(19)
(11) EP 3 374 108 B2

(12) NEW EUROPEAN PATENT SPECIFICATION
After opposition procedure

(45) Date of publication and mentionof the opposition decision:
31.08.2022 Bulletin 2022/35

(45) Mention of the grant of the patent:
08.01.2020 Bulletin 2020/02

(21) Application number: 16797787.5

(22) Date of filing: 08.11.2016
(51) International Patent Classification (IPC): 
B22D 41/50(2006.01)
(52) Cooperative Patent Classification (CPC):
B22D 41/50
(86) International application number:
PCT/EP2016/076917
(87) International publication number:
WO 2017/080972 (18.05.2017 Gazette 2017/20)

(54)

CASTING NOZZLE COMPRISING FLOW DEFLECTORS

GIESSDÜSE MIT FLUSSDEFLEKTOREN

BUSETTE DE COULÉE COMPRENANT DES DÉFLECTEURS D'ÉCOULEMENT


(84) Designated Contracting States:
AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR
Designated Validation States:
MA

(30) Priority: 10.11.2015 EP 15193977

(43) Date of publication of application:
19.09.2018 Bulletin 2018/38

(73) Proprietors:
  • Vesuvius Group S.A
    7011 Ghlin (BE)
    Designated Contracting States:
    SM 
  • Vesuvius USA Corporation
    Champaign, IL 61822 (US)

(72) Inventors:
  • RICHAUD, Johan
    84460 Cheval Blanc (FR)
  • KREIERHOFF, Martin
    46354 Suedlohn (DE)
  • WARMERS, Christian
    46414 Rhede (DE)

(74) Representative: Brohez, Véronique 
Vesuvius Group S.A IPD 17 rue de Douvrain
7011 Ghlin
7011 Ghlin (BE)


(56) References cited: : 
EP-A1- 0 900 609
EP-A1- 2 038 081
US-S- D 605 670
EP-A1- 1 541 258
US-A- 5 657 816
   
  • Seppo Louhenkilpi, 'Continuous Casting of Steer in ?Treatise on process metallurgy. Vol. 3, Industrial processes,' Elsevier (2014), Chap 1.8, p.373-433
  • Pierre H Dauby: Revue de Metallurgy 109. 113-136 (2012)
   


Description

FIELD OF THE INVENTION



[0001] The present invention relates to continuous metal casting installations. In particular, it concerns a casting nozzle for transferring molten metal from a tundish into a mould, yielding a flow rate out of the side ports thereof which is more homogeneous both in time and between side ports than conventional casting nozzles. Bias flows and vertical fluctuations of the meniscus level in the mould are substantially reduced with a casting nozzle according to the present invention.

BACKGROUND OF THE INVENTION



[0002] In continuous metal forming processes, metal melt is transferred from one metallurgical vessel to another, to a mould or to a tundish. For example, as shown in Figures 1 and 2, a ladle (11) is filled with metal melt out of a furnace and transferred to a tundish (10) through a ladle shroud nozzle (111). The metal melt can then be cast through a casting nozzle (1N) from the tundish to a mould for forming slabs, billets, beams, thin slabs. Flow of metal melt out of the tundish is driven by gravity through the casting nozzle (1N) and the flow rate is controlled by a stopper (7) or a tundish slide gate. A stopper (7) is a rod movably mounted above and extending coaxially (i.e., vertically) to the casting nozzle inlet orifice. The end of the stopper adjacent to the nozzle inlet orifice is the stopper head and has a geometry matching the geometry of said inlet orifice such that when the two are in contact with one another, the nozzle inlet orifice is sealed. The flow rate of molten metal out of the tundish and into the mould is controlled by continuously moving up and down the stopper such as to control the space between the stopper head and the nozzle orifice.

[0003] Control of the flow rate Q of the molten metal through the nozzle is very important because any variation thereof provokes corresponding variations of the level of the meniscus (200m) of molten metal formed in the mould (100). A stationary meniscus level must be obtained for the following reasons. A liquid lubricating slag is artificially produced through the melting of a special powder on the meniscus of the building slab, which is being distributed along the mould walls as flow proceeds. If the meniscus level varies excessively, the lubricating slag tends to collect in the most depressed parts of the wavy meniscus, thus leaving exposed its peaks, with a resulting null or poor distribution of lubricant, which is detrimental to the wear of the mould and to the surface of the metal part thus produced. Furthermore, a meniscus level varying too much also increases the risks of having lubricating slag being entrapped within the metal part being cast, which is of course detrimental to the quality of the product. Finally, any variation of the level of the meniscus increases the wear rate of the refractory outer walls of the nozzle, thus reducing the service time thereof.

[0004] A casting nozzle (1N) generally comprises an elongated body defined by an outer wall and comprising a bore (1) defined by a bore wall and extending along a longitudinal axis, X1, from a bore inlet (1u) to a downstream bore end (1d). In order to evenly fill the mould, casting nozzles generally comprise two opposite side ports (2), each extending transversally to said longitudinal axis, X1, from an opening at the bore wall defining a port inlet (2u) adjacent to the downstream bore end (1d), to an opening at the outer wall defining a port outlet (2d) which fluidly connects the bore with an outer atmosphere; in use the outer atmosphere is formed by the mould cavity.

[0005] An example of casting nozzle is described in EP0900609. The described casting nozzle has melt flow guide elements protruding from the wall region towards the central longitudinal axis of the nozzle. These protruding elements having a constant height and width are above the outlets.

[0006] Because of complex fluid flow conditions reigning in a casting nozzle, with risks of instability at the boundary layer adjacent a bore wall, which can least to metal flow detaching from the bore wall, and risks of formation of dead zones within the bore where the flow rate is substantially lower than in other parts of the bore, it is often observed that variations of the flow rate, Q, of molten metal out of the side ports occur as a function of time and, also, occur between one side port and the other. Figure 3 compares the flow rate, Q1, out of a first side port (white columns); with the flow rate, Q2, out of the opposite side port (shaded columns), and also indicates the relative variation, ΔQ1-2= |Q1 - Q21| / MIN(Q1, Q2), wherein MIN(Q1, Q2) is the lowest value of Q1 and Q2 for a given casting nozzle. The casting nozzle labelled PA (first to the left on the abscissa), is a conventional two side port-casting nozzle, with a cylindrical bore. It can be seen that Q1 = 318 dm3 / min is substantially lower (ΔQ1-2 = 6.2%) than Q2 = 338 dm3 / min. Such asymmetrical flow pattern between the two opposite side ports is indicative of problems of flow instability in the nozzle. This can lead to uneven filling of the mould and to a meniscus of the building slab being lower at one side of the casting nozzle than at the other side, with risks of lubricant being carried into the solidifying metal slab. The difference in meniscus flow on each side of the submerged nozzle will create vortices and waves. As a consequence, temperature distribution will also be uneven.

