FIELD OF THE INVENTION
[0001] The present invention relates to continuous metal casting installations. In particular,
it concerns a casting nozzle for transferring molten metal from a tundish into a mould,
yielding a flow rate out of the side ports thereof which is more homogeneous both
in time and between side ports than conventional casting nozzles. Bias flows and vertical
fluctuations of the meniscus level in the mould are substantially reduced with a casting
nozzle according to the present invention.
BACKGROUND OF THE INVENTION
[0002] In continuous metal forming processes, metal melt is transferred from one metallurgical
vessel to another, to a mould or to a tundish. For example, as shown in Figures 1
and 2, a ladle (11) is filled with metal melt out of a furnace and transferred to
a tundish (10) through a ladle shroud nozzle (111). The metal melt can then be cast
through a casting nozzle (1N) from the tundish to a mould for forming slabs, billets,
beams, thin slabs. Flow of metal melt out of the tundish is driven by gravity through
the casting nozzle (1N) and the flow rate is controlled by a stopper (7) or a tundish
slide gate. A stopper (7) is a rod movably mounted above and extending coaxially (i.e.,
vertically) to the casting nozzle inlet orifice. The end of the stopper adjacent to
the nozzle inlet orifice is the stopper head and has a geometry matching the geometry
of said inlet orifice such that when the two are in contact with one another, the
nozzle inlet orifice is sealed. The flow rate of molten metal out of the tundish and
into the mould is controlled by continuously moving up and down the stopper such as
to control the space between the stopper head and the nozzle orifice.
[0003] Control of the flow rate Q of the molten metal through the nozzle is very important
because any variation thereof provokes corresponding variations of the level of the
meniscus (200m) of molten metal formed in the mould (100). A stationary meniscus level
must be obtained for the following reasons. A liquid lubricating slag is artificially
produced through the melting of a special powder on the meniscus of the building slab,
which is being distributed along the mould walls as flow proceeds. If the meniscus
level varies excessively, the lubricating slag tends to collect in the most depressed
parts of the wavy meniscus, thus leaving exposed its peaks, with a resulting null
or poor distribution of lubricant, which is detrimental to the wear of the mould and
to the surface of the metal part thus produced. Furthermore, a meniscus level varying
too much also increases the risks of having lubricating slag being entrapped within
the metal part being cast, which is of course detrimental to the quality of the product.
Finally, any variation of the level of the meniscus increases the wear rate of the
refractory outer walls of the nozzle, thus reducing the service time thereof.
[0004] A casting nozzle (1N) generally comprises an elongated body defined by an outer wall
and comprising a bore (1) defined by a bore wall and extending along a longitudinal
axis, X1, from a bore inlet (1u) to a downstream bore end (1d). In order to evenly
fill the mould, casting nozzles generally comprise two opposite side ports (2), each
extending transversally to said longitudinal axis, X1, from an opening at the bore
wall defining a port inlet (2u) adjacent to the downstream bore end (1d), to an opening
at the outer wall defining a port outlet (2d) which fluidly connects the bore with
an outer atmosphere; in use the outer atmosphere is formed by the mould cavity.
[0005] An example of casting nozzle is described in
EP0900609. The described casting nozzle has melt flow guide elements protruding from the wall
region towards the central longitudinal axis of the nozzle. These protruding elements
having a constant height and width are above the outlets.
[0006] Because of complex fluid flow conditions reigning in a casting nozzle, with risks
of instability at the boundary layer adjacent a bore wall, which can least to metal
flow detaching from the bore wall, and risks of formation of dead zones within the
bore where the flow rate is substantially lower than in other parts of the bore, it
is often observed that variations of the flow rate, Q, of molten metal out of the
side ports occur as a function of time and, also, occur between one side port and
the other. Figure 3 compares the flow rate, Q1, out of a first side port (white columns);
with the flow rate, Q2, out of the opposite side port (shaded columns), and also indicates
the relative variation, ΔQ
1-2= |Q1 - Q21| / MIN(Q1, Q2), wherein MIN(Q1, Q2) is the lowest value of Q1 and Q2 for
a given casting nozzle. The casting nozzle labelled PA (first to the left on the abscissa),
is a conventional two side port-casting nozzle, with a cylindrical bore. It can be
seen that Q1 = 318 dm
3 / min is substantially lower (ΔQ
1-2 = 6.2%) than Q2 = 338 dm
3 / min. Such asymmetrical flow pattern between the two opposite side ports is indicative
of problems of flow instability in the nozzle. This can lead to uneven filling of
the mould and to a meniscus of the building slab being lower at one side of the casting
nozzle than at the other side, with risks of lubricant being carried into the solidifying
metal slab. The difference in meniscus flow on each side of the submerged nozzle will
create vortices and waves. As a consequence, temperature distribution will also be
uneven.
[0007] The present invention proposes a solution allowing the stabilization of the molten
metal flow in a casting nozzle bore and, in particular into the side ports. This and
other advantages of the present invention are presented in the next sections.
SUMMARY OF THE INVENTION
[0008] The present invention is defined in the independent claims. Preferred embodiments
are defined in the dependent claims. In particular, the present invention concerns
a casting nozzle comprising an elongated body defined by an outer wall and comprising
a bore defined by a bore wall and extending along a longitudinal axis, X1, from a
bore inlet to a downstream bore end (1d), said bore comprising two opposite side ports,
each extending transversally to said longitudinal axis, X1, from an opening at the
bore wall defining a port inlet adjacent to the downstream bore end, to an opening
at the outer wall defining a port outlet which fluidly connects the bore with an outer
atmosphere The casting nozzle of the present invention may comprise more than two
opposite side ports. For example, it may comprise 4 side ports, opposite two by two.
The casting nozzle of the present invention is characterized in that, upstream from,
and directly above each port inlet, one or two flow deflectors protrude out of the
bore wall and extend from an upstream deflector end remote from the port inlet to
a downstream deflector end close to the port inlet, over a deflector height, Hd, measured
parallel to the longitudinal axis, X1, and wherein an area of a cross-section normal
to the longitudinal axis, X1, of each flow deflector increases continuously over at
least 50% of the deflector height, Hd, in the direction extending from the upstream
deflector end towards the downstream deflector end, wherein the downstream deflector
end is contiguous to the corresponding port inlet.
