I)
wherein
R1 is an ethylenically unsaturated hydrocarbyl, hydrocarbyloxy or (meth)acryloxy hydrocarbyl
group,
each R2 is independently an aliphatic saturated hydrocarbyl group,
Y which may be the same or different, is a hydrolysable organic group and
q is 0, 1 or 2.
[0072] Special examples of the unsaturated silane compound are those wherein R1 is vinyl,
allyl, isopropenyl, butenyl, cyclohexanyl or gamma-(meth)acryloxy propyl; Y is methoxy,
ethoxy, formyloxy, acetoxy, propionyloxy or an alkyl- or arylamino group; and R2,
if present, is a methyl, ethyl, propyl, decyl or phenyl group.
[0073] Further suitable silane compounds or, preferably, comonomers are e.g. gamma-(meth)acryl-oxypropyl
trimethoxysilane, gamma(meth)acryloxypropyl triethoxysilane, and vinyl triacetoxysilane,
or combinations of two or more thereof.
[0074] As a suitable subgroup of unit of formula (I) is an unsaturated silane compound or,
preferably, comonomer of formula (II)
CH2=CHSi(OA)3 (II)
wherein each A is independently a hydrocarbyl group having 1-8 carbon atoms, suitably
1-4 carbon atoms.
[0075] In one embodiment of silane group(s) containing units (b) of the invention, comonomers/compounds
of formula (I), preferably of formula (II), are vinyl trimethoxysilane, vinyl bismethoxyethoxysilane,
vinyl triethoxysilane, vinyl trimethoxysilane.
[0076] The amount of the silane group(s) containing units (b) present in the polymeric layer
element, preferably in the polymer (a), is from 0.01 to 1.00 mol%, suitably from 0.05
to 0.80 mol%, suitably from 0.10 to 0.60 mol%, suitably from 0.10 to 0.50 mol%, when
determined according to "Comonomer contents" as described below under "Determination
Methods".
[0077] As already mentioned the silane group(s) containing units (b) are present in the
polymer (a), more preferably in the polymer (a1) or (a2), as a comonomer.
[0078] In embodiment A1, the polymer (a1) contains silane group(s) containing units (b)
as comonomer according to formula (I), more preferably silane group(s) containing
units (b) as comonomer according to formula (II), more preferably silane group(s)
containing units (b) according to formula (II) selected from vinyl trimethoxysilane,
vinyl bismethoxyethoxysilane, vinyl triethoxysilane or vinyl trimethoxysilane comonomer,
as defined above or in claims. Most preferably in this embodiment A1 the polymer (a1)
is a copolymer of ethylene with vinyl trimethoxysilane, vinyl bismethoxyethoxysilane,
vinyl triethoxysilane or vinyl trimethoxysilane comonomer, preferably with vinyl trimethoxysilane
comonomer.
[0079] In the equally preferable embodiment A2, the polymer (a2) is a copolymer of ethylene
with a (C1-C4)-alkyl acrylate comonomer and silane group(s) containing units (b) according
to formula (I) as comonomer, more preferably and silane group(s) containing units
(b) according to formula (II) as comonomer, more preferably and silane group(s) containing
units (b) according to formula (II) selected from vinyl trimethoxysilane, vinyl bismethoxyethoxysilane,
vinyl triethoxysilane or vinyl trimethoxysilane comonomer, as defined above or in
claims. Most preferably in this embodiment A2 the polymer (a2) is a copolymer of ethylene
with methyl acrylate comonomer and with vinyl trimethoxysilane, vinyl bismethoxyethoxysilane,
vinyl triethoxysilane or vinyl trimethoxysilane comonomer, preferably with vinyl trimethoxysilane
comonomer.
[0080] Most preferably the polymer (a) is a copolymer of ethylene (a1) with vinyl trimethoxysilane
comonomer or a copolymer of ethylene (a2) with methylacrylate comonomer and with vinyl
trimethoxysilane comonomer.
[0081] As said, the at least one polymeric layer is not subjected to any peroxide or silanol
condensation catalyst (SCC), which is selected from the group of carboxylates of tin,
zinc, iron, lead or cobalt or aromatic organic sulphonic acids, before or during the
lamination process of the invention.
[0082] It is to be understood that the peroxide or SCC as defined above are those conventionally
supplied for the purpose of crosslinking.
[0083] The polymer composition which is crosslinked for instance using the above crosslinking
agents has a typical network, i.a. interpolymer crosslinks (bridges), as well known
in the field. The crosslinking degree may vary depending on the end application.
[0084] In one embodiment no peroxide or silane condensation catalyst (SCC) which is selected
from the SCC group of tin-organic catalysts or aromatic organic sulphonic acids the
SCC is subjected to the polymeric layer element before or during the lamination process
of the invention.
[0085] The silanol condensation catalyst (SCC), which is not used for crosslinking the polymeric
layer element before or during the lamination process, is more preferably selected
from the group C of carboxylates of metals, such as tin, zinc, iron, lead and cobalt;
from a titanium compound bearing a group hydrolysable to a Brönsted acid (preferably
as described in
WO 2011160964 of Borealis, included herein as reference), from organic bases; from inorganic acids; and from
organic acids; suitably from carboxylates of metals, such as tin, zinc, iron, lead
and cobalt, from titanium compound bearing a group hydrolysable to a Brönsted acid
as defined above or from organic acids, suitably from dibutyl tin dilaurate (DBTL),
dioctyl tin dilaurate (DOTL), particularly DOTL; titanium compound bearing a group
hydrolysable to a Brönsted acid as defined above; or an aromatic organic sulphonic
acid, which is suitably an organic sulphonic acid which comprises the structural element:
Ar(SO3H)x (II)
wherein Ar is an aryl group which may be substituted or non- substituted, and if substituted,
then suitably with at least one hydrocarbyl group up to 50 carbon atoms, and x is
at least 1; or a precursor of the sulphonic acid of formula (II) including an acid
anhydride thereof or a sulphonic acid of formula (II) that has been provided with
a hydrolysable protective group(s), e.g. an acetyl group that is removable by hydrolysis.
Such organic sulphonic acids are described e.g. in
EP736065, or alternatively, in
EP1309631 and
EP1309632.
[0086] More preferably, the polymer (a) of the polymeric layer is not crosslinked before
introducing to the lamination process or during the lamination process using peroxide,
silanol condensation catalyst (SCC), which is selected from the group of carboxylates
of tin, zinc, iron, lead or cobalt or aromatic organic sulphonic acids, preferably
from the above preferable SCC according to group C, or electronic beam irradiation.
[0087] More preferably, also the layer element(s) which is/are in direct contact with the
polymeric layer are without a crosslinking agent selected from peroxide or silanol
condensation catalyst (SCC), which is selected from the group of carboxylates of tin,
zinc, iron, lead or cobalt or aromatic organic sulphonic acids, preferably from the
above preferable SCC according to group C.
[0088] It is preferred that the at least one polymeric layer of the multilayer laminate
is not crosslinked with the crosslinking agent, as defined above, before introducing
to or during the lamination process, or before or during the use of the multilayer
laminate in the end application.
[0089] Accordingly, in one embodiment the polymer composition of the polymeric layer element
of the invention suitably comprises additives other than fillers (like flame retardants
(FRs)). Then the polymer composition comprises, preferably consists of, based on the
total amount (100 wt%) of the polymer composition,
- 90 to 99.9999 wt% of the polymer (a)
- 0.01 to 1.00 mol% silane group(s) containing units (b) and
- suitably 0.0001 to 10 wt% of the additives.
[0090] The total amount of optional additives is suitably between 0.0001 and 5.0 wt%, like
0.0001 and 2.5 wt%.
[0091] The optional additives are e.g. conventional additives suitable for the desired end
application and within the skills of a skilled person, including without limiting
to, preferably at least antioxidant(s) and UV light stabilizer(s), and may also include
metal deactivator(s), nucleating agent(s), clarifier(s), brightener(s), acid scavenger(s),
as well as slip agent(s) or talc etc. Each additive can be used e.g. in conventional
amounts, the total amount of additives present in the polymer composition being preferably
as defined above. Such additives are generally commercially available and are described,
for example, in "Plastic Additives Handbook", 5th edition, 2001 of Hans Zweifel.
[0092] In another embodiment the polymer composition of the polymeric layer element of the
invention comprises in addition to the suitable additives as defined above also fillers,
such as pigments, FRs with flame retarding amounts or carbon black. Then the polymer
composition of the invention comprises, preferably consists of,based on the total
amount (100wt%) of the polymeric layer element,
- 90 to 99.9999 wt%, suitably 40 to 70 wt%, of the polymer (a)
- 0.01 to 1.00 mol% silane group(s) containing units (b) and
- up to 70 wt%, suitably 30 to 60 wt%, of additives and filler(s).
[0093] As non-limiting examples, the optional filler(s) comprise Flame Retardants, such
as magensiumhydroxide, ammounium polyphosphate etc.
[0094] In the preferred embodiment the polymer composition comprises, preferably consists
of,
- 30 to 90 wt%, suitably 40 to 70 wt%, of the polymer (a)
- 0.01 to 1.00 mol% silane group(s) containing units (b) and
- 0.0001 to 10 wt% additives and optionally fillers, preferably 0.0001 to 10 wt% additives.
[0095] In a preferable embodiment the polymer composition of the polymeric layer element
consists of the polymer (a) as the only polymeric component(s). "Polymeric component(s)"
exclude herein any carrier polymer(s) of optional additive or filler product(s), e.g.
master batche(s) of additive(s) or, respectively, filler(s) together with the carrier
polymer, optionally present in the polymer composition of the polymeric layer. Such
optional carrier polymer(s) are calculated to the amount of the respective additive
or, respectively, filler based on the amount (100 %) of the polymer composition of
the polymeric layer.
[0096] It is preferred that at least one layer of the polymeric layer element consists of
the polymer composition of the invention.
[0097] The polymer (a) of the polymer composition of the polymeric layer element can be
e.g. commercially available or can be prepared according to or analogously to known
polymerization processes described in the chemical literature.
[0098] In a preferable embodiment the polymer (a), preferably the polymer (a1) or (a2),
is produced by polymerising ethylene suitably with silane group(s) containing comonomer
(= silane group(s) containing units (b)) as defined above and optionally with one
or more other comonomer(s) in a high pressure (HP) process using free radical polymerization
in the presence of one or more initiator(s) and optionally using a chain transfer
agent (CTA) to control the MFR of the polymer. The HP reactor can be e.g. a well known
tubular or autoclave reactor or a mixture thereof, suitably a tubular reactor. The
high pressure (HP) polymerisation and the adjustment of process conditions for further
tailoring the other properties of the polymer depending on the desired end application
are well known and described in the literature, and can readily be used by a skilled
person. Suitable polymerisation temperatures range up to 400 °C, suitably from 80
to 350°C and pressure from 70 MPa, suitably 100 to 400 MPa, suitably from 100 to 350
MPa. The high pressure polymerization is generally performed at pressures of 100 to
400 MPa and at temperatures of 80 to 350 °C. Such processes are well known and well
documented in the literature and will be further described later below.
