(19)
(11) EP 3 376 037 A1

(12) EUROPÄISCHE PATENTANMELDUNG

(43) Veröffentlichungstag:
19.09.2018  Patentblatt  2018/38

(21) Anmeldenummer: 17160836.7

(22) Anmeldetag:  14.03.2017
(51) Internationale Patentklassifikation (IPC): 
F04D 1/00(2006.01)
F04D 15/00(2006.01)
F04D 29/48(2006.01)
F04D 13/06(2006.01)
F04D 29/42(2006.01)
(84) Benannte Vertragsstaaten:
AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR
Benannte Erstreckungsstaaten:
BA ME
Benannte Validierungsstaaten:
MA MD

(71) Anmelder: Grundfos Holding A/S
8850 Bjerringbro (DK)

(72) Erfinder:
  • BLAD, Thomas
    8850 Bjerringbro (DK)
  • BLAD, Christian
    9000 Aalborg (DK)

(74) Vertreter: Patentanwälte Vollmann & Hemmer 
Wallstraße 33a
23560 Lübeck
23560 Lübeck (DE)

   


(54) KREISELPUMPENAGGREGAT


(57) Die Erfindung betrifft eine hydraulische Baueinheit mit einem Kreiselpumpenaggregat, welches einen elektrischen Antriebsmotor 4, 6 sowie zumindest ein von diesem angetriebenes Laufrad 14 aufweist, sowie zumindest einem Ventilelement 18, welches derart angeordnet ist, dass es durch eine von dem Laufrad 14 verursachte Flüssigkeitsströmung bewegbar ist, wobei zumindest ein Abschnitt 18; 78 einer einen Strömungsweg in der hydraulischen Baueinheit begrenzenden Wandung beweglich ausgebildet ist, dieser bewegliche Abschnitt 18; 78; 86 der Wandung Teil des Ventilelementes 18 ist oder mit dem Ventilelement 18 zu dessen Bewegung verbunden ist, und wobei dieser bewegliche Abschnitt 18; 78; 86 zumindest teilweise bewirkt durch Reibungskräfte von der entlang der Wandung verlaufenden Flüssigkeitsströmung bewegbar ist.




Beschreibung


[0001] Die Erfindung betrifft eine hydraulische Baueinheit mit einem Kreiselpumpenaggregat sowie zumindest einem Ventilelement, welches von einer von dem Kreiselpumpenaggregat verursachten Flüssigkeitsströmung bewegbar ist.

[0002] Es sind hydraulische Baueinheiten mit Kreiselpumpenaggregaten bekannt, welche Ventilelemente aufweisen, die durch die Strömung in dem Pumpenaggregat bewegt werden. So sind Kreiselpumpenaggregate bekannt, bei welchen durch Drehrichtungsumkehr des Antriebsmotors die Strömung im Inneren des Pumpengehäuses in zwei verschiedene Richtungen gelenkt werden kann, so dass ein Umschaltelement zwischen zwei Ausgängen oder zwei Eingängen des Kreiselpumpenaggregates bewegt werden kann, um die Strömung wahlweise durch einen von diesen zu fördern. Nachteilig bei diesen bekannten Kreiselpumpenaggregaten ist eine relativ aufwendige Mechanik oder das Auftreten von Wirkungsgradverlusten aufgrund der im Strömungsweg erforderlichen Schaltelemente oder der erforderlichen Drehrichtungsumkehr.

[0003] Im Hinblick auf diese Problematik ist es Aufgabe der Erfindung, eine hydraulische Baueinheit mit einem Kreiselpumpenaggregat und einem über die von dem Kreiselpumpenaggregat erzeugte Strömung bewegbaren Ventilelement dahingehend zu verbessern, dass eine zuverlässige Betätigung des Ventilelementes bei gleichzeitig einfachem Aufbau des Ventilelementes und einem hohen Wirkungsgrad möglich ist.

[0004] Diese Aufgabe wird durch eine hydraulische Baueinheit mit den in Anspruch 1 angegebenen Merkmalen gelöst. Bevorzugte Ausführungsformen ergeben sich aus den Unteransprüchen, der nachfolgenden Beschreibung sowie den beigefügten Figuren.