[0007] The present invention proposes a solution allowing the stabilization of the molten metal flow in a casting nozzle bore and, in particular into the side ports. This and other advantages of the present invention are presented in the next sections.

SUMMARY OF THE INVENTION



[0008] The present invention is defined in the independent claims. Preferred embodiments are defined in the dependent claims. In particular, the present invention concerns a casting nozzle comprising an elongated body defined by an outer wall and comprising a bore defined by a bore wall and extending along a longitudinal axis, X1, from a bore inlet to a downstream bore end (1d), said bore comprising two opposite side ports, each extending transversally to said longitudinal axis, X1, from an opening at the bore wall defining a port inlet adjacent to the downstream bore end, to an opening at the outer wall defining a port outlet which fluidly connects the bore with an outer atmosphere The casting nozzle of the present invention may comprise more than two opposite side ports. For example, it may comprise 4 side ports, opposite two by two. The casting nozzle of the present invention is characterized in that, upstream from, and directly above each port inlet, one or two flow deflectors protrude out of the bore wall and extend from an upstream deflector end remote from the port inlet to a downstream deflector end close to the port inlet, over a deflector height, Hd, measured parallel to the longitudinal axis, X1, and wherein an area of a cross-section normal to the longitudinal axis, X1, of each flow deflector increases continuously over at least 50% of the deflector height, Hd, in the direction extending from the upstream deflector end towards the downstream deflector end, wherein the downstream deflector end is contiguous to the corresponding port inlet.

[0009] In a preferred embodiment, the area of the cross-section normal to the longitudinal axis, X1, of each flow deflector is and remains triangular or trapezoidal over at least 50% of the deflector height, Hd. The area of the cross-section normal to the longitudinal axis, X1, of each deflector preferably increases continuously from the upstream deflector end over at least 80%, preferably over at least 90%, more preferably over 100% of the deflector height, Hd.

[0010] In order to optimize the flow deflecting function of the flow deflectors, the downstream deflector end of each flow deflector is at a distance, h, from the port inlet, wherein h is measured along the longitudinal axis, X1, and is equal to 0.

[0011] In one embodiment, each flow deflector comprises first and second lateral surfaces, which are planar and have a triangular or trapezoidal perimeter, and form an angle, α, with one another comprised between 70 and 160°. In this embodiment each of said first and second lateral surfaces comprises a free edge remote from the bore wall, and for any cut along a plane normal to the longitudinal axis, X1, intercepting a lateral wall of a flow deflector, a straight line originating at the free edge of, and extending normal to at least one of the first and second lateral surfaces of each flow deflector preferably intercepts a middle plane, P1, in a section comprised between the longitudinal axis, X1, and an outer perimeter defined by the outer wall of the casting nozzle, wherein the middle plane, P1, is defined as a plane comprising the longitudinal axis, X1, and normal to a line passing by the centroids of the port inlets of the two opposite side ports.

[0012] In this embodiment, each flow deflector may comprise a central surface which is planar and has a triangular, rectangular, or trapezoidal perimeter, and which is flanked on either side by the first and second lateral surfaces, joining them at their respective free edges. In a cut along a plane, Πn, normal to the planar central surface and parallel to the longitudinal axis, X1, the planar central surface forms an angle, β, with a normal projection of the longitudinal axis, X1, on said plane, Πn, wherein β is comprised between 1 and 15°, preferably between 2 and 8°.

[0013] In an alternative embodiment, the free edges of the first and second lateral surfaces join to form a rectilinear ridge. In a cut along a plane, Πb, comprising said rectilinear ridge and bisecting the angle, α, formed by the first and second lateral surfaces the rectilinear ridge preferably forms an angle, γ, with a normal projection of the longitudinal axis, X1, on said plane, IIb, wherein γ is comprised between 1 and 15°, preferably between 2 and 8°.

[0014] In a preferred embodiment, the casting nozzle comprises two flow deflectors upstream from each port inlet. The two flow deflectors are contiguous to each side port. For any cut along a plane normal to the longitudinal axis, X1, intercepting the first and second lateral walls of a flow deflector,
  • a first straight line originating at the free edge of, and extending normal to the first lateral surface of each flow deflector preferably intercepts the middle plane, P1, in a section comprised between the longitudinal axis, X1, and the outer perimeter, wherein P1 is as defined supra, and
  • a second straight line originating at the free edge of, and extending normal to the second lateral surface of each flow deflector preferably intercepts a central plane, P2, in a section comprised between the longitudinal axis, X1, and the outer perimeter, wherein the central plane, P2, includes the longitudinal axis, X1, and is normal to P1


[0015] In an alternative embodiment, the casting nozzle comprises a single flow deflector upstream from each port inlet. Said single flow deflector is contiguous to the corresponding flow port. For any cut along a plane normal to the longitudinal axis, X1, intercepting the first and second lateral walls of a flow deflector, straight lines originating at the free edges of, and extending normal to the first and second lateral surfaces of each deflector preferably intercept the middle plane, P1, in a first and second sections located on either sides of the longitudinal axis, X1, and comprised between the longitudinal axis, X1, and the outer perimeter

[0016] A casting nozzle according to the present invention may also comprise two edge ports protruding out of the bore wall and extending upstream from the downstream bore end (2d) to above the level of the port inlet, the two edge ports facing each other and being located between the port inlets of the two side ports.