[0099] The incorporation of the comonomer(s), if present, and optionally, and preferably,
the silane group(s) containing units (b) suitably as comonomer as well as comonomer(s)
and the control of the comonomer feed to obtain the desired final content of said
comonomers and of optional, and preferable, silane group(s) containing units (b) as
the comonomer can be carried out in a well known manner and is within the skills of
a skilled person.
[0101] Such HP polymerisation results in a so called low density polymer of ethylene (LDPE),
herein with the optional (polar) comonomer as defined above or in claims and with
optional, and preferable silane group(s) containing comonomer as the silane group(s)
containing units (b). The term LDPE has a well known meaning in the polymer field
and describes the nature of polyethylene produced in HP, i.e the typical features,
such as different branching architecture, to distinguish the LDPE from PE produced
in the presence of an olefin polymerisation catalyst (also known as a coordination
catalyst). Although the term LDPE is an abbreviation for low density polyethylene,
the term is understood not to limit the density range, but covers the LDPE-like HP
polyethylenes with low, medium and higher densities.
Lamination process of the invention
[0102] The substrate element and the polymeric layer element are typically premade before
the assembling thereof to a form of multilaminate assembly. The premade substrate
element and the premade polymeric layer element can be produced using conventional
processes. Typically the polymeric layer element is produced by cast extrusion (e.g.
in case of a polymeric monolayer element) or by coextrusion (e.g. in case of a polymeric
multilayer element). The coextrusion can be carried out by cast extrusion or by blown
film extrusion which both are very well known processes in the film production field
and within the skills of a skilled person.
[0103] The thickness of the premade substrate element and the premade polymeric layer element,
as well as any additional elements, of the multilayer laminate can vary depending
on the desired end application and can be chosen accordingly by a person skilled in
the field. The following process conditions apply to the process for producing the
multilayer laminate and to the preferable process for producing the photovoltaic module
of the invention.
[0104] The lamination process is carried out in a laminator equipment which can be e.g.
any conventional laminator which is suitable for the multilaminate to be laminated.
The choice of the laminator is within the skills of a skilled person. Typically the
laminator comprises a chamber wherein the heating, optional, and preferable, evacuation,
pressing and recovering (including cooling) steps (ii)-(iv) take place.
[0105] The duration of the heating step (ii) is preferably 0.5 to 7 minutes, preferably
1 to 6 minutes, suitably 1.5 to 5 minutes. The heating step (ii) can be and is typically
done step-wise.
[0106] Pressing step (iii) is preferably started when the at least one polymeric layer element
reaches a temperature which is 3 to 10°C higher than the melting temperature of the
polymer (a), preferably of the polymer (a1) or (a2), of said polymeric layer element.
[0107] The pressing step (iii) is preferably started when the at least one polymeric layer
element reaches a temperature of at least of 85 °C, suitably to 85 to 150, suitably
to 85 to 148, suitably 85 to 140, preferably 90 to 130, preferably 90 to 120, preferably
90 to 115, preferably 90 to 110, preferably 90 to 108,°C.
[0108] The duration of the pressing step (iii) (i.e. the total duration of the pressing
step (iii)) is preferably from 0.5 to 10, preferably 0.5 to 9, preferably 0.5 to 8,
preferably 0.5 to 7, more preferably 0.5 to 6, more preferably 0.5 to 5, more preferably
1.0 to 5, minutes.
[0109] At the pressing step (iii), the duration of the pressure build up is preferably 0.5
to 3 minutes, preferably 0.7 to 2.5 minutes. The pressure built up to the desired
level during pressing step can be done either in one step or can be done in multiple
steps.
[0110] At the pressing step (iii), the duration of holding the pressure is preferably 0.5
to 9, preferably 0.5 to 8, preferably 0.5 to 7, preferably 0.5 to 5, preferably 0.5
to 3, minutes.
[0111] Preferably, at the pressing step (iii), the duration of the pressure build up time
is 0.5 to 3 minutes, the duration of holding the pressure is preferably 0.5 to 9,
preferably 0.5 to 8, preferably 0.5 to 7, preferably 0.5 to 5, preferably 0.5 to 3,
minutes, and the total duration of the pressing step (iii) is preferably 0.5 to 10,
preferably 0.5 to 9, preferably 0.5 to 8, preferably 0.5 to 7, more preferably 0.5
to 6, more preferably 0.5 to 5, more preferably 1.0 to 5, minutes.
[0112] The total duration (i.e. the sum) of the heating step (ii) and pressing step (iii)
is preferably less than 20, preferably from 2 to 20, suitably 2 to 15, suitably 2
to 10, preferably 2 to 8, preferably 2 to 6, more preferably 3 to 5, minutes.
[0113] The pressure used in the pressing step (iii) is preferably up to 1000 mbar, preferably
500 to 900 mbar.
[0114] The lamination process can be used for producing a PV module, construction element,
safety glass for buildings or vehicles, etc.
Lamination process of the invention for producing PV module
[0115] The lamination process according to invention is preferably for producing a multilayer
laminate which is a photovoltaic module, comprising, in the given order, a protective
front layer element, preferably a front glass layer element, a front encapsulation
layer element, a photovoltaic element, a rear encapsulation layer element and a protective
back layer element;
wherein
- any one or more of the front encapsulation layer element, rear encapsulation layer
element or protective back layer element, suitably one or both of the front encapsulation
layer element or the rear encapsulation layer element, preferably both the front encapsulation
layer element and the rear encapsulation layer element, is/are said polymeric layer
element(s);
- and any one or more of protective front layer element, the photovoltaic element or
protective back layer element, is/are said substrate layer element(s).
[0116] The lamination process according to invention is preferably for producing a photovoltaic
module, wherein the photovoltaic module comprises, in the given order, a protective
front layer element, preferably a front glass layer element, a front encapsulation
layer element, a photovoltaic element, a rear encapsulation layer element and a protective
back layer element,
- wherein one or both of the front encapsulation layer element or the rear encapsulation
layer element, preferably both the front encapsulation layer element and the rear
encapsulation layer element, is/are said polymeric layer element(s);
- and wherein the pressing step (iii) is started when at least one of said front and/or
rear encapsulation layer element(s) reach(es) a temperature which is at least 3 to
10°C higher than the melting temperature of the polymer of ethylene (a) present in
said front and/or encapsulation layer element.
[0117] The at least one polymeric layer can be a monolayer or a multilayer element. In case
of front and/or rear encapsulation layer element are as the polymeric layer, then
said encapsulation layer element(s) is/are preferably said polymeric monolayer element(s).
If both front encapsulation layer element and rear encapsulation layer element are
of polymeric material, then the polymeric material in front and rear encapsulation
layer elements can be same or different, preferably same.
[0118] The protective backlayer element is also known as "backsheet layer element". Both
terms are used herein below.
[0119] Backsheet layer element can be a polymeric or non-polymeric and flexible or rigid
layer element. Polymeric backsheet layer element can be mono- or multilayer element
and comprises at least one polymeric layer. Rigid backsheet layer element can be mono-
or multilayer element and comprises at least one rigid layer. Glass layer is an example
of rigid backsheet element.
[0120] Backsheet layer element can also represent a substrate element or a polymeric layer
element of the process of the invention. If the backsheet layer element represents
a polymeric layer element, then it naturally must be polymeric. The backsheet layer
element is preferably a substrate element. The backsheet layer element is most preferably
a polymeric backsheet layer element.
[0121] The "photovoltaic element" means that the element has photovoltaic activity. The
photovoltaic element can be e.g. an element of photovoltaic cell(s), which has a well
known meaning in the art. Silicon based material, e.g. crystalline silicon, is a non-limiting
example of materials used in photovoltaic cell(s). Crystalline silicon material can
vary with respect to crystallinity and crystal size, as well known to a skilled person.
Alternatively, the photovoltaic element can be a substrate layer on one surface of
which a further layer or deposit with photovoltaic activity is subjected, for example
a glass layer, wherein on one side thereof an ink material with photovoltaic activity
is printed, or a substrate layer on one side thereof a material with photovoltaic
activity is deposited. For instance, in well-known thin film solutions of photovoltaic
elements e.g. an ink with photovoltaic activity is printed on one side of a substrate,
which is typically a glass substrate.
[0122] The photovoltaic element is most preferably an element of photovoltaic cell(s). "Photovoltaic
cell(s)" means herein a layer element(s) of photovoltaic cells together with connectors.
[0123] The PV module may comprise other layer elements as well, as known in the field of
PV modules. Moreover, any of the other layer elements can be mono or multilayer elements.
[0124] In some embodiments there can be an adhesive layer between the the different layer
layer elements and/or between the layers of a multilayer element, as well known in
the art. Such adhesive layers has the function to improve the adhesion between the
two elements and have a well known meaning in the lamination field. The adhesive layers
are differentiated from the other functional layer elements of the PV module, e.g.
those as specified above, below or in claims, as evident for a skilled person in the
art.
[0125] As well knonw in the PV field, the thickness of the above mentioned elements, as
well as any additional elements, of the laminated photovoltaic module of the invention
can vary depending on the desired photovoltaic module embodiment and can be chosen
accordingly by a person skilled in the PV field.
[0126] All the above elements of the photovoltaic module have a well known meaning. The
protective front layer element, preferably a front glass layer element, a front encapsulation
layer element, a photovoltaic element, a rear encapsulation layer element and a backsheet
layer element other than the polymeric layer element of the invention can be produced
in a manner well known in the photovoltaic field or are commercially available.
[0127] The polymer composition of the polymeric layer element of the invention as any of
the above elements can be commercially available or be produced as defined above under
"Polymer (a) and the silane group(s) containing units (b) of the at least one polymeric
layer of the multilayer laminate".
[0128] As said, the thickness of the different layer elements of PV module laminate can
vary depending on the type of the PV module and the material of the layer elements,
as well known for a skilled person.
[0129] As a non-limiting example only, the thickness of the front and back encapsulation
monolayer or multilayer element is typically up to 2 mm, preferably up to 1 mm, typically
0.3 to 0.6 mm.
[0130] As a non-limiting example only, the thickness of the rigid protective front layer
element, e.g. glass layer, is typically up to 10 mm, preferably up to 8 mm, preferably
2 to 4 mm. As a non-limiting example only, the thickness of the flexible protective
front layer element, e.g. polymeric (multi)layer element, is typically up to 700,
like 90 to 700, suitably 100 to 500, such as 100 to 400, µm.
[0131] As a non-limiting example only, the thickness of the flexible protective back (backsheet)
layer element, e.g. polymeric (multi)layer element, is typically up to 700, like 90
to 700, suitably 100 to 500, such as 100 to 400, µm. The protective (backsheet) layer
element can be a polymeric mono or multilayer element.