[0005] Die erfindungsgemäße hydraulische Baueinheit weist ein Kreiselpumpenaggregat auf, welches einen elektrischen Antriebsmotor sowie zumindest ein von diesem drehend angetriebenes Laufrad aufweist. Der elektrische Antriebsmotor ist dabei vorzugsweise ein nasslaufender Motor, das heißt ein Antriebsmotor mit einem Spaltrohr oder Spalttopf zwischen Stator und Rotor, so dass der Rotor in der zu fördernden Flüssigkeit rotieren kann. Neben diesem Kreiselpumpenaggregat weist die erfindungsgemäße hydraulische Baueinheit zumindest ein Ventilelement auf, welches so angeordnet und ausgestaltet ist, dass es durch eine von dem Laufrad verursachte Flüssigkeitsströmung bewegbar ist, insbesondere zwischen zumindest zwei verschiedenen Schaltstellungen bewegbar ist. Die hydraulische Baueinheit umfasst neben dem Kreiselpumpenaggregat und dem Ventilelement vorzugsweise zumindest diejenigen Strömungskanäle bzw. Strömungswege, welche zum Anschluss des Kreiselpumpenaggregates an externe Elemente, beispielsweise Rohrleitungen eines Heizungskreislaufes, erforderlich sind. Weiter bevorzugt umfasst die hydraulische Baueinheit zumindest einen Teil der Strömungswege, welche zur Verbindung zwischen dem Kreiselpumpenaggregat und dem Ventilelement erforderlich sind, wobei besonders bevorzugt das Ventilelement mit dem Kreiselpumpenaggregat eine integrierte Baueinheit bildet. So kann z. B. das Ventilelement im Pumpengehäuse, in welchem das Laufrad rotiert, angeordnet sein.

[0006] Weiter bevorzugt ist die hydraulische Baueinheit zur Verwendung in einer Heizungs- und/oder Klimaanlage ausgebildet, das heißt, das Kreiselpumpenaggregat ist vorzugsweise zur Verwendung als Umwälzpumpenaggregat ausgebildet, um einen flüssigen Wärmeträger wie insbesondere Wasser, in einem Kreislauf einer Heizungs- oder Klimaanlage umzuwälzen. Weiter bevorzugt kann die hydraulische Baueinheit als eine integrierte hydraulische Baueinheit für eine Heizungsanlage, insbesondere eine Kompaktheizungsanlage ausgebildet sein. Solche integrierten Baueinheiten umfassen in der Regel alle wesentlichen Strömungswege und hydraulischen Komponenten der Kompaktheizungsanlage. So kann insbesondere auch ein Sekundärwärmetauscher zum Erwärmen von Brauchwasser in die hydraulische Baueinheit integriert sein. Eine solche hydraulische Baueinheit weist dann im Wesentlichen lediglich noch die Anschlüsse für einen oder mehrere Heizkreise, für mindestens eine Wärmequelle sowie gegebenenfalls einen Eingang für kaltes Brauchwasser sowie einen Ausgang für erwärmtes Brauchwasser auf. Erforderliche Ventile, Sensoren und das Kreiselpumpenaggregot sind vorzugsweise in die hydraulische Baueinheit integriert, wobei weiter bevorzugt zumindest ein Teil der erforderlichen Strömungswege in einstückigen Bauteilen aus Guss, insbesondere Kunststoffspritzguss, ausgebildet sein kann.

[0007] Erfindungsgemäß ist zumindest ein Abschnitt einer einen Strömungsweg in der hydraulischen Baueinheit begrenzenden Wandung beweglich ausgebildet. Dies ist bevorzugt ein Strömungsweg, durch welchen die von dem Kreiselpumpenaggregat geförderte Flüssigkeit fließt. So strömt die Flüssigkeit an der Wandung und damit auch dem zumindest einen beweglichen Abschnitt entlang. Dieser bewegliche Abschnitt der Wandung ist Teil des Ventilelementes oder mit dem Ventilelement zu dessen Bewegung gekoppelt bzw. verbunden. So kann die bewegliche Wandung eine Kraft- oder Bewegungsenergie direkt auf das Ventilelement zu dessen Bewegung übertragen. Der bewegliche Abschnitt wiederum ist durch die entlang der Wandung verlaufende Flüssigkeitsströmung bewegbar. So kann die Flüssigkeitsströmung über den beweglichen Abschnitt der Wandung eine Bewegung des mit diesem Abschnitt der Wandung gekoppelten Ventilelementes bewirken. Die Übertragung von Bewegungsenergie von der Strömung auf den beweglichen Abschnitt der Wandung erfolgt erfindungsgemäß zumindest teilweise durch Reibungskräfte zwischen der Flüssigkeitsströmung und der Wandung. Besonders bevorzugt erfolgt die gesamte Kraft- bzw. Energieübertragung durch eine Reibung der Flüssigkeitsströmung an dem beweglichen Abschnitt der Wandung. Eine solche Ausgestaltung hat den Vorteil, dass für die Bewegung des Ventilelementes im Wesentlichen nur eine Verlustenergie ausgenutzt wird, welche aufgrund der auftretenden Reibung ohnehin im Inneren des Strömungsweges anfallen würde. Idealerweise weist die Oberfläche des beweglichen Abschnittes der Wandung eine Oberflächengestaltung bzw. Rauheit auf, welche im Wesentlichen nicht von den Eigenschaften der Oberflächen der übrigen Wandung des Strömungsweges abweicht. Zusätzliche in die Strömung ragende und Widerstände verursachende Elemente sind vorzugsweise nicht vorgesehen. So treten auch an dem beweglichen Abschnitt der Wandung im Wesentlichen nur die üblichen Reibungsverluste auf, wobei diese dann zur Bewegung des Ventilelementes genutzt werden können. So kann ein sehr hoher Wirkungsgrad auch bei der Betätigung des Ventilelementes realisiert werden, da hydraulische Verluste minimiert werden. Insbesondere treten nach der Bewegung des Ventilelementes über den beweglichen Abschnitt der Wandung, wenn dieser in einer Endlage verbleibt, beim weiteren Betrieb des Kreiselpumpenaggregates im Wesentlichen keine zusätzlichen Strömungsverluste auf, wie es hingegen beispielsweise bei beweglichen Klappen oder Schaufeln, welche zur Bewegung eines Ventilelementes in die Strömung ragen, der Fall wäre.