BRIEF DESCRIPTION OF THE FIGURES



[0017] Various embodiments of the present invention are illustrated in the attached Figures:

Figure 1: schematically illustrates a continuous metal casting installation;

Figure 2: shows (a) a detail of Figure 1, illustrating a casting nozzle coupled to a tundish and partially engaged in a mould, and (b) a perspective view of a casting nozzle;

Figure 3: graphically compares the flow rates, Q1 and Q2, between a first side port and the other for a conventional casting nozzle of the prior art (PA) and two embodiments of the present invention (INV1, INV2);

Figure 4: shows a first embodiment of a nozzle according to the present invention comprising two flow deflectors;

Figure 5: shows an alternative embodiment of a nozzle according to the present invention comprising two flow deflectors and two edge ports;

Figure 6: shows an alternative embodiment of a nozzle according to the present invention comprising four flow deflectors;

Figure 7: shows an alternative embodiment of a nozzle according to the present invention comprising four flow deflectors and two edge ports;

Figure 8: shows a perspective cut view of the casting nozzle of Figure 6;

Figure 9: shows different embodiments of flow deflectors according to the present invention;

Figure 10: shows cut views along a plane normal to X1, of two embodiments, showing the cross-section of the flow deflectors;

Figure 11: shows a side cut view and three cuts along planes normal to the longitudinal axis, X1, including the flow deflectors in (a) an embodiment of nozzles according to the present invention and in (b) a nozzle which is not according to the present invention.



[0018] The invention is not limited to the embodiments illustrated in the drawings. Accordingly, should be understood that where features mentioned in the appended claims are followed by reference signs, such signs are included solely for the purpose of enhancing the intelligibility of the claims and are in no way limiting the scope of the claims.

DETAILED DESCRIPTION OF THE INVENTION



[0019] The present invention concerns casting nozzles (1N) used, as can be seen in Figures 1 and 2, for transferring molten metal (200) from a tundish (10) into a mould (100). The casting nozzles of the present invention yield a more stable and homogeneous flow of molten metal into a mould, with a vertical level of the meniscus (200m) formed in the mould at the top of the molten metal which remains stable during the casting operation.

[0020] A nozzle according to the present invention is of the type comprising an elongated body defined by an outer wall and comprising a bore (1) defined by a bore wall and extending along a longitudinal axis, X1, from a bore inlet (1u) to a downstream bore end (1d). The bore comprises two opposite side ports (2), each extending transversally to said longitudinal axis, X1, from an opening at the bore wall defining a port inlet (2u) adjacent to the downstream bore end (1d), to an opening at the outer wall defining a port outlet (2d) which fluidly connects the bore with an outer atmosphere. The outer atmosphere defines any atmosphere surrounding the outer wall of the casting nozzle at the level of the port outlets. In use during a casting operation, the outer atmosphere is formed by molten metal filling the casting mould up to above the level of the side ports (see Figure 2(a)). A casting nozzle according to the present invention may comprise more than two opposite side ports. For example, it may comprise four side ports opposite two by two.

[0021] The gist of the present invention consists of providing upstream from, and directly above each port inlet (2u), one or two flow deflectors (3), which protrude out of the bore wall and extend from an upstream deflector end remote from the port inlet to a downstream deflector end close to the port inlet, over a deflector height, Hd, measured parallel to the longitudinal axis, X1. The expression "directly above" means herein that there is no protrusion or recess between the downstream deflector end of a flow deflector and the corresponding port inlet. The downstream deflector end is contiguous to the corresponding port inlet

[0022] The area of a cross-section normal to the longitudinal axis, X1, of each flow deflector increases continuously over at least 50% of the deflector height, Hd, in the direction extending from the upstream deflector end towards the downstream deflector end. Preferably it increases continuously over at least 80%, more preferably over at least 90% of Hd. Most preferably it increases continuously over 100% of the deflector height, Hd, as illustrated in Figure 9(a) to (c). In Figure 9(a)&(b), the cross-sectional area increases linearly over the whole height, Hd, of the flow deflector, whilst in Figure 9(c), the cross-sectional area increases continuously, but not linearly. Figure 9(c) illustrates an embodiment wherein at one point located at a distance greater than 50% of Hd from the upstream deflector end, the cross-section decreases until the downstream deflector end. Whenever used, the terms "upstream" and "downstream" are defined with respect to a flow from the bore inlet (1u) towards the port outlets (2d).

[0023] The cross-section of a flow deflector along a plane normal to the longitudinal axis is preferably and preferably remains triangular or trapezoidal over at least 50%, preferably over at least 80%, more preferably at least over 90% of the deflector height, Hd. In a preferred embodiment, said cross-section is and remains triangular or trapezoidal over the whole height (= 100%), Hd, of the flow deflector, as illustrated in Figures 4 to 9 and 11. Flow deflectors as illustrated in Figure 9 have a nose-like geometry, with a first and second non-parallel lateral surfaces (3R, 3L) joining either to one another to form a ridge as illustrated in Figure 9(b)&(c), or at two opposite sides of a central surface (3C) forming an edge, as shown in Figure 9(a). The central surface (3C) can be planar as depicted in Figure 9(a), or can be curved as shown in Figure 9(c).

[0024] The downstream deflector end of a flow deflector must be located directly above (or upstream from) the corresponding port inlet. The downstream deflector end is contiguous to said port inlet, forming a lip of the port inlet, as shown, e.g., in Figures 4 to 8.

[0025] As Illustrated in Figures 8 and 10, a middle plane, P1, can be defined as a plane comprising the longitudinal axis, X1, and normal to a line passing by the centroids of the port inlets of the two opposite side ports (2). A central plane, P2, can be defined as a plane including the longitudinal axis, X1, and the centroids of each of the port inlets, P1, is therefore normal to P2 and intercept at the longitudinal axis, X1.

[0026] As mentioned supra, the flow deflectors have a nose like geometry with first and second lateral surfaces (3L, 3R). In a preferred embodiment, said first and second lateral surfaces are substantially planar, forming a triangular or a quadrilateral perimeter with at least two opposite non-parallel edges, preferably a trapezoidal perimeter. The first and second lateral surfaces converge towards one another from the bore wall, forming an angle, α, with one another comprised between 70 and 160° (cf. Figure 9).

[0027] Each of said first and second lateral planar surfaces comprises a free edge remote from the bore wall. The two lateral surfaces may meet at their respective free edges to form a ridge (3RL) which, as illustrated in Figure 9(b), can be rectilinear or, at least, can comprise a rectilinear section as shown in Figure 9(c). Such flow deflector has a triangular cross-section normal to X1 and is referred to as "triangular flow deflector" in reference with the cross-section thereof. Alternatively, the lateral surfaces can be separated by a central surface (3C) which can be planar (cf. Figure 9(a)) or can comprise a planar portion (cf. Figure 9(c)), and has a triangular, rectangular, or trapezoidal perimeter. The central surface is flanked on either side by the first and second lateral surfaces (3R, 3L), joining them at their respective free edges, as shown in Figure 9(a)&(c). Such flow deflector has a trapezoidal cross-section normal to X1 and is referred to as "trapezoidal flow deflector" in reference with the cross-section thereof. If the central surface is curved as depicted in Figure 9(c), the cross-section normal to X1 can be referred to as "quasi-trapezoidal", and such flow deflector can be referred to as "quasi-trapezoidal flow deflector".