[0132] As a non-limiting example only, the thickness of the rigid protective back (backsheet)
layer element, e.g. glass layer, is typically up to 10 mm, preferably up to 8 mm,
preferably up to 4 mm, preferably 2 to 4 mm.
[0133] As a non-limiting example only, the thickness of a photovoltaic element, e.g. an
element of monocrystalline photovoltaic cell(s), is typically between 100 to 500 microns.
[0134] It is also to be understood that part of the elements can be in integrated form,
i.e. two or more of said PV elements can be integrated together, preferably by lamination,
before the elements of the assembly step (i) are introduced to said step (i).
[0135] Accordingly, the process is preferably a process as defined above, below or in claims
for producing a photovoltaic module laminate comprising, in the given order, a protective
front layer element, a front encapsulation layer element, a photovoltaic element,
a rear encapsulation layer element and a protective back layer element; wherein at
least one of the front encapsulation layer element or the rear encapsulation layer
element, or both the front encapsulation layer element and the rear encapsulation
layer element, comprise(s) a polymer composition comprising:
- (a) a polymer, wherein said polymer (a) optionally bears functional group(s) containing
units; and
- (b) silane group(s) containing units;
and wherein the process comprises the steps of:
- (i) assembling step to arrange the protective front layer element, the front encapsulation
layer element, the photovoltaic element, the rear encapsulation layer element and
the protective back layer element, in given order, to form of a photovoltaic module
assembly;
- (ii) heating step to heat up the photovoltaic module assembly optionally, and preferably,
in a chamber at evacuating conditions;
- (iii) pressing step to build and keep pressure on the photovoltaic module assembly
at the heated conditions for the lamination of the assembly to occur; and
- (iv) recovering step to cool and remove the obtained photovoltaic module assembly
for later use;
- wherein the pressing step (iii) is started when at least of front encapsulation layer
element, back encapsulation layer element, or both encapsulation layer element and
back encapsulation layer element, reache(s) a temperature which is at least 3 to 10°C
higher than the melting temperature of the polymer (a) of said respective encapsulation
layer element; and
- wherein the duration of the pressing step (iii) is from 0.5 to 10 minutes;
wherein the polymer (a) has
- a melting temperature, Tm, of 100 °C or less, when measured as described below under
"Determination methods", and
- a melt flow rate, MFR2, of less than 20 g/10 min (according to ISO 1133 at 190 °C and at a load of 2.16
kg); and
- wherein no crosslinking agent selected from peroxide or silane condensation catalyst
(SCC), which is selected from the SCC group of carboxylates of tin, zinc, iron, lead
or cobalt or aromatic organic sulphonic acids, preferably the SCC according to group
C as defined above or in claims, is introduced to the polymer (a) of the polymer composition
before or during the lamination process.
[0136] The above preferable conditions and durations as defined above under "Lamination
process of the invention" apply, naturally, for the lamination process of the PV module
laminate as well.
[0137] Herein described is also a photovoltaic module laminate, comprising, in the given
order, a protective front layer element, a front encapsulation layer element, a photovoltaic
element, a rear encapsulation layer element and a protective back layer element;
wherein at least one of the front encapsulation layer element or the rear encapsulation
layer element, preferably both the front encapsulation layer element and the rear
encapsulation layer element, comprise(s) a polymer composition comprising:
- (a) a polymer of ethylene, wherein said polymer (a) optionally bears functional group(s)
containing units; and
- (b) silane group(s) containing units;
wherein the polymer (a) has
- a melting temperature, Tm, of 100 °C or less, when measured as described below under
"Determination methods", and
- a melt flow rate, MFR2, of less than 20 g/10 min (according to ISO 1133 at 190 °C and at a load of 2.16
kg); and
- wherein no crosslinking agent selected from peroxide or silane condensation catalyst
(SCC), which is selected from the SCC group of carboxylates of tin, zinc, iron, lead
or cobalt or aromatic organic sulphonic acids, preferably from the SCC according to
group C, as defined above or in claims, is present in the polymer of ethylene (a)
of the polymer composition before or during the lamination process.
Determination methods
[0138] Unless otherwise stated in the description or in the experimental part, the following
methods were used for the property determinations of the polymer composition, polar
polymer and/or any sample preparations thereof as specified in the text or expereimental
part.
Melt Flow Rate
[0139] The melt flow rate (MFR) is determined according to ISO 1133 and is indicated in
g/10 min. The MFR is an indication of the flowability, and hence the processability,
of the polymer. The higher the melt flow rate, the lower the viscosity of the polymer.
The MFR is determined at 190 °C for polyethylene. MFR may be determined at different
loadings such as 2.16 kg (MFR
2) or 5 kg (MFR
5).
Density
[0140] Low density polyethylene (LDPE): The density of the polymer was measured according
to ISO 1183-2. The sample preparation was executed according to ISO 1872-2 Table 3
Q (compression moulding).
Comonomer contents:
The content (wt% and mol%) of polar comonomer present in the polymer and the content
(wt% and mol%) of silane group(s) containing units (preferably comonomer) present
in the polymer composition (preferably in the polymer):
[0141] Quantitative nuclear-magnetic resonance (NMR) spectroscopy was used to quantify the
comonomer content of the polymer composition or polymer as given above or below in
the context. Quantitative
1H NMR spectra recorded in the solution-state using a Bruker Advance III 400 NMR spectrometer
operating at 400.15 MHz. All spectra were recorded using a standard broad-band inverse
5 mm probehead at 100°C using nitrogen gas for all pneumatics. Approximately 200 mg
of material was dissolved in
1,2-tetrachloroethane-
d2 (TCE-
d2) using ditertiarybutylhydroxytoluen (BHT) (
CAS 128-37-0) as stabiliser. Standard single-pulse excitation was employed utilising a 30 degree
pulse, a relaxation delay of 3 s and no sample rotation. A total of 16 transients
were acquired per spectra using 2 dummy scans. A total of 32k data points were collected
per FID with a dwell time of 60 µs, which corresponded to to a spectral window of
approx. 20 ppm. The FID was then zero filled to 64k data points and an exponential
window function applied with 0.3 Hz line-broadening. This setup was chosen primarily
for the ability to resolve the quantitative signals resulting from methylacrylate
and vinyltrimethylsiloxane copolymerisation when present in the same polymer.
[0142] Quantitative
1H NMR spectra were processed, integrated and quantitative properties determined using
custom spectral analysis automation programs. All chemical shifts were internally
referenced to the residual protonated solvent signal at 5.95 ppm.
[0143] When present characteristic signals resulting from the incorporation of vinylacytate
(VA), methyl acrylate (MA), butyl acrylate (BA) and vinyltrimethylsiloxane (VTMS),
in various comonomer sequences, were observed (Randell89). All comonomer contents
calculated with respect to all other monomers present in the polymer.
[0144] The vinylacytate (VA) incorporation was quantified using the integral of the signal
at 4.84 ppm assigned to the
∗VA sites, accounting for the number of reporting nuclie per comonomer and correcting
for the overlap of the OH protons from BHT when present:

[0145] The methylacrylate (MA) incorporation was quantified using the integral of the signal
at 3.65 ppm assigned to the 1MA sites, accounting for the number of reporting nuclie
per comonomer:

[0146] The butylacrylate (BA) incorporation was quantified using the integral of the signal
at 4.08 ppm assigned to the 4BA sites, accounting for the number of reporting nuclie
per comonomer:

[0147] The vinyltrimethylsiloxane incorporation was quantified using the integral of the
signal at 3.56 ppm assigned to the 1VTMS sites, accounting for the number of reporting
nuclei per comonomer:

[0148] Characteristic signals resulting from the additional use of BHT as stabiliser, were
observed. The BHT content was quantified using the integral of the signal at 6.93
ppm assigned to the ArBHT sites, accounting for the number of reporting nuclei per
molecule:

[0149] The ethylene comonomer content was quantified using the integral of the bulk aliphatic
(bulk) signal between 0.00 - 3.00 ppm. This integral may include the 1VA (3) and αVA
(2) sites from isolated vinylacetate incorporation,
∗MA and αMA sites from isolated methylacrylate incorporation, 1BA (3), 2BA (2), 3BA
(2),
∗BA (1) and αBA (2) sites from isolated butylacrylate incorporation, the
∗VTMS and αVTMS sites from isolated vinylsilane incorporation and the aliphatic sites
from BHT as well as the sites from polyethylene sequences. The total ethylene comonomer
content was calculated based on the bulk integral and compensating for the observed
comonomer sequences and BHT:

[0150] It should be noted that half of the α signals in the bulk signal represent ethylene
and not comonomer and that an insignificant error is introduced due to the inability
to compensate for the two saturated chain ends (S) without associated branch sites.
[0151] The total mole fractions of a given monomer (M) in the polymer was calculated as:

[0152] The total comonomer incorporation of a given monomer (M) in mole percent was calculated
from the mole fractions in the standard manner:

[0153] The total comonomer incorporation of a given monomer (M) in weight percent was calculated
from the mole fractions and molecular weight of the monomer (MW) in the standard manner:

randall89: J. Randall, Macromol. Sci., Rev. Macromol. Chem. Phys. 1989, C29, 201.
[0154] If characteristic signals from other specific chemical species are observed the logic
of quantification and/or compensation can be extended in a similar manor to that used
for the specifically described chemical species. That is, identification of characteristic
signals, quantification by integration of a specific signal or signals, scaling for
the number of reported nuclei and compensation in the bulk integral and related calculations.
Although this process is specific to the specific chemical species in question the
approach is based on the basic principles of quantitative NMR spectroscopy of polymers
and thus can be implemented by a person skilled in the art as needed.
Adhesion test:
[0155] The adhesion test is performed on laminated strips, the encaplulant film and backsheet
is peeled of in a tensile tesing equipment while measuring the force required for
this.
[0156] A laminate consisting of glass, 2 encapsulant films and backsheet is first laminated.
Between the glass and the first encapsulat film a small sheet of Teflon is inserted
at one of the ends, this will generate a small part of the encapsulants and backsheet
that is not adhered to the glass. This part will be used as the anchoring point for
the tensile testing device.
[0157] The laminate is then cut along the laminate to form a 15 mm wide strip, the cut goes
through the backsheet and the encapsulant films all the way down to the glass surface.
[0158] The laminate is mounted in the tensile testing equipment and the clamp of the tensile
testing device is attached to the end of the strip.
[0159] The pulling angle is 90 ° in relation to the laminate and the pulling speed is 14
mm/min.
[0160] The pulling force is measured as the average during 50 mm of peeling starting 25
mm into the strip.
[0161] The average force over the 50 mm is divided by the width of the strip (15 mm) and
presented as adhesion strength (N/cm).