[0009] In a preferred embodiment, the area of the cross-section normal to the longitudinal
axis, X1, of each flow deflector is and remains triangular or trapezoidal over at
least 50% of the deflector height, Hd. The area of the cross-section normal to the
longitudinal axis, X1, of each deflector preferably increases continuously from the
upstream deflector end over at least 80%, preferably over at least 90%, more preferably
over 100% of the deflector height, Hd.
[0010] In order to optimize the flow deflecting function of the flow deflectors, the downstream
deflector end of each flow deflector is at a distance, h, from the port inlet, wherein
h is measured along the longitudinal axis, X1, and is equal to 0.
[0011] In one embodiment, each flow deflector comprises first and second lateral surfaces,
which are planar and have a triangular or trapezoidal perimeter, and form an angle,
α, with one another comprised between 70 and 160°. In this embodiment each of said
first and second lateral surfaces comprises a free edge remote from the bore wall,
and for any cut along a plane normal to the longitudinal axis, X1, intercepting a
lateral wall of a flow deflector, a straight line originating at the free edge of,
and extending normal to at least one of the first and second lateral surfaces of each
flow deflector preferably intercepts a middle plane, P1, in a section comprised between
the longitudinal axis, X1, and an outer perimeter defined by the outer wall of the
casting nozzle, wherein the middle plane, P1, is defined as a plane comprising the
longitudinal axis, X1, and normal to a line passing by the centroids of the port inlets
of the two opposite side ports.
[0012] In this embodiment, each flow deflector may comprise a central surface which is planar
and has a triangular, rectangular, or trapezoidal perimeter, and which is flanked
on either side by the first and second lateral surfaces, joining them at their respective
free edges. In a cut along a plane, Πn, normal to the planar central surface and parallel
to the longitudinal axis, X1, the planar central surface forms an angle, β, with a
normal projection of the longitudinal axis, X1, on said plane, Πn, wherein β is comprised
between 1 and 15°, preferably between 2 and 8°.
[0013] In an alternative embodiment, the free edges of the first and second lateral surfaces
join to form a rectilinear ridge. In a cut along a plane, Πb, comprising said rectilinear
ridge and bisecting the angle, α, formed by the first and second lateral surfaces
the rectilinear ridge preferably forms an angle, γ, with a normal projection of the
longitudinal axis, X1, on said plane, IIb, wherein γ is comprised between 1 and 15°,
preferably between 2 and 8°.
[0014] In a preferred embodiment, the casting nozzle comprises two flow deflectors upstream
from each port inlet. The two flow deflectors are contiguous to each side port. For
any cut along a plane normal to the longitudinal axis, X1, intercepting the first
and second lateral walls of a flow deflector,
- a first straight line originating at the free edge of, and extending normal to the
first lateral surface of each flow deflector preferably intercepts the middle plane,
P1, in a section comprised between the longitudinal axis, X1, and the outer perimeter,
wherein P1 is as defined supra, and
- a second straight line originating at the free edge of, and extending normal to the
second lateral surface of each flow deflector preferably intercepts a central plane,
P2, in a section comprised between the longitudinal axis, X1, and the outer perimeter,
wherein the central plane, P2, includes the longitudinal axis, X1, and is normal to
P1
[0015] In an alternative embodiment, the casting nozzle comprises a single flow deflector
upstream from each port inlet. Said single flow deflector is contiguous to the corresponding
flow port. For any cut along a plane normal to the longitudinal axis, X1, intercepting
the first and second lateral walls of a flow deflector, straight lines originating
at the free edges of, and extending normal to the first and second lateral surfaces
of each deflector preferably intercept the middle plane, P1, in a first and second
sections located on either sides of the longitudinal axis, X1, and comprised between
the longitudinal axis, X1, and the outer perimeter
[0016] A casting nozzle according to the present invention may also comprise two edge ports
protruding out of the bore wall and extending upstream from the downstream bore end
(2d) to above the level of the port inlet, the two edge ports facing each other and
being located between the port inlets of the two side ports.
BRIEF DESCRIPTION OF THE FIGURES
[0017] Various embodiments of the present invention are illustrated in the attached Figures:
Figure 1: schematically illustrates a continuous metal casting installation;
Figure 2: shows (a) a detail of Figure 1, illustrating a casting nozzle coupled to
a tundish and partially engaged in a mould, and (b) a perspective view of a casting
nozzle;
Figure 3: graphically compares the flow rates, Q1 and Q2, between a first side port
and the other for a conventional casting nozzle of the prior art (PA) and two embodiments
of the present invention (INV1, INV2);
Figure 4: shows a first embodiment of a nozzle according to the present invention
comprising two flow deflectors;
Figure 5: shows an alternative embodiment of a nozzle according to the present invention
comprising two flow deflectors and two edge ports;
Figure 6: shows an alternative embodiment of a nozzle according to the present invention
comprising four flow deflectors;
Figure 7: shows an alternative embodiment of a nozzle according to the present invention
comprising four flow deflectors and two edge ports;
Figure 8: shows a perspective cut view of the casting nozzle of Figure 6;
Figure 9: shows different embodiments of flow deflectors according to the present
invention;
Figure 10: shows cut views along a plane normal to X1, of two embodiments, showing
the cross-section of the flow deflectors;
Figure 11: shows a side cut view and three cuts along planes normal to the longitudinal
axis, X1, including the flow deflectors in (a) an embodiment of nozzles according
to the present invention and in (b) a nozzle which is not according to the present
invention.
[0018] The invention is not limited to the embodiments illustrated in the drawings. Accordingly,
should be understood that where features mentioned in the appended claims are followed
by reference signs, such signs are included solely for the purpose of enhancing the
intelligibility of the claims and are in no way limiting the scope of the claims.
DETAILED DESCRIPTION OF THE INVENTION
[0019] The present invention concerns casting nozzles (1N) used, as can be seen in Figures
1 and 2, for transferring molten metal (200) from a tundish (10) into a mould (100).
The casting nozzles of the present invention yield a more stable and homogeneous flow
of molten metal into a mould, with a vertical level of the meniscus (200m) formed
in the mould at the top of the molten metal which remains stable during the casting
operation.