[0028] As shown in Figure 9(b)&(c), the rectilinear ridge or a rectilinear ridge section of a triangular flow deflector is not parallel to the bore wall and forms a slope defined by an angle, γ, comprised between 1 and 15°, preferably between 2 and 8°, wherein β is measured between said rectilinear ridge and a normal projection of the longitudinal axis, X1, on a plane, IIb, including said rectilinear ridge (section) and bisecting the angle, α, formed by the first and second lateral surfaces (3R, 3L). The angle γ defines the slope of a nose like triangular flow deflector.

[0029] Similarly and as shown in Figure 9(a), the slope of the planar central surface (3C) or planar central surface portion of a trapezoidal flow deflector is not parallel to the bore wall and forms a slope defined by an angle, β, comprised between 1 and 15°, preferably between 2 and 8°, wherein β is measured between said planar central surface (portion) and a normal projection of the longitudinal axis, X1, on a plane, Πn, normal to the planar central surface (3C) and parallel to the longitudinal axis, X1. The angle β defines the slope of a nose like trapezoidal flow deflector.

[0030] As shown in Figure 10, it is preferred that for any cut along a plane normal to the longitudinal axis, X1, intercepting a lateral wall of a flow deflector, a straight line originating at the free edge of, and extending normal to at least one of the first and second lateral surfaces of each flow deflector intercepts the middle plane, P1, in a section comprised between the longitudinal axis, X1, and an outer perimeter defined by the outer wall of the casting nozzle.

[0031] In a preferred embodiment, the casting nozzle comprises a single flow deflector (4) upstream from and contiguous to each port inlet (2u), as illustrated in Figures 4, 5, 10(a), and 11(a). In this embodiment illustrated in Figure 10(a), the straight lines originating at the free edge of, and extending normal to the first and second lateral surfaces of each flow deflector intercept the middle plane, P1, in a first and second sections located on either sides of the longitudinal axis, X1, and comprised between the longitudinal axis, X1, and the outer perimeter.

[0032] With this configuration, the flow is deflected towards the bore wall, pushed along the walls of the side ports, thus preventing the formation of secondary flows. In particular, the flow deflected towards the side wall of the port is split evenly between the two side ports (2), thus removing any bias flow behaviour inside the bore.

[0033] In an alternative embodiment, the casting nozzle comprises two flow deflectors (4) upstream from each port inlet (2u) and contiguous thereto, as illustrated in Figures 6 to 8, 10(b), and 11(b). In this embodiment illustrated in Figure 10(b),
  • a first straight line originating at the free edge of, and extending normal to the first lateral surface of each flow deflector intercepts the middle plane, P1, in a section comprised between the longitudinal axis, X1, and the outer perimeter, and
  • a second straight line originating at the free edge of, and extending normal to the second lateral surface of each flow deflector intercepts the central plane, P2, in a section comprised between the longitudinal axis, X1, and the outer perimeter.


[0034] Like in the embodiment comprising a single flow deflector above each side port discussed supra, the flow deflected towards the bore wall by the first lateral surface prevents the formation of bias flow. Bias flow formation is also reduced by centering the flow towards the central plane, P2, by means of the second lateral surface. Bias flow formation is a problem commonly encountered when using large nozzle bores even in presence of an edge port. The flow deflected towards the central plane, P2, by the second lateral surface also yields a better jet stability, with reduced vertical fluctuations of the side port exiting jets. The deflection of the flow towards the central plane, P2, also guides the gas bubbles to be entrained by the side port exiting jets.

[0035] The enhancement of the flow control out of the side ports by the flow deflectors (3) is demonstrated in Figure 3, plotting the flow rates, Q1 (white columns) and Q2 (shaded columns), out of a first side port and a second side port, respectively, measured on three different casting nozzles each having a bore with a circular cross section: (a) a casting nozzle according to the prior art, devoid of any flow deflector, (b) a casting nozzle according to the present invention (INV1) comprising a single flow deflector above each side port, and (c) a casting nozzle according to the present invention (INV2) comprising two flow deflector above each side port. The relative flow difference, ΔQ1-2 = |Q1 - Q2| / MIN(Q1, Q2), between the first and second flow ports is also plotted (black circles) for each nozzle. It can be seen that the flow rate difference, ΔQ1-2, between the first and second flow ports of a prior art casting nozzle (a) reaches 6.2%, with a flow rate, Q2, out of the second side port which is 20 dm3 / min higher than the flow rate, Q1, out of the first side port. Such asymmetry in the flow behaviour out of a casting nozzle into a mould can be a source of inhomogeneity in the final slab thus formed.

[0036] By contrast, the presence of one or two deflectors (b, c) above each side port reduces the difference between Q1 and Q2 to practically zero, yielding a symmetrical flow out of the casting nozzle into a mould. As discussed above, vertical flow fluctuations are substantially reduced by deflecting part of the flow towards the central lane, P2, which is shown by the lower standard deviation measured on casting nozzles comprising two flow deflectors above each side port.

[0037] In order to promote the flow deflection, it is preferred that the upstream deflector end (3u) of the flow deflectors have a non-zero cross-sectional area normal to the longitudinal axis, X1. Referring to Figure 9, though the upstream deflector end (3u) could be formed at the summit, S, forming a zero cross-sectional area normal to X1, it is preferred that the upstream deflector end forms downstream from said summit, S, a surface against which the incoming metal flow impacts. The upstream deflector end (3u) can form a surface normal to X1 as illustrated in Figure 9(a), but it can also form a slope descending downstream from the bore wall to the central edge (3C) or ridge (3RL) of the flow deflector, as shown in Figure 9(c). A cross-sectional area normal to X1 of the upstream deflector end preferably protrudes out of the bore wall by a distance of 1 to 10 mm, preferably of 2 to 6 mm, more preferably of 4 ± 1 mm, measured normal to the bore wall. Such dimensions are several times larger than the boundary layers forming at the bore wall. Figure 11 shows in the cut A-A examples of upstream deflector ends (3u) having a non-zero cross-sectional area.