Rheological properties:
Dynamic Shear Measurements (frequency sweep measurements)
[0162] The characterisation of melt of polymer composition or polymer as given above or
below in the context by dynamic shear measurements complies with ISO standards 6721-1
and 6721-10. The measurements were performed on an Anton Paar MCR501 stress controlled
rotational rheometer, equipped with a 25 mm parallel plate geometry. Measurements
were undertaken on compression moulded plates, using nitrogen atmosphere and setting
a strain within the linear viscoelastic regime. The oscillatory shear tests were done
at 190 °C applying a frequency range between 0.01 and 600 rad/s and setting a gap
of 1.3 mm.
[0163] In a dynamic shear experiment the probe is subjected to a homogeneous deformation
at a sinusoidal varying shear strain or shear stress (strain and stress controlled
mode, respectively). On a controlled strain experiment, the probe is subjected to
a sinusoidal strain that can be expressed by

[0164] If the applied strain is within the linear viscoelastic regime, the resulting sinusoidal
stress response can be given by

where
σ0 and γ0 are the stress and strain amplitudes, respectively
ω is the angular frequency
δ is the phase shift (loss angle between applied strain and stress response)
t is the time
[0165] Dynamic test results are typically expressed by means of several different rheological
functions, namely the shear storage modulus G', the shear loss modulus, G", the complex
shear modulus, G
∗, the complex shear viscosity, η
∗, the dynamic shear viscosity, η', the out-of-phase component of the complex shear
viscosity η' 'and the loss tangent, tan δ which can be expressed as follows:

[0166] Besides the above mentioned rheological functions one can also determine other rheological
parameters such as the so-called elasticity index
EI(x). The elasticity index
EI(x) is the value of the storage modulus, G' determined for a value of the loss modulus,
G" of x kPa and can be described by equation (9).

[0167] For example, the EI(5kPa) is the defined by the value of the storage modulus G',
determined for a value of G" equal to 5 kPa.
[0168] Shear Thinning Index (SHI
0.05/300) is defined as a ratio of two viscosities measured at frequencies 0.05 rad/s and
300 rad/s, µ
0.05/ µ
300.
References:
[0169]
- [1] Rheological characterization of polyethylene fractions" Heino, E.L., Lehtinen, A.,
Tanner J., Seppälä, J., Neste Oy, Porvoo, Finland, Theor. Appl. Rheol., Proc. Int.
Congr. Rheol, 11th (1992), 1, 360-362
- [2] The influence of molecular structure on some rheological properties of polyethylene",
Heino, E.L., Borealis Polymers Oy, Porvoo, Finland, Annual Transactions of the Nordic
Rheology Society, 1995.).
- [3] Definition of terms relating to the non-ultimate mechanical properties of polymers,
Pure & Appl. Chem., Vol. 70, No. 3, pp. 701-754, 1998.
Melting temperature, crystallization temperature (Tcr), and degree of crystallinity
[0170] The melting temperature Tm of the used polymers was measured in accordance with ASTM
D3418. Tm and Tcr were measured with Mettler TA820 differential scanning calorimetry
(DSC) on 3±0.5 mg samples. Both crystallization and melting curves were obtained during
10 °C/min cooling and heating scans between -10 to 200 °C. Melting and crystallization
temperatures were taken as the peaks of endotherms and exotherms. The degree of crystallinity
was calculated by comparison with heat of fusion of a perfectly crystalline polymer
of the same polymer type, e.g. for polyethylene, 290 J/g.
Experimental part
Preparation of examples (Copolymer of ethylene with methyl acrylate comonomer and
with vinyl trimethoxysilane comonomer)
[0171] Polymerisation of the polymer (a) of inventive inventive layer element, Inv. Ex.1-Inv.Ex2:
Inventive polymer (a) was produced in a commercial high pressure tubular reactor at
a pressure 2500-3000 bar and max temperature 250-300 °C using conventional peroxide
initiatior. Ethylene monomer, methyl acrylate (MA) polar comonomer and vinyl trimethoxy
silane (VTMS) comonomer (silane group(s) containing comonomer (b)) were added to the
reactor system in a conventional manner. CTA was used to regulate MFR as well known
for a skilled person. After having the information of the property balance desired
for the inventive final polymer (a), the skilled person can control the process to
obtain the inventive polymer (a).
[0172] The amount of the vinyl trimethoxy silane units, VTMS, (=silane group(s) containing
units), the amount of MA and MFR
2 are given in the table 1.
[0173] The properties in below tables were measured from the polymer (a) as obtained from
the reactor or from a layer sample as indicated below.
Table 1: Product properties of Inventive Examples
| Test polymer |
Inv.Ex.1 |
Inv.Ex 2 |
| Properties of the polymer obtained from the reactor |
|
|
| MFR2,16, g/10 min |
2.0 |
4.5 |
| acrylate content, mol% (wt%) |
MA 8.1 (21) |
MA 8.6 (22) |
| Melt Temperature, °C |
92 |
90 |
| VTMS content, mol% (wt%) |
0.41 (1.8) |
0.38 (1.7) |
| Density, kg/m3 |
948 |
946 |
| SHI (0.05/300), 150°C |
70 |
52 |
[0174] In above table 1 MA denotes the content of Methyl Acrylate comonomer present in the
polymer and, respectively, VTMS content denotes the content of vinyl trimethoxy silane
comonomer present in the polymer.
Lamination examples:
PV module (60 cells solar module) elements:
[0175] Glass element (=protective front layer element): Solatex solar glass, supplied by
AGC, length: 1632 mm and width: 986 mm, total thickness of 3.2 mm
[0176] Front and rear encapsulant element: Both consisted of Inv. example 1, had same width
and length dimensions as the glass element (the protective front layer element) and
each had independently the total thickness of 0.45 mm
[0177] PV Cell element: 60 monocrystalline solar cells, cell dimension156
∗156 mm, supplied by Tsec Taiwan, 2 buss bars, total thickness of 200 micron.
[0178] Backsheet element (=protective back layer element): DYMAT
® PYE Standard backsheet (PET/PET/Primer), supplied by Covme, total thickness of 300
micron.
Preparation of PV module (60 cells solar module) assembly for the lamination:
[0179] Five PV module assembly samples were prepared as follows. The front protective glass
element (Solatex AGC) was cleaned with isopropanol before putting the first encapsultant
film on the solar glass. The solar glass element has the following dimensions: 1632
mm × 986 × 3,2 mm (b
∗l
∗d). The front encapsulant element was cut in the same dimension as the solar glass
element. The solar cells as PV cell element have been automatically stringed by 10
cells in series with a distance between the cells of 1,5 mm. After the front encapsulant
element was put on the front protective glass element, then the solar cells were put
on the front encapsulant element with 6 rows of each 10 cells with a distance between
the rows of ± 2,5 mm to have a total of 60 cells in the solar module as a standard
module. Then the ends of the solar cells are soldered together to have a fully integrated
connection as well known by the PV module producers. Further the rear encapsulant
element was put on the obtained PV cell element and then the Coveme DYMAT PYE backsheet
element which had a slightly bigger dimension in length and width as the front protective
glass plate (±5 mm) was put on said the rear encapsulant element. The obtained PV
module assembly samples were then subjected to a lamination process test as described
below.
Lamination process of the 60 cells solar modules:
[0180] Laminator: ICOLAM 25/15, supplied by Meier Vakuumtechnik GmbH.
[0181] Each PV module assembly sample was laminated in a Meier ICOLAM 25/15 laminator from
Meier Vakuumtechnik GmbH with a laminator temperature setting of 145°C and pressure
setting of 800 mbar. Each sample was laminated in different conditions as given in
table 2.
Table 2: Lamination process with duration of the steps of the process
| Lamination Test no. |
Heating step (ii) with Evacuation (min) |
Encapsulant temperature when pressing starts (°C) |
Pressure build up substep (iiia) of pressing step (iii) (min) |
Holding the pressure substep (iiib)ot pressing step (iii) (min) |
Total time of steps (ii) + (iiia) and (iiib) of (iii) (min) |
| Test 1 |
6.0 |
105 |
1.0 |
8.0 |
15.0 |
| Test 2 |
6.0 |
100 |
2.0 |
2.0 |
10.0 |
| Test 3 |
5.0 |
95 |
2.0 |
1.0 |
8.0 |
| Test 4 |
3.5 |
95 |
1.5 |
1.0 |
6.0 |
| Test 5 |
2.5 |
93 |
1.5 |
1.0 |
5.0 |
[0182] The PV modules produced using the above conditions 1-5 were all perfect with no sign
of cell breakage, bubble formation or air holes. The electroluminescence (EL) study
of each of the modules show no cell cracks.
[0183] The delamination on the PV modules as produced in conditions 1-5 was tested by cutting
a 1 cm strip of the backsheet-encapsulant layer from the complete module and then
pulling the strip manually to check how easily the strip can be pulled. In all cases,
it was observed that during pulling the backsheet encapsulant the assembly ruptured
indicating adhesion strength greater than the mechanical strength of the backsheet.
In all the samples, appearance of the delaminated surface showed combination of cohesive
and adhesion failure at the interface indicating strong adhesive strength between
glass and encapsulant.
[0184] The adhesion of the PV modules as produced in conditions 1-5 was tested according
to adhesion method as described above under Determination methods" . The test revealed
that such failure takes place always at an adhesion strength greater than 150 N/cm.
1. A process for producing a multilayer laminate which comprises at least one substrate
element and at least one polymeric layer element,
wherein the polymeric layer element comprises a polymer composition comprising:
- (a) a polymer, wherein said polymer (a) optionally bears functional group(s) containing
units; and
- (b) silane group(s) containing units;
and wherein the process comprises the steps of:
(i) assembling step to arrange the at least one substrate element and the at least
one polymeric layer element in form of a multilayer assembly;
(ii) heating step to heat up the multilayer assembly optionally in a chamber at evacuating
conditions;
(iii) pressing step to build and keep pressure on the multilayer assembly at the heated
conditions for the lamination of the assembly to occur; and
(iv) recovering step to cool and remove the obtained multilayer laminate for later
use;
- wherein the pressing step (iii) is started when the at least one polymeric layer
element reaches a temperature which is at least 3 to 10°C higher than the melting
temperature of the polymer (a) of said polymeric layer element; and
- wherein the duration of the pressing step (iii) is from 0.5 to 10 minutes;
- wherein the polymer (a) has
- a melting temperature, Tm, of 100 °C or less, when measured as described below under
"Determination methods", and
- a melt flow rate, MFR2, of less than 20 g/10 min (according to ISO 1133 at 190 °C and at a load of 2.16
kg); and
- wherein no crosslinking agent selected from peroxide or silane condensation catalyst
(SCC), which is selected from the SCC group of carboxylates of tin, zinc, iron, lead
or cobalt or aromatic organic sulphonic acids, is introduced to the polymer (a) of
the polymer composition before or during the lamination process.
2. The process according to claim 1, wherein the pressing step (iii) is started when
the at least one polymeric layer element reaches a temperature which is 3 to 10°C
higher than the melting temperature of the polymer of ethylene (a) of said polymeric
layer element.