[0020] A nozzle according to the present invention is of the type comprising an elongated
body defined by an outer wall and comprising a bore (1) defined by a bore wall and
extending along a longitudinal axis, X1, from a bore inlet (1u) to a downstream bore
end (1d). The bore comprises two opposite side ports (2), each extending transversally
to said longitudinal axis, X1, from an opening at the bore wall defining a port inlet
(2u) adjacent to the downstream bore end (1d), to an opening at the outer wall defining
a port outlet (2d) which fluidly connects the bore with an outer atmosphere. The outer
atmosphere defines any atmosphere surrounding the outer wall of the casting nozzle
at the level of the port outlets. In use during a casting operation, the outer atmosphere
is formed by molten metal filling the casting mould up to above the level of the side
ports (see Figure 2(a)). A casting nozzle according to the present invention may comprise
more than two opposite side ports. For example, it may comprise four side ports opposite
two by two.
[0021] The gist of the present invention consists of providing upstream from, and directly
above each port inlet (2u), one or two flow deflectors (3), which protrude out of
the bore wall and extend from an upstream deflector end remote from the port inlet
to a downstream deflector end close to the port inlet, over a deflector height, Hd,
measured parallel to the longitudinal axis, X1. The expression "
directly above" means herein that there is no protrusion or recess between the downstream deflector
end of a flow deflector and the corresponding port inlet. The downstream deflector
end is contiguous to the corresponding port inlet
[0022] The area of a cross-section normal to the longitudinal axis, X1, of each flow deflector
increases continuously over at least 50% of the deflector height, Hd, in the direction
extending from the upstream deflector end towards the downstream deflector end. Preferably
it increases continuously over at least 80%, more preferably over at least 90% of
Hd. Most preferably it increases continuously over 100% of the deflector height, Hd,
as illustrated in Figure 9(a) to (c). In Figure 9(a)&(b), the cross-sectional area
increases linearly over the whole height, Hd, of the flow deflector, whilst in Figure
9(c), the cross-sectional area increases continuously, but not linearly. Figure 9(c)
illustrates an embodiment wherein at one point located at a distance greater than
50% of Hd from the upstream deflector end, the cross-section decreases until the downstream
deflector end. Whenever used, the terms "upstream" and "downstream" are defined with
respect to a flow from the bore inlet (1u) towards the port outlets (2d).
[0023] The cross-section of a flow deflector along a plane normal to the longitudinal axis
is preferably and preferably remains triangular or trapezoidal over at least 50%,
preferably over at least 80%, more preferably at least over 90% of the deflector height,
Hd. In a preferred embodiment, said cross-section is and remains triangular or trapezoidal
over the whole height (= 100%), Hd, of the flow deflector, as illustrated in Figures
4 to 9 and 11. Flow deflectors as illustrated in Figure 9 have a nose-like geometry,
with a first and second non-parallel lateral surfaces (3R, 3L) joining either to one
another to form a ridge as illustrated in Figure 9(b)&(c), or at two opposite sides
of a central surface (3C) forming an edge, as shown in Figure 9(a). The central surface
(3C) can be planar as depicted in Figure 9(a), or can be curved as shown in Figure
9(c).
[0024] The downstream deflector end of a flow deflector must be located directly above (or
upstream from) the corresponding port inlet. The downstream deflector end is contiguous
to said port inlet, forming a lip of the port inlet, as shown, e.g., in Figures 4
to 8.
[0025] As Illustrated in Figures 8 and 10, a middle plane, P1, can be defined as a plane
comprising the longitudinal axis, X1, and normal to a line passing by the centroids
of the port inlets of the two opposite side ports (2). A central plane, P2, can be
defined as a plane including the longitudinal axis, X1, and the centroids of each
of the port inlets, P1, is therefore normal to P2 and intercept at the longitudinal
axis, X1.
[0026] As mentioned supra, the flow deflectors have a nose like geometry with first and
second lateral surfaces (3L, 3R). In a preferred embodiment, said first and second
lateral surfaces are substantially planar, forming a triangular or a quadrilateral
perimeter with at least two opposite non-parallel edges, preferably a trapezoidal
perimeter. The first and second lateral surfaces converge towards one another from
the bore wall, forming an angle, α, with one another comprised between 70 and 160°
(cf. Figure 9).
[0027] Each of said first and second lateral planar surfaces comprises a free edge remote
from the bore wall. The two lateral surfaces may meet at their respective free edges
to form a ridge (3RL) which, as illustrated in Figure 9(b), can be rectilinear or,
at least, can comprise a rectilinear section as shown in Figure 9(c). Such flow deflector
has a triangular cross-section normal to X1 and is referred to as "
triangular flow deflector" in reference with the cross-section thereof. Alternatively, the lateral surfaces
can be separated by a central surface (3C) which can be planar (cf. Figure 9(a)) or
can comprise a planar portion (cf. Figure 9(c)), and has a triangular, rectangular,
or trapezoidal perimeter. The central surface is flanked on either side by the first
and second lateral surfaces (3R, 3L), joining them at their respective free edges,
as shown in Figure 9(a)&(c). Such flow deflector has a trapezoidal cross-section normal
to X1 and is referred to as "
trapezoidal flow deflector" in reference with the cross-section thereof. If the central surface is curved as
depicted in Figure 9(c), the cross-section normal to X1 can be referred to as "
quasi-trapezoidal", and such flow deflector can be referred to as "
quasi-trapezoidal flow deflector".
[0028] As shown in Figure 9(b)&(c), the rectilinear ridge or a rectilinear ridge section
of a triangular flow deflector is not parallel to the bore wall and forms a slope
defined by an angle, γ, comprised between 1 and 15°, preferably between 2 and 8°,
wherein β is measured between said rectilinear ridge and a normal projection of the
longitudinal axis, X1, on a plane, IIb, including said rectilinear ridge (section)
and bisecting the angle, α, formed by the first and second lateral surfaces (3R, 3L).
The angle γ defines the slope of a nose like triangular flow deflector.
[0029] Similarly and as shown in Figure 9(a), the slope of the planar central surface (3C)
or planar central surface portion of a trapezoidal flow deflector is not parallel
to the bore wall and forms a slope defined by an angle, β, comprised between 1 and
15°, preferably between 2 and 8°, wherein β is measured between said planar central
surface (portion) and a normal projection of the longitudinal axis, X1, on a plane,
Πn, normal to the planar central surface (3C) and parallel to the longitudinal axis,
X1. The angle β defines the slope of a nose like trapezoidal flow deflector.