[0038] In a preferred embodiment, a casting nozzle further comprises two edge ports (5) protruding out of the bore wall and extending upstream from the downstream bore end (2d) to above the level of the port inlet (2u), the two edge ports facing each other and being located between the port inlets (2u) of the two side ports. It is preferred that the edge ports (5) be symmetrical with respect to the middle plane, P1, as illustrated in Figures 5 and 7. Edge ports are traditionally used for stabilizing the flow out of a casting nozzle. Edge ports alone, however, cannot reduce substantially bias flow formation, in particular for casting nozzles having a large size bore. They also have a nose-like geometry with two lateral edge surfaces forming an angle comprised between 70 and 160°. The lateral edges may meet to form a ridge, or they can be separated by a planar central plane of triangular, rectangular or trapezoidal geometry. Edge ports preferably extend from the bore end (1u) (i.e., the bottom floor of the bore) up along the longitudinal axis, X1, above the level of the bore inlets.

[0039] The effect of edge ports (5) is enhanced by the presence of flow deflectors (3) as nonlinear flow paths are formed as the metal melt bounces successively against a lateral surface of a flow deflector and on a lateral edge surface of an edge port, before exiting through a side port. This increases the local pressure in the liquid melt, thus further reducing turbulence and bias flows exiting the ports.

[0040] The bore end (1d) or bore floor can be substantially planar and normal to the longitudinal axis, as shown in Figures 4, 5, and 11(a). It is preferably flush and continuous with a bottom floor of the side ports (2). In an alternative embodiment, the bore end (1d) comprises two bore end portions meeting at an apex forming a ridge comprised within the middle plane, P1, and sloping downwards towards the side ports, as illustrated in Figures 6, 7. Again the bottom floors of the side ports are preferably flush and continuous (parallel to) with the bore end portions to ensure a smooth and "quasi-laminar" flow out of the side ports.

[0041] A casting nozzle according to the present invention is advantageous over prior art casting nozzles in that the flow out of the first and second side ports is balanced, with an equal flow rate, Q1, Q2, out of the first and second side ports, and fluctuates substantially less in time, yielding beams having a greater homogeneity and reproductibility.
Ref Description
1 Bore
1d bore end
1N casting nozzle
1u bore inlet
2 side port
2d side port outlet
2u side port inlet
3 flow deflector
3C central surface of a flow deflector
3d downstream end surface of a flow deflector
3L second lateral surface of a flow deflector
3R first lateral surface of a flow deflector
3RL ridge formed bv joining first and second surfaces
3u upstream end surface of a flow deflector
5 edge port
7 Stopper
10 Tundish
11 Ladle
100 Mould
111 ladle shroud nozzle
200 molten metal
200m metal meniscus
Hd Height of flow deflector measured parallel to X1
X1 Longitudinal axis
P1 Middle plane including X1 and normal to P2
P2 Central plane including X1 and centroids of port inlets (2u)
Πb plane bisecting the angle, a, formed by planar first and second surfaces
Πn plane normal to a planar central surface
α angle formed by planar first and second surfaces
β angle formed by projections of central surface and X1 onto plane Πn
γ angle formed by ridge and projection of X1 onto plane Πb



Claims

1. Casting nozzle comprising an elongated body defined by an outer wall and comprising a bore (1) defined by a bore wall and extending along a longitudinal axis, X1, from a bore inlet (1u) to a downstream bore end (1d), said bore comprising two opposite side ports (2), each extending transversally to said longitudinal axis, X1, from an opening at the bore wall defining a port inlet (2u) adjacent to the downstream bore end (1d), to an opening at the outer wall defining a port outlet (2d) which fluidly connects the bore with an outer atmosphere,
Characterized in that, upstream from, and directly above each port inlet (2u), one or two flow deflectors (3) protrude out of the bore wall and extend from an upstream deflector end remote from the port inlet to a downstream deflector end close to the port inlet, over a deflector height, Hd, measured parallel to the longitudinal axis, X1, and wherein an area of a cross-section normal to the longitudinal axis, X1, of each flow deflector increases continuously over at least 50% of the deflector height, Hd, in the direction extending from the upstream deflector end towards the downstream deflector end, wherein the downstream deflector end is contiguous to the corresponding port inlet.
 
2. Casting nozzle according to claim 1, wherein the area of the cross-section normal to the longitudinal axis, X1, of each flow deflector is and remains triangular or trapezoidal over at least 50% of the deflector height, Hd.
 
3. Casting nozzle according to claim 1 or 2, wherein the area of the cross-section normal to the longitudinal axis, X1, of each deflector increases continuously from the upstream deflector end over at least 80%, preferably over at least 90%, more preferably over 100% of the deflector height, Hd, and wherein said area preferably is and remains triangular or trapezoidal over at least 80%, preferably at least over 90%, more preferably over 100% of the deflector height, Hd.
 
4. Casting nozzle according to any one of the preceding claims, wherein the downstream deflector end of each flow deflector is at a distance, h, from the port inlet, wherein h is measured along the longitudinal axis, X1, and is comprised between 0 and H, preferably between 0 and H / 2, wherein H is the maximum height of the corresponding port inlet measured along the bore wall parallel to the longitudinal axis, X1.
 
5. Casting nozzle according to any one of the preceding claims, wherein each flow deflector (3) comprises first and second lateral surfaces (3R, 3L) which are planar and have a triangular or trapezoidal perimeter, and form an angle, α , with one another comprised between 70 and 160°.
 
6. Casting nozzle according to claim 5, wherein:

• a middle plane, P1, is defined as a plane comprising the longitudinal axis, X1, and normal to a line passing by the centroids of the port inlets of the two opposite side ports (2),

• each of said first and second lateral surfaces comprises a free edge remote from the bore wall, and

• for any cut along a plane normal to the longitudinal axis, X1, intercepting a lateral wall of a flow deflector, a straight line originating at the free edge of, and extending normal to at least one of the first and second lateral surfaces of each flow deflector intercepts the middle plane, P1, in a section comprised between the longitudinal axis, X1, and an outer perimeter defined by the outer wall of the casting nozzle.


 
7. Casting nozzle according to claim 5 or 6, wherein each flow deflector (3) comprises a central surface (3C) which is planar and has a triangular, rectangular, or trapezoidal perimeter, and which is flanked on either side by the first and second lateral surfaces (3R, 3L), joining them at their respective free edges.
 
