Field of invention
[0001] The present invention relates to the field of kits-of-parts for use in treatment
of cancer, and in particular to the field of kits-of-parts for use in treatment of
ER-negative breast cancer.
Background of invention
[0002] In the year 2012, the global incidence of breast cancer alone was 1.7 million new
cases. Breast cancer can be subdivided into 5 clinically relevant subtypes: normal-like,
luminal A, luminal B, HER2 and basal-like breast cancer.
[0003] The molecular subtype of breast cancer impacts on the recurrence rate and median
time to recurrence. Out of all breast cancer patients, women carrying basal-like tumors
have the highest recurrence rate (34% vs 20% for all other subtypes) and the shortest
median time to recurrence (2.6 years vs 5 years for all other subtypes). Thus, the
prognosis for women carrying basal-like breast cancers is the worst among all subtypes
and the only therapeutic option offered today is high-dose chemotherapy; a treatment
regimen that is accompanied by severe side effects. Endocrine therapy which is associated
with mild side effects compared to high-dose chemotherapy is not effective against
basal-like tumors.
[0004] Women diagnosed with breast cancers characterized by the absence of expression of
the estrogen receptor (ER-negative breast cancer) are not treated with anti-hormonal
agents, because such therapies have proven not effective for ER-negative breast cancers.
For example a meta-analysis conducted by Early Breast Cancer Trialists' Collaborative
Group (EBCTCG) published in the
Lancet 2011 (doi: 10.1093/annonc/mds194) concludes that in ER-negative disease, tamoxifen had little or no effect on breast
cancer recurrence or mortality. Similarly, several other studies have shown that adjuvant
treatment with anti-estrogens is not effective in treatment of triple-negative breast
cancer (see e.g. Foulkes et al. (doi: 10.1056/NEJMra1001389); Joensuu et al. (doi:
10.1093/annonc/mds194); Baselga et al. (doi: 10.1200/JCO.2012.46.2408); Clifford et
al. (doi: 10.1634/theoncologist.2011-S1-01); Liedtke et al., (doi: 10.1200/JCO.2007.14.4147)).
[0008] WO2013/160359 discloses anti-PDGF-C antibodies as well as applications of such antibodies, for
example for use in treatment of cancer.
Summary of invention
[0011] Accordingly, there is a great need for improved treatment of ER-negative breast cancer.
Any references in the description to methods of treatment refer to the compounds,
pharmaceutical compositions and medicaments of the present invention for use in a
method for treatment of the human (or animal) body by therapy (or for diagnosis).
[0012] Interestingly, the present invention discloses that ER-negative breast cancers can
be converted into ER-positive breast cancers, such as to a breast cancer of luminal-like
phenotype by treatment with anti-PDGF-CC antibodies. ER-positive breast cancers, including
luminal-like breast cancers can be treated with anti-estrogen treatment. On this basis
the invention discloses that surprisingly, ER-negative breast cancers can be treated
with anti-estrogen treatment, if the treatment is combined with treatment with anti-PDGF-CC
antibodies. Said treatment may for example be an adjuvant treatment, for example a
treatment aiming at reducing the risk of relapse of a breast cancer after removal
of the primary tumor by surgery.
[0013] Accordingly, the present invention provides kits-of-parts comprising an anti-PDGF-CC
antibody and an anti-estrogen for use in the treatment of ER-negative breast cancer
in an individual in need thereof.
[0014] The invention also provides kit-of-parts comprising an inhibitor of PDGF-R, wherein
said inhibitor of PDGF-R is imatinib and an anti-estrogen for use in the treatment
of ER-negative breast cancer in an individual in need thereof.
[0015] The disclosure also provides methods for treatment of ER-negative breast cancer in
an individual in need thereof, said method comprising administering an anti-PDGF-CC
antibody and an anti-estrogen to said individual either simultaneously or sequentially
in any order, thereby treating the ER-negative breast cancer.
[0016] The disclosure also provides methods for treatment of ER-negative breast cancer in
an individual in need thereof, said method comprising administering an inhibitor of
PDGF-R and an anti-estrogen to said individual either simultaneously or sequentially
in any order, thereby treating the ER-negative breast cancer.
[0017] The disclosure also provides methods for sensitizing an ER-negative breast cancer
to anti-estrogen treatment, said method comprising administering an anti-PDGF-CC to
an individual suffering from ER-negative breast, thereby sensitizing said ER-negative
breast cancer to anti-estrogen treatment.
[0018] The disclosure also provides methods for sensitizing an ER-negative breast cancer
to anti-estrogen treatment, said method comprising administering an inhibitor of PDGF-R
to an individual suffering from ER-negative breast, thereby sensitizing said ER-negative
breast cancer to anti-estrogen treatment.
[0019] The disclosure also provides methods of converting an ER-negative breast cancer to
an ER-positive breast cancer, said method comprising administering an anti-PDGF-CC
to an individual suffering from ER-negative breast, thereby converting said ER-negative
breast cancer to an ER-positive breast cancer.
[0020] The disclosure also provides methods of reducing the risk of relapse of an ER-negative
breast cancer in an individual having suffered from ER-negative breast cancer, wherein
said breast cancer in said individual has been treated by surgery, said method comprising
- a. Sensitizing the ER-negative breast cancer to treatment with anti-estrogen by administering
an anti-PDGF-CC antibody to an individual suffering from ER-negative breast cancer;
- b. administering an anti-estrogen to said individual
[0021] The disclosure also provides methods of reducing the risk of relapse of an ER-negative
breast cancer in an individual having suffered from ER-negative breast cancer, wherein
said breast cancer in said individual has been treated by surgery, said method comprising
- a. sensitizing the ER-negative breast cancer to treatment with anti-estrogen by administering
an inhibitor of PDGF-R to an individual suffering from ER-negative breast cancer;
- b. administering an anti-estrogen to said individual
thereby reducing the risk of relapse of said ER-negative breast cancer.
[0022] The invention also provides kits-of-parts comprising an anti-PDGF-CC antibody and
an anti-estrogen for use in above-mentioned methods.
Description of drawings
[0023]
Figure 1 shows expression of PDGF-CC. Panel A and B shows expression in normal breast
tissue. Panels C to F shows expression in breast tumors. Panel G shows expression
correlated to clinicopathological parameters. Panel H shows months survival in patients
having moderate to high expression of PDGF-C compared to PDGF-C negative patients.
Panel I shows expression of PDGFR.
Figure 2. Panel A shows PDGF-CC, PDGFRα and PDGFRβ expression in tumors of MMTV-PyMT
mice. Panel B shows tumor volume of mammary tumors of MMTV-PyMT mice. Panel C-D shows
tumor latency and survival. Panel E-F shows tumor stage and necrosis. Panel G shows
pulmonary metastases. Panel H shows tumor volume after transplantation. Panel I shows
tumor volume after injection.
Figure 3. Panel A shows Masson tri-chrome staining of tumor sections. Panel B shows
that MMTV-PyMT; Pdgfclacz/lacz mice were severely hemorrhagic. Panel C shows immunostaining for HIF-1α. Panel D
shows expression of VEGF-A as determined by quantitative PCR analysis. Panels E-F
show tumor volume and blood vessel density in SCID mice bearing orthotopically implanted
MDA-MB-231 tumors and treated with A3B6 antibody or with control antibody.
Figure 4. Panel A and B show expression of Foxa1; lacZ/lacZ is equivalent of PDGFC
- /-. Panel C shows that expression of Foxa1 is highly correlated with a non-basal-like molecular subtype based on transcriptional
profiles of breast tumors collected within The Cancer Genome Atlas project. Panel
D shows expression of Foxa1 as a specific feature of tumors of the luminal subtype. Panel E shows immunostaining
of a cohort of human breast tumor specimens for Foxa1. Panel F shows expression of
PDGF-CC in breast tumor cell lines. Panel G shows that expression of Foxa1 is inversely
correlated to expression of PDGF-CC.
Figure 5. Panel A shows expression of FoxA1 and ERα in tumor protein lysates. Panel
B shows expression of stanniocalcin (STC)-1, hepatocyte growth factor (HGF) and insulin
growth factor binding protein 3 (IGFBP3) as determined by quantitative PCR. Panels
C to E shows expression of the luminal-like subtype markers FoxA1, ERα and GATA3,
respectively after stimulation with STC-1, HGF and/or IGFBP3. Panel F shows sensitivity
to tamoxifen-induced growth arrest. Panel G shows that conditioned medium from stromal
fibroblasts can be substituted for the three paracrine PDGF-CC-induced factors. Panel
H shows immunostaining of tumors from MMTV-PyMT mice for STC-1, HGF and IGFBP3.
Figure 6. Panel A shows tumor growth of wt tumors of tamoxifen-treated mice and untreated
mice. Panel B shows tumor growth of tumors from Pdgfc-deficient mice upon treatment
with tamoxifen. Panel C shows tumor growth of fully established MDA-MB-231 tumors
after treatment with tamoxifen. Panel D shows tumor growth of fully established MDA-MB-231
tumors after combined treatment with anti-PDGF-CC antibody A3B6 and tamoxifen. Panel
E shows expression of ERα after treatment with monoclonal anti-PDGF-CC antibody A3B6.
Panel F shows ERα expression in MDA-MB-231 tumors following blockade of signaling
by PDGF-CC. Panel G shows a theoretical model of a paracrine signaling network in
breast tumor microenvironment.
Figure 7. Tumor growth in mice treated with anti-PDGF-CC antibody, Letrozole, a combination
of anti-PDGF-CC antibody and Letrozole, and control.
Figure 8. Tumor growth in mice treated with Imatinib, Tamoxifen, a combination of
Imatinib and Tamoxifen, control.
Detailed description of the invention
Definitions
[0024] The term "antibody" as used herein is a polypeptide or protein capable of recognizing
and binding an antigen comprising at least one antigen binding site. Said antigen
binding site preferably comprises at least one CDR. The antibody may be a naturally
occurring antibody, a fragment of a naturally occurring antibody or a synthetic antibody.
[0025] The term "antigen" as used herein refers to a molecule comprising at least one epitope.
The antigen may for example be a polypeptide, polysaccharide, protein, lipoprotein
or glycoprotein.
[0026] The term "Basal-like breast cancer" as used herein refers to a breast cancer of a
triple-negative phenotype, i.e. said cancer does not express estrogen receptor (ER),
progesterone receptor (PR) and human epidermal growth factor receptor (HER)-2 at detectable
levels. Furthermore, basal-type breast cancer typically does not express FoxA1. Basal-like
breast cancer is associated with high grade, poor prognosis, and younger patient age.
[0027] The term "epitope" as used herein refers to a determinant capable of specific binding
to an antibody. Within the present invention the epitope may be comprised within PDGF-C
or PDGF-CC. Epitopes usually consist of chemically active surface groupings of molecules
such as amino acids and usually have specific three dimensional structural characteristics,
as well as specific charge characteristics. Epitopes may be conformational or nonconformational,
wherein binding to the former but not the latter is lost in the presence of denaturing
solvents. Epitopes may be continous or discontinuous, wherein a discontinous epitope
is a conformational epitope on a protein antigen which is formed from at least two
separate regions in the primary sequence of the protein.
[0028] The term "ER-negative breast cancer" refers to a breast cancer lacking expression
of the estrogen receptor. A breast cancer is considered an ER-negative breast cancer,
when =<10% of the tumor cells of said breast cancer express estrogen receptor at levels
detectable by immunohistochemistry. Preferably, an ER-negative breast cancer is a
breast cancer, where <1 % of the tumor cells of said breast cancer express estrogen
receptor at levels detectable by immunohistochemistry.
[0029] The term "ER-positive breast cancer" refers to a breast cancer expressing the estrogen
receptor. A breast cancer is considered an ER-positive breast cancer, when >10% of
the tumor cells of said breast cancer express estrogen receptor at levels detectable
by immunohistochemistry.
[0030] The term "luminal-like breast cancer" refers to a breast cancer which is responsive
to anti-estrogen therapy. In particular, a "luminal-like breast cancer" expresses
the estrogen receptor (ER). A "lumical-like breast cancer" according to the present
invention may be true luminal breast cancer, such as a luminal A or luminal B breast
cancer.
[0031] The term "naturally occurring antibody" as used herein refers to heterotetrameric
glycoproteins capable of recognizing and binding an antigen and comprising two identical
heavy (H) chains and two identical light (L) chains inter-connected by disulfide bonds.
Each heavy chain comprises a heavy chain variable region (abbreviated herein as V
H) and a heavy chain constant region (abbreviated herein as C
H). Each light chain comprises a light chain variable region (abbreviated herein as
V
L) and a light chain constant region (abbreviated herein as C
L). The V
H and V
L regions can be further subdivided into regions of hypervariability, termed complementarity
determining regions (CDRs), interspersed with regions that are more conserved, termed
framework regions (FRs). Antibodies may comprise several identical heterotetramers.
[0032] The term "treatment" as used herein may refer to any kind of treatment. The treatment
may be a curative treatment, it may also be an ameliorating treatment and/or a treatment
reducing the effects of the cancer. The treatment may also be a treatment which delays
progression of the cancer, for example the treatment may reduce the growth of cancer,
reduce metastasis or in other ways delay cancer progression. The treatment may also
be a treatment to reduce the risk of relapse.
Method of treatment
[0033] The present invention provides kits-of-parts for use in methods for treatment of
ER-negative breast cancers in an individual in need thereof. The methods comprise
administering an anti-PDGF-CC antibody and an anti-estrogen to an individual suffering
from ER-negative breast cancer either simultaneously or sequentially in any order,
thereby treating the ER-negative breast cancer.
[0034] The present disclosure also provides kit-of-parts for use treatment of ER-negative
breast cancers in an individual in need thereof, the methods comprising administering
an inhibitor of PDGF-R and an anti-estrogen to an individual suffering from ER-negative
breast cancer either simultaneously or sequentially in any order, thereby treating
the ER-negative breast cancer.