[0030] As shown in Figure 10, it is preferred that for any cut along a plane normal to the
longitudinal axis, X1, intercepting a lateral wall of a flow deflector, a straight
line originating at the free edge of, and extending normal to at least one of the
first and second lateral surfaces of each flow deflector intercepts the middle plane,
P1, in a section comprised between the longitudinal axis, X1, and an outer perimeter
defined by the outer wall of the casting nozzle.
[0031] In a preferred embodiment, the casting nozzle comprises a single flow deflector (4)
upstream from and contiguous to each port inlet (2u), as illustrated in Figures 4,
5, 10(a), and 11(a). In this embodiment illustrated in Figure 10(a), the straight
lines originating at the free edge of, and extending normal to the first and second
lateral surfaces of each flow deflector intercept the middle plane, P1, in a first
and second sections located on either sides of the longitudinal axis, X1, and comprised
between the longitudinal axis, X1, and the outer perimeter.
[0032] With this configuration, the flow is deflected towards the bore wall, pushed along
the walls of the side ports, thus preventing the formation of secondary flows. In
particular, the flow deflected towards the side wall of the port is split evenly between
the two side ports (2), thus removing any bias flow behaviour inside the bore.
[0033] In an alternative embodiment, the casting nozzle comprises two flow deflectors (4)
upstream from each port inlet (2u) and contiguous thereto, as illustrated in Figures
6 to 8, 10(b), and 11(b). In this embodiment illustrated in Figure 10(b),
- a first straight line originating at the free edge of, and extending normal to the
first lateral surface of each flow deflector intercepts the middle plane, P1, in a
section comprised between the longitudinal axis, X1, and the outer perimeter, and
- a second straight line originating at the free edge of, and extending normal to the
second lateral surface of each flow deflector intercepts the central plane, P2, in
a section comprised between the longitudinal axis, X1, and the outer perimeter.
[0034] Like in the embodiment comprising a single flow deflector above each side port discussed
supra, the flow deflected towards the bore wall by the first lateral surface prevents
the formation of bias flow. Bias flow formation is also reduced by centering the flow
towards the central plane, P2, by means of the second lateral surface. Bias flow formation
is a problem commonly encountered when using large nozzle bores even in presence of
an edge port. The flow deflected towards the central plane, P2, by the second lateral
surface also yields a better jet stability, with reduced vertical fluctuations of
the side port exiting jets. The deflection of the flow towards the central plane,
P2, also guides the gas bubbles to be entrained by the side port exiting jets.
[0035] The enhancement of the flow control out of the side ports by the flow deflectors
(3) is demonstrated in Figure 3, plotting the flow rates, Q1 (white columns) and Q2
(shaded columns), out of a first side port and a second side port, respectively, measured
on three different casting nozzles each having a bore with a circular cross section:
(a) a casting nozzle according to the prior art, devoid of any flow deflector, (b)
a casting nozzle according to the present invention (INV1) comprising a single flow
deflector above each side port, and (c) a casting nozzle according to the present
invention (INV2) comprising two flow deflector above each side port. The relative
flow difference, ΔQ
1-2 = |Q1 - Q2| / MIN(Q1, Q2), between the first and second flow ports is also plotted
(black circles) for each nozzle. It can be seen that the flow rate difference, ΔQ
1-2, between the first and second flow ports of a prior art casting nozzle (a) reaches
6.2%, with a flow rate, Q2, out of the second side port which is 20 dm
3 / min higher than the flow rate, Q1, out of the first side port. Such asymmetry in
the flow behaviour out of a casting nozzle into a mould can be a source of inhomogeneity
in the final slab thus formed.
[0036] By contrast, the presence of one or two deflectors (b, c) above each side port reduces
the difference between Q1 and Q2 to practically zero, yielding a symmetrical flow
out of the casting nozzle into a mould. As discussed above, vertical flow fluctuations
are substantially reduced by deflecting part of the flow towards the central lane,
P2, which is shown by the lower standard deviation measured on casting nozzles comprising
two flow deflectors above each side port.
[0037] In order to promote the flow deflection, it is preferred that the upstream deflector
end (3u) of the flow deflectors have a non-zero cross-sectional area normal to the
longitudinal axis, X1. Referring to Figure 9, though the upstream deflector end (3u)
could be formed at the summit, S, forming a zero cross-sectional area normal to X1,
it is preferred that the upstream deflector end forms downstream from said summit,
S, a surface against which the incoming metal flow impacts. The upstream deflector
end (3u) can form a surface normal to X1 as illustrated in Figure 9(a), but it can
also form a slope descending downstream from the bore wall to the central edge (3C)
or ridge (3RL) of the flow deflector, as shown in Figure 9(c). A cross-sectional area
normal to X1 of the upstream deflector end preferably protrudes out of the bore wall
by a distance of 1 to 10 mm, preferably of 2 to 6 mm, more preferably of 4 ± 1 mm,
measured normal to the bore wall. Such dimensions are several times larger than the
boundary layers forming at the bore wall. Figure 11 shows in the cut A-A examples
of upstream deflector ends (3u) having a non-zero cross-sectional area.
[0038] In a preferred embodiment, a casting nozzle further comprises two edge ports (5)
protruding out of the bore wall and extending upstream from the downstream bore end
(2d) to above the level of the port inlet (2u), the two edge ports facing each other
and being located between the port inlets (2u) of the two side ports. It is preferred
that the edge ports (5) be symmetrical with respect to the middle plane, P1, as illustrated
in Figures 5 and 7. Edge ports are traditionally used for stabilizing the flow out
of a casting nozzle. Edge ports alone, however, cannot reduce substantially bias flow
formation, in particular for casting nozzles having a large size bore. They also have
a nose-like geometry with two lateral edge surfaces forming an angle comprised between
70 and 160°. The lateral edges may meet to form a ridge, or they can be separated
by a planar central plane of triangular, rectangular or trapezoidal geometry. Edge
ports preferably extend from the bore end (1u) (i.e., the bottom floor of the bore)
up along the longitudinal axis, X1, above the level of the bore inlets.