8. Casting nozzle according to claim 7, wherein in a cut along a plane, Πn, normal to the planar central surface (3C) and parallel to the longitudinal axis, X1, the planar central surface (3C) forms an angle, β, with a normal projection of the longitudinal axis, X1, on said plane, Πn, wherein β is comprised between 1 and 15°, preferably between 2 and 8°.
 
9. Casting nozzle according to claim 5 or 6, wherein the free edges of the first and second lateral surfaces (3R, 3L) join to form a rectilinear ridge.
 
10. Casting nozzle according to claim 9, wherein in a cut along a plane, Πb, comprising said rectilinear ridge and bisecting the angle, α, formed by the first and second lateral surfaces (3R, 3L) the rectilinear ridge forms an angle, γ , with a normal projection of the longitudinal axis, X1, on said plane, Πb, wherein γ is comprised between 1 and 15°, preferably between 2 and 8°.
 
11. Casting nozzle according to any one of claims 1 to 10, comprising two flow deflectors (4) upstream from each port inlet (2u).
 
12. Casting nozzle according to claims 6 and 11, wherein for any cut along a plane normal to the longitudinal axis, X1, intercepting the first and second lateral walls of a flow deflector,

• a first straight line originating at the free edge of, and extending normal to the first lateral surface of each flow deflector intercepts the middle plane, P1, in a section comprised between the longitudinal axis, X1, and the outer perimeter, and

• a second straight line originating at the free edge of, and extending normal to the second lateral surface of each flow deflector intercepts a central plane, P2, in a section comprised between the longitudinal axis, X1, and the outer perimeter, wherein the central plane, P2, includes the longitudinal axis, X1, and is normal to P1.


 
13. Casting nozzle according to any one of claims 1 to 10, comprising a single flow deflector (4) upstream from each port inlet (2u).
 
14. Casting nozzle according to claims 6 and 13, wherein for any cut along a plane normal to the longitudinal axis, X1, intercepting the first and second lateral walls of a flow deflector, straight lines originating at the free edges of, and extending normal to the first and second lateral surfaces of each deflector intercept the middle plane, P1, in a first and second sections located on either sides of the longitudinal axis, X1, and comprised between the longitudinal axis, X1, and the outer perimeter.
 
15. Casting nozzle according to any one of the preceding claims, further comprising two edge ports (5) protruding out of the bore wall and extending upstream from the downstream bore end (2d) to above the level of the port inlet (2u), the two edge ports facing each other and being located between the port inlets (2u) of the two side ports.
 


Ansprüche

1. Gießdüse, die einen länglichen Körper umfasst, der von einer Außenwand gebildet wird und eine Bohrung (1) umfasst, die von einer Bohrungswand gebildet wird und entlang einer Längsachse X1 von einem Bohrungs-Einlass (1u) zu einem stromabwärts liegenden Bohrungs-Ende (1d) verläuft, wobei die Bohrung zwei einander gegenüberliegende Seitenkanäle (2) umfasst, von denen sich jeder quer zur Längsachse X1 von einer Öffnung in der Bohrungswand, die neben dem stromabwärts liegenden Bohrungs-Ende (1d) einen Kanal-Einlass (2u) bildet, zu einer Öffnung in der Außenwand erstreckt, die einen Kanal-Auslass (2d) bildet, der die Bohrung fluidmäßig mit der äußeren Atmosphäre verbindet, dadurch gekennzeichnet, dass stromaufwärts vom und direkt oberhalb von jedem Kanal-Einlass (2u) ein oder zwei Fluss-Deflektoren (3) aus der Bohrungswand hervorragen und sich von einem stromaufwärts liegenden Deflektor-Ende, das vom Kanal-Einlass entfernt liegt, zu einem stromabwärts liegenden Deflektor-Ende, das in der Nähe des Kanal-Einlasses liegt, über eine Deflektor-Höhe Hd erstrecken, die parallel zur Längsachse X1 gemessen wird, und wobei eine Querschnittsfläche senkrecht zur Längsachse X1 eines jeden Fluss-Deflektors über zumindest 50% der Deflektor-Höhe Hd in jener Richtung kontinuierlich größer wird, die vom stromaufwärts liegenden Deflektor-Ende zum stromabwärts liegenden Deflektor-Ende verläuft, wobei das stromabwärts liegenden Deflektor-Ende an den entsprechenden Kanal-Einlass angrenzt.
 
2. Gießdüse gemäß Anspruch 1, wobei die Querschnittsfläche senkrecht zur Längsachse X1 eines jeden Fluss-Deflektors über zumindest 50% der Deflektor-Höhe Hd dreieckig oder trapezförmig ist und bleibt.
 
3. Gießdüse gemäß Anspruch 1 oder 2, wobei die Querschnittsfläche senkrecht zur Längsachse X1 eines jeden Deflektors von stromaufwärts liegenden Deflektor-Ende über zumindest 80%, bevorzugt über zumindest 90% und mehr bevorzugt über 100% der Deflektor-Höhe Hd kontinuierlich größer wird, und wobei diese Fläche vorzugsweise über zumindest 80%, bevorzugt über zumindest 90% und mehr bevorzugt über 100% der Deflektor-Höhe Hd dreieckig oder trapezförmig ist und bleibt.
 
4. Gießdüse gemäß irgendeinem der bisherigen Ansprüche, wobei das stromabwärts liegende Deflektor-Ende eines jeden Fluss-Deflektors in einem Abstand h vom Kanal-Einlass liegt, wobei h entlang der Längsachse X1 gemessen wird, und zwischen 0 und H und bevorzugt zwischen 0 und H/2 umfasst, wobei H die maximale Höhe des entsprechenden Kanal-Einlasses ist, die entlang der Bohrungswand parallel zur Längsachse X1 gemessen wird.
 
5. Gießdüse gemäß irgendeinem der bisherigen Ansprüche, wobei jeder Fluss-Deflektor (3) eine erste und eine zweite Seitenfläche (3R, 3L) umfasst, die eben sind und einen dreieckigen oder trapezförmigen Umriss besitzen, wobei sie miteinander einen Winkel α einschließen, der zwischen 70 und 160° umfasst.
 