[0035] The method of treatment according to the invention may be combined with one or more
conventional methods for treatment of ER-negative breast cancer. Thus, the methods
of the disclosure may comprise a combination of treatment with an anti-PDGF-CC antibody
and an anti-estrogen combined with one or more additional methods.. The methods of
the invention may also comprise a combination of treatment with an inhibitor of PDGF-R
and an anti-estrogen combined with one or more additional methods. For example, said
ER-negative breast cancer may be treated by a method selected from the group consisting
of surgery, irradiation and chemotherapy. In particular the individual to be treated
with the methods of the invention may be an individual suffering from ER-negative
breast cancer, wherein said individual has already been subjected to treatment of
said breast cancer by surgery. Thus, the individual to be treated may be an individual
who has suffered from ER-negative breast cancer, wherein the primary tumor has been
removed by surgery. In such cases, the treatment of the present invention can frequently
be considered an adjuvant therapy, which reduces the risk of relapse. In particular,
the treatment may be a treatment to reduce the risk of relapse within 5 years from
onset of the treatment. For example, the treatment may be treatment to prevent relapse
within 5 years from the onset of treatment. Preferably, the treatment with anti-PDGF-CC
antibodies and anti-estrogen is initiated at the latest 1 months after surgery, for
example at the latest one week after surgery. Treatment may be initiated earlier,
for example even prior to surgery. Similarly, the treatment with inhibitors of PDGF-R
and anti-estrogen is initiated at the latest 1 month after surgery, for example at
the latest one week after surgery. Treatment may be initiated earlier, for example
even prior to surgery.
[0036] It is also comprised within the present invention that the individual to be treated
with anti-PDGF-CC antibodies and anti-estrogen, or the individual to be treated with
inhibitors of PDGF-R and anti-estrogen have not been subjected to surgery. This may
be because the particular breast cancer is an inoperable breast cancer, a breast cancer
less suitable for removal by surgery or because the individual has not yet undergone
surgery. Such treatment may for example be a neoadjuvant treatment.
[0037] The anti-PDGF-CC antibody may be any antibody capable of binding PDGF-CC, for example
any of the antibodies described herein below in the section "anti-PDGF-CC antibody".
The anti-estrogen may be any compound having an anti-estrogen effect, for example
any of the compounds described herein below in the section anti-estrogen.
[0038] The disclosure also provides methods for sensitizing an ER-negative breast cancer
to anti-estrogen treatment. ER-negative breast cancers are not responsive to anti-estrogen
treatment (see e.g. Early Breast Cancer Trialists' Collaborative Group (EBCTCG) doi:
10.1016/S0140-6736(11)60993-8), but the invention interestingly discloses that ER-negative
breast cancer can be sensitized to treatment with anti-estrogen by treatment with
anti-PDGF-CC antibodies.
[0039] Thus, the disclosure provides methods for sensitizing an ER-negative breast cancer
to anti-estrogen treatment, said methods comprising administering an anti-PDGF-CC
to an individual suffering from ER-negative breast cancer, thereby sensitizing said
ER-negative breast cancer to anti-estrogen treatment.
[0040] The disclosure also provides methods for sensitizing an ER-negative breast cancer
to anti-estrogen treatment, said methods comprising administering an inhibitor of
PDGF-R to an individual suffering from ER-negative breast cancer, thereby sensitizing
said ER-negative breast cancer to anti-estrogen treatment.
[0041] In particular, the disclosure may provide methods for sensitizing an ER-negative
breast cancer to anti-estrogen treatment in an individual,
wherein said individual has suffered from ER-negative breast cancer, and wherein said
breast cancer in said individual has been treated by surgery,
wherein following anti-estrogen treatment in said individual, no relapse is observed
or the risk of relapse is significantly reduced.
[0042] A breast cancer sensitized to anti-estrogen treatment may thus be treated with anti-estrogen.
The methods may thus comprise a step of administering an anti-estrogen to the individual
suffering from ER-negative breast cancer, wherein said anti-PDGF-CC antibody and said
anti-estrogen may be administered simultaneously or sequentially in any order.
[0043] Thus, the disclosure also provides methods of treatment of ER-negative breast cancer
in an individual in need thereof, said method comprising
- a. Sensitizing an ER-negative breast cancer to treatment with anti-estrogen by administering
an anti-PDGF-CC antibody to an individual suffering from ER-negative breast cancer;
- b. administering an anti-estrogen to said individual
thereby treating said ER-negative breast cancer.
[0044] The disclosure also provides methods of treatment of ER-negative breast cancer in
an individual in need thereof, said method comprising
- a. Sensitizing an ER-negative breast cancer to treatment with anti-estrogen by administering
an inhibitor of PDGF-R to an individual suffering from ER-negative breast cancer;
- b. administering an anti-estrogen to said individual
thereby treating said ER-negative breast cancer.
[0045] The disclosure also provides methods of treatment of ER-negative breast cancer in
an individual, wherein said individual has suffered from ER-negative breast cancer,
and wherein said breast cancer in said individual has been treated by surgery, said
method comprising
- a. Sensitizing the ER-negative breast cancer to treatment with anti-estrogen by administering
an anti-PDGF-CC antibody to an individual suffering from ER-negative breast cancer;
- b. administering an anti-estrogen to said individual
thereby reducing the risk of relapse of said ER-negative breast cancer.
[0046] The disclosure also provides methods of treatment of ER-negative breast cancer in
an individual, wherein said individual has suffered from ER-negative breast cancer,
and wherein said breast cancer in said individual has been treated by surgery, said
method comprising
- a. Sensitizing the ER-negative breast cancer to treatment with anti-estrogen by administering
an inhibitor of PDGF-R to an individual suffering from ER-negative breast cancer;
- b. administering an anti-estrogen to said individual
thereby reducing the risk of relapse of said ER-negative breast cancer.
[0047] The disclosure also provides methods of treatment of ER-negative breast cancer in
an individual in need thereof, said method comprising
- a. Sensitizing the ER-negative breast cancer to treatment with anti-estrogen by administering
an anti-PDGF-CC antibody to an individual suffering from ER-negative breast cancer;
- b. Treatment of said ER-negative breast cancer by surgery
- c. Sensitizing remaining ER-negative breast cancer to treatment with anti-estrogen
by administering an anti-PDGF-CC antibody to an individual suffering from ER-negative
breast cancer
- d. administering an anti-estrogen to said individual
thereby reducing the risk of relapse of said ER-negative breast cancer.
[0048] The disclosure also provides methods of treatment of ER-negative breast cancer in
an individual in need thereof, said method comprising
- a. Sensitizing the ER-negative breast cancer to treatment with anti-estrogen by administering
an inhibitor of PDGF-R to an individual suffering from ER-negative breast cancer;
- b. Treatment of said ER-negative breast cancer by surgery
- c. Sensitizing remaining ER-negative breast cancer to treatment with anti-estrogen
by administering an inhibitor of PDGF-R to an individual suffering from ER-negative
breast cancer
- d. administering an anti-estrogen to said individual
thereby reducing the risk of relapse of said ER-negative breast cancer.
[0049] The invention also provides methods of converting an ER-negative breast cancer to
an ER-positive breast cancer. Such methods comprise administering an anti-PDGF-CC
to an individual suffering from ER-negative breast cancer, thereby converting said
ER-negative breast cancer to an ER-positive breast cancer.
[0050] The invention also provides methods of converting an ER-negative breast cancer to
a luminal-like breast cancer. Such methods comprise administering an anti-PDGF-CC
to an individual suffering from ER-negative breast cancer, thereby converting said
ER-negative breast cancer to a luminal-like breast cancer.
[0051] A breast cancer is considered to be a luminal-like breast cancer, when said cancer
is expressing the estrogen receptor (ER) at detectable levels. It is preferred that
at least 1%, such as at least 10% of the breast cancer cells of said breast cancer
are expressing ER at detectable levels.
[0052] In some embodiments the method may comprise an additional step of testing whether
the breast cancer has been converted to a luminal-like breast cancer and/or to an
ER-positive breast cancer. Said test may be performed subsequent to administration
of said anti-PDGF-CC antibody and may in general comprise the steps of:
- a) obtaining a sample from said breast cancer
- b) testing expression of estrogen receptor (ER) in said sample
- c) wherein detectable expression of ER in said sample is indicative of that said breast
cancer has been converted to a luminal-like breast cancer or an ER-positive breast
cancer.
[0053] Said test may be any test useful for determining whether a breast cancer expresses
ER. In one embodiment the test is an immunohistochemical test, for example a test,
wherein step b) involves staining the sample obtained in step a) with the aid of antibodies
recognizing ER, and followed by detection of ER expression e.g. by microscopy. If
a larger percentage of cells express ER than in the initial ER-negative tumor (e.g.
if more than 1% of the tumor cells express ER) then ER may be considered expressed.
Preferably, if at least 10% of tumor cells of said sample expressed ER, then the breast
cancer is considered ER -positive.
[0054] Thus, the invention provides kits-of-parts for use in methods of treatment of ER-negative
breast cancer in an individual in need thereof, said method comprising
- a. converting an ER-negative breast cancer to a luminal-like breast cancer by administering
an anti-PDGF-CC antibody to an individual suffering from ER-negative breast cancer;
- b. administering an anti-estrogen to said individual
thereby treating said ER-negative breast cancer.
[0055] The methods may comprise the steps of administering an anti-PDGF-CC antibody and
an anti-estrogen. Said anti-PDGF-CC antibody and said anti-estrogen may be administered
simultaneously or sequentially in any order.
[0056] The methods may in alternative comprise the steps of administering an inhibitor of
PDGF-R and an anti-estrogen. Said inhibitor of PDGF-R and said anti-estrogen may be
administered simultaneously or sequentially in any order.
[0057] The invention also provides kits-of-parts comprising
- a) an anti-PDGF-CC antibody and an anti-estrogen, or
- b) an inhibitor of PDGF-R and an anti-estrogen
for treatment of ER-negative breast cancer in an individual, wherein said individual
has suffered from ER-negative breast cancer, and wherein said breast cancer in said
individual has been treated by surgery, and wherein said treatment reduces the risk
of relapse.
[0058] In some embodiments of the invention said anti-PDGF-CC antibody or said inhibitor
of PDGF-R is administered to said individual simultaneously with administration of
said anti-estrogen.
[0059] In some embodiments it may however be preferred that the anti-PDGF-CC antibody or
the inhibitor of PDGF-R is administered to said individual prior to administration
of said anti-estrogen. Such an order of administration may ensure that the ER-negative
breast cancer is sensitized to anti-estrogen prior to administration of said anti-estrogen.
[0060] In some embodiments of the invention the anti-PDGF-CC antibody or the inhibitor of
PDGF-R is administered more than once, for example it may be administered at least
twice, such as at least 3 times, for example in the range of 1 to 20 times, such as
in the range of 2 to 10 times.
[0061] In one embodiment, the anti-PDGF-CC antibody or the inhibitor of PDGF-R is administered
at least twice to an individual suffering from ER-negative breast cancer, wherein
one or more administrations are prior to treatment by surgery, and one or more additional
administrations are administered post treatment by surgery. The administration(s)
after surgery may be simultaneous with anti-estrogen treatment.
[0062] Similarly, anti-estrogen may be administered more than once. Many anti-estrogens
are administered over an extended period of time, for example once daily, twice daily
or even more frequently for an extended period of time. Anti-estrogens may also be
administered less frequently, e.g. in the range of 1 to 6 times per week, or for example
in the range of 1 to 4 times per months. Thus, administration of an anti-estrogen
may be very frequent over an extended period of time, for example for at least 1 month,
such as for at least 6 months, for example for at least 1 year, such as for several
years. For example the anti-estrogen treatment may be once daily for at least 1 year,
for example of in the range 1 to 10 years, such as in the range of 4 to 6 years, such
as for 5 years. In such embodiments, the first administration of anti-estrogen may
be simultaneous with at least one administration of anti-PDGF-CC antibodies or inhibitors
of PDGF-R, whereas subsequent administrations may be performed individually. It is
also possible that each administration of anti-PDGF-CC antibody or inhibitors of PDGF-R
is performed simultaneously with an administration of anti-estrogen, but that anti-estrogens
in addition are administered separately.
[0063] In one embodiment of the invention the anti-PDGF-CC antibody or the inhibitor of
PDGF-R is administered at least once prior to the first administration of anti-estrogen.
Thus, the first dosage of said anti-estrogen may be administered in the range of 1
hours to several weeks after the first administration of said anti-PDGF-CC antibody
or of said inhibitor of PDGF-R.
[0064] Typically, the anti-estrogen is administered for a longer time than the anti-PDGF-CC
antibody or the inhibitor of PDGF-R. Thus, the anti-PDGF-CC antibody or the inhibitor
of PDGF-R may for example be administered at the onset of treatment, whereas the anti-estrogen
typically may be administered continuously for a longer time period. Thus, as described
above, the anti-PDGF-CC antibody or the inhibitor of PDGF-R may for example be administered
in the range of 1 to 5 times, whereas the anti-estrogen typically may be administered
continuously for in the range of 1 to 10 years, such as in the range of 4 to 6 years,
such as for 5 years. The last administration of anti-estrogen is preferably given
later than the last administration of anti-PDGF-CC antibody or inhibitor of PDGF-R.
[0065] The route of administration may be chosen according to the particular anti-PDGF-CC
antibody, inhibitor of PDGF-R and the anti-estrogen. Frequently, the anti-PDGF-CC
antibody or the inhibitor of PDGF-R is administered parenterally. Inhibitors of PDGF-R
can be administered parenterally, for example as intravenous formulation, and also
enetrally, for example orally in the form of tablets. Methods and useful formulations
for parenteral administration are described below in the section "Pharmaceutical formulation".
The anti-estrogen may be administered by any useful route, which may be chosen according
to the particular anti-estrogen used. Frequently, the anti-estrogen is administered
orally. Methods and useful formulations for oral administration are described below
in the section "Pharmaceutical formulation".
[0066] The individual to be treated may be any individual suffering from ER-negative breast
cancer. Frequently, the individual will be a human being, for example a male or a
female human being. Preferably, the individual is a female human being.
[0067] In some embodiments the methods of the present disclosure comprise administration
of an anti-PDGF-CC antibody and an anti-estrogen, wherein the anti-estrogen is an
estrogen antagonist as described in the section below "Anti-estrogen".
[0068] In some embodiments the methods of the present disclosure comprise administration
of an anti-PDGF-CC antibody and an anti-estrogen, wherein the anti-estrogen is an
estrogen antagonist selected from the group consisting of tamoxifen, raloxifene, 4-hydroxytramoxifen,
trioxifene, keoxifene, afimoxifene, LY1 17018, fulvestrant and toremifene.
[0069] In some embodiments the methods of the present disclosure comprise administration
of an anti-PDGF-CC antibody and an estrogen antagonist, wherein the estrogen antagonist
is tamoxifen.
[0070] In some embodiments the methods of the present disclosure comprise administration
of an anti-PDGF-CC antibody and an anti-estrogen, wherein the anti-estrogen is an
aromatase inhibitor as described in the section below "Anti-estrogen".