[0039] The effect of edge ports (5) is enhanced by the presence of flow deflectors (3) as
nonlinear flow paths are formed as the metal melt bounces successively against a lateral
surface of a flow deflector and on a lateral edge surface of an edge port, before
exiting through a side port. This increases the local pressure in the liquid melt,
thus further reducing turbulence and bias flows exiting the ports.
[0040] The bore end (1d) or bore floor can be substantially planar and normal to the longitudinal
axis, as shown in Figures 4, 5, and 11(a). It is preferably flush and continuous with
a bottom floor of the side ports (2). In an alternative embodiment, the bore end (1d)
comprises two bore end portions meeting at an apex forming a ridge comprised within
the middle plane, P1, and sloping downwards towards the side ports, as illustrated
in Figures 6, 7. Again the bottom floors of the side ports are preferably flush and
continuous (parallel to) with the bore end portions to ensure a smooth and "quasi-laminar"
flow out of the side ports.
[0041] A casting nozzle according to the present invention is advantageous over prior art
casting nozzles in that the flow out of the first and second side ports is balanced,
with an equal flow rate, Q1, Q2, out of the first and second side ports, and fluctuates
substantially less in time, yielding beams having a greater homogeneity and reproductibility.
| Ref |
Description |
| 1 |
Bore |
| 1d |
bore end |
| 1N |
casting nozzle |
| 1u |
bore inlet |
| 2 |
side port |
| 2d |
side port outlet |
| 2u |
side port inlet |
| 3 |
flow deflector |
| 3C |
central surface of a flow deflector |
| 3d |
downstream end surface of a flow deflector |
| 3L |
second lateral surface of a flow deflector |
| 3R |
first lateral surface of a flow deflector |
| 3RL |
ridge formed bv joining first and second surfaces |
| 3u |
upstream end surface of a flow deflector |
| 5 |
edge port |
| 7 |
Stopper |
| 10 |
Tundish |
| 11 |
Ladle |
| 100 |
Mould |
| 111 |
ladle shroud nozzle |
| 200 |
molten metal |
| 200m |
metal meniscus |
| Hd |
Height of flow deflector measured parallel to X1 |
| X1 |
Longitudinal axis |
| P1 |
Middle plane including X1 and normal to P2 |
| P2 |
Central plane including X1 and centroids of port inlets (2u) |
| Πb |
plane bisecting the angle, a, formed by planar first and second surfaces |
| Πn |
plane normal to a planar central surface |
| α |
angle formed by planar first and second surfaces |
| β |
angle formed by projections of central surface and X1 onto plane Πn |
| γ |
angle formed by ridge and projection of X1 onto plane Πb |
1. Casting nozzle comprising an elongated body defined by an outer wall and comprising
a bore (1) defined by a bore wall and extending along a longitudinal axis, X1, from
a bore inlet (1u) to a downstream bore end (1d), said bore comprising two opposite
side ports (2), each extending transversally to said longitudinal axis, X1, from an
opening at the bore wall defining a port inlet (2u) adjacent to the downstream bore
end (1d), to an opening at the outer wall defining a port outlet (2d) which fluidly
connects the bore with an outer atmosphere,
Characterized in that, upstream from, and directly above each port inlet (2u), one or two flow deflectors
(3) protrude out of the bore wall and extend from an upstream deflector end remote
from the port inlet to a downstream deflector end close to the port inlet, over a
deflector height, Hd, measured parallel to the longitudinal axis, X1, and wherein
an area of a cross-section normal to the longitudinal axis, X1, of each flow deflector
increases continuously over at least 50% of the deflector height, Hd, in the direction
extending from the upstream deflector end towards the downstream deflector end, wherein
the downstream deflector end is contiguous to the corresponding port inlet.
2. Casting nozzle according to claim 1, wherein the area of the cross-section normal
to the longitudinal axis, X1, of each flow deflector is and remains triangular or
trapezoidal over at least 50% of the deflector height, Hd.
3. Casting nozzle according to claim 1 or 2, wherein the area of the cross-section normal
to the longitudinal axis, X1, of each deflector increases continuously from the upstream
deflector end over at least 80%, preferably over at least 90%, more preferably over
100% of the deflector height, Hd, and wherein said area preferably is and remains
triangular or trapezoidal over at least 80%, preferably at least over 90%, more preferably
over 100% of the deflector height, Hd.
4. Casting nozzle according to any one of the preceding claims, wherein the downstream
deflector end of each flow deflector is at a distance, h, from the port inlet, wherein
h is measured along the longitudinal axis, X1, and is comprised between 0 and H, preferably
between 0 and H / 2, wherein H is the maximum height of the corresponding port inlet
measured along the bore wall parallel to the longitudinal axis, X1.
5. Casting nozzle according to any one of the preceding claims, wherein each flow deflector
(3) comprises first and second lateral surfaces (3R, 3L) which are planar and have
a triangular or trapezoidal perimeter, and form an angle, α , with one another comprised
between 70 and 160°.
6. Casting nozzle according to claim 5, wherein:
• a middle plane, P1, is defined as a plane comprising the longitudinal axis, X1,
and normal to a line passing by the centroids of the port inlets of the two opposite
side ports (2),
• each of said first and second lateral surfaces comprises a free edge remote from
the bore wall, and
• for any cut along a plane normal to the longitudinal axis, X1, intercepting a lateral
wall of a flow deflector, a straight line originating at the free edge of, and extending
normal to at least one of the first and second lateral surfaces of each flow deflector
intercepts the middle plane, P1, in a section comprised between the longitudinal axis,
X1, and an outer perimeter defined by the outer wall of the casting nozzle.
7. Casting nozzle according to claim 5 or 6, wherein each flow deflector (3) comprises
a central surface (3C) which is planar and has a triangular, rectangular, or trapezoidal
perimeter, and which is flanked on either side by the first and second lateral surfaces
(3R, 3L), joining them at their respective free edges.
8. Casting nozzle according to claim 7, wherein in a cut along a plane, Πn, normal to
the planar central surface (3C) and parallel to the longitudinal axis, X1, the planar
central surface (3C) forms an angle, β, with a normal projection of the longitudinal
axis, X1, on said plane, Πn, wherein β is comprised between 1 and 15°, preferably
between 2 and 8°.
9. Casting nozzle according to claim 5 or 6, wherein the free edges of the first and
second lateral surfaces (3R, 3L) join to form a rectilinear ridge.