[0008] Das Ventilelement kann beispielsweise ein Umschalt- oder Mischventil sein. Das Ventilelement ist vorzugsweise zwischen zwei Schaltstellungen oder Endlagen bewegbar, wobei es zwischen diesen Endlagen durch die Strömung hin und her bewegt werden kann. Die Richtungsumkehr kann beispielsweise durch Richtungsänderung der Strömung, beispielsweise durch Drehrichtungsänderung des Laufrades, erreicht werden. Alternativ könnte auch ein zusätzliches Rückstellelement, beispielsweise eine Feder oder ein Gewicht vorgesehen sein, welches beim Abschalten der Strömung dafür sorgt, dass das Ventilelement sich in eine vorbestimmte Ausgangslage zurückbewegt.

[0009] Der zumindest eine bewegliche Abschnitt der Wandung ist vorzugsweise derart angeordnet, dass er parallel zu der entlang der Wandung verlaufenden Flüssigkeitsströmung bewegbar ist. Das bedeutet, dass die Strömung an diesem beweglichen Abschnitt der Wandung wie an angrenzenden Wandungsteilen entlang strömen kann, ohne durch den beweglichen Abschnitt der Wandung stärker abgebremst oder beeinträchtigt zu werden. Die Strömung nimmt den beweglichen Abschnitt der Wandung vorzugsweise allein durch Reibungskräfte in Strömungsrichtung mit und bewegt damit das gekoppelte Ventilelement.

[0010] Der zumindest eine bewegliche Abschnitt der Wandung kann einen sich druckseitig von dem Kreiselpumpenaggregat erstreckenden Strömungsweg oder aber einen sich saugseitig von dem Kreiselpumpenaggregat erstreckenden Strömungsweg begrenzen. So kann beispielsweise eine saugseitig zu dem Kreiselpumpenaggregat hinströmende Strömung oder eine druckseitig von dem Kreiselpumpenaggregat wegströmende Strömung den beweglichen Abschnitt und damit das Ventilelement bewegen. Es ist auch möglich, das Ventilelement sowohl über eine Strömung an der Druckseite des Kreiselpumpenaggregates als auch eine Strömung an der Saugseite des Kreiselpumpenaggregates anzutreiben. In diesem Falle sind zwei bewegliche Abschnitte in zwei Strömungswegen vorgesehen, welche beide Teil des Ventilelementes sind oder mit dem Ventilelement zu dessen Antrieb gekoppelt sind.

[0011] Der bewegliche Abschnitt der Wandung ist, wie oben bereits beschrieben, bevorzugt derart ausgebildet und angeordnet, dass er durch eine Verlustenergie, welche von den Reibungskräften an der Wandung des Strömungsweges versursacht wird, gemeinsam mit dem zumindest einen Ventilelement bewegbar ist. So treten im Wesentlichen keine Wirkungsgradverluste durch das Ventilelement und dessen Betätigungselemente, welche das Ventilelement über die Strömung bewegen, auf.