[0071] In some embodiments the methods of the present disclosure comprise administration
of an anti-PDGF-CC antibody and an anti-estrogen, wherein the anti-estrogen is an
aromatase inhibitor selected from the group consisting of exemestane, formestane,
aminoglutethimide, vorozole, fadrozole, anastrozole and letrozole.
[0072] In some embodiments the methods of the present disclosure comprise administration
of an anti-PDGF-CC antibody and an anti-estrogen, wherein the anti-estrogen is letrozole.
[0073] In some embodiments the methods of the present disclosure comprise administration
of an inhibitor of PDGF-R and an anti-estrogen, wherein the anti-estrogen is an estrogen
antagonist as described in the section below "Anti-estrogen".
[0074] In some embodiments the methods of the present disclosure comprise administration
of an inhibitor of PDGF-R and an anti-estrogen, wherein the anti-estrogen is an estrogen
antagonist selected from the group consisting of tamoxifen, raloxifene, 4-hydroxytramoxifen,
trioxifene, keoxifene, afimoxifene, LY1 17018, fulvestrant and toremifene.
[0075] In some embodiments the methods of the present disclosure comprise administration
of an inhibitor of PDGF-R and an anti-estrogen, wherein the anti-estrogen is tamoxifen.
Kit-of-parts
[0076] The invention provides a kit-of-parts comprising an anti-PDGF-CC antibody and an
anti-estrogen. The invention also provides a kit-of-parts comprising an inhibitor
of PDGF-R and an anti-estrogen. The kit-of-part may in particular be for the treatment
of ER-negative breast cancer in an individual in need thereof. Thus, the kit-of-parts
may be prepared for use in any of the methods of treatment, described herein above
in the section "Method of treatment".
[0077] The kit-of-parts may be provided as separate units, i.e. one or more units comprising
an anti-PDGF-CC antibody and one or more units comprising an anti-estrogen, wherein
the units are separately provided. Alternatively, the kit-of-parts may comprise one
or more units comprising an inhibitor of PDGF-R and one or more units comprising an
anti-estrogen, wherein the units are separately provided.
[0078] Thus, the kit-of-parts may be prepared for sequential administration, wherein each
part of the kit-of-part are provided and administered separately. Thus, the anti-PDGF-CC
antibody and the anti-estrogen may be prepared for sequential administration. Also,
the inhibitor of PDGF-R and the anti-estrogen may be prepared for sequential administration.
It is comprised within the invention that said kit-of-part is prepared for administration
according to any of the methods described above in the section "Method of treatment".
In particular, the kit-of-parts may be prepared for treatment of ER-negative breast
cancer, wherein said treatment comprises the steps of
- a. administration of the anti-PDGF-CC antibody to an individual in need thereof;
- b. subsequent administration of the anti-estrogen.
[0079] Alternatively, the kit-of-parts may be prepared for treatment of ER-negative breast
cancer, wherein said treatment comprises the steps of
- a. administration of the inhibitor of PDGF-R to an individual in need thereof;
- b. subsequent administration of the anti-estrogen.
[0080] Frequently, the anti-PDGF-CC antibody or the inhibitor of PDGF-R is prepared for
parenteral administration for a limited number of times. E.g. the anti-PDGF-CC antibody
or the inhibitor of PDGF-R may be prepared for parenteral administration as described
herein above in the section "Method of treatment". The inhibitor of PDGF-R is also
frequently prepared for oral administration, for example in the form of tablets. In
contrast the anti-estrogen may be prepared by administration by any means. Thus, for
example the anti-estrogen may be prepared for frequent oral administration as described
herein above in the section "Method of treatment".
[0081] In some embodiments the kit-of-parts of the present disclosure comprises an anti-PDGF-CC
antibody and an anti-estrogen, wherein the anti-estrogen is an estrogen antagonist
as described in the section below "Anti-estrogen".
[0082] In some embodiments the kit-of-parts of the present disclosure comprises an anti-PDGF-CC
antibody and an anti-estrogen, wherein the anti-estrogen is an estrogen antagonist
selected from the group consisting of tamoxifen, raloxifene, 4-hydroxytramoxifen,
trioxifene, keoxifene, afimoxifene, LY1 17018, fulvestrant and toremifene.
[0083] In some embodiments the kit-of-parts of the present disclosure comprises an anti-PDGF-CC
antibody and an anti-estrogen, wherein the anti-estrogen is tamoxifen.
[0084] In some embodiments the kit-of-parts of the present disclosure comprises an anti-PDGF-CC
antibody and an anti-estrogen, wherein the anti-estrogen is an aromatase inhibitor
as described in the section below "Anti-estrogen".
[0085] In some embodiments the kit-of-parts of the present disclosure comprises an anti-PDGF-CC
antibody and an anti-estrogen, wherein the anti-estrogen is an aromatase inhibitor
selected from the group consisting of exemestane, formestane, aminoglutethimide, vorozole,
fadrozole, anastrozole and letrozole.
[0086] In some embodiments the kit-of-parts of the present disclosure comprises an anti-PDGF-CC
antibody and an anti-estrogen, wherein the anti-estrogen is letrozole
[0087] In some embodiments the kit-of-parts of the present disclosure comprises an inhibitor
of PDGF-R and an anti-estrogen, wherein the anti-estrogen is an estrogen antagonist
as described in the section below "Anti-estrogen".
[0088] In some embodiments the kit-of-parts of the present disclosure comprises an inhibitor
of PDGF-R and an anti-estrogen, wherein the anti-estrogen is an estrogen antagonist
selected from the group consisting of tamoxifen, raloxifene, 4-hydroxytramoxifen,
trioxifene, keoxifene, afimoxifene, LY1 17018, fulvestrant and toremifene.
[0089] In some embodiments the kit-of-parts of the present disclosure comprises an inhibitor
of PDGF-R and an anti-estrogen, wherein the anti-estrogen is tamoxifen.
Anti-PDGF-CC antibody
[0090] The present invention relates to a kit-of-part comprising an anti-PDGF-CC antibody
as well as to methods of treatment employing an anti-PDGF-CC antibody. Said anti-PDGF-CC
antibody may be any antibody capable of binding PDGF-CC, in particular it may be an
antibody specifically binding PDGF-CC. PDGF-CC is described in detail in the section
"PDGF-CC" herein below. Since PDGF-CC is a dimer of PDGF-C, and accordingly, the anti-PDGF-CC
antibody may specifically bind both PDGF-CC and PDGF-C.
[0091] The present invention relates also to a kit-of-part comprising an inhibitor of PDGF-R
as well as to methods of treatment employing an inhibitor of PDGF-R. However, use
of an anti-PDGF-CC antibody is preferred as the antibody targets with great specificity
PDGF-CC, but not other members of the PDGF family and therefore side effects are minimal.
Inhibitors of PDGF-R are also effective in blocking the PDGF-R signaling pathways,
but they act non-specifically on all the PDGF-R and may so result in undesired effects.
However, such undesired effects are minimized when the inhibitor of PDGF-R is an antibody
against PDGF-R.
[0092] The anti-PDGF-CC antibodies may bind to any PDGF-CC. However, in general it is preferred
that the anti-PDGF-CC antibodies to be used are capable of binding PDGF-CC of the
individual to be treated. Accordingly, in embodiments of the invention where the individual
is a human being, then it is preferred that the anti-PDGF-CC antibodies are capable
of binding human PDGF-CC. The sequence of human PDGF-C is provided as SEQ ID NO:1
herein.
[0093] The anti-PDGF-CC antibody according to the present invention may be any polypeptide
or protein capable of recognizing and binding PDGF-CC. By the term "specifically binding"
is meant binding with at least 10 times higher affinity to PDGF-CC than to a non-specific
antigen (e.g. BSA). Typically, the antibody binds with an affinity corresponding to
a K
D of about 10
-7 M or less, such as about 10
-8 M or less, such as about 10
-9 M or less, for example about 10
-10 M or less, when measured as apparent affinities based on IC
50 values.
[0094] In one embodiment the anti-PDGF-CC antibody specifically binds PDGF-CC and optionally
also PDGF-C, but not any other PDGF.
[0095] In one embodiment said anti-PDGF-CC antibody is a naturally occurring antibody or
a functional homologue thereof. A naturally occurring antibody is a heterotetrameric
glycoproteins capable of recognizing and binding an antigen comprising two identical
heavy (H) chains and two identical light (L) chains inter-connected by disulfide bonds.
Each heavy chain comprises or preferably consists of a heavy chain variable region
(abbreviated herein as V
H) and a heavy chain constant region (abbreviated herein as C
H). Each light chain comprises or preferably consists a light chain variable region
(abbreviated herein as V
L) and a light chain constant region (abbreviated herein as C
L). The V
H and V
L regions can be further subdivided into regions of hypervariability, termed complementarity
determining regions (CDRs), interspersed with regions that are more conserved, termed
framework regions (FRs). Each V
H and V
L comprises and preferably consists of three CDRs and four FRs, arranged from amino-terminus
to carboxy-terminus in the following order: FR1, CDR1, FR2, CDR2, FR3, CDR3, FR4.
[0096] Naturally occurring antibodies according to the invention may consist of one heterotetramer
or they may comprise several identical heterotetramers. Thus, the naturally occurring
antibody according to the invention may for example be selected from the group consisting
of IgG, IgM, IgA, IgD and IgE. The subunit structures and three-dimensional configurations
of these different classes of immunoglobulins are well known. In a preferred embodiment
of the invention the antibody is IgG, e.g. IgG-1, IgG-2, IgG-3 and IgG-4.
[0097] Naturally occurring antibodies according to the invention may be antibodies of a
particular species, for example the antibody may be a murine, a rat, a rabbit, a goat,
a sheep, a chicken, a donkey, a camelid or a human antibody. The antibody according
to the invention may however also be a hybrid between antibodies from several species,
for example the antibody may be a chimeric antibody, such as a humanized antibody.
[0098] It is not always desirable to use non-human antibodies for human therapy, accordingly
the anti-PDGF-CC antibody according to the invention may be a human antibody or a
humanized antibody, e.g. a naturally occurring human antibody.
[0099] The anti-PDGF-CC antibody according to the invention may be a human immunoglobulin
or a humanized immunoglobulin, e.g. a naturally occurring human immunoglobulin.
[0100] A human antibody as used herein is an antibody, which is obtained from a system using
human immunoglobulin sequences. Human antibodies may for example be antibodies isolated
from an animal (e.g., a mouse) that is transgenic or transchromosomal for human immunoglobulin
genes or a hybridoma prepared therefrom. Human antibodies may also be isolated from
a host cell transformed to express the antibody, e.g., from a transfectoma. Human
antibodies may also be isolated from a recombinant, combinatorial human antibody library.
[0101] Human antibodies have variable and constant regions derived from human germline immunoglobulin
sequences. In certain embodiments, however, such recombinant human antibodies can
be subjected to
in vitro mutagenesis or
in vivo somatic mutagenesis and thus the amino acid sequences of the V
H and V
L regions of the recombinant antibodies are sequences that, while derived from and
related to human germline V
H and V
L sequences, may not naturally exist within the human antibody germline repertoire
in vivo.
[0102] A human antibody is preferably at least 90%, more preferably at least 95%, even more
preferably at least 96%, 97%, 98%, or 99% identical in amino acid sequence to the
amino acid sequence encoded by a wild type human immunoglobulin gene.
[0103] Said transgenic of transchromosomal animal may contain a human immunoglobulin gene
miniloci that encodes unrearranged human heavy (µ and/or γ) and κ light chain immunoglobulin
sequences. Furthermore, the animal may contain one or more mutations that inactivate
the endogenous heavy and light chain loci. Examples of such animals are described
in
Lonberg, N. et al. (1994) Nature 368 (6474):856-859 and
WO 02/43478.
[0104] The anti-PDGF-CC antibody according to the invention may be a chimeric antibody,
i.e. an antibody comprising regions derived from different species. The chimeric antibody
may for example comprise variable regions from one species of animal and constant
regions from another species of animal. For example, a chimeric antibody can be an
antibody having variable regions which derive from a mouse monoclonal antibody and
constant regions which are human. Such antibodies may also be referred to as humanized
antibodies.
[0105] Thus, the anti-PDGF-CC antibody according to the invention may also be a humanized
antibody, which is encoded partly by sequences obtained from human germline immunoglobulin
sequences and partly from other sequences. Said other sequences are preferably germline
immunoglobulines from other species, more preferably from other mammalian species.
In particular a humanized antibody may be an antibody in which the antigen binding
site is derived from an immunoglobulin from a non-human species, preferably from a
non-human mammal, e.g. from a mouse or a rat, whereas some or all of the remaining
immunoglobulin-derived parts of the molecule are derived from a human immunoglobulin.
The antigen binding site from said non-human species may for example consist of a
complete V
L or V
H or both or one or more CDRs grafted onto appropriate human framework regions in V
L or V
H or both. Thus, in a humanized antibody, the CDRs can be from a mouse or rat monoclonal
antibody and the other regions of the antibody are of human origin.
[0106] The anti-PDGF-CC antibody according to the invention may be a monoclonal antibody,
such as a naturally occurring monoclonal antibody or it may be polyclonal antibodies,
such as naturally occurring polyclonal antibodies.
[0107] The anti-PDGF-CC antibody may be any protein or polypeptide containing an antigen
binding site, such as a single polypeptide, a protein or a glycoprotein. Preferably,
the antigen binding site comprises at least one CDR, or more preferably a variable
region.
[0108] Thus the antigen binding site may comprise a V
H and/or V
L. In an antibody, the V
H and V
L together may contain the antigen binding site, however, either one of the V
H or the V
L may comprise an antigen binding site.
[0109] The anti-PDGF-CC antibody may for example be an antigen binding fragment of antibody,
preferably an antigen binding fragment of a naturally occurring antibody, a heterospecific
antibody, a single chain antibody or a recombinant antibody.
[0110] An anti-PDGF-CC antibody according to the invention may comprise one or more antigen
binding sites. Naturally occurring heterotetrameric antibodies comprises two antigen
binding sites.
[0111] As mentioned herein above, the anti-PDGF-CC antibodies to be used with the invention
are capable of recognizing and binding PDGF-CC. Thus, in general the anti-PDGF-CC
antibodies specifically bind one or more epitopes on PDGF-CC. In embodiments of the
invention wherein the antibody is a monoclonal antibody, then the antibody generally
binds one epitope on PDGF-CC.
[0112] Said epitope(s) may be positioned in any useful part of PDGF-CC. However, in a preferred
embodiment of the invention, the antibodies are inhibitory antibodies, i.e. the antibodies
are capable of inhibiting PDGF-CC activity. In particular it may be preferred that
the antibodies are capable of inhibiting binding of PDGF-CC to the PDGFRα homodimer
and/or to the PDGFRα/β heterodimer. The anti-PDGF-CC antibodies may also be capable
of inhibiting activation of the PDGFRα homodimer and/or of the PDGFRα/β heterodimer.