10. Casting nozzle according to claim 9, wherein in a cut along a plane, Πb, comprising
said rectilinear ridge and bisecting the angle, α, formed by the first and second
lateral surfaces (3R, 3L) the rectilinear ridge forms an angle, γ , with a normal
projection of the longitudinal axis, X1, on said plane, Πb, wherein γ is comprised
between 1 and 15°, preferably between 2 and 8°.
11. Casting nozzle according to any one of claims 1 to 10, comprising two flow deflectors
(4) upstream from each port inlet (2u).
12. Casting nozzle according to claims 6 and 11, wherein for any cut along a plane normal
to the longitudinal axis, X1, intercepting the first and second lateral walls of a
flow deflector,
• a first straight line originating at the free edge of, and extending normal to the
first lateral surface of each flow deflector intercepts the middle plane, P1, in a
section comprised between the longitudinal axis, X1, and the outer perimeter, and
• a second straight line originating at the free edge of, and extending normal to
the second lateral surface of each flow deflector intercepts a central plane, P2,
in a section comprised between the longitudinal axis, X1, and the outer perimeter,
wherein the central plane, P2, includes the longitudinal axis, X1, and is normal to
P1.
13. Casting nozzle according to any one of claims 1 to 10, comprising a single flow deflector
(4) upstream from each port inlet (2u).
14. Casting nozzle according to claims 6 and 13, wherein for any cut along a plane normal
to the longitudinal axis, X1, intercepting the first and second lateral walls of a
flow deflector, straight lines originating at the free edges of, and extending normal
to the first and second lateral surfaces of each deflector intercept the middle plane,
P1, in a first and second sections located on either sides of the longitudinal axis,
X1, and comprised between the longitudinal axis, X1, and the outer perimeter.
15. Casting nozzle according to any one of the preceding claims, further comprising two
edge ports (5) protruding out of the bore wall and extending upstream from the downstream
bore end (2d) to above the level of the port inlet (2u), the two edge ports facing
each other and being located between the port inlets (2u) of the two side ports.
1. Gießdüse, die einen länglichen Körper umfasst, der von einer Außenwand gebildet wird
und eine Bohrung (1) umfasst, die von einer Bohrungswand gebildet wird und entlang
einer Längsachse X1 von einem Bohrungs-Einlass (1u) zu einem stromabwärts liegenden
Bohrungs-Ende (1d) verläuft, wobei die Bohrung zwei einander gegenüberliegende Seitenkanäle
(2) umfasst, von denen sich jeder quer zur Längsachse X1 von einer Öffnung in der
Bohrungswand, die neben dem stromabwärts liegenden Bohrungs-Ende (1d) einen Kanal-Einlass
(2u) bildet, zu einer Öffnung in der Außenwand erstreckt, die einen Kanal-Auslass
(2d) bildet, der die Bohrung fluidmäßig mit der äußeren Atmosphäre verbindet, dadurch gekennzeichnet, dass stromaufwärts vom und direkt oberhalb von jedem Kanal-Einlass (2u) ein oder zwei
Fluss-Deflektoren (3) aus der Bohrungswand hervorragen und sich von einem stromaufwärts
liegenden Deflektor-Ende, das vom Kanal-Einlass entfernt liegt, zu einem stromabwärts
liegenden Deflektor-Ende, das in der Nähe des Kanal-Einlasses liegt, über eine Deflektor-Höhe
Hd erstrecken, die parallel zur Längsachse X1 gemessen wird, und wobei eine Querschnittsfläche
senkrecht zur Längsachse X1 eines jeden Fluss-Deflektors über zumindest 50% der Deflektor-Höhe
Hd in jener Richtung kontinuierlich größer wird, die vom stromaufwärts liegenden Deflektor-Ende
zum stromabwärts liegenden Deflektor-Ende verläuft, wobei das stromabwärts liegenden
Deflektor-Ende an den entsprechenden Kanal-Einlass angrenzt.
2. Gießdüse gemäß Anspruch 1, wobei die Querschnittsfläche senkrecht zur Längsachse X1
eines jeden Fluss-Deflektors über zumindest 50% der Deflektor-Höhe Hd dreieckig oder
trapezförmig ist und bleibt.
3. Gießdüse gemäß Anspruch 1 oder 2, wobei die Querschnittsfläche senkrecht zur Längsachse
X1 eines jeden Deflektors von stromaufwärts liegenden Deflektor-Ende über zumindest
80%, bevorzugt über zumindest 90% und mehr bevorzugt über 100% der Deflektor-Höhe
Hd kontinuierlich größer wird, und wobei diese Fläche vorzugsweise über zumindest
80%, bevorzugt über zumindest 90% und mehr bevorzugt über 100% der Deflektor-Höhe
Hd dreieckig oder trapezförmig ist und bleibt.
4. Gießdüse gemäß irgendeinem der bisherigen Ansprüche, wobei das stromabwärts liegende
Deflektor-Ende eines jeden Fluss-Deflektors in einem Abstand h vom Kanal-Einlass liegt,
wobei h entlang der Längsachse X1 gemessen wird, und zwischen 0 und H und bevorzugt
zwischen 0 und H/2 umfasst, wobei H die maximale Höhe des entsprechenden Kanal-Einlasses
ist, die entlang der Bohrungswand parallel zur Längsachse X1 gemessen wird.
5. Gießdüse gemäß irgendeinem der bisherigen Ansprüche, wobei jeder Fluss-Deflektor (3)
eine erste und eine zweite Seitenfläche (3R, 3L) umfasst, die eben sind und einen
dreieckigen oder trapezförmigen Umriss besitzen, wobei sie miteinander einen Winkel
α einschließen, der zwischen 70 und 160° umfasst.
6. Gießdüse gemäß Anspruch 5, wobei
• eine Mittelebene P1 als eine Ebene festgelegt ist, die die Längsachse X1 umfasst
und senkrecht auf eine Linie steht, die durch die Schwerpunkte der Kanal-Einlässe
der beiden auf einander gegenüberliegenden Seiten angeordneten Seitenkanäle (2) verläuft,
• sowohl die erste als auch die zweite Seitenfläche eine freie Kante umfasst, die
von der Bohrungswand entfernt liegt, und
• in irgendeinem Schnitt entlang einer Ebene, die senkrecht auf die Längsachse X1
steht und eine Seitenwand eines Fluss-Deflektors schneidet, eine Gerade, die von der
freien Kante ausgeht und senkrecht auf zumindest eine der Flächen der ersten und zweiten
Seitenfläche eines jeden Fluss-Deflektors verläuft, die Mittelebene P1 in einem Abschnitt
schneidet, der zwischen der Längsachse X1 und einem äußeren Umriss liegt, der von
der Außenwand der Gießdüse gebildet wird.