6. Gießdüse gemäß Anspruch 5, wobei

• eine Mittelebene P1 als eine Ebene festgelegt ist, die die Längsachse X1 umfasst und senkrecht auf eine Linie steht, die durch die Schwerpunkte der Kanal-Einlässe der beiden auf einander gegenüberliegenden Seiten angeordneten Seitenkanäle (2) verläuft,

• sowohl die erste als auch die zweite Seitenfläche eine freie Kante umfasst, die von der Bohrungswand entfernt liegt, und

• in irgendeinem Schnitt entlang einer Ebene, die senkrecht auf die Längsachse X1 steht und eine Seitenwand eines Fluss-Deflektors schneidet, eine Gerade, die von der freien Kante ausgeht und senkrecht auf zumindest eine der Flächen der ersten und zweiten Seitenfläche eines jeden Fluss-Deflektors verläuft, die Mittelebene P1 in einem Abschnitt schneidet, der zwischen der Längsachse X1 und einem äußeren Umriss liegt, der von der Außenwand der Gießdüse gebildet wird.


 
7. Gießdüse gemäß Anspruch 5 oder 6, wobei jeder Fluss-Deflektor (3) eine Mittelfläche (3C) umfasst, die eben ist und einen dreieckigen, rechteckigen oder trapezförmigen Umriss besitzt, wobei sie an beiden Seiten von der ersten und der zweiten Seitenfläche (3R, 3L) flankiert wird, die an ihren entsprechenden beiden freien Kanten an sie angrenzen.
 
8. Gießdüse gemäß Anspruch 7, wobei in einem Schnitt entlang einer Ebene Πn, die senkrecht auf die ebene Mittelfläche (3C) steht und parallel zur Längsachse X1 verläuft, die ebene Mittelfläche (3C) mit einer Normalprojektion der Längsachse X1 auf diese Ebene Πn einen Winkel β einschließt, wobei β zwischen 1 und 15° und bevorzugt zwischen 2 und 8° umfasst.
 
9. Gießdüse gemäß Anspruch 5 oder 6, wobei die freien Kanten der ersten und der zweiten Seitenfläche (3R, 3L) einen geradlinigen First ausbilden.
 
10. Gießdüse gemäß Anspruch 9, wobei in einem Schnitt entlang einer Ebene Πb, die den geradlinigen First umfasst und den Winkel α halbiert, den die erste und die zweite Seitenfläche (3R, 3L) einschließen, der geradlinige First mit einer Normalprojektion der Längsachse X1 auf die Ebene Πb einen Winkel γ einschließt, wobei γ zwischen 1 und 15° und bevorzugt zwischen 2 und 8° umfasst.
 
11. Gießdüse gemäß irgendeinem der Ansprüche 1 bis 10, wobei die Gießdüse zwei Fluss-Deflektoren (4) umfasst, die stromaufwärts von jedem Kanal-Einlass (2u) liegen.
 
12. Gießdüse gemäß Anspruch 6 und 11, wobei in irgendeinem Schnitt entlang einer Ebene, die senkrecht auf die Längsachse X1 steht und sowohl die erste als auch die zweite Seitenwand eines Fluss-Deflektors schneidet,

• eine erste Gerade, die von der freien Kante ausgeht und senkrecht auf die erste Seitenfläche eines jeden Fluss-Deflektors steht, die Mittelebene P1 in einem Abschnitt schneidet, der zwischen der Längsachse X1 und dem äußeren Umriss liegt, und

• eine zweite Gerade, die von der freien Kante ausgeht und senkrecht zur zweiten Seitenfläche eines jeden Fluss-Deflektors verläuft, eine Mittelebene P2 in einem Abschnitt schneidet, der zwischen der Längsachse X1 und dem äußeren Umriss liegt, wobei die Mittelebene P2 die Längsachse X1 enthält und senkrecht auf P1 steht.


 
13. Gießdüse gemäß irgendeinem der Ansprüche 1 bis 10, wobei die Gießdüse einen einzigen Fluss-Deflektor (4) umfasst, der stromaufwärts von jedem Kanal-Einlass (2u) liegt.
 
14. Gießdüse gemäß Anspruch 6 und 13, wobei in irgendeinem Schnitt entlang einer Ebene, die senkrecht auf die Längsachse X1 steht und sowohl die erste als auch die zweite Seitenwand eines Fluss-Deflektors schneidet, Geraden, die von den freien Kanten der ersten und der zweiten Seitenfläche eines jeden Deflektors ausgehen und senkrecht zu diesen verlaufen, die Mittelebene P1 in einem ersten und einem zweiten Abschnitt schneiden, die zu beiden Seiten der Längsachse X1 angeordnet sind und zwischen der Längsachse X1 und dem äußeren Umriss liegen.
 
15. Gießdüse gemäß irgendeinem der bisherigen Ansprüche, wobei die Gießdüse weiters zwei Keil-Kanäle (5) umfasst, die aus der Bohrungswand aufragen und stromaufwärts vom stromabwärts liegenden Bohrungs-Ende (2d) über das Niveau des Kanal-Einlasses (2u) verlaufen, wobei die Keil-Kanäle einander gegenüberliegen und zwischen den Kanal-Einlässen (2u) der beiden Seiten-Kanäle angeordnet sind.
 


Revendications

1. Busette de coulée comprenant un corps allongé défini par une paroi extérieure et comprenant un alésage (1) défini par une paroi d'alésage et s'étendant le long d'un axe longitudinal, X1, depuis une entrée d'alésage (1u) vers une extrémité aval d'alésage (1d), ledit alésage comprenant deux orifices latéraux opposés (2), chacun s'étendant transversalement audit axe longitudinal X1, depuis une ouverture à la paroi d'alésage définissant une entrée d'orifice (2u) adjacente à l'extrémité aval d'alésage (1d), jusqu'à une ouverture sur la paroi extérieure définissant un orifice de sortie (2d) qui relie de façon fluide l'alésage avec une atmosphère externe, Caractérisé en ce que, en amont, et directement au-dessus de chaque entrée d'orifice (2u), un ou deux déflecteurs d'écoulement (3) dépassent de la paroi de l'alésage et s'étendent d'une extrémité de déflecteur amont éloignée de l'entrée d'orifice à une extrémité de déflecteur aval proche de l'entrée d'orifice, sur une hauteur de déflecteur, Hd, mesurée parallèlement à l'axe longitudinal, X1, et dans laquelle une surface d'une section transversale normale à l'axe longitudinal, X1, de chaque déflecteur de coulée augmente continuellement sur au moins 50% de la hauteur du déflecteur, Hd, dans la direction allant de l'extrémité de déflecteur amont vers l'extrémité de déflecteur aval, dans laquelle l'extrémité du déflecteur aval est contiguë à l'entrée du port correspondant.
 