Activation of PDGFRα homodimer and/or the PDGFRα/β heterodimer may for example be
determined by determining the kinase activity of PDGFRα homodimer and/or to the PDGFRα/β
heterodimer.
[0113] In one embodiment it is preferred that the anti-PDGF-CC antibody is capable of inhibiting
proteolytic processing of PDGF-CC.
[0114] In one embodiment of the invention said anti-PDGF-CC antibody may be any of the antibodies
described in
US patent application no. 62/357,536, the priority of which is claimed by international patent application
WO2018/005904. Thus, the anti-PDGF-CC may include the entire antibody, a fragment or substantially
homologous fragment of the monoclonal antibodies (mAbs) A3B6, 11F5, 19C7 and 12F5,
of the chimeric antibody chA3B6 or of the humanized antibody huA3B6 described in
US application 62/357,536, the priority of which is claimed by international patent application
WO2018/005904. Fragments may include one or a portion of the variable light and heavy chain sequences
or CDR regions of A3B6, chA3B6, huA3B6, 10 11F5, 12F5 and 19C7 as described in
US application 62/357,536, the priority of which is claimed by international patent application
WO2018/005904. The anti-PDGF-CC antibody may in a preferred embodiment be a humanized antibody,
in particular the antibody huA3B6 described in
US application 62/357,536, the priority of which is claimed by international patent application
WO2018/005904.
[0115] In one embodiment, the anti-PDGF-CC antibody may bind one or more epitopes within
the PDGF-CC core active domain, which is provided at residues 230-345 of the full-length
sequence, which is provided as SEQ ID NO.: 1.
[0116] Thus, in one embodiment of the invention it is preferred that the anti-PDGF-CC antibody
binds an epitope positioned in the region of PDGF-CC, which includes the cleavage
site. In human PDGF-C the cleavage site is positioned at amino acids 231 to 234 of
SEQ ID NO:1. Accordingly, it is preferred that the anti-PDGF-CC antibody is capable
of binding an epitope comprising at least part of an amino acid selected from the
group consisting of amino acids 231, 232, 233 and 234 of SEQ ID NO:1. In particular,
the anti-PDGF-CC antibody may be capable of binding an epitope comprising at least
one of amino acids 231, 232, 233 and 234 of SEQ ID NO:1. In other embodiments the
anti-PDGF-CC antibody may be capable of binding an epitope immediately adjacent to
the cleavage site thereby inhibiting proteolytic processing of PDGF-C. Thus, in one
embodiment the anti-PDGF-CC antibody is capable of binding an epitope positioned within
amino acids 230 to 250 of SEQ ID NO:1.
[0117] In one embodiment of the invention the anti-PDGF-CC antibody binds a PDGF-C epitope
described in
WO2005/087812. For example the anti-PDGF-CC antibody may bind an epitope comprised of amino acids
231 to 274 of SEQ ID NO:1.
[0118] In one embodiment of the invention the anti-PDGF-CC antibody binds a PDGF-C epitope
described in
WO2007/124308. For example the anti-PDGF-CC antibody may bind an epitope positioned within, comprising
or consisting of amino acids 228 to 238 of SEQ ID NO:1.
[0119] In one embodiment of the invention the anti-PDGF-CC antibody binds a PDGF-C epitope
described in
WO2013/160359. For example the anti-PDGF-CC antibody may bind an epitope positioned within, comprising
or consisting of amino acids 308 to 322 of SEQ ID NO:1.
[0120] In one embodiment of the invention the anti-PDGF-CC antibody may bind an epitope
positioned within, comprising or consisting of amino acids 242 to 254 of SEQ ID NO:1.
[0121] In one embodiment of the invention the anti-PDGF-CC antibody may bind an epitope
positioned within, comprising or consisting of amino acids 288 to 308 of SEQ ID NO:1.
[0122] In one embodiment of the invention the anti-PDGF-CC antibody may bind an epitope
positioned within, comprising or consisting of amino acids 325 to 345 of SEQ ID NO:1.
[0123] In one embodiment of the invention the anti-PDGF-CC antibody may bind an epitope
positioned within, comprising or consisting of amino acids 256 to 274 of SEQ ID NO:1.
[0124] In one embodiment of the invention the anti-PDGF-CC antibody may bind an epitope
positioned within, comprising or consisting of amino acids 256 to 264 of SEQ ID NO:1.
[0125] In one embodiment of the invention the anti-PDGF-CC antibody may bind an epitope
positioned within, comprising or consisting of amino acids 256 to 260 of SEQ ID NO:1.
PDGF-CC
[0126] Platelet-derived growth factors (PDGFs) are growth factors important for normal tissue
growth and maintenance. PDGF-C is secreted from cells as a latent dimer, PDGF-CC.
PDGF-CC signals through the PDGFR-α, in particular through the PDGFRα homodimer and/or
to the PDGFRα/β heterodimer. Tissue plasminogen activator (tPA) is a secreted serine
protease with highly restricted substrate specificity, and tPA cleaves and activates
latent dimeric PDGF-CC.
[0127] In preferred embodiments of the invention PDGF-CC is human PDGF-CC. The sequence
of human PDGF-C is provided herein as SEQ ID NO:1 and human PDGF-CC is a dimer of
two polypeptides of SEQ ID NO:1.
[0128] PDGF-CC may however also be a functional homologue of human PDGF-C, for example a
dimer of polypeptides, which each share at least 70%, such as at least 80%, for example
at least 85%, such as at least 90%, for example at least 95% sequence identity with
SEQ ID NO:1.
[0129] PDGF-CC may thus also be PDGF-CC of other mammals.
Inhibitors of PDGF-R
[0130] The present disclosure relates to a kit-of-part comprising an inhibitor of platelet-derived
growth factor receptor (PDGF-R) as well as methods of treatment employing an inhibitor
of PDGF-R. The inventors have found that inhibition of the PDGF receptor results in
sensitization of ER-negative breast tumor to the action of endocrine therapy.
[0131] PDGF-Rs are cell surface tyrosine kinase receptors for members of the platelet-derived
growth factor (PDGF) family. There are two forms of the PDGF-R, alpha (UniProt accession
number P16234; SEQ ID NO:8) and beta (UniProt accession number P09619; SEQ ID NO:9)
each encoded by a different gene. Depending on which growth factor is bound, PDGF-R
may homo- or heterodimerize. The extracellular region of the receptor consists of
five immunoglobulin-like domains while the intracellular part is a tyrosine kinase
domain. The PDGFs bind the tyrosine kinase domain of PDGF-R alpha or beta and so cause
the receptor to dimerize. The different PDGFs interact with different receptor dimers.
Dimerization is a prerequisite for the activation of the kinase, which will phosphorylate
some critical residues of the receptor itself as well as of the receptor substrates.
The phosphorylated residue of the receptor is located in proximity to usually three
specific binding sites for signal transduction molecules, in the extracellular region.
The signal transduction molecules may be equipped with different enzymatic activities,
or may act as adaptor molecules, which in some but not all cases are found in complexes
with subunits that carry a catalytic activity. Upon interaction with the activated
receptor, the catalytic activities become up-regulated. The main downstream mediators
of the PDGF-R signaling appear to be Ras/mitogen-activated protein kinase (MAPK),
PI-3 kinase and phospholipase-γ (PLCγ) pathways. In addition, reactive oxygen species
(ROS)-dependent STAT3 activation has been established to be a key downstream mediator
of PDGF-R signaling in vascular smooth muscle cells.
[0132] Expression of both receptors and each of the four PDGFs is under independent control,
which gives the PDGF/PDGF-R system a high flexibility. Different cell types vary greatly
in the ratio of PDGF isoforms and PDGF-Rs expressed.
[0133] The inventors have found that by using inhibitors of PDGF-R, a result similar to
that obtained by using anti-PDGF-CC antibodies is obtained, however the mechanism
behind the treatment is different.
[0134] The inhibitor of PDGF-R, or a variant thereof, according to the present disclosure
may be any compound capable of interacting with the PDGF-R and blocking its tyrosine
kinase activity. For example, the inhibitor of PDGF-R may bind and specifically occupy
the tyrosine kinase site of PDGF-R.
[0135] Throughout the present disclosure, the term "PDGF-R" refers to both PDGF-R alpha
(PDGF-Rα) and PDGF-R beta (PDGF-Rβ) as well as variants thereof, for example the naturally
occurring isoforms of PDGF-Rα and PDGF-Rβ.
[0136] In some embodiments, the inhibitor of PDGF-R is capable of inhibiting the tyrosine
kinase activity of PDGF-Rα and PDGF-Rβ.
[0137] In some embodiments, the inhibitor of PDGF-R is capable of inhibiting the tyrosine
kinase activity of PDGF-Rα.
[0138] In some embodiments, the inhibitor of PDGF-R is capable of inhibiting the tyrosine
kinase activity of PDGF-Rβ.
[0139] In some embodiments, the inhibitor of PDGF-R is a tyrosine-kinase inhibitor.
[0140] Several inhibitors of PDGF-R are known, for example imatinib, nilotinib, axitinib
sunitinib, dasitinib, sorafenib, SU6668, pazopanib, lenvatinib, cabozantinib and nintedanib.
[0141] Preferably, in some embodiments of the present disclosure the inhibitor of PDGF-R
is imatinib.
[0142] In other embodiments of the present disclosure, the inhibitor of PDGF-R is an antibody
against PDGF-R. Some antibodies are in fact capable of interacting with PDGF-Rs and
block or neutralize their activity; in particular they can block or neutralize signaling
departing from the PDGF-Rs.
[0143] The anti-PDGF-R antibodies may bind to any PDGF-R. However, in general it is preferred
that the anti-PDGF-R antibodies to be used are capable of binding PDGF-R of the individual
to be treated. Accordingly, in embodiments where the individual is a human being,
then it is preferred that the anti-PDGF-R antibodies are capable of binding human
PDGF-R, for example human PDGF-Rα and/or human PDGF-Rβ.
[0144] The anti-PDGF-R antibody according to the present disclosure may be any polypeptide
or protein capable of recognizing and binding PDGF-R. By the term "specifically binding"
is meant binding with at least 10 times higher affinity to PDGF-R, PDGF-Rα and/or
PDGF-Rβ, than to a non-specific antigen (e.g. BSA). Typically, the antibody binds
with an affinity corresponding to a K
D of about 10
-7 M or less, such as about 10
-8 M or less, such as about 10
-9 M or less, for example about 10
-10 M or less, when measured as apparent affinities based on IC
50 values. Naturally occurring antibodies according to the disclosure may consist of
one heterotetramer or they may comprise several identical heterotetramers. Thus, the
naturally occurring antibody according to the disclosure may for example be selected
from the group consisting of IgG, IgM, IgA, IgD and IgE. The subunit structures and
three-dimensional configurations of these different classes of immunoglobulins are
well known.
[0145] In one embodiment said anti-PDGF-R antibody is a naturally occurring antibody or
a functional homologue thereof, as defined in the section "Anti-PDGF-CC antibody".
[0146] As described in the above section "Anti-PDGF-CC antibody", naturally occurring antibodies
according to the invention may be antibodies of a particular species. However the
antibodies may also be a hybrid between antibodies from several species, for example
the antibody may be a chimeric antibody, such as a humanized antibody.
[0147] It is not always desirable to use non-human antibodies for human therapy, accordingly
the anti-PDGF-R antibody according to the disclosure may be a human antibody or a
humanized antibody, e.g. a naturally occurring human antibody, as described in the
above section "Anti-PDGF-CC antibody".
[0148] The anti-PDGF-R antibody according to the disclosure may be a human immunoglobulin
or a humanized immunoglobulin, e.g. a naturally occurring human immunoglobulin.
[0149] The anti-PDGF-R antibody according to the disclosure may be a monoclonal antibody,
such as a naturally occurring monoclonal antibody or it may be polyclonal antibodies,
such as naturally occurring polyclonal antibodies, as described in the above section
"Anti-PDGF-CC antibody".
[0150] The anti-PDGF-R antibody may be any protein or polypeptide containing an antigen
binding site, such as a single polypeptide, a protein or a glycoprotein. Preferably,
the antigen binding site comprises at least one CDR, or more preferably a variable
region.
[0151] As mentioned herein above, the anti-PDGF-R antibodies to be used are capable of recognizing
and binding PDGF-Rα and/or PDGF-Rβ. Thus, in general the anti-PDGF-R antibodies specifically
bind one or more epitopes on PDGF-Rα and/or PDGF-Rβ. In embodiments wherein the antibody
is a monoclonal antibody, then the antibody generally binds one epitope on PDGF-Rα
and/or PDGF-Rβ.
[0152] Polyclonal antibodies that bind one or more epitope on PDGF-Rα and/or PDGF-Rβ can
also be used.
[0153] In some embodiments, the inhibitor of PDGF-R is an antibody that targets both PDGF-Rα
and PDGF-Rβ. The antibody may also be specific for PDGF-Rα. Alternatively, the antibody
may be specific for PDGF-Rβ.
Anti-estrogen
[0154] The present invention relates to a kit-of-part comprising an anti-estrogen as well
as to methods of treatment employing an anti-estrogen. Said anti-estrogen may be any
compound capable of reducing the production or utilization of estrogen.
[0155] In general anti-estrogens can be divided into two different subclasses, namely compounds
capable of reducing or inhibiting production of estrogens and compounds capable of
reducing and/or inhibiting the activity of estrogen. The latter group includes compounds
capable of preventing or reducing signaling mediated by estrogen receptors.
[0156] Thus, in one embodiment of the invention the anti-estrogen is an aromatase inhibitor.
Aromatase inhibitors work by blocking or reducing the synthesis of estrogen in a mammal
and thereby lowering the level of estrogen. Examples of aromatase inhibitors include
but are not limited to exemestane, anastrozole, letrozole, aminoglutethimide, testolactone,
vorozole, formestane and fadrozole.
[0157] In another embodiment the anti-estrogen is an estrogen antagonist. Examples of estrogen
antagonists include but are not limited to tamoxifen, raloxifene, 4-hydroxytramoxifen,
trioxifene, keoxifene, afimoxifene, LY1 17018, fulvestrant, arzoxifene, lasofozone
and toremifene.
[0158] The estrogen antagonist may be a compound which both is an antagonist, but also a
partial agonist of estrogen. An example of such an anti-estrogen is tamoxifen.