7. Gießdüse gemäß Anspruch 5 oder 6, wobei jeder Fluss-Deflektor (3) eine Mittelfläche
(3C) umfasst, die eben ist und einen dreieckigen, rechteckigen oder trapezförmigen
Umriss besitzt, wobei sie an beiden Seiten von der ersten und der zweiten Seitenfläche
(3R, 3L) flankiert wird, die an ihren entsprechenden beiden freien Kanten an sie angrenzen.
8. Gießdüse gemäß Anspruch 7, wobei in einem Schnitt entlang einer Ebene Πn, die senkrecht
auf die ebene Mittelfläche (3C) steht und parallel zur Längsachse X1 verläuft, die
ebene Mittelfläche (3C) mit einer Normalprojektion der Längsachse X1 auf diese Ebene
Πn einen Winkel β einschließt, wobei β zwischen 1 und 15° und bevorzugt zwischen 2
und 8° umfasst.
9. Gießdüse gemäß Anspruch 5 oder 6, wobei die freien Kanten der ersten und der zweiten
Seitenfläche (3R, 3L) einen geradlinigen First ausbilden.
10. Gießdüse gemäß Anspruch 9, wobei in einem Schnitt entlang einer Ebene Πb, die den
geradlinigen First umfasst und den Winkel α halbiert, den die erste und die zweite
Seitenfläche (3R, 3L) einschließen, der geradlinige First mit einer Normalprojektion
der Längsachse X1 auf die Ebene Πb einen Winkel γ einschließt, wobei γ zwischen 1
und 15° und bevorzugt zwischen 2 und 8° umfasst.
11. Gießdüse gemäß irgendeinem der Ansprüche 1 bis 10, wobei die Gießdüse zwei Fluss-Deflektoren
(4) umfasst, die stromaufwärts von jedem Kanal-Einlass (2u) liegen.
12. Gießdüse gemäß Anspruch 6 und 11, wobei in irgendeinem Schnitt entlang einer Ebene,
die senkrecht auf die Längsachse X1 steht und sowohl die erste als auch die zweite
Seitenwand eines Fluss-Deflektors schneidet,
• eine erste Gerade, die von der freien Kante ausgeht und senkrecht auf die erste
Seitenfläche eines jeden Fluss-Deflektors steht, die Mittelebene P1 in einem Abschnitt
schneidet, der zwischen der Längsachse X1 und dem äußeren Umriss liegt, und
• eine zweite Gerade, die von der freien Kante ausgeht und senkrecht zur zweiten Seitenfläche
eines jeden Fluss-Deflektors verläuft, eine Mittelebene P2 in einem Abschnitt schneidet,
der zwischen der Längsachse X1 und dem äußeren Umriss liegt, wobei die Mittelebene
P2 die Längsachse X1 enthält und senkrecht auf P1 steht.
13. Gießdüse gemäß irgendeinem der Ansprüche 1 bis 10, wobei die Gießdüse einen einzigen
Fluss-Deflektor (4) umfasst, der stromaufwärts von jedem Kanal-Einlass (2u) liegt.
14. Gießdüse gemäß Anspruch 6 und 13, wobei in irgendeinem Schnitt entlang einer Ebene,
die senkrecht auf die Längsachse X1 steht und sowohl die erste als auch die zweite
Seitenwand eines Fluss-Deflektors schneidet, Geraden, die von den freien Kanten der
ersten und der zweiten Seitenfläche eines jeden Deflektors ausgehen und senkrecht
zu diesen verlaufen, die Mittelebene P1 in einem ersten und einem zweiten Abschnitt
schneiden, die zu beiden Seiten der Längsachse X1 angeordnet sind und zwischen der
Längsachse X1 und dem äußeren Umriss liegen.
15. Gießdüse gemäß irgendeinem der bisherigen Ansprüche, wobei die Gießdüse weiters zwei
Keil-Kanäle (5) umfasst, die aus der Bohrungswand aufragen und stromaufwärts vom stromabwärts
liegenden Bohrungs-Ende (2d) über das Niveau des Kanal-Einlasses (2u) verlaufen, wobei
die Keil-Kanäle einander gegenüberliegen und zwischen den Kanal-Einlässen (2u) der
beiden Seiten-Kanäle angeordnet sind.
1. Busette de coulée comprenant un corps allongé défini par une paroi extérieure et comprenant
un alésage (1) défini par une paroi d'alésage et s'étendant le long d'un axe longitudinal,
X1, depuis une entrée d'alésage (1u) vers une extrémité aval d'alésage (1d), ledit
alésage comprenant deux orifices latéraux opposés (2), chacun s'étendant transversalement
audit axe longitudinal X1, depuis une ouverture à la paroi d'alésage définissant une
entrée d'orifice (2u) adjacente à l'extrémité aval d'alésage (1d), jusqu'à une ouverture
sur la paroi extérieure définissant un orifice de sortie (2d) qui relie de façon fluide
l'alésage avec une atmosphère externe, Caractérisé en ce que, en amont, et directement au-dessus de chaque entrée d'orifice (2u), un ou deux déflecteurs
d'écoulement (3) dépassent de la paroi de l'alésage et s'étendent d'une extrémité
de déflecteur amont éloignée de l'entrée d'orifice à une extrémité de déflecteur aval
proche de l'entrée d'orifice, sur une hauteur de déflecteur, Hd, mesurée parallèlement
à l'axe longitudinal, X1, et dans laquelle une surface d'une section transversale
normale à l'axe longitudinal, X1, de chaque déflecteur de coulée augmente continuellement
sur au moins 50% de la hauteur du déflecteur, Hd, dans la direction allant de l'extrémité
de déflecteur amont vers l'extrémité de déflecteur aval, dans laquelle l'extrémité
du déflecteur aval est contiguë à l'entrée du port correspondant.