3. The process according to any of the preceding claims, wherein the pressing step (iii)
is preferably started when the at least one polymeric layer element reaches a temperature
of at least of 85 °C, suitably to 85 to 150, suitably to 85 to 148, suitably 85 to
140, preferably 90 to 130, preferably 90 to 120, preferably 90 to 115, °C.
4. The process according to any of the preceding claims, wherein the duration of the
heating step (ii) is preferably 0.5 to 7 minutes, preferably 1 to 6 minutes, suitably
1.5 to 5 minutes.
5. The process according to any of the preceding claims, wherein at the pressing step
(iii) the duration of the pressure build up time is 0.5 to 3 minutes, the duration
of holding the pressure is 0.5 to 9 minutes, and the total duration of the pressing
step (iii) is preferably 0.5 to 10, preferably 0.5 to 9, preferably 0.5 to 8, preferably
0.5 to 7, more preferably 0.5 to 6, more preferably 0.5 to 5, minutes.
6. The process according to any of the preceding claims, wherein the total duration of
the (ii) heating step and pressing step (iii) is less than 20, preferably from 2 to
20, suitably 2 to 15, suitably 2 to 10, minutes.
7. The process according to any of the preceding claims, wherein the pressure used in
the pressing step (iii) is up to 1000 mbar, preferably 500 to 900 mbar.
8. The process according to any of the preceding claims, wherein the polymer composition
of the polymeric layer of the lamination process comprises
- a polymer of ethylene (a) selected from:
(a1) a polymer of ethylene which optionally contains one or more comonomer(s) other
than a polar comonomer of polymer (a2) and which bears functional groups containing
units;
(a2) a polymer of ethylene containing one or more polar comonomer(s) selected from
(C1-C6)-alkyl acrylate or (C1-C6)-alkyl (C1-C6)-alkylacrylate comonomer(s), and optionally
bears functional group(s) containing units other than said polar comonomer; or
(a3) a polymer of ethylene containing one or more alpha-olefin comonomer selected
from (C1-C10)-alpha-olefin comonomer; and optionally bears functional group(s) containing
units; and
- silane group(s) containing units (b).
9. The process according to any of the preceding claims, wherein the polymer composition
comprises
- polymer (a) which is selected from
(a1) a polymer of ethylene which optionally contains one or more comonomer(s) other
than the polar comonomer of polymer (a2 )and which bears functional groups containing
units other than said optional comonomer(s); or
(a2) a polymer of ethylene containing one or more polar comonomer(s) selected from
(C1-C6)-alkyl acrylate or (C1-C6)-alkyl (C1-C6)-alkylacrylate comonomer(s), and optionally
bears functional group(s) containing units other than said polar comonomer; and
- silane group(s) containing units (b).
10. The process according to any of the preceding claims, wherein the polymer composition
more comprises
- polymer (a) which is selected from
(a1) a polymer of ethylene which optionally contains one or more comonomer(s) other
than the polar comonomer of polymer (a2 )and which bears functional groups containing
units other than said optional comonomer(s); or
(a2) a polymer of ethylene containing one or more polar comonomer(s) selected from
(C1-C6)-alkyl acrylate or (C1-C6)-alkyl (C1-C6)-alkylacrylate comonomer(s), and optionally
bears functional group(s) containing units other than said polar comonomer; and
- silane group(s) containing units (b);
more preferably wherein , the polymer composition comprises
- a polymer (a) which is the polymer of ethylene (a1) which bears the silane group(s)
containing units (b) as the functional groups containing units, preferably the polymer
(a1) does not contain, i.e. is without, a polar comonomer of polymer (a2) or an alpha-olefin
comonomer; or
the polymer composition comprises
- a polymer (a) which is the polymer of ethylene (a2) containing one or more polar
comonomer(s) selected from (C1-C6)-alkyl acrylate or (C1-C6)-alkyl (C1-C6)-alkylacrylate,
preferably one (C1-C6)-alkyl acrylate, and bears functional group(s) containing units
other than said polar comonomer; and
- silane group(s) containing units (b): more preferably
- a polymer of ethylene (a2) containing one or more polar comonomer(s) selected from
(C1-C6)-alkyl acrylate or (C1-C6)-alkyl (C1-C6)-alkylacrylate comonomer(s), more preferably
a polymer of ethylene (a2) containing one (C1-C4)-alkyl acrylate, more preferably
a polymer of ethylene (a2) containing methyl acrylate comonomer, and bears the silane
group(s) containing units (b) as the functional group(s) containing units.
11. The process according to any of the preceding claims, wherein the silane group(s)
containing unit (b) is a hydrolysable unsaturated silane compound represented by the
formula (I):
R1SiR2qY3-q (I)
wherein
R1 is an ethylenically unsaturated hydrocarbyl, hydrocarbyloxy or (meth)acryloxy hydrocarbyl
group,
each R2 is independently an aliphatic saturated hydrocarbyl group,
Y which may be the same or different, is a hydrolysable organic group and
q is 0, 1 or 2, the amount of the silane group(s) containing units (b) present in
the layer, preferably in the polymer (a), is from 0.01 to 1.00 mol %, when determined
according to "Comonomer contents" as described in the specification under "Determination
Methods"; which compound of formula (I) is preferably copolymerized or grafted to
the polymer (a) as said optional functional group(s) containing units.
12. The process according to any of the preceding claims, wherein polymer (a) is a copolymer
of ethylene (a1) with vinyl trimethoxysilane comonomer or a copolymer of ethylene
(a2) with methylacrylate comonomer and with vinyl trimethoxysilane comonomer.
MFR2, of the polymer (a), preferably of the polymer (a1) or (a2), is preferably of less
than 15, preferably, preferably from 0.2 to 13, preferably from 0.3 to 13, more preferably
from 0.4 to 13, g/10 min (according to ISO 1133 at 190 °C and at a load of 2.16 kg).
13. The process according to any of the preceding claims, wherein the copolymer of ethylene
(a) has one, more or all of the following properties
- melt flow rate, MFR2, of less than 15, preferably from 0.1 to 15, g/10 min (according to ISO 1133 at 190
°C and at a load of 2.16 kg)
- Melting temperature, Tm, of 70°C or more, preferably 75°C or more, more preferably
78 to 100, preferably 78 to 95,°C, when measured according to ISO 3146 as described
in the specification under "Determination Methods"
- Shear thinning index, SHI0.05/300, of 30.0 to 100.0, preferably of of 40.0 to 80.0, when measured according to "Rheological
properties: Dynamic Shear Measurements (frequency sweep measurements)" as described
in the specification under "Determination Methods".
14. The process according to any of the preceding claims or producing a multilayer laminate
which is a photovoltaic module comprising, in the given order, a protective front
layer element, a front encapsulation layer element, a photovoltaic element, a rear
encapsulation layer element and a protective back layer element;
wherein
- any one or more of the front encapsulation layer element, rear encapsulation layer
element or protective back layer element, suitably one or both of the front encapsulation
layer element or the rear encapsulation layer element, preferably both the front encapsulation
layer element and the rear encapsulation layer element, is/are said polymeric layer
element(s);
- and any one or more of protective front layer element, the photovoltaic element
or protective back layer element, is/are said substrate layer element(s).
15. The process according to any of the preceding claims for producing a photovoltaic
module, wherein the photovoltaic module comprises, in the given order, a protective
front layer element, a front encapsulation layer element, a photovoltaic element,
a rear encapsulation layer element and a protective back layer element,
- wherein one or both of the front encapsulation layer element or the rear encapsulation
layer element, preferably both the front encapsulation layer element and the rear
encapsulation layer element, is/are said polymeric layer element(s);
- and wherein the pressing step (iii) is started when at least one of said front and/or
rear encapsulation layer element(s) reach(es) a temperature which is at least 3 to
10°C higher than the melting temperature of the polymer of ethylene (a) present in
said front and/or encapsulation layer element.
16. The process according to any of the preceding claims for a photovoltaic module laminate
comprising, in the given order, a protective front layer element, a front encapsulation
layer element, a photovoltaic element, a rear encapsulation layer element and a protective
back layer element; wherein at least one of the front encapsulation layer element
or the rear encapsulation layer element, or both the front encapsulation layer element
and the rear encapsulation layer element, comprise(s) a polymer composition comprising:
- (a) a polymer, wherein said polymer (a) optionally bears functional group(s) containing
units; and
- (b) silane group(s) containing units;
and wherein the process comprises the steps of:
(i) assembling step to arrange the protective front layer element, the front encapsulation
layer element, the photovoltaic element, the rear encapsulation layer element and
the protective back layer element, in given order, to form of a photovoltaic module
assembly;
(ii) heating step to heat up the photovoltaic module assembly optionally in a chamber
at evacuating conditions;
(iii) pressing step to build and keep pressure on the photovoltaic module assembly
at the heated conditions for the lamination of the assembly to occur; and
(iv) recovering step to cool and remove the obtained photovoltaic module assembly
for later use;
- wherein the pressing step (iii) is started when at least of front encapsulation
layer element, back encapsulation layer element, or both encapsulation layer element
and back encapsulation layer element, reache(s) a temperature which is at least 3
to 10°C higher than the melting temperature of the polymer (a) of said respective
encapsulation layer element; and
- wherein the duration of the pressing step (iii) is from 0.5 to 10 minutes;
- wherein the polymer (a) has a melting temperature, Tm, of 100 °C or less, when measured
as described in the specification under "Determination methods"; and
- wherein no crosslinking agent selected from peroxide or silane condensation catalyst
(SCC), which is selected from the SCC group of carboxylates of tin, zinc, iron, lead
or cobalt or aromatic organic sulphonic acids, is introduced to the polymer of ethylene
(a) of the polymer composition before or during the lamination process.
1. Verfahren zur Herstellung eines Mehrschichtlaminats, das mindestens ein Substratelement
und mindestens ein polymeres Schichtelement umfasst,
wobei das polymere Schichtelement eine Polymerzusammensetzung umfasst, die Folgendes
umfasst:
- (a) ein Polymer, wobei das Polymer (a) gegebenenfalls funktionelle Gruppe(n) enthaltende
Einheiten trägt; und
- (b) Silangruppe(n) enthaltende Einheiten;
und wobei das Verfahren die folgenden Schritte umfasst:
(i) Schritt des Zusammenfügens, um das mindestens eine Substratelement und das mindestens
eine polymere Schichtelement in Form einer Mehrschichtanordnung anzuordnen;
(ii) Erhitzungsschritt zum Erhitzen der Mehrschichtanordnung, gegebenenfalls in einer
Kammer unter Evakuierungsbedingungen;
(iii) Pressschritt zum Aufbau und Aufrechterhalten des Drucks auf die Mehrschichtanordnung
unter den erhitzten Bedingungen, damit die Laminierung der Anordnung erfolgen kann;
und
(iv) Rückgewinnungsschritt zum Abkühlen und Entfernen des erhaltenen Mehrschichtlaminats
zur späteren Verwendung;
- wobei der Pressschritt (iii) gestartet wird, wenn das mindestens eine polymere Schichtelement
eine Temperatur erreicht, die mindestens 3 bis 10°C höher ist als die Schmelztemperatur
des Polymers (a) des polymeren Schichtelements; und
- wobei die Dauer des Pressschritts (iii) zwischen 0,5 und 10 Minuten liegt;
- wobei das Polymer (a) Folgendes aufweist
- eine Schmelztemperatur, Tm, von 100 °C oder weniger, gemessen wie unten unter "Determination
methods" beschrieben, und
- eine Schmelzflussrate, MFR2, von weniger als 20 g/10 min (nach ISO 1133 bei 190 °C und einer Last von 2,16 kg)
und
- wobei dem Polymer (a) der Polymerzusammensetzung vor oder während des Laminierungsverfahrens
kein Vernetzungsmittel zugeführt wird, das aus einem Peroxid- oder Silan-Kondensationskatalysator
(SCC) ausgewählt wird, der aus der SCC-Gruppe der Carboxylate von Zinn, Zink, Eisen,
Blei oder Kobalt oder aromatischen organischen Sulfonsäuren ausgewählt wird.