[0159] The estrogen antagonist may also be a full antagonist of estrogen. An example of
such an anti-estrogen is fulvestrant.
[0160] A preferred anti-estrogen to be used with the present invention is tamoxifen. Tamoxifen
is a triphenylalkylene derivative that binds to the estrogen receptor (ER). The therapeutic
mechanisms of tamoxifen are complex, but the primary effect of tamoxifen is exerted
via estrogen receptors. In addition to tamoxifen its active metabolites N-desmethyltamoxifen
and endoxifen (4-hydroxy-N-desmethyl-tamoxifen) may be used as anti-estrogens with
the invention.
[0161] The anti-estrogen to be used with the present invention may thus be a triphenylalkylene
derivative, such as tamoxifen or structurally similar compounds including clomiphene,
4- hydroxylated, the N-dealkylated and the 4-hydroxy-N-dealkylated analogs of clomiphene,
tamoxifen, pyrrolidinotamoxifen, toremifene, fixed ring tamoxifen, fispemifene, as
well as all other molecules with substantially similar structures. Also both cis and
trans isomer of the aforementioned may be employed.
[0162] The anti-estrogen may also be a selective estrogen receptor modulator (SERM). SERMs
of the invention include, without limitation, triphenylalkylenes, which include: 2-[4-(1,2-diphenylbut-1-enyl)phenoxy]-N,N-dimethyl-ethanamine
(tamoxifen) and other compounds described in
U.S. Patent No. 4,536,516,; 4'-hydroxy-2-[4-(1,2-diphenylbut-1-enyl)phenoxy]-N,N-dimethyl- ethanamine (4'-hydroxytamoxifen)
and other compounds described in
U.S. Patent No. 4,623,660, as well as the dealkylated variant 4'- hydroxy-2-[4-(1,2-diphenylbut-1-enyl)phenoxy]-N-monomethyl-ethanamine
(N-desmethy1-4'-hydroxytamoxifen also known as endoxifen); fixed ring tamoxifen and
its 4'-hydroxyl, N-desmethyl, N-desethyl, 4'-hydroxy-N-desmethyl and 4'-hydroxy-N-desethyl
fonns; 1-[4'-(dimethylaminoethoxy)pheny1]-1-(3'-hydroxypheny1)-2-phenylbut-1-ene (droloxifene)
and other compounds described in
U.S. Patent No. 5,047,431 as well as their 4'-hydroxy, N-desethyl and 4'-hydroxy-N-desethyl fonns; 2-[p-[4-chloro-1,2-dipheny1-1-butenyl]phenoxy]-N,N-dimethylethylamine
(toremifene) and other compounds described in
U.S. Patent Nos. 4,696,949,
5,491,173 and
4,996,225, as well as 4'- hydroxytoremifene, N-dcsmethyl-toremifene and N-desmethy1-4'-hydroxytoremifene;
1-(2-(4-(1-(4-iodo-pheny1)-2-phenyl-but-1-eny1)-phenoxy)-ethyl)-pyrrolidinone (idoxifene)
and other compounds described in
U.S. Patent No. 4,839,155; as well as 4-hydroxypyrrolidinotamoxifen; 2-(2-{4-[(1Z)- 4- chloro-1,2-diphenylbut-1-en-I-yl]phenoxyl
ethoxy)ethan-I-ol (fispemifene) and other compounds described in
U.S. Patent No. 7,504,530, as well as 4'-hydroxyfispemifene; clomiphene and both its isomers; and compounds
described in
U.S. Patent Nos. 4,696,949 and
5,491,173 and
6,576,645, as well as (E) 4'- hydroxyclomiphene, (E) N-desethyl-clomiphene and (E) N-desethy1-4'-
hydroxyclomiphene.
[0163] SERMS to be used with the invention also include, without limitation, benzothiphene
derivatives such as: [6-hydroxy-2-(4-hydroxypheny1)-benzothiophen-3-y1]-[4-[2- (1-piperidinyl)ethoxy)pheny1]-methanone
(raloxifene) and other compounds described in
U.S. Patent Nos. 4,418,068 and
5,393,763; LY353381; and LY335563 and other compounds described in
WO 98/45286,
WO 98/45287 and
WO 98/45288; benzopyran derivatives such as: (+)-7- pivaloyloxy-3-(4'pivaloyloxypheny1)-4-methy1-2-(4"-(2"piperidinoethoxy)pheny1)-
2H- benzopyran (EM 800 /SCH 57050) and other compounds described in
WO 96/26201; (2S)-3-(4-hydroxypheny1)-4-methy1-2-[4-[2-(1-piperidypethoxy]phenyl]-2H- chromen-
7-ol (EM 652); naphthalene derivatives such as: Cis-6-pheny1-544-(2-pyrrolidin- 1-yl-
ethoxy)-phenyl]-5,6,7,8-tetrahydronaphthalen-2-ol (lasofoxifene/CP 336,156) and other
compounds described in
U.S. Patent No. 5,552,412; 3,4-dihydro-2-(p-methoxypheny1)- 1-naphthyl-p-[2-(1-pyrrolidinypethoxy]phenyl ketone
(trioxifene/LY133314) and other compounds described in
U.S. Patent No. 4,230,862; and 1-(4-Substituted alkoxy)benzyl)naphthalene compounds such as those described
in
U.S. Patent No. 6,509,356; chromans such as 3,4- trans-2,2-dimethy1-3-pheny1-4-[4-(2-(2-(pyrrolidin-1-ypethoxy)phenyl]-7-methoxychroman
(levormeloxifene) and other compounds described in
WO 97/25034,
WO 97/25035,
WO 97/25037 and
WO 97/25038; and 1-(2-((4-(-methoxy-2,2, dimethy1-3-phenyl-chroman-4-y1)-phenoxy)-ethyl)-pyrrolidine
(centchroman) and other compounds described in
U.S. Patent No. 3,822,287.
[0164] Other SERMs of the invention include, without limitation, the compounds described
in
U.S. Patent Nos. 6,387,920,
6,743,815,
6,750,213,
6,869,969,
6,927,224,
7,045,540,
7,138,426,
7,151,196, and
7,157,604.
[0165] Further non-limiting anti-estrogens to be used with the invention include: 6a-chloro-16a-
methyl-pregn-4-ene-3,20-dione (clometherone); 6-chloro-17-hydroxypregna-1,4,6-triene-3,20-dione
(delmadinone); 1-[2-[4-[1-(4-methoxypheny1)-2-nitro-2-phenylethenyl]phenoxy]ethy1]-pyrrolidine
(nitromifene/
CN-55,945-27); and 1-[2- [p-(3,4-Dihydro-6-methoxy-2-pheny1-1-naphthyl)phenoxy]ethyl]pyrrolidine
(nafoxidene).
[0166] Further non-limiting anti-estrogens to be used with the invention include indoles
such as those disclosed in
J. Med. Chem., 33:2635-2640 (1990),
J. Med. Chem., 30:131-136 (1987),
CA 02889770 2015-04-24 WO 2014/070523 WO 93/10741,
WO 95/17383,
WO 93/23374 and
U.S. Patent Nos. 6,503,938 and
6,069,153.
[0167] Further non-limiting anti-estrogens to be used with the invention include 2-[3-(1-
cyano-1- methyl-ethyl)-5-(1H-1,2,4-triazol-1-ylmethyl)phenyl]-2-methyl-propanenitrile
(anastrozole) and other compounds described in
EP 0296749; 6-Methylenandrosta-1,4- diene-3,17-dione (exemestane) and other compounds described
in
U.S. Patent No. 4,808,616; 4-[(4-cyanopheny1)-(1,2,4-triazol- 1- y1)methylThenzonitrile (letrozole) and other
compounds described in
U.S. Patent No. 5,473,078; 1-[4'-dimethylaminoethoxy)pheny1]- 1-(3'- hydroxypheny1)-2-phenylbut-1-ene (droloxifene)
and other compounds described in
U.S. Patent 5,047,431; 2a,3a-Epithio-5a-androstan- 1713-01 (epitiostanol); 2a,3a-Epitio-5a-androstane-1713-yl-I-methoxycyclopentyloxy
(mepitiostane); 4-[(2Z,4Z)-4-(4-hydroxyphenyphexa-2,4-dien-3-yl]phenol (cycladiene)
and other compounds described in
U.S. Pat. Nos. 2,464,203 and
2,465,505; CI-680 described in
Unlisted Drugs, 28(10): 169(0) (1976); CI-628 described in
Unlisted Drugs, 26(7): 106(1) (1974); 13- ethy1-17a-ethyn1-1713-hydroxygona-4,9,1-trien-3-one (R2323); diphenol hydrochrysene
and erythyro-MEA both described in
Geynet, et al., Gynecol. Invest. 3(1):2-29 (1972); 1-[1-chloro-2,2-bis(4-methoxyphenyl)etheny1]-4-methoxy-benzene (chlorotrianisene)
described in
Merck Index, 10th ed., #2149; 144-(2-Diethylaminoethoxy)pheny11-1- pheny1-2-(p-anisyl)ethanol (ethamoxytriphetol)
described in
Merck Index, 10th ed., #3668; and 2-p-Chloropheny1-14p-(2-diethylaminoethoxy)pheny1]-1-p-tolylethanol (triparanol)
and other compounds described in
U.S. Patent No. 2,914,562. [0057] Still other antiestrogens of the invention include, without limitation: (2e)-3-(4-
((1e)-1,2-diphenylbut-1-enyl)phenyl)acrylic acid (GW5638), GW7604 and other compounds
described in
Wilson et al., Endocrinology, 138(9):3901-3911 (1997) and
WO 95/10513; 144-(2-diethylaminoethoxy)pheny1]-2-(4-methoxypheny1)-1-phenyl- ethanol (MER-25),
N,N-diethy1-244-(5-methoxy-2-phenyl-3H-inden-1- y1)phenoxylethanamine hydrochloride
(U-11.555A), 1-[2-[4-(6-methoxy-2-pheny1- 3,4- dihydronaphthalen-1-yl)phenoxy]ethyllpyrrolidine
hydrochloride (U-11, 100A), ICI- 46,669, 2-[4-[(Z)-1,2-diphenylbut-1-enyl]phenoxy]-N,N-dimethyl-ethanamine;
2-
CA 02889770 2015-04-24 WO 2014/070523 hydroxypropane-1,2,3-tricarboxylic acid (ICI-46,474) and other compounds described
in
Terenius etal., Gynec. Invest., 3:96-107 (1972); 2-Hydroxy-6-naphthalenepropionic acid (allenolic acid); [4-[(4-acetyloxypheny1)-cyclohexylidene-methyl]phenyliacetate
(cyclofenyl/ICI-48213); [6-hydroxy-2-(4-hydroxyphenyl)benzothiophen-3-y1]-[4- [2-(1-
piperidypethoxy]phenylimethanone (keoxifene); 4-[(Z)-1-[4-(2- dimethylaminoethoxy)pheny1]-2-(4-propan-2-ylphenyl)but-1-enyl]phenol
(DP-TAT- 59/miproxifene); (1RS,2RS)-4,4'-diacetoxy-5,5'-difluoro-(1-ethy1-2- methylene)di-m-
phenylenediacetate (acefluranol); 6-hydroxy-2-(p-hydroxypheny1)-benzo(b)thien- 3-
y1[2-(1-pyrrolidiny1)-ethoxyphenyl]ketone (LY-117018); and [6-hydroxy-2-(4- hydroxy-phenyl)benzo(b)thien-3-y1]-[4-(2-(1-piperidiny1)-ethoxy)phenyl]methanone
(LY-156758). [0058] Still other antiestrogens of the invention include, without limitation:
non- steroidal estrogen receptor ligands such as those described in
U.S. Patent Nos. 5,681,835,
5,877,219,
6,207,716,
6,340,774 and
6,599,921; steroid derivatives such as those described in
U.S. Patent No. 4,659,516; 7a-11-aminoalkyl- estratrienes such as those described in
WO 98/07740; 11-f3-halogen-7a-substituted estratrienes such as those described in
WO 99/33855; 17a-alky1-173-oxy-estratrienes such as those described in
U.S. Patent Application No. 10/305,418; 2-phenyl-144-(2-aminoethoxy)-benzyll-indoles such as those described in
U.S. Patent No. 7.132,417; 4-fluoroalky1-2h-benzopryans such as those described in
U.S. Patent No. 6,844,336; (4-(2- (2-aza-bicyclo[2.2. 1]hept-2-y1)-ethoxy)-pheny1)-(6-hydroxy-2-(4-hydroxy-
pheny1)- benzo[b]thiop hen-3-y1)-methanone and other benzothiophenes described in
WO 95/10513 and
U.S. Patent No. 4,133,814; 2-pheny1-1- [4-(2-aminoethoxy)-benzyl]-indoles such as those described in
U.S. Patent No. 5,998,402; 3-[4- (2- Phenyl-Indole-I- ylmethyl) Phenyl]-Acrylamides and other compounds described
in
U.S. Patent No. 5,985,910; 2-phenyl-I -[4-(amino-1-yl-alk-1-yny1)- benzyl]-1H- indo1-5-ols and other compounds
described in
U.S. Patent Nos. 5,780,497 and
5,880,137; steroids such as those described in
U.S. Patent Nos. 6,455,517,
6,548,491,
6,747,018 and
7,041,839; Di-(3'-hydroxypheny1)-alkane compounds
CA 02889770 2015-04-24 WO 2014/070523 such as those described in
U.S. Patent No. 4,094,994; phenol derivatives such as those described in
U.S. patent No. 4,751,240; 2,3-diary1-2H-1-benzopyran analogs such as those described in
Saeed et al., J. Med. Chem., 33:3210-3216 (1990) and
Sharma et al., J. Med. Chem. 33:3216-3229 (1990); and benzofuran and triarylfuran analogs such as those described in
Durani et al., J. Med. Chem., 32:1700-1707 (1989).
[0168] The anti-estrogen to be used with the invention may also be a pharmaceutically acceptable
salt, ester, or prodrug of any of the aforementioned anti-estrogens.
[0169] Pharmaceutically acceptable salts are prepared in a standard manner. If the parent
compound is a base it is treated with an excess of an organic or inorganic acid in
a suitable solvent. If the parent compound is an acid, it is treated with an inorganic
or organic base in a suitable solvent.
[0170] The anti-estrogens of the invention may be administered in the form of an alkali
metal or earth alkali metal salt thereof, concurrently, simultaneously, or together
with a pharmaceutically acceptable carrier or diluent in an effective amount.