2. Busette de coulée selon la revendication 1, dans laquelle la surface de la section
transversale perpendiculaire à l'axe longitudinal, X1, de chaque déflecteur d'écoulement
est et reste triangulaire ou trapézoïdale sur au moins 50% de la hauteur du déflecteur,
Hd.
3. Busette de coulée selon la revendication 1 ou 2, dans laquelle la surface de la section
transversale perpendiculaire à l'axe longitudinal, X1, de chaque déflecteur augmente
continuellement depuis l'extrémité amont du déflecteur au-dessus d'au moins 80 %,
de préférence au-dessus d'au moins 90%, plus préférentiellement au-dessus de 100%
de la hauteur du déflecteur, Hd, et dans laquelle ladite surface est et reste de préférence
triangulaire ou trapézoïdale sur au moins 80 %, de préférence sur au moins 90 %, plus
préférentiellement sur 100 % de la hauteur du déflecteur, Hd.
4. Busette de coulée selon l'une quelconque des revendications précédentes, dans laquelle
l'extrémité de déflecteur aval de chaque déflecteur d'écoulement se trouve à une distance,
h, de l'entrée d'orifice, h étant mesuré le long de l'axe longitudinal X1 et étant
compris entre 0 et H, de préférence entre 0 et H/2, H étant la hauteur maximale de
l'entrée d'orifice correspondante mesurée le long de la paroi de l'alésage parallèlement
à l'axe longitudinal X1.
5. Busette de coulée selon l'une quelconque des revendications précédentes, dans laquelle
chaque déflecteur d'écoulement (3) comprend des première et seconde surfaces latérales
(3R, 3L) qui sont planes et ont un périmètre triangulaire ou trapézoïdal, et forment
entre elles un angle, α, compris entre 70 et 160°.
6. Busette de coulée selon la revendication 5, dans laquelle :
• un plan médian, P1, est défini comme un plan comprenant l'axe longitudinal, X1,
et perpendiculaire à une ligne passant par les centroïdes des entrées des orifices
des deux orifices latéraux opposés (2),
• chacune desdites première et seconde surfaces latérales comprend un bord libre éloigné
de la paroi d'alésage, et
• pour toute coupe le long d'un plan perpendiculaire à l'axe longitudinal, X1, interceptant
une paroi latérale d'un déflecteur d'écoulement, une droite partant du bord libre
de, et s'étendant perpendiculairement à au moins une des première et seconde surfaces
latérales de chaque déflecteur d'écoulement intercepte le plan médian, P1, dans une
section comprise entre l'axe longitudinal, X1, et un périmètre extérieur défini par
la paroi extérieure de la busette de coulée.
7. Busette de coulée selon la revendication 5 ou 6, dans laquelle chaque déflecteur d'écoulement
(3) comprend une surface centrale (3C) qui est plane et qui a un périmètre triangulaire,
rectangulaire ou trapézoïdal, et qui est flanquée de chaque côté par les première
et seconde surfaces latérales (3R, 3L), en les reliant sur leurs bords libres respectifs.
8. Busette de coulée selon la revendication 7, dans laquelle, dans une coupe le long
d'un plan, Πn, perpendiculaire à la surface centrale plane (3C) et parallèle à l'axe
longitudinal X1, la surface centrale plane (3C) forme un angle, β, avec une projection
normale de l'axe longitudinal X1, sur ledit plan, Πn, où β est compris entre 1 et
15°, de préférence entre 2 et 8°.
9. Busette de coulée selon la revendication 5 ou 6, dans laquelle les bords libres des
première et deuxième surfaces latérales (3R, 3L) se rejoignent pour former une arête
rectiligne.
10. Busette de coulée selon la revendication 9, dans laquelle, dans une coupe le long
d'un plan, Πb, comprenant ladite arête rectiligne et coupant l'angle, α, formé par
les première et seconde surfaces latérales (3R, 3L), l'arête rectiligne forme un angle,
γ, avec une projection normale de l'axe longitudinal, X1, sur ledit plan, Πb, dans
lequel γ est compris entre 1 et 15°, de préférence entre 2 et 8°.
11. Busette de coulée selon l'une quelconque des revendications 1 à 10, comprenant deux
déflecteurs d'écoulement (4) en amont de chaque entrée d'orifice (2u).
12. Busette de coulée selon les revendications 6 et 11,
caractérisée en ce que pour une coupe quelconque le long d'un plan perpendiculaire à l'axe longitudinal,
X1, interceptant les première et seconde parois latérales d'un déflecteur d'écoulement,
• une première ligne droite partant du bord libre de, et s'étendant perpendiculairement
à la première surface latérale de chaque déflecteur d'écoulement intercepte le plan
médian, P1, dans une section comprise entre l'axe longitudinal X1 et le périmètre
extérieur, et
• une deuxième ligne droite partant du bord libre de, et s'étendant perpendiculairement
à la deuxième surface latérale de chaque déflecteur d'écoulement intercepte un plan
central, P2, dans une section comprise entre l'axe longitudinal X1 et le périmètre
extérieur, où le plan central P2 comprend l'axe longitudinal X1 et est perpendiculaire
à P1.
13. Busette de coulée selon l'une quelconque des revendications 1 à 10, comprenant un
déflecteur d'écoulement unique (4) en amont de chaque orifice d'entrée (2u).
14. Busette de coulée selon les revendications 6 et 13, dans laquelle, pour toute coupe
le long d'un plan perpendiculaire à l'axe longitudinal, X1, interceptant les première
et seconde parois latérales d'un déflecteur d'écoulement, des lignes droites partant
des bords libres de, et s'étendant perpendiculairement aux première et seconde surfaces
latérales de chaque déflecteur interceptent le plan central P1 dans une première et
seconde sections situées des deux côtés de l'axe longitudinal X1, et comprises entre
l'axe longitudinal X1 et le périmètre externe.
15. Busette de coulée selon l'une quelconque des revendications précédentes, comprenant
en outre deux orifices périphériques (5) dépassant de la paroi d'alésage et s'étendant
en amont de l'extrémité aval de l'alésage (2d) jusqu'au-dessus du niveau de l'entrée
de l'alésage (2u), les deux orifices périphériques se faisant face et étant situés
entre les entrées de l'alésage (2u) des deux orifices latéraux.