2. Verfahren nach Anspruch 1, wobei der Pressschritt (iii) gestartet wird, wenn das mindestens
eine polymere Schichtelement eine Temperatur erreicht, die 3 bis 10°C höher ist als
die Schmelztemperatur des Ethylenpolymers (a) des polymeren Schichtelements.
3. Verfahren nach einem der vorhergehenden Ansprüche, wobei der Pressschritt (iii) vorzugsweise
gestartet wird, wenn das mindestens eine polymere Schichtelement eine Temperatur von
mindestens 85 °C, zweckmäßigerweise 85 bis 150, zweckmäßigerweise 85 bis 148, zweckmäßigerweise
85 bis 140, vorzugsweise 90 bis 130, vorzugsweise 90 bis 120, vorzugsweise 90 bis
115, °C erreicht.
4. Verfahren nach einem der vorhergehenden Ansprüche, wobei die Dauer des Erhitzungsschritts
(ii) vorzugsweise 0,5 bis 7 Minuten, vorzugsweise 1 bis 6 Minuten, zweckmäßigerweise
1,5 bis 5 Minuten beträgt.
5. Verfahren nach einem der vorhergehenden Ansprüche, wobei im Pressschritt (iii) die
Dauer der Druckaufbauzeit 0,5 bis 3 Minuten beträgt, die Dauer des Druckhaltens 0,5
bis 9 Minuten beträgt und die Gesamtdauer des Pressschritts (iii) vorzugsweise 0,5
bis 10, vorzugsweise 0,5 bis 9, vorzugsweise 0,5 bis 8, vorzugsweise 0,5 bis 7, noch
bevorzugter 0,5 bis 6, noch bevorzugter 0,5 bis 5 Minuten beträgt.
6. Verfahren nach einem der vorhergehenden Ansprüche, wobei die Gesamtdauer des Heizschritts
(ii) und des Pressschritts (iii) weniger als 20, vorzugsweise 2 bis 20, zweckmäßigerweise
2 bis 15, zweckmäßigerweise 2 bis 10 Minuten beträgt.
7. Verfahren nach einem der vorhergehenden Ansprüche, wobei der im Pressschritt (iii)
verwendete Druck bis zu 1000 mbar, vorzugsweise 500 bis 900 mbar, beträgt.
8. Verfahren nach einem der vorhergehenden Ansprüche, wobei die Polymerzusammensetzung
der polymeren Schicht des Laminierungsverfahrens umfasst
- ein Ethylenpolymer (a), ausgewählt aus:
(a1) einem Ethylenpolymer, das gegebenenfalls ein oder mehrere Comonomer(e) enthält,
die nicht ein polares Comonomer des Polymers (a2) sind, und das funktionelle Gruppen
enthaltende Einheiten trägt;
(a2) einem Ethylenpolymer, das ein oder mehrere polare(s) Comonomer(e) enthält, die
aus (C1-C6)-Alkylacrylat- oder (C1-C6)-Alkyl(C1-C6)-Alkylacrylat-Comonomer(en) ausgewählt
sind, und gegebenenfalls funktionelle Gruppe(n) enthaltende Einheiten trägt, die nicht
dieses polare Comonomer sind; oder
(a3) einem Ethylenpolymer, das ein oder mehrere Alpha-Olefin-Comonomer(e) enthält,
die aus (C1-C10)-Alpha-Olefin-Comonomer ausgewählt sind, und gegebenenfalls funktionelle
Gruppe(n) enthaltende Einheiten trägt; und
- Silangruppe(n) enthaltende Einheiten (b).
9. Verfahren nach einem der vorhergehenden Ansprüche, wobei die Polymerzusammensetzung
umfasst
- Polymer (a), das ausgewählt ist aus
(a1) einem Ethylenpolymer, das gegebenenfalls ein oder mehrere Comonomer(e) enthält,
die nicht das polare Comonomer des Polymers (a2) sind, und das funktionelle Gruppen
enthaltende Einheiten trägt, die nicht das/die optionale(n) Comonomer(e) sind; oder
(a2)) einem Ethylenpolymer, das ein oder mehrere polare Comonomer(e) enthält, die
aus (C1-C6)-Alkylacrylat- oder (C1-C6)-Alkyl(C1-C6)-Alkylacrylat-Comonomer(en) ausgewählt
sind, und gegebenenfalls funktionelle Gruppe(n) enthaltende Einheiten trägt, die die
nicht dieses polare Comonomer sind; und
- Silangruppe(n) enthaltende Einheiten (b).
10. Verfahren nach einem der vorangehenden Ansprüche, wobei die Polymerzusammensetzung
ferner umfasst
- Polymer (a), das ausgewählt ist aus
(a1) einem Ethylenpolymer, das gegebenenfalls ein oder mehrere Comonomer(e) enthält,
die nicht das polare Comonomer des Polymers (a2) sind, und das funktionelle Gruppen
enthaltende Einheiten trägt, die nicht das/die optionale(n) Comonomer(e) sind; oder
(a2) einem Ethylenpolymer, das ein oder mehrere polare Comonomer(e) enthält, die aus
(C1-C6)-Alkylacrylat- oder (C1-C6)-Alkyl(C1-C6)-Alkylacrylat-Comonomer(en) ausgewählt
sind, und gegebenenfalls funktionelle Gruppe(n) enthaltende Einheiten trägt, die die
nicht dieses polare Comonomer sind; und
- Silangruppe(n) enthaltende Einheiten (b);
wobei die Polymerzusammensetzung stärker bevorzugt Folgendes umfasst
- ein Polymer (a), bei dem es sich um das Ethylenpolymer (a1) handelt, das die Silangruppe(n)
enthaltenden Einheiten (b) als die funktionellen Gruppen enthaltenden Einheiten trägt,
wobei das Polymer (a1) vorzugsweise kein polares Comonomer des Polymers (a2) oder
ein Alpha-Olefin-Comonomer enthält, d.h. ohne eines dieser beiden ist; oder
die Polymerzusammensetzung umfasst
- ein Polymer (a), bei dem es sich um das Ethylenpolymer (a2) handelt, das ein oder
mehrere polare(s) Comonomer(e), ausgewählt aus (C1-C6)-Alkylacrylat oder (C1-C6)-Alkyl-(C1-C6)-Alkylacrylat,
vorzugsweise ein (C1-C6)-Alkylacrylat, enthält und funktionelle Gruppe(n) enthaltende
Einheiten trägt, die die nicht dieses polare Comonomer sind; und
- Silangruppe(n) enthaltende Einheiten (b): stärker bevorzugt
- ein Ethylenpolymer (a2), das ein oder mehrere polare(s) Comonomer(e), ausgewählt
aus (C1-C6)-Alkylacrylat- oder (C1-C6)-Alkyl-(C1-C6)-Alkylacrylat-Comonomer(en), enthält,
besonders bevorzugt ein Ethylenpolymer (a2), das ein (C1-C4)-Alkylacrylat-Comonomer
enthält, besonders bevorzugt ein Ethylenpolymer (a2), das Methylacrylat-Comonomer
enthält, und das die Silangruppe(n) enthaltenden Einheiten (b) als die funktionelle(n)
Gruppe(n) enthaltende(n) Einheiten trägt.
11. Verfahren nach einem der vorhergehenden Ansprüche, wobei die Silangruppe(n) enthaltende
Einheit (b) eine hydrolysierbare ungesättigte Silanverbindung der Formel (I) ist:
R1SiR2qY3-q (I)
wobei
R1 eine ethylenisch ungesättigte Kohlenwasserstoff-, Kohlenwasserstoffoxy- oder (Meth)acryloxy-Kohlenwasserstoffgruppe
ist,
jedes R2 unabhängig voneinander eine aliphatische gesättigte Kohlenwasserstoffgruppe
ist,
Y, das gleich oder verschieden sein kann, eine hydrolysierbare organische Gruppe ist
und
q 0, 1 oder 2 ist, die Menge der Silangruppe(n) enthaltenden Einheiten (b), die in
der Schicht, vorzugsweise im Polymer (a), vorhanden sind, 0,01 bis 1,00 Mol-% beträgt,
wenn sie gemäß den "Comonomer-contents", wie in der Beschreibung unter "Determination
Methods" beschrieben, bestimmt wird; wobei die Verbindung der Formel (I) vorzugsweise
als die optionale(n) funktionelle(n) Gruppe(n) enthaltende(n) Einheit(en) auf das
Polymer (a) copolymerisiert oder aufgepfropft wird.
12. Verfahren nach einem der vorhergehenden Ansprüche, wobei das Polymer (a) ein Ethylenecopolymer
(a1) mit Vinyltrimethoxysilan-Comonomer oder ein Ethylencopolymer (a2) mit Methylacrylat-Comonomer
und mit Vinyltrimethoxysilan-Comonomer ist.
MFR2 des Polymers (a), vorzugsweise des Polymers (a1) oder (a2), liegt vorzugsweise unter
15, vorzugsweise zwischen 0,2 und 13, vorzugsweise zwischen 0,3 und 13, besonders
bevorzugt zwischen 0,4 und 13, g/10 min (gemäß ISO 1133 bei 190 °C und einer Last
von 2,16 kg).
13. Verfahren nach einem der vorhergehenden Ansprüche, wobei das Ethylencopolymer (a)
eine, mehrere oder alle der folgenden Eigenschaften aufweist
- Schmelzflussrate, MFR2, von weniger als 15, vorzugsweise 0,1 bis 15, g/10 min (nach ISO 1133 bei 190 °C
und einer Last von 2,16 kg)
- Schmelztemperatur, Tm, von 70°C oder mehr, vorzugsweise 75°C oder mehr, besonders
bevorzugt 78 bis 100, vorzugsweise 78 bis 95°C, gemessen nach ISO 3146, wie in der
Beschreibung unter "Determination Methods" beschrieben
- Scherverdünnungsindex, SHL0,05/300, von 30,0 bis 100,0, vorzugsweise von 40,0 bis 80,0, gemessen nach "Rheological properties:
Dynamic Shear Measurements (frequency sweep measurements)", wie in der Beschreibung
unter "Determination Methods " beschrieben.