[0171] Examples of pharmaceutically acceptable acid addition salts for use in the present
inventive pharmaceutical composition include those derived from mineral acids, such
as hydrochloric, hydrobromic, phosphoric, metaphosphoric, nitric and sulfuric acids,
and organic acids, such as tartaric, acetic, citric, malic, lactic, fumaric, benzoic,
glycolic, gluconic, succinic, p-toluenesulphonic acids, and arylsulphonic, for example.
ER-negative breast cancer
[0172] The anti-PDGF-CC antibody, the kit-of-parts and the methods of the invention are
useful for treatment of ER-negative breast cancer.
[0173] The ER-negative breast cancer may be any breast cancer characterized by lack of expression
of the estrogen receptor (ER). As used herein a breast cancer is considered an ER-negative
breast cancer, when =<10% of the tumor cells of said breast cancer express estrogen
receptor at levels detectable by immunohistochemistry. In some embodiments of the
invention, the ER-negative breast cancer is a breast cancer, where <1% of the tumor
cells of said breast cancer express estrogen receptor at levels detectable by immunohistochemistry
Immunohistochemistry may preferably be a test involving staining of a sample from
a breast cancer with the aid of antibodies recognizing ER, and followed by detection
of ER expression in the cells of said sample, e.g. by microscopy.
[0174] In one embodiment of the invention the ER-negative breast cancer is a breast cancer
wherein <1% tumor nuclei are positive for ER expression as recommended by American
Society of Clinical Oncology as described by Hammond et al., 2010.
[0175] According to the present invention, ER expression may be determined by any useful
means, preferably by any useful immunohistochemical method. Preferably, ER expression
may be determined as described by Hammond et al., 2010.
[0176] In one embodiment of the invention the ER-negative breast cancer also is a Progesterone
receptor negative (PR-negative) breast cancer. Thus, the breast cancer be to treated
may in particular be an ER-negative and PR-negative breast cancer. Said PR-negative
breast cancer may be a breast cancer where =<10% of the tumor cells of said breast
cancer express the progesterone receptor (PR) at levels detectable by immunohistochemistry.
In some embodiments of the invention, the PR-negative breast cancer is a breast cancer,
where <2% of the tumor cells of said breast cancer express PR at levels detectable
by immunohistochemistry. In some embodiments of the invention, the PR-negative breast
cancer is a breast cancer, where <1% of the tumor cells of said breast cancer express
PR at levels detectable by immunohistochemistry. PR expression may be determined by
any useful means, preferably by any useful immunohistochemical method. Preferably,
PR expression may be determined as described by Hammond et al., 2010.
[0177] The ER-negative breast cancer may in some embodiments express the human epidermal
growth factor receptor 2 (HER-2).
[0178] In another embodiment of the invention the ER-negative breast cancer is a triple-negative
breast cancer, i.e. said cancer is ER-negative, PR-negative and human epidermal growth
factor receptor (HER)-2 negative. The terms ER-negative and PR-negative are explained
above. A HER-2 negative breast cancer may be a breast cancer which expresses no detectable
HER-2. The test for HER-2 expression may be performed by any useful method, for example
by an immunohistochemical method or by FISH. Preferably, a HER-2 negative breast cancer
is HER-2 negative when determined as recommended in Wolff et al., 2013.
[0179] In one embodiment of the invention the ER-negative breast cancer is a basal-like
breast cancer. In one embodiment said basal-like breast cancer may be a triple-negative
breast cancer.
[0180] A basal-like breast cancer may also be an ER-negative breast cancer, which expresses
one or more high-molecular weight/basal cytokeratins, for example selected from the
group consisting of CK5/6, CK14 and CK17.
[0181] The basal-like breast cancer may also be an ER-negative and HER-2 negative breast
cancer, which expresses CK5/& and/or epidermal growth factor receptor.
[0182] The basal-like breast cancer may also be a triple-negative breast cancer expressing
CK5/6 and/or EGFR.
[0183] Furthermore, basal-type breast cancer typically does not express FoxA1. Basal-like
breast cancer is associated with high grade, poor prognosis, and younger patient age.
[0184] In particular, the ER-negative breast cancer may be a breast cancer, which at the
time of first diagnosis was an ER-negative breast cancer. Thus, the ER-negative breast
cancer may be characterized as ER-negative from the onset, rather than as a breast
cancer having lost ER expression as a result of treatment. It may be preferred that
the ER-negative breast cancer is a breast cancer, wherein the primary tumor is ER-negative.
Pharmaceutical formulation
[0186] The compounds to be used with the present invention may be formulated for parenteral
administration and may be presented in any suitable form, for example in unit dose
form in ampoules, pre-filled syringes, small volume infusion or in multi-dose containers,
optionally with an added preservative. In particular it is foreseen that the anti-PDGF-CC
antibodies are formulated for parenteral administration, however, also anti-estrogens
may be formulated for parenteral administration.
[0187] For parenteral administration the formulations may take such forms as suspensions,
solutions, or emulsions in oily or aqueous vehicles, for example solutions in aqueous
polyethylene glycol. Alternatively, the active ingredient may be in powder form, obtained
by aseptic isolation of sterile solid or by lyophilisation from solution for constitution
before use with a suitable vehicle, e.g., sterile, pyrogen-free water. The formulations
can for example be presented in unit-dose or multi-dose sealed containers, such as
ampoules, vials, pre-filled syringes, infusion bags, or can be stored in a freeze-dried
(lyophilized) condition requiring only the addition of the sterile liquid excipient,
for example, water, for injections, immediately prior to use. Extemporaneous injection
solutions and suspensions can be prepared from sterile powders, granules, and tablets.
[0188] Examples of oily or non-aqueous carriers, diluents, solvents or vehicles include
propylene glycol, polyethylene glycol, vegetable oils, and injectable organic esters,
and may contain formulatory agents such as preserving, wetting, emulsifying or suspending,
stabilizing and/or dispersing agents.
[0189] The formulations for injection will typically contain from about 0.5 to about 25%
by weight of the active ingredient in solution for example of the anti-PDGF-CC antibody.
For example, the dosage may be in the range of 1 to 100 mg anti-PDGF-CC antibody per
kg body weight, such as in the range of 1 to 20 mg of anti-PDGF-CC antibody per kg
body weight, for example in the range of 5 to 15 mg of anti-PDGF-CC antibody per kg
body weight.
[0190] The compounds of the present invention may also be formulated in a wide variety of
formulations for oral administration. This may in particular be the case for the anti-estrogens.
Solid form preparations may include powders, tablets, drops, capsules, cachets, lozenges,
and dispersible granules. Other forms suitable for oral administration may include
liquid form preparations including emulsions, syrups, elixirs, aqueous solutions,
aqueous suspensions, toothpaste, gel dentrifrice, chewing gum, or solid form preparations
which are intended to be converted shortly before use to liquid form preparations,
such as solutions, suspensions, and emulsions.
[0191] In powders, the carrier is a finely divided solid which is a mixture with the finely
divided active component. In tablets, the active component is mixed with the carrier
having the necessary binding capacity in suitable proportions and compacted in the
shape and size desired. Suitable carriers are magnesium carbonate, magnesium stearate,
talc, sugar, lactose, pectin, dextrin, starch, gelatin, tragacanth, methylcellulose,
sodium carboxymethylcellulose, a low melting wax, cocoa butter, and the like.
[0192] Drops according to the present invention may comprise sterile or non-sterile aqueous
or oil solutions or suspensions, and may be prepared by dissolving the active ingredient
in a suitable aqueous solution, optionally including a bactericidal and/or fungicidal
agent and/or any other suitable preservative, and optionally including a surface active
agent. Suitable solvents for the preparation of an oily solution include glycerol,
diluted alcohol and propylene glycol.
[0193] Emulsions may be prepared in solutions in aqueous propylene glycol solutions or may
contain emulsifying agents such as lecithin, sorbitan monooleate, or acacia. Aqueous
solutions can be prepared by dissolving the active component in water and adding suitable
colorants, flavors, stabilizing and thickening agents. Aqueous suspensions can be
prepared by dispersing the finely divided active component in water with viscous material,
such as natural or synthetic gums, resins, methylcellulose, sodium carboxymethylcellulose,
and other well-known suspending agents.
[0194] Any dosage of anti-estrogen used as required for efficacy, as recommended by the
manufacturer, can be used. Appropriate dosages for anti-estrogens are known in the
art. Thus, conventional dosages used for treatment of luminal-like breast cancers
can be used for treatment of the basal-like breast cancers according to the invention.
For example, anti-estrogens may be prepared form administration in a dosage range
between 0.01 to 10 mg/kg of body weight per day (preferably 0.05 to 1.0 mg/kg), with
20 to 40 mg per day being preferred for a person of average body weight when orally
administered, or in a dosage range between 0.003 to 3.0 mg/kg of body weight per day
(preferably 0.015 to 0.3 mg/ml), with 1.5 mg per day, especially 3.0 mg per day, in
two equally divided doses being preferred for a person of average body weight when
parentally administered.
Sequence listing
[0195]
| SEQ ID NO:1 |
Amino acid sequence of PDGF-CC from Homo sapiens |
| SEQ ID NO:2 |
MMTV-PyMT primer |
| SEQ ID NO:3 |
MMTV-PyMT primer |
| SEQ ID NO:4 |
PDGF-C wild-type primer |
| SEQ ID NO:5 |
PDGF-C wild-type primer |
| SEQ ID NO:6 |
PDGF-C mutant primer |
| SEQ ID NO:7 |
PDGF-C mutant primer |
| SEQ ID NO:8 |
PDGF-R alpha |
| SEQ ID NO:9 |
PDGF-R beta |

Examples
[0196] The invention is further illustrated by the following examples, which should not
be construed as being limiting for the invention.
Example 1. Anti-PDGF-CC antibody sensitizes tumor to estrogen therapy
Patient cohort and the definition of breast tumor subtypes
[0197] Tissues from 890 patients with primary invasive breast cancer, diagnosed at the Institute
of Surgical Pathology, USZ, between 1965 and 2004 (median July 1999), were analyzed.
All patients enrolled voluntarily under Institutional Review Board-approved protocols
and sample donors gave written informed consent. The ethics committee SPUK surgical-anesthetic-pathology
at university hospital of Zürich, Switzerland, approved this study with reference
number:
StV 12-2005. For all these patients follow up data from the cantonal cancer registry were available;
patients without follow up information were not considered (
Theurillat et al, Int J Cancer, 2007). Additionally, 69 normal tissues and 152 in situ lesions (DCIS, LN) were analyzed.
Molecular cancer subtypes were defined from detected ER, HER2 and CK5/6 by IHC. Luminal
type: ER-positive cases, that were HER2- negative; HER2-type: Her2-positive cases;
Basal like: CK5/6-positive, ER-negative and HER2-negative. Cases negative for all
markers were designated NIL-type.
Tissue Microarray construction
[0198] Formalin fixed paraffin embedded material of a representative variety of normal and
malignant human tissues and tumor cell lines were compiled and assembled on a single
block, as described (
Kristiansen et al, Br J Cancer 2008).
Immunohistochemistry on human tumor tissue array
[0199] To assess PDGF-CC expression in various tumor types, we used a rabbit polyclonal
antibody against PDGF-CC, 615, on a commercially available tumor tissue array (Chemicon)
according to the instruction of the manufacturer. For the breast tumor cohort and
to confirm the results gained from the polyclonal antibody 615, the mab anti-PDGF-CC
antibody, A3B6 (2 µg/ml) was used on an automated Ventana platform (protocol CC1m
for pre-treatment, UView HRP detection system). The epitope of the A3B6 antibody is
amino acids 256 to 260 of SEQ ID NO:1 within the sequence of amino acids 256 to 274
of SEQ ID NO:1. Specific immuno-reactivity was fully blocked by an excess of active
PDGF-CC. The basal cell marker cytokeratin CK5/6 (clone cocktail D5/16B4, 1:25, Dako,
Denmark), HER2 (clone 10A7, 1:50, Novocastra, UK), EGFR (clone 3C6, pre-diluted, Ventana,
Tucson, USA) and Ki-67 (clone Mib-1, 1:20, Dako, Danmark) were processed in parallel.
Mouse tissue preparation, histology and immunostaining
[0200] Upon completion of the treatment, mice were anesthetized with 2.5% Avertin (12,5
mg/kg body weight; Sigma-Aldrich) and 300 µL of blood were collected by heart puncture
and immediately mixed with RNAlater solution (Life Technologies) and stored at-20
°C. Mice were heart-perfused with PBS followed by 4% paraformaldehyde (for transplanted
FVB/N mice only).
[0201] For paraffin embedding, organs were post-fixed in 4% paraformaldehyde for 2 h before
proceeding to embedding. Paraffin-embedded sections were deparaffinized and rehydrated
followed by antigen retrieval in high pH buffer (pH 6; DAKO) in a pressure cooker
(ERα) or in 95 °C water-bath for 20 minutes (PR, STC1, IGFBP3 and HGF). Peroxidase
activity was quenched with 3% H
2O
2 in methanol for 10 minutes at room temperature, followed by washes with 0.1% BSA
in PBS.
[0202] ERα staining required subsequent steps in M.O.M. blocking (Mouse on Mouse basic kit,
Vectorlabs), CAS-block (Life Technologies) and M.O.M. diluent. The primary antibody
against estrogen receptor ERα (1:200, clone 1D5; DAKO) was incubated in M.O.M. diluent.
[0203] CAS-block was used for the blocking and incubation of primary antibodies against
STC1 (1:200; SC-30183, Santa Cruz), IGFBP3 (1:200; SC-9028, Santa Cruz) and HGF (1:200;
ab83760, Abcam). Primary incubation was performed overnight at 4 °C in a humidified
chamber.
[0204] After washing, appropriate secondary biotinlylated antibodies and the ABC peroxidase
system were used (ABC Elite standard kit, Vector Laboratories) with DAB as the colorimetric
substrate (Vector Laboratories).
[0205] For cryopreservation, primary tumor, lungs, liver and brain were kept in 30% sucrose
at 4 °C overnight, followed by embedding in Optimal Cutting Temperature (OCT) medium
(HistoLab). Frozen sections were fixed in ice-cold acetone, followed by blocking using
Serum Free Protein Block (DAKO) for > 90 minutes at room temperature. Primary antibodies
directed against PDGFRα (PE-conjugated, 1:200; 12-1401, eBioscience) and PDGFRβ (1:200;
3169S, Cell Signaling) were incubated overnight at 4 °C in a humidified chamber. Appropriate
Alexa488- flourochrome-conjugated secondary antibody (Life Technologies) was used
and sections were finally mounted using 4',6- diamidino-2-phenylindole (DAPI)-containing
mounting media (Vector Laboratories).