2. Busette de coulée selon la revendication 1, dans laquelle la surface de la section transversale perpendiculaire à l'axe longitudinal, X1, de chaque déflecteur d'écoulement est et reste triangulaire ou trapézoïdale sur au moins 50% de la hauteur du déflecteur, Hd.
 
3. Busette de coulée selon la revendication 1 ou 2, dans laquelle la surface de la section transversale perpendiculaire à l'axe longitudinal, X1, de chaque déflecteur augmente continuellement depuis l'extrémité amont du déflecteur au-dessus d'au moins 80 %, de préférence au-dessus d'au moins 90%, plus préférentiellement au-dessus de 100% de la hauteur du déflecteur, Hd, et dans laquelle ladite surface est et reste de préférence triangulaire ou trapézoïdale sur au moins 80 %, de préférence sur au moins 90 %, plus préférentiellement sur 100 % de la hauteur du déflecteur, Hd.
 
4. Busette de coulée selon l'une quelconque des revendications précédentes, dans laquelle l'extrémité de déflecteur aval de chaque déflecteur d'écoulement se trouve à une distance, h, de l'entrée d'orifice, h étant mesuré le long de l'axe longitudinal X1 et étant compris entre 0 et H, de préférence entre 0 et H/2, H étant la hauteur maximale de l'entrée d'orifice correspondante mesurée le long de la paroi de l'alésage parallèlement à l'axe longitudinal X1.
 
5. Busette de coulée selon l'une quelconque des revendications précédentes, dans laquelle chaque déflecteur d'écoulement (3) comprend des première et seconde surfaces latérales (3R, 3L) qui sont planes et ont un périmètre triangulaire ou trapézoïdal, et forment entre elles un angle, α, compris entre 70 et 160°.
 
6. Busette de coulée selon la revendication 5, dans laquelle :

• un plan médian, P1, est défini comme un plan comprenant l'axe longitudinal, X1, et perpendiculaire à une ligne passant par les centroïdes des entrées des orifices des deux orifices latéraux opposés (2),

• chacune desdites première et seconde surfaces latérales comprend un bord libre éloigné de la paroi d'alésage, et

• pour toute coupe le long d'un plan perpendiculaire à l'axe longitudinal, X1, interceptant une paroi latérale d'un déflecteur d'écoulement, une droite partant du bord libre de, et s'étendant perpendiculairement à au moins une des première et seconde surfaces latérales de chaque déflecteur d'écoulement intercepte le plan médian, P1, dans une section comprise entre l'axe longitudinal, X1, et un périmètre extérieur défini par la paroi extérieure de la busette de coulée.


 
7. Busette de coulée selon la revendication 5 ou 6, dans laquelle chaque déflecteur d'écoulement (3) comprend une surface centrale (3C) qui est plane et qui a un périmètre triangulaire, rectangulaire ou trapézoïdal, et qui est flanquée de chaque côté par les première et seconde surfaces latérales (3R, 3L), en les reliant sur leurs bords libres respectifs.
 
8. Busette de coulée selon la revendication 7, dans laquelle, dans une coupe le long d'un plan, Πn, perpendiculaire à la surface centrale plane (3C) et parallèle à l'axe longitudinal X1, la surface centrale plane (3C) forme un angle, β, avec une projection normale de l'axe longitudinal X1, sur ledit plan, Πn, où β est compris entre 1 et 15°, de préférence entre 2 et 8°.
 
9. Busette de coulée selon la revendication 5 ou 6, dans laquelle les bords libres des première et deuxième surfaces latérales (3R, 3L) se rejoignent pour former une arête rectiligne.
 
10. Busette de coulée selon la revendication 9, dans laquelle, dans une coupe le long d'un plan, Πb, comprenant ladite arête rectiligne et coupant l'angle, α, formé par les première et seconde surfaces latérales (3R, 3L), l'arête rectiligne forme un angle, γ, avec une projection normale de l'axe longitudinal, X1, sur ledit plan, Πb, dans lequel γ est compris entre 1 et 15°, de préférence entre 2 et 8°.
 
11. Busette de coulée selon l'une quelconque des revendications 1 à 10, comprenant deux déflecteurs d'écoulement (4) en amont de chaque entrée d'orifice (2u).
 
12. Busette de coulée selon les revendications 6 et 11, caractérisée en ce que pour une coupe quelconque le long d'un plan perpendiculaire à l'axe longitudinal, X1, interceptant les première et seconde parois latérales d'un déflecteur d'écoulement,

• une première ligne droite partant du bord libre de, et s'étendant perpendiculairement à la première surface latérale de chaque déflecteur d'écoulement intercepte le plan médian, P1, dans une section comprise entre l'axe longitudinal X1 et le périmètre extérieur, et

• une deuxième ligne droite partant du bord libre de, et s'étendant perpendiculairement à la deuxième surface latérale de chaque déflecteur d'écoulement intercepte un plan central, P2, dans une section comprise entre l'axe longitudinal X1 et le périmètre extérieur, où le plan central P2 comprend l'axe longitudinal X1 et est perpendiculaire à P1.


 
13. Busette de coulée selon l'une quelconque des revendications 1 à 10, comprenant un déflecteur d'écoulement unique (4) en amont de chaque orifice d'entrée (2u).
 
14. Busette de coulée selon les revendications 6 et 13, dans laquelle, pour toute coupe le long d'un plan perpendiculaire à l'axe longitudinal, X1, interceptant les première et seconde parois latérales d'un déflecteur d'écoulement, des lignes droites partant des bords libres de, et s'étendant perpendiculairement aux première et seconde surfaces latérales de chaque déflecteur interceptent le plan central P1 dans une première et seconde sections situées des deux côtés de l'axe longitudinal X1, et comprises entre l'axe longitudinal X1 et le périmètre externe.
 
15. Busette de coulée selon l'une quelconque des revendications précédentes, comprenant en outre deux orifices périphériques (5) dépassant de la paroi d'alésage et s'étendant en amont de l'extrémité aval de l'alésage (2d) jusqu'au-dessus du niveau de l'entrée de l'alésage (2u), les deux orifices périphériques se faisant face et étant situés entre les entrées de l'alésage (2u) des deux orifices latéraux.
 




Drawing


























Cited references

REFERENCES CITED IN THE DESCRIPTION



This list of references cited by the applicant is for the reader's convenience only. It does not form part of the European patent document. Even though great care has been taken in compiling the references, errors or omissions cannot be excluded and the EPO disclaims all liability in this regard.

Patent documents cited in the description