14. Verfahren nach einem der vorhergehenden Ansprüche oder zur Herstellung eines Mehrschichtlaminats,
das ein photovoltaisches Modul ist, das in der angegebenen Reihenfolge ein vorderes
Schutzschichtelement, ein vorderes Verkapselungsschichtelement, ein photovoltaisches
Element, ein hinteres Verkapselungsschichtelement und ein hinteres Schutzschichtelement
umfasst; wobei
- ein oder mehrere Elemente aus dem vorderen Verkapselungsschichtelement, dem hinteren
Verkapselungsschichtelement oder dem hinteren Schutzschichtelement, zweckmäßigerweise
eines oder beide Elemente aus dem vorderen Verkapselungsschichtelement oder dem hinteren
Verkapselungsschichtelement, vorzugsweise sowohl das vordere Verkapselungsschichtelement
als auch das hintere Verkapselungsschichtelement, das/die polymere(n) Schichtelement(e)
ist/sind;
- und eines oder mehrere der Elemente aus dem vorderen Schutzschichtelement, dem photovoltaischen
Element oder dem hinteren Schutzschichtelement das/die Substratschichtelement(e) ist/sind.
15. Verfahren nach einem der vorhergehenden Ansprüche zur Herstellung eines photovoltaischen
Moduls, wobei das photovoltaische Modul in der angegebenen Reihenfolge ein vorderes
Schutzschichtelement, ein vorderes Verkapselungsschichtelement, ein photovoltaisches
Element, ein hinteres Verkapselungsschichtelement und ein hinteres Schutzschichtelement
umfasst,
- wobei eines oder beide Elemente aus dem vorderen Verkapselungsschichtelement oder
dem hinteren Verkapselungsschichtelement, vorzugsweise sowohl das vordere Verkapselungsschichtelement
als auch das hintere Verkapselungsschichtelement, das/die polymere(n) Schichtelement(e)
ist/sind;
- und wobei der Pressschritt (iii) gestartet wird, wenn mindestens eines der vorderen
und/oder hinteren Verkapselungsschichtelemente eine Temperatur erreicht, die mindestens
3 bis 10°C höher ist als die Schmelztemperatur des in dem vorderen und/oder Verkapselungsschichtelement
vorhandenen Ethylenpolymers (a).
16. Verfahren nach einem der vorhergehenden Ansprüche für ein photovoltaisches Modul-Laminat,
das in der angegebenen Reihenfolge ein vorderes Schutzschichtelement, ein vorderes
Verkapselungsschichtelement, ein photovoltaisches Element, ein hinteres Verkapselungsschichtelement
und ein hinteres Schutzschichtelement umfasst; wobei mindestens eines von dem vorderen
Verkapselungsschichtelement oder dem hinteren Verkapselungsschichtelement oder sowohl
das vordere Verkapselungsschichtelement als auch das hintere Verkapselungsschichtelement
eine Polymerzusammensetzung umfasst, die Folgendes umfasst:
- (a) ein Polymer, wobei das Polymer (a) gegebenenfalls funktionelle Gruppe(n) enthaltende
Einheiten trägt; und
- (b) Silangruppe(n) enthaltende Einheiten;
und wobei das Verfahren die folgenden Schritte umfasst:
(i) Schritt des Zusammenfügens, um das vordere Schutzschichtelement, das vordere Verkapselungsschichtelement,
das photovoltaische Element, das hintere Verkapselungsschichtelement und das hintere
Schutzschichtelement in der vorgegebenen Reihenfolge anzuordnen, um eine photovoltaische
Modulanordnung zu bilden;
(ii) Erhitzungsschritt zum Erhitzen der photovoltaischen Modulanordnung, gegebenenfalls
in einer Kammer unter Evakuierungsbedingungen;
(iii) Pressschritt zum Aufbau und Aufrechterhalten des Drucks auf die photovoltaische
Modulanordnung unter den erhitzten Bedingungen, damit die Laminierung der Anordnung
erfolgen kann; und
(iv) Rückgewinnungsschritt zum Abkühlen und Entfernen der erhaltenen photovoltaischen
Modulanordnung zur späteren Verwendung;
- wobei der Pressschritt (iii) gestartet wird, wenn mindestens das vordere Verkapselungsschichtelement,
das hintere Verkapselungsschichtelement oder sowohl das Verkapselungsschichtelement
als auch das hintere Verkapselungsschichtelement eine Temperatur erreicht, die mindestens
3 bis 10°C höher ist als die Schmelztemperatur des Polymers (a) des jeweiligen Verkapselungsschichtelements;
und
- wobei die Dauer des Pressschritts (iii) zwischen 0,5 und 10 Minuten liegt;
- wobei das Polymer (a) eine Schmelztemperatur, Tm, von 100 °C oder weniger aufweist,
gemessen wie in der Beschreibung unter "Determination Methods" beschrieben; und
- wobei dem Ethylenpolymer (a) der Polymerzusammensetzung vor oder während des Laminierungsverfahrens
kein Vernetzungsmittel zugeführt wird, das aus einem Peroxid- oder Silan-Kondensationskatalysator
(SCC) ausgewählt ist, der aus der SCC-Gruppe der Carboxylate von Zinn, Zink, Eisen,
Blei oder Kobalt oder aromatischen organischen Sulfonsäuren ausgewählt ist.
1. Procédé de production d'un stratifié multicouche qui comprend au moins un élément
de substrat et au moins un élément de couche polymère,
dans lequel l'élément de couche polymère comprend une composition de polymère comprenant
:
- (a) un polymère, dans lequel ledit polymère (a) porte optionnellement des motifs
contenant un ou plusieurs groupe(s) fonctionnel(s) ; et
- (b) des motifs contenant un ou plusieurs groupe(s) silane ;
et dans lequel le procédé comprend les étapes suivantes :
(i) une étape d'assemblage pour agencer l'au moins un élément de substrat et l'au
moins un élément de couche polymère sous la forme d'un assemblage multicouche ;
(ii) une étape de chauffage pour chauffer l'assemblage multicouche optionnellement
dans une chambre dans des conditions de mise sous vide ;
(iii) une étape de pressage pour créer et maintenir une pression sur l'assemblage
multicouche dans les conditions de chauffage pour que la stratification de l'assemblage
se produise ; et
(iv) une étape de récupération pour refroidir et retirer le stratifié multicouche
obtenu pour une utilisation ultérieure ;
- dans lequel l'étape de pressage (iii) est commencée quand l'au moins un élément
de couche polymère atteint une température qui est supérieure d'au moins 3 à 10 °C
à la température de fusion du polymère (a) dudit élément de couche polymère ; et
- dans lequel la durée de l'étape de pressage (iii) est de 0,5 à 10 minutes ;
- dans lequel le polymère (a) présente
- une température de fusion, Tm, de 100 °C ou moins, mesurée comme décrit ci-dessous
sous « Méthodes de détermination », et
- un indice de fluidité à l'état fondu, MFR2, inférieur à 20 g/10 min (conformément à l'ISO 1133 à 190 °C et sous une charge de
2,16 kg) ; et
- dans lequel aucun agent de réticulation sélectionné parmi un peroxyde ou un catalyseur
de condensation de silane (SCC), qui est sélectionné parmi le groupe de SCC des carboxylates
d'étain, de zinc, de fer, de plomb ou de cobalt ou des acides sulfoniques organiques
aromatiques, n'est introduit dans le polymère (a) de la composition de polymère avant
ou pendant le procédé de stratification.
2. Procédé selon la revendication 1, dans lequel l'étape de pressage (iii) est commencée
quand l'au moins un élément de couche polymère atteint une température qui est supérieure
de 3 à 10 °C à la température de fusion du polymère d'éthylène (a) dudit élément de
couche polymère.
3. Procédé selon l'une quelconque des revendications précédentes, dans lequel l'étape
de pressage (iii) est de préférence commencée quand l'au moins un élément de couche
polymère atteint une température d'au moins 85 °C, de manière appropriée de 85 à 150,
de manière appropriée de 85 à 148, de manière appropriée de 85 à 140, de préférence
de 90 à 130, de préférence de 90 à 120, de préférence de 90 à 115 °C.
4. Procédé selon l'une quelconque des revendications précédentes, dans lequel la durée
de l'étape de chauffage (ii) est de préférence de 0,5 à 7 minutes, de préférence de
1 à 6 minutes, de manière appropriée de 1,5 à 5 minutes.
5. Procédé selon l'une quelconque des revendications précédentes, dans lequel, dans l'étape
de pressage (iii), la durée de la montée de la pression est de 0,5 à 3 minutes, la
durée de maintien de la pression est de 0,5 à 9 minutes, et la durée totale de l'étape
de pressage (iii) est de préférence de 0,5 à 10, de préférence de 0,5 à 9, de préférence
de 0,5 à 8, de préférence de 0,5 à 7, de manière davantage préférée de 0,5 à 6, de
manière davantage préférée de 0,5 à 5 minutes.
6. Procédé selon l'une quelconque des revendications précédentes, dans lequel la durée
totale de l'étape de chauffage (ii) et de l'étape de pressage (iii) est inférieure
à 20, de préférence de 2 à 20, de manière appropriée de 2 à 15, de manière appropriée
de 2 à 10 minutes.
7. Procédé selon l'une quelconque des revendications précédentes, dans lequel la pression
utilisée dans l'étape de pressage (iii) va jusqu'à 1000 mbar, de préférence est de
500 à 900 mbar.
8. Procédé selon l'une quelconque des revendications précédentes, dans lequel la composition
de polymère de la couche polymère du procédé de stratification comprend
- un polymère d'éthylène (a) sélectionné parmi :
(a1) un polymère d'éthylène qui contient optionnellement un ou plusieurs comonomère(s)
autre(s) qu'un comonomère polaire du polymère (a2) et qui porte des motifs contenant
des groupes fonctionnels ;
(a2) un polymère d'éthylène contenant un ou plusieurs comonomère(s) polaire(s) sélectionné(s)
parmi le(s) comonomère(s) acrylate d'alkyle en C1-C6 ou (alkyle en C1-C6)-acrylate
d'alkyle en C1-C6, et porte optionnellement des motifs contenant un ou plusieurs groupe(s)
fonctionnel(s) autres que ledit comonomère polaire ; ou
(a3) un polymère d'éthylène contenant un ou plusieurs comonomères alpha-oléfine sélectionnés
parmi un comonomère alpha-oléfine en C1-C10 ; et porte optionnellement des motifs
contenant un ou plusieurs groupe(s) fonctionnel(s) ; et
- des motifs (b) contenant un ou plusieurs groupe(s) silane.