[0206] For RNA isolation and preparation, primary tumor, liver, lungs and brain were snap-frozen
in liquid N
2 and stored at -80 °C.
Mice
[0207] All animal experiments were approved by the Ethical Committee for Animal Experiments
(Stockholm Norra djurförsöksetiska nämnd, application N96/11, and Lund, application
M142/13). FVB/N-Tg(MMTV-PyVT)
634Mul/J transgenic mice have been described previously (
Guy et al Molecular and Cellular Biology 1992) and were purchased from The Jackson Laboratory. The presence of the MMTV-PyMT transgene
and the generation of heterozygous and homozygous knock-out PDGF-C offspring were
verified by genotyping. DNA was prepared from either ear or tail biopsies according
to a common tissue lysis, nucleic acid extraction and purification protocol. PCR products
were run on a 1,5% agarose gel. MMTV-PyMT primer pair (5' to 3'):
GGAAGCAAGTACTTC ACAAGGG [SEQ ID NO:2] and
GGAAAGTCACTAGGAGCAGGG [SEQ ID NO:3]. PDGF-C wild-type pair:
AGCTGACAT TTGATGAGAGAT [SEQ ID NO:4] and
AGTAGGTGAAATAAGAGGTGAACA [SEQ ID NO:5]. PDGF-C mutant pair: CTC
ATGTTCTCGTGACTCTGA [SEQ ID NO:6] and TAGCTAGTCGATACCGTCGA [SEQ ID NO:7].
[0208] Tumor size of the ten different glands were measured at 12 weeks of age using a caliper.
Tumor volume was calculated as length × width2 × π/6. Mice of different ages where
anesthetized with Avertin (Sigma Aldrich, St Louis, MO) and then euthanized by heart
perfusion with Hank's balanced salt solution (HBSS) followed by 4% Paraformaldehyde
(PFA). The left cervical and thoracic mammary glands where excised and subjected to
overnight fixation in 4% PFA before embedding in paraffin. For frozen sectioning the
tumor tissue was subjected to 30% sucrose before embedding in OCT.
Tumor piece transplantation into mammary fat pad
[0209] 3 weeks old FVB/N (common background strain for both MMTV-PyMT and PDGF-C mice) female
mice were anesthetized and maintained under Isolfluorane during the surgical procedure.
A 4 mm incision under the nipple of the right abdominal mammary gland created a pocket
where a 2x2 mm tumor piece (kept on ice, either from MMTV-PyMT or MMTV-PyMT;PDGF-C
tumors) was inserted. Suturing was performed with 6-O Ethilon polyamide filament (Ethicon).
Pain-killer and anti-inflammatory Rimadyl (5 mg/kg body weight; Orion Pharma Animal
Health) was injected i.p. at the end of the surgical procedure and for the following
two days. For the therapeutic trial, Tamoxifen (2 mg/mL) was diluted in corn oil (vehicle)
and administered via oral gavage daily.
[0210] Mouse mammary cell lines MMTV... MMTV/PDGF-C-/-... (established in our laboratory)
were orthotopically injected into the 4
th inguinal mammary gland on FVB/N mice. Furthermore, small tumor pieces (2mm
3) of MMTV-PyMT and MMTV-PDGF-CC-/- tumors were directly orthotopically transplanted
under anesthesia. The mice were subjected to Rimadyl immediately after the surgery
and the following two days for analgetics. The tumors were measured twice a week and
mice were euthanized as described above.
Xenograft establishment
[0211] 2 × 10
6 Human MDA-MB-231 cells were inoculated subcutaneously in immunodeficient mice. Tumor
growth was monitored and measured once a week with a caliper in live sedated animals.
Anti-PDGF-CC (A3B6) antibody or IgG2a control were delivered
via i.p. injection twice a week (300 mg/kg per week) starting from the day of tumor establishment.
When tumors were palpable (longest diameter > 3 mm), mice were randomized and treated
with Tamoxifen (3 mg/kg) or vehicle (corn oil) via oral gavage daily.
Statistics
[0212] All statistics were calculated using SPSS V17 (SPSS, Chicago, USA). Spearman rank
correlation was used to determine the associations of PDGF-CC expression with clinico-pathological
parameters. Kaplan Meier analysis (with log rank test) and the Cox regression model
were used for univariate or multivariate analyses. The statistics of the mouse experiments
was evaluated using two-tailed independent student t-test with P≤ 0.05 considered
significant.
Cell culture
[0213] Murine MMTV-PyMT or MMTV-PyMT;PDGF-C
-/- cells and human MDA-MB-231 cells were maintained in culture in DMEM Glutamax (Invitrogen),
supplemented with 1% Penicillin/Streptomycin, 10% Fetal Bovine Serum (FBS) and glutamate.
In vitro stimulation
[0214] 3 × 10
6 MMTV-PyMT;PDGF-C
-/- cells were seeded in culture medium. After 24 hours, the cells were starved for 24
hours in DMEM Glutamax (Invitrogen), supplemented with 1% bovine serum albumin (BSA;
Sigma Aldrich). The cells were stimulated with rmSTC1 (400 ng/mL; BioVendor), rmHGF
(30 ng/mL;), rhlGFBP3 (250 ng/mL; R&D) or combinations of these factors in starvation
medium for 48 hours. The cell line CAF2 (
Kojima et al, PNAS, 2010) was used to produce CAF-conditioned medium. A monolayer of CAF2 cells was incubated
for 48 hours in starvation medium. This conditioned medium was spun down (1500 × g)
to remove cells and used for downstream experiments.
Quantitative reverse-transcription PCR
[0215] In vitro-grown cells were washed twice with ice-cold PBS. RNA was isolated using RNAeasy
MiniKit (Qiagen). cDNA was prepared using iScript cDNA Synthesis Kit (Bio Rad). KAPA
SYBR FAST qPCR Kit Master Mix (KAPA Biosystems) was used for quantitative real-time
PCR. The mRNA expression was normalized to the housekeeping gene L19. For FOXA1, EGFR
and ESR1 QuantiTect Primer assay (Qiagen) primers were used. L19 primer pair (5' to
3'): GGTGACCTGGATGAGAAGGA and TTCAGCTTGTGGATGTGCTC. GATA3 primer pair (5' to 3'):
CAATGCCTGCGGACTCTACC and GGTGGTGGTCTCGACAGTTCG.
Western blot
[0216] In vitro-grown cells were washed twice with ice-cold PBS and lysed 30 minutes on ice
with 50 µl lysis buffer (20 mM Tris-HCl pH 7,5, 150 mM NaCl, 5 mM EDTA, 0.5 % sodium
deoxycholate, 0.5 % Triton X). The lysate was spun down at 12000 × g and the pellet
discarded. The protein concentration was determined by absorption spectroscopy. The
protein suspension was mixed with 5× loading buffer, denaturated at 96 °C for 2 minutes
and separated by SDS-PAGE on a 10% acrylamide gel. The proteins were transferred to
an ethanol-activated PDCV membrane. The membrane was blocked 1 hour with 5% milk powder
in PBST (0.05% Tween-20 in PBS) and incubated O/N at 4 °C with anti-Estrogen Receptor
alpha antibody (ERα 1:200; SC-542, Santa Cruz) in blocking buffer. After washing,
anti-Rabbit-HSP was applied 1:5000 in blocking buffer and incubated for 2 hours at
RT. The membrane was washed and developed with SuperSignalR West Pico Chemoluminescent
Substrate (Thermo Scientific). Luminescence signal was measured with an CCD camera
(FluorChem E, Cell Biosciences).
In vitro 4-hydroxytamoxifen treatment
[0217] 15000 cells (either MMTV-PyMT or MMTV-PyMT;PDGF-C
-/-) were seeded in 96-well plates. After 24 hours incubation in growth medium followed
by 24 hours starvation, the cells were stimulated either with CAF-conditioned medium
or recombinant factors, as described before.
[0218] The cells were treated with increasing concentration of 4-hydroxytamoxifen (0-5 µM;
Sigma Aldrich) in the respective stimulation medium at day 4 and 6 post-seeding. The
cell proliferation reagent WST-1 (Roche) was used for the viability assay at day 7.
Tumor grade assessment
[0219] Tumor tissue from MMTV-PyMT, MMTV-PyMT;PDGF-C
+/- and MMTV-PyMT;PDGF-C
-/- mice (n = 5 mice/genotype) was classified into different degrees of progression by
quantifying the area of transformed glands occupied by each stage. Progression follows
from normal fat tissue to a "precancerous stage" characterized by premalignant hyperplasia
and adenoma (with the retention of some normal ductal and acinar mammary gland morphology),
to a more epithelial cell-dense "early carcinoma" with stromal invasion, and finally
to an invasive, very dense, high-mitotic index "late-stage carcinoma". Tumors were
evaluated for the proportion of mammary fat tissue, hyperplastic tissue, adenoma,
early carcinoma and late carcinoma. PDGF-C specific necrosis was described by a pathologist
and scored blindly in the samples.
ERa assessment
[0220] MDA-MB-231 human xenograft tumor tissue was immunostained and nuclear ERα positivity
was evaluated at the end of the therapeutic trials. The region of interested was restricted
to the tumor mass, without including the surrounding fat tissue. Both single-cell
and foci quantification (n >3 cells/focus) was performed.
Quantification of metastases
[0221] The left lung lobes of MMTV-PyMT were embedded in paraffin upon tissue fixation.
The metastatic burden was assessed by serial sectioning of the entire lung/liver lobe.
Following hematoxylin and eosin staining on every 25th section, the number of metastatic
foci (>8 cells in diameter) was determined in >15 sections per mouse and > 5 mice
per group.
Results
[0222] PDGF-CC is an independent prognostic factor for poor survival in breast cancer In order to investigate the expression pattern of PDGF-CC in human breast, we performed
immunostaining of a tissue microarray containing 890 tumor specimens, as well as normal
breast tissue. The expression of PDGF-CC in normal breast tissue was limited to myoepithelial/basal
cells and endothelial cells in capillaries, whereas most luminal cells were found
to be negative for PDGF-CC expression (Fig. 1a-b). In breast tumors, PDGF-CC was expressed
by malignant cells, intra-tumoral capillaries and stromal fibroblasts (Fig. 1b-e).
Notably, PDGF-CC immunoreactivity was most conspicuous in the stroma directly adjacent
to the malignant epithelium (Fig. 1f). Next, the staining intensity for PDGF-CC was
graded independently for the epithelial and stromal compartment and correlated to
clinico-pathological parameters (Fig. 1g). Stromal immunoreactivity for PDGF-CC was
not correlated to patient outcome. In sharp contrast, moderate to high expression
of PDGF-CC (score of 2+ and 3+) was found to be a highly significant prognostic factor
for poor survival in univariate Cox regression and Kaplan-Meier analysis (RR 1.52,
95%CI 1.16-1.99, p=0.003; Fig. 1h). Importantly, multivariate analysis adjusting for
established clinical risk factors, such as age at diagnosis, stage, grade and lymph
node status, among others, demonstrated that epithelial expression of PDGF-CC served
as an independent prognostic factor for poor survival (RR 1.48, 95%CI 1.04-2.13, p=0.03).
Interestingly, the two receptors of the PDGF family,
i.e. PDGFRα and PDGFRβ, were both exclusively expressed by stromal fibroblasts, indicating
that malignant cells engage in paracrine communication with mesenchymal cells of the
tumor microenvironment (Fig. 1i).
[0223] PDGF-CC is functionally important for the growth of experimental breast cancer Next, in order to investigate the functional aspects of PDGF-CC expression in the
context of mammary gland tumorigenesis, we generated a genetically engineered mouse
model of breast cancer based on the widely studied and clinically relevant MMTV-PyMT
mouse intercrossed with mice deficient for
Pdgfc (
Pdgfclacz/lacz)
. Visualization of PDGF-CC, PDGFRα and PDGFRβ expression in tumors of MMTV-PyMT mice
demonstrated faithful recapitulation of the expression pattern in human breast cancers
and established the existence of a paracrine circuitry between malignant cells and
stromal fibroblasts (Fig. 2a). Strikingly, genetic deficiency for
Pdgfc severely impacted on the growth of mammary tumors of MMTV-PyMT mice (Fig. 2b). Whereas
control mice presented with tumors of an average size of 220 ± xx mm
3, deficiency for a single, or both, copies of the gene encoding
Pdgfc reduced the average tumor size to 98 ± xx mm
3 and 95 ± xx mm
3, respectively (Fig. 2b). In addition to reducing the overall tumor burden, genetic
deficiency for
Pdgfc was associated with a significantly longer tumor latency, as well as prolonged survival
of MMTV-PyMT mice (Fig. 2c-d). Furthermore, tumors from age-matched mice lacking the
gene encoding PDGFC were of lower stage, compared to tumors from control mice, and
incorporated substantial areas of necrosis (Fig. 2e-f). Accordingly, 14-weeks old
tumor-bearing mice presented with 26.3% fewer pulmonary metastases in the absence
of signaling by PDGF-CC (Fig. 2g). However, this was most likely due to the delayed
onset of disease, as a cohort of 12-weeks old wt mice displayed a similar metastatic
burden as the 2 weeks older mice lacking
Pdgfc (Fig. 2g).
[0224] To ascertain that the delayed tumor development in
Pdgfc-deficient mice was not due to developmental defects, we transplanted fragments of
tumors from MMTV-PyMT;
Pdgfc+/+ and MMTV-PyMT;
Pdgfclacz/lacz mice orthotopically into the mammary fat pad of young wt mice. Consistent with our
findings in the transgenic setting, transplanted Pdgfc-deficient tumors displayed
a dramatically hampered growth, compared to Pdgfc-proficient tumors (Fig. 2h). Furthermore,
whereas cell lines isolated from wt MMTV-PyMT mice readily gave rise to exponentially
growing tumors following orthotopic transplantation into the mammary fat pad of wt
or Pdgfc-deficient mice, two independently isolated cell lines from tumors of MMTV-PyMT;
Pdgfclacz/lacz mice were unable to establish as palpable tumors (Fig. 2i and data not shown).
Deficiency for Pdgfc results in a blunted fibrotic and angiogenic response in the
tumor microenvironment
[0225] Histological analysis revealed considerable differences in the architecture of tumors
from MMTV-PyMT;
Pdgfc+/+ and MMTV-PyMT;
Pdgfclacz/lacz mice. Masson tri-chrome staining of tumor sections demonstrated a severely reduced
deposition of intratumoral collagen in the matrix of Pdgfc-deficient tumors, consistent
with the notion that PDGF-CC acts to recruit and/or activate stromal fibroblasts in
the breast tumor microenvironment (Fig. 3a). In addition, MMTV-PyMT;
Pdgfclacz/lacz mice were severely hemorrhagic (Fig. 3b) and exhibited significantly more hypoxia,
as evidenced by immunostaining for HIF-1α (Fig. 3c). Accordingly, quantitative PCR
analysis revealed a 65% lower expression of VEGF-A in the absence of PDGF-CC (Fig.