9. Procédé selon l'une quelconque des revendications précédentes, dans lequel la composition
de polymère comprend
- un polymère (a) qui est sélectionné parmi
(a1) un polymère d'éthylène qui contient optionnellement un ou plusieurs comonomère(s)
autre(s) que le comonomère polaire du polymère (a2) et qui porte des motifs contenant
des groupes fonctionnels autres que ledit/lesdits comonomère(s) optionnel(s) ; ou
(a2) un polymère d'éthylène contenant un ou plusieurs comonomère(s) polaire(s) sélectionné(s)
parmi le(s) comonomère(s) acrylate d'alkyle en C1-C6 ou (alkyle en C1-C6)-acrylate
d'alkyle en C1-C6, et porte optionnellement des motifs contenant un ou plusieurs groupe(s)
fonctionnel(s) autres que ledit comonomère polaire ; et
- des motifs (b) contenant un ou plusieurs groupe(s) silane.
10. Procédé selon l'une quelconque des revendications précédentes, dans lequel la composition
de polymère comprend en plus
- un polymère (a) qui est sélectionné parmi
(a1) un polymère d'éthylène qui contient optionnellement un ou plusieurs comonomère(s)
autre(s) que le comonomère polaire du polymère (a2) et qui porte des motifs contenant
des groupes fonctionnels autres que ledit/lesdits comonomère(s) optionnel(s) ; ou
(a2) un polymère d'éthylène contenant un ou plusieurs comonomère(s) polaire(s) sélectionné(s)
parmi le(s) comonomère(s) acrylate d'alkyle en C1-C6 ou (alkyle en C1-C6)-acrylate
d'alkyle en C1-C6, et porte optionnellement des motifs contenant un ou plusieurs groupe(s)
fonctionnel(s) autres que ledit comonomère polaire ; et
- des motifs (b) contenant un ou plusieurs groupe(s) silane ;
de manière davantage préférée dans lequel, la composition de polymère comprend
- un polymère (a) qui est le polymère d'éthylène (a1) qui porte les motifs (b) contenant
un ou plusieurs groupe(s) silane en tant que motifs contenant des groupes fonctionnels,
de préférence le polymère (a1) ne contient pas, c'est-à-dire est sans, un comonomère
polaire du polymère (a2) ou un comonomère alpha-oléfine ; ou
la composition de polymère comprend
- un polymère (a) qui est le polymère d'éthylène (a2) contenant un ou plusieurs comonomère(s)
polaire(s) sélectionné(s) parmi un acrylate d'alkyle en C1-C6 ou un (alkyle en C1-C6)-acrylate
d'alkyle en C1-C6, de préférence un acrylate d'alkyle en C1-C6, et porte des motifs
contenant un ou plusieurs groupe(s) fonctionnel(s) autres que ledit comonomère polaire
; et
- des motifs (b) contenant un ou plusieurs groupe(s) silane : de manière davantage
préférée
- un polymère d'éthylène (a2) contenant un ou plusieurs comonomère(s) polaire(s) sélectionné(s)
parmi le(s) comonomère(s) acrylate d'alkyle en C1-C6 ou (alkyle en C1-C6)-acrylate
d'alkyle en C1-C6, de manière davantage préférée un polymère d'éthylène (a2) contenant
un acrylate d'alkyle en C1-C4, de manière davantage préférée un polymère d'éthylène
(a2) contenant un comonomère acrylate de méthyle, et porte les motifs (b) contenant
un ou plusieurs groupe(s) silane en tant que motifs contenant un ou plusieurs groupe(s)
fonctionnel(s).
11. Procédé selon l'une quelconque des revendications précédentes, dans lequel le motif
(b) contenant un ou plusieurs groupe(s) silane est un composé de silane insaturé hydrolysable
représenté par la formule (I) :
R1SiR2qY3-q (I)
dans laquelle
R1 est un groupe hydrocarbyle, hydrocarbyloxy ou (méth)acryloxy hydrocarbyle à insaturation
éthylénique,
chaque R2 est indépendamment un groupe hydrocarbyle saturé aliphatique,
les Y, qui peuvent être identiques ou différents, sont un groupe organique hydrolysable
et
q est 0, 1 ou 2, la quantité des motifs (b) contenant un ou plusieurs groupe(s) silane
présents dans la couche, de préférence dans le polymère (a), est de 0,01 à 1,00 %
en mole, déterminée conformément aux « Teneurs en comonomère » comme décrit dans la
description sous « Méthodes de détermination » ; lequel composé de formule (I) est
de préférence copolymérisé avec ou greffé sur le polymère (a) en tant que lesdits
motifs optionnels contenant un ou plusieurs groupe(s) fonctionnel(s).
12. Procédé selon l'une quelconque des revendications précédentes, dans lequel le polymère
(a) est un copolymère d'éthylène (a1) avec un comonomère vinyltriméthoxysilane ou
un copolymère d'éthylène (a2) avec un comonomère acrylate de méthyle et avec un comonomère
vinyltriméthoxysilane.
Le MFR2 du polymère (a), de préférence du polymère (a1) ou (a2), est de préférence inférieur
à 15, de préférence de 0,2 à 13, de préférence de 0,3 à 13, de manière davantage préférée
de 0,4 à 13 g/10 min (conformément à l'ISO 1133 à 190 °C et sous une charge de 2,16
kg).
13. Procédé selon l'une quelconque des revendications précédentes, dans lequel le copolymère
d'éthylène (a) présente une, plusieurs ou la totalité des propriétés suivantes
- un indice de fluidité à l'état fondu, MFR2, inférieur à 15, de préférence de 0,1 à 15 g/10 min (conformément à l'ISO 1133 à
190 °C et sous une charge de 2,16 kg)
- une température de fusion, Tm, de 70 °C ou plus, de préférence de 75 °C ou plus,
de manière davantage préférée de 78 à 100, de préférence de 78 à 95 °C, mesurée conformément
à l'ISO 3146 comme décrit dans la description sous « Méthodes de détermination »
- un indice de fluidification par cisaillement, SHI0,05/300, de 30,0 à 100,0, de préférence de 40,0 à 80,0, mesuré conformément aux « Propriétés
rhéologiques : mesures de cisaillement dynamique (mesures de balayage de fréquence)
» comme décrit dans la description sous « Méthodes de détermination ».
14. Procédé selon l'une quelconque des revendications précédentes ou produisant un stratifié
multicouche qui est un module photovoltaïque comprenant, dans l'ordre donné, un élément
de couche avant de protection, un élément de couche d'encapsulation avant, un élément
photovoltaïque, un élément de couche d'encapsulation arrière et un élément de couche
arrière de protection ;
dans lequel
- l'un quelconque ou plusieurs parmi l'élément de couche d'encapsulation avant, l'élément
de couche d'encapsulation arrière ou l'élément de couche arrière de protection, de
manière appropriée un ou les deux parmi l'élément de couche d'encapsulation avant
ou l'élément de couche d'encapsulation arrière, de préférence à la fois l'élément
de couche d'encapsulation avant et l'élément de couche d'encapsulation arrière, est/sont
ledit/lesdits élément(s) de couche polymère ;
- et l'un quelconque ou plusieurs parmi l'élément de couche avant de protection, l'élément
photovoltaïque ou l'élément de couche arrière de protection, est/sont ledit/lesdits
élément(s) de couche de substrat.
15. Procédé selon l'une quelconque des revendications précédentes pour produire un module
photovoltaïque, dans lequel le module photovoltaïque comprend, dans l'ordre donné,
un élément de couche avant de protection, un élément de couche d'encapsulation avant,
un élément photovoltaïque, un élément de couche d'encapsulation arrière et un élément
de couche arrière de protection,
- dans lequel un ou les deux parmi l'élément de couche d'encapsulation avant ou l'élément
de couche d'encapsulation arrière, de préférence à la fois l'élément de couche d'encapsulation
avant et l'élément de couche d'encapsulation arrière, est/sont ledit/lesdits élément(s)
de couche polymère ;
- et dans lequel l'étape de pressage (iii) est commencée quand au moins l'un desdits
éléments de couche d'encapsulation avant et/ou arrière atteint une température supérieure
d'au moins 3 à 10 °C à la température de fusion du polymère d'éthylène (a) présent
dans ledit élément de couche avant et/ou d'encapsulation.
16. Procédé selon l'une quelconque des revendications précédentes pour un stratifié de
module photovoltaïque comprenant, dans l'ordre donné, un élément de couche avant de
protection, un élément de couche d'encapsulation avant, un élément photovoltaïque,
un élément de couche d'encapsulation arrière et un élément de couche arrière de protection
; dans lequel au moins un parmi l'élément de couche d'encapsulation avant ou l'élément
de couche d'encapsulation arrière, ou à la fois l'élément de couche d'encapsulation
avant et l'élément de couche d'encapsulation arrière, comprend/comprennent une composition
de polymère comprenant :
- (a) un polymère, dans lequel ledit polymère (a) porte optionnellement des motifs
contenant un ou plusieurs groupe(s) fonctionnel(s) ; et
- (b) des motifs contenant un ou plusieurs groupe(s) silane ;
et dans lequel le procédé comprend les étapes suivantes :
(i) une étape d'assemblage pour agencer l'élément de couche avant de protection, l'élément
de couche d'encapsulation avant, l'élément photovoltaïque, l'élément de couche d'encapsulation
arrière et l'élément de couche arrière de protection, dans l'ordre donné, pour former
un assemblage de module photovoltaïque ;
(ii) une étape de chauffage pour chauffer l'assemblage de module photovoltaïque optionnellement
dans une chambre dans des conditions de mise sous vide ;
(iii) une étape de pressage pour créer et maintenir une pression sur l'assemblage
de module photovoltaïque dans les conditions de chauffage pour que la stratification
de l'assemblage se produise ; et
(iv) une étape de récupération pour refroidir et retirer l'assemblage de module photovoltaïque
obtenu pour une utilisation ultérieure ;
- dans lequel l'étape de pressage (iii) est commencée quand au moins l'élément de
couche d'encapsulation avant, l'élément de couche d'encapsulation arrière, ou à la
fois l'élément de couche d'encapsulation et l'élément de couche d'encapsulation arrière,
atteint/atteignent une température qui est supérieure d'au moins de 3 à 10 °C à la
température de fusion du polymère (a) dudit élément de couche d'encapsulation respectif
; et
- dans lequel la durée de l'étape de pressage (iii) est de 0,5 à 10 minutes ;
- dans lequel le polymère (a) présente une température de fusion, Tm, de 100 °C ou
moins, mesurée comme décrit dans la description sous « Méthodes de détermination »
; et
- dans lequel aucun agent de réticulation sélectionné parmi un peroxyde ou un catalyseur
de condensation de silane (SCC), qui est sélectionné parmi le groupe de SCC des carboxylates
d'étain, de zinc, de fer, de plomb ou de cobalt ou des acides sulfoniques organiques
aromatiques, n'est introduit dans le polymère d'éthylène (a) de la composition de
polymère avant ou pendant le procédé de stratification.