3d). In order to investigate whether pharmacological targeting of PDGF-CC as a mono-therapy
impacted on breast tumor growth or angiogenesis, we treated SCID mice bearing orthotopically
implanted MDA-MB-231 tumors (basal-like subtype) twice-weekly with the PDGF-CC antibody,
A3B6 or with control antibody. Pharmacological blockade of PDGF-CC signaling marginally,
albeit statistically significantly, impaired tumor growth and angiogenesis following
4 weeks of treatment (Fig. 3e-f). Taken together, we have demonstrated that deficiency
for
Pdgfc results in a blunted fibrotic and angiogenic response in the tumor microenvironment.
Expression of PDGF-CC in breast tumors is associated with the basal-like molecular
subtype.
[0226] In order to elucidate the molecular significance of Pdgfc-deficiency, we performed
transcriptional analysis on tumors derived from MMTV-PyMT;
Pdgfc+/+ and MMTV-PyMT;
Pdgfclacz/lacz mice using a quantitative PCR array designed to analyze the expression of genes of
importance for breast tumor development and progression. The analysis revealed that
the most differentially regulated gene was
Foxa1, which was found to be expressed on average 8.9-fold higher in whole tumor lysates
from Pdgfc-deficient mice compared to wt mice (Fig. 4a). The expression of
Foxa1 was also found to be dramatically elevated in tumor cell lines isolated from MMTV-PyMT;
Pdgfclacz/lacz mice (Fig. 4b). Human breast cancers may be classified into different molecular subtypes,
including ER-positive breast cancers, such as normal-like, luminal A, luminal B, HER2
+ and ER-negative breast cancers, for example basal-like tumors. Analysis of transcriptional
profiles of breast tumors collected within The Cancer Genome Atlas project revealed
that expression of
Foxa1 is highly correlated with a non-basal-like molecular subtype (Fig. 4c), confirming
previous studies (ref). Indeed, mining of transcriptional data from a panel of 50
breast tumor cell lines revealed expression of
Foxa1 as a specific feature of tumors of the luminal subtype (Fig. 4d). Immunostaining
of a cohort of human breast tumor specimens confirmed the association between Foxa1
and the luminal subtype, as identified using hormone receptor (estrogen receptor-α
(ER) and progesterone receptor (PR)) expression as a proxy (Fig. 4e). Given the fact
that Foxa1 was found to be upregulated in tumor lysates in the absence of PDGF-CC,
we investigated the correlation between Foxa1 and PDGF-CC in breast cancer. Firstly,
expression of PDGF-CC was exclusively observed in breast tumor cell lines of basal-like
subtype, but not in cells of luminal subtype origin (Fig. 4f). Secondly, in the panel
of 50 breast tumor cell lines, Foxa1 and PDGF-CC expression were found to be inversely
correlated (Fig. 4g). Thirdly, the association of PDGF-CC expression with the basal-like
subtype of breast cancer was further established by analysis of expression of basal-like
markers (cytokeratin 5/6) in a cohort of 890 human breast tumors by immunostaining.
Strikingly, PDGF-CC was highly significantly associated with cytokeratin 5/6 expression,
whereas low or absent expression of PDGF-CC denoted tumors of the luminal subtype
expressing Foxa1, ER and PR.
A paracrine signaling circuit in stromal fibroblasts established by PDGF-CC determines
molecular subtype of breast tumor cells.
[0227] In accordance with the transcriptional analysis, the luminal subtype markers FoxA1
and ERα protein was found to be more abundant in tumor protein lysates from Pdgfc-deficient
mice (Fig. 5a). In order to elucidate the mechanism whereby paracrine signaling by
epithelium-derived PDGF-CC elicited specification of basal-like features of breast
tumors, we stimulated the immortalized breast cancer-associated fibroblast cell line
CAF2 with PDGF-CC. Following global gene expression analysis, we focused on genes
encoding secreted proteins and validated 3 of these, stanniocalcin (STC)-1, hepatocyte
growth factor (HGF) and insulin growth factor binding protein 3 (IGFBP3), by quantitative
PCR to ensure induction by PDGF-CC (Fig. 5b). Next, we assessed whether stimulation
of primary breast cancer cells isolated from tumors of MMTV-PyMT;
Pdgfclacz/lacz mice with STC-1, HGF and IGFBP3 rescued the basal-like phenotype of tumor cells from
wt MMTV-PyMT mice using expression of the luminal-like subtype markers FoxA1, ERα
and GATA3. Indeed, while each factor alone had varying effect, the concerted action
of STC-1, HGF and IGFBP3 substantially suppressed the luminal-like features of
Pdgfc-deficient mammary carcinoma cells (Fig. 5c-e). Importantly, the altered expression
of ERα held functional significance, as pre-treatment of luminal breast cancer cells
with STC-1, HGF and IGFBP3 reduced their sensitivity to tamoxifen-induced growth arrest
(Fig. 5f). In addition, conditioned medium from stromal fibroblasts could be substituted
for the three paracrine PDGF-CC-induced factors (Fig. 5g). The presence of STC-1,
HGF and IGFBP3 in the tumor stroma of tumors from MMTV-PyMT mice was confirmed by
immunostaining (Fig. 5h).
Genetic or pharmacological targeting of PDGF-CC sensitizes basal-like breast tumors
to hormone therapy.
[0228] The clinically most important distinguishing feature of luminal subtype breast tumors
is the expression of ERα, which confers sensitivity to hormone therapy, such as tamoxifen.
We next set out to investigate whether targeting of PDGF-CC would convey sensitivity
to hormone therapy to previously impervious ER-negative breast tumors of basal-like
subtype. Non-transgenic mice bearing orthopically transplanted tumors from MMTV-PyMT;
Pdgfc+/+ or MMTV-PyMT;
Pdgfclacz/lacz mice were treated daily with tamoxifen starting from x weeks of age. As expected,
the wt tumors of tamoxifen-treated mice continued to grow at a similar rate as tumors
from untreated mice (Fig. 6a). In sharp contrast, and in agreement with them being
ER-positive (Fig. 5a), tumors from
Pdgfc-deficient mice were severely growth-retarded upon treatment with tamoxifen (Fig. 6b).
At the end of the trial, tumors from tamoxifen-treated mice devoid of paracrine PDGF-CC
signaling had a reduced volume, whereas untreated mice presented with tumors that
had grown, evidently revealing functional sensitization of ERα-signaling within breast
tumors by the
Pdgfc-deficient tumor microenvironment. Histologically, tumors from tamoxifen-treated mice
displayed. Finally, to conclusively demonstrate the therapeutic utility of agents
targeting PDGF-CC to sensitize breast tumors of the basal-like subtype to the action
of tamoxifen, we implanted MDA-MB-231 cells orthotopically into SCID mice. Treatment
with tamoxifen together with a control antibody was unable to influence the growth
of fully established MDA-MB-231 tumors (Fig. 6c). Strikingly, combined administration
of tamoxifen and the PDGF-CC antibody A3B6 led to significant growth retardation of
MDA-MB-231 tumors (Fig. 6d). Indeed, the basal-like subtype tumor that originally
did not express meaningful levels of ERα, substantially upregulated expression of
ERα upon treatment with monoclonal anti-PDGF-CC antibody A3B6, corroborating the role
of paracrine signaling by PDGF-CC in establishing the absence of ERα in basal-like
subtype breast tumors (Fig. 6e). Interestingly, the upregulation of ERα expression
in MDA-MB-231 tumors following blockade of signaling by PDGF-CC was not uniform, but
rather occurred in differentiated nests of malignant cells (Fig. 6f).
[0229] Without being bound by theory it is a paracrine signalling network is suggested manifested
in the breast tumor microenvironment, in which epithelium-derived PDGF-CC orchestrates
specification of the basal-like subtype through interactions with cancer-associated
fibroblasts that express STC-1, HGF and IGFBP3 (Fig. 6g). Importantly, blockade of
PDGF-CC, either by genetic or pharmacologic means, effected a sensitization of previously
impervious basal-like subtype breast tumors to the action of hormone therapy by tamoxifen
(Fig. 6g).
Example 2. Anti-PDGF-CC and aromatase inhibitor
[0230] For therapeutic studies, 2 × 106 Human MDA-MB-231 cells were inoculated orthotopically
in the 4th mammary fat pad in SCID mice. Tumor growth was monitored and measured once
a week with a caliper in live sedated animals. Mice had been randomly assigned before
tumor inoculation to receive treatment with anti-PDGF-C (mouse monoclonal antibody
clone A3B6) antibody or IgG2a isotype control antibody (Bio X Cell), which were delivered
via i.p. injection twice a week (300 µg per week) starting from the day of tumor establishment.
For therapeutic trials involving endocrine therapy, when a tumor was palpable (longest
diameter >3 mm), mice were alternately assigned into the treatment groups in which
mice were treated with letrozole (1 mg/dose via oral gavage daily, Sigma), dissolved
in a vehicle of ethanol and corn oil (Sigma) by heating to 55 °C, or with vehicle
alone. All therapeutic administrations were open-label.
[0231] The A3B6 + letrozole group is statistically significantly smaller than all other
groups (p<0.01 vs control, p<0.05 vs A3B6, p<0.001 vs letrozole, Student's unpaired,
2-sided t-test assuming equal variance); no other differences are statistically significant
(Figure 7).
[0232] Conclusion: neutralization of PDGF-CC sensitizes previously impervious basal-like/triple-negative
breast tumors to the action of endocrine therapy in the form of aromatase inhibitors.
Example 3. PDGF-R inhibitor and estrogen antagonist
[0233] For therapeutic studies, 2 × 106 Human MDA-MB-231 cells were inoculated orthotopically
in the 4th mammary fat pad in SCID mice. Tumor growth was monitored and measured once
a week with a caliper in live sedated animals. Mice had been randomly assigned before
tumor inoculation to receive treatment with the PFGF-R inhibitor imatinib or to placebo,
which were delivered via i.p. injection twice a week (300 µg per week) starting from
the day of tumor establishment. For therapeutic trials involving endocrine therapy,
when a tumor was palpable (longest diameter >3 mm), mice were alternately assigned
into the treatment groups in which mice were treated with tamoxifen (1 mg/dose via
oral gavage daily, Sigma), dissolved in a vehicle of ethanol and corn oil (Sigma)
by heating to 55 °C, or with vehicle alone. All therapeutic administrations were open-label.
[0234] The imatinib + tamoxifen group is statistically significantly smaller than all other
groups (p<0.01 vs control, p<0.05 vs A3B6, p<0.01 vs letrozole, Student's unpaired,
2-sided t-test assuming equal variance); no other differences are statistically significant
(Figure 8).
[0235] Conclusion: inhibition of the PDGFR tyrosine kinase sensitizes previously impervious
basal-like/triple-negative breast tumors to the action of endocrine therapy in the
form of tamoxifen.
References
[0236]
Relevance of breast cancer hormone receptors and other factors to the efficacy of
adjuvant tamoxifen: patient-level meta-analysis of randomised trials Early Breast
Cancer Trialists' Collaborative Group (EBCTCG) doi: 10.1016/S0140-6736(11)60993-8
Triple-Negative Breast Cancer
William D. Foulkes, M.B., B.S., Ph.D., lan E. Smith, M.D., and Jorge S. Reis-Filho,
M.D., Ph.D. doil: 10.1056/NEJMra1001389)
Adjuvant treatments for triple-negative breast cancers by Joensuu and Gligorov Lancet 2011; 378:771-84 doi: 10.1093/annonc/mds194
Randomized Phase II Study of the Anti-Epidermal Growth Factor Receptor Monoclonal
Antibody Cetuximab With Cisplatin Versus Cisplatin Alone in Patients With Metastatic
Triple-Negative Breast Cancer José Baselga⇑, Patricia Gómez, Richard Greil, Sofia
Braga, Miguel A. Climent, Andrew M. Wardley, Bella Kaufman, Salomon M. Stemmer, António
Pêgo, Arlene Chan, Jean-Charles Goeminne, Marie-Pascale Graas, M. John Kennedy, Eva
Maria Ciruelos Gil, Andreas Schneeweiss, Angela Zubel, Jutta Groos, Helena Melezínková
and Ahmad Awada doi: 10.1200/JCO.2012.46.2408
Triple-Negative Breast Cancer: An Unmet Medical Need Clifford A. Hudis and Luca Gianni
doi: 10.1634/theoncologist.2011-S1-01
Response to Neoadjuvant Therapy and Long-Term Survival in Patients With Triple-Negative
Breast Cancer Cornelia Liedtke, Chafika Mazouni, Kenneth R. Hess, Fabrice André, Attila
Tordai, Jaime A. Mejia, W. Fraser Symmans, Ana M. Gonzalez-Angulo, Bryan Hennessy,
Marjorie Green, Massimo Cristofanilli, Gabriel N. Hortobagyi and Lajos Pusztai doi:
10.1200/JCO.2007.14.4147
American Society of Clinical Oncology/College of American Pathologists Guideline Recommendation
for Immunohistochemical Testing of Estrogen and Progesterone Receptors in Breast Cancer.
Hammond et al., 2010, Journal of Clinical Oncology, vol. 28, no. 16, p. 2784-3543
Doi: 10.1200/JCO.2009.25.6529
American Society of Clinical Oncology/College of American Pathologists Clinical Practice
Guideline Update. Hammond et al., 2013, Journal of Clinical Oncology, vol. 31 no.
31 3997-4013 doi: 10. 1200/JCO.2013.50.9984.
J Clin Oncol. 2013 Nov 1;31(31):3997-4013. doi: 10.1200/JCO.2013.50.9984. Epub 2013
Oct 7. Recommendations for human epidermal growth factor receptor 2 testing in breast
cancer: American Society of Clinical Oncology/College of American Pathologists clinical
practice guideline update.
Wolff AC, Hammond ME, Hicks DG, Dowsett M, McShane LM, Allison KH, Allred DC, Bartlett
JM, Bilous M, Fitzgibbons P, Hanna W, Jenkins RB, Mangu PB, Paik S, Perez EA, Press
MF, Spears PA, Vance GH, Viale G, Hayes DF; American Society of Clinical Oncology;
College of American Pathologists.