[0012] Gemäß einer weiteren bevorzugten Ausführungsform ist der zumindest eine Abschnitt der Wandung drehbar in einem Pumpengehäuse gelagert und vorzugsweise gemeinsam mit dem zumindest einen Ventilelement drehbar in dem Pumpengehäuse gelagert. Im Pumpengehäuse rotiert das Laufrad. Dabei erzeugt das Laufrad im Umfangsbereich eine ebenfalls rotierende Strömung. Wenn der Abschnitt der Wandung und vorzugsweise auch das Ventilelement drehbar sind, lässt sich diese rotierende Strömung sehr leicht in eine Bewegung des Ventilelementes umsetzen, da die rotierende Strömung den drehbar beweglichen Abschnitt der Wandung in Strömungsrichtung durch Reibungskräfte mitbewegen kann. Besonders bevorzugt liegt die Drehachse des zumindest einen beweglichen Abschnittes der Wandung fluchtend zu der Drehachse des Antriebsmotors und des zumindest einen Laufrades. Weiter bevorzugt fluchtet auch die Drehachse eines drehbaren Ventilelementes mit der Drehachse des Antriebsmotors und des Laufrades.

[0013] Zweckmäßigerweise ist der zumindest eine bewegliche Abschnitt der Wandung derart ausgestaltet, dass die an ihm durch die Flüssigkeitsströmung wirkenden Reibungskräfte größer sind als diejenigen Reibungskräfte, welche in einer Lagerung bzw. den Lagerungen des beweglichen Abschnittes der Wandung und des zumindest einen Ventilelementes auftreten. Dies kann beispielsweise durch eine entsprechend große Oberfläche des beweglichen Abschnittes der Wandung erreicht werden. Auch könnte die Oberfläche der beweglichen Wandung strukturiert sein, um eine höhere Reibung zu verursachen. Wesentlich ist, dass die Ausgestaltung so ist, dass die von der Strömung auf den beweglichen Wandabschnitt übertragenen Kräfte größer sind als die Halte- bzw. Reibungskräfte, welche auf den beweglichen Abschnitt der Wandung und des zumindest einen Ventilelements wirken. So kann durch die Strömung eine Bewegung des Ventilelementes verursacht werden. Um ein möglichst großes Drehmoment auf ein drehbares Ventilelement zu erzeugen, ist es bevorzugt, zumindest einen Teil der Oberfläche des beweglichen Abschnittes möglichst weit von einer Drehachse zu beabstanden, um ein möglichst großes Drehmoment zu erzeugen. Besonders bevorzugt hat der bewegliche Abschnitt der Wandung eine scheibenförmige und insbesondere kreisförmige Außenkontur, wobei der Außendurchmesser der Scheibe vorzugsweise zumindest genauso groß wie der Durchmesser des Laufrades in den Pumpengehäuse ist.

[0014] Gemäß einer weiteren bevorzugten Ausführungsform ist ein bewegliches Trennelement vorgesehen, welches einen Saugraum im Inneren eines Pumpengehäuses des Kreiselpumpenaggregates von einem das Laufrad umgebenden Druckraum trennt, wobei eine dem Druckraum zugewandte Oberfläche und/oder eine den Saugraum zugewandte Oberfläche des Trennelementes den zumindest einen beweglichen Abschnitt der Wandung bildet oder aufweist. Besonders bevorzugt ist das gesamte Trennelement beweglich, insbesondere drehbar, wie es oben beschrieben wurde. So kann das Trennelement vorzugsweise um eine Drehachse, welche mit der Drehachse des Laufrades fluchtet, drehbar sein. Weiter bevorzugt ist das Trennelement direkt von dem Ventilelement gebildet, das heißt, das Trennelement ist Teil des Ventilelementes. So kann ein direkter Antrieb des Ventilelementes an einer Oberfläche des Ventilelementes, welche den beweglichen Abschnitt der Wandung in dem Strömungsweg bildet, verursacht werden.

[0015] Weiter bevorzugt umgibt das Trennelement einen Saugmund des Laufrades ringförmig, wobei das Trennelement eine zentrale Öffnung aufweisen kann, welche mit dem Saugmund fluchtet, insbesondere mit diesem dichtend in Eingriff ist. So bildet das Trennelement eine übliche Deflektorplatte zwischen Saugraum und Druckraum des Pumpenaggregates und ist gleichzeitig beweglich, um das Ventilelement antreiben zu können, wenn das Trennelement durch die an ihm angreifende Strömung bzw. die an ihm entlang strömende Strömung mitbewegt wird.

[0016] Das Ventilelement ist vorzugsweise an einem zentralen Lager drehbar gelagert, wobei sich die Drehachse des Ventilelementes, wie beschrieben vorzugsweise fluchtend zu der Drehachse des Antriebsmotors erstreckt. Die zentrale Lagerung hat den Vorteil, dass der Lagerdurchmesser sehr klein ausgebildet werden kann, so dass die Reibungsverluste an dem Lagerflächen minimiert werden können. Wenn der bewegliche Abschnitt der Wandung Teil des Ventilelementes ist, kann dieser darüber hinaus radial außerhalb des Lagers, vorzugsweise radial beabstandet von dem Lager gelegen sein, so dass ein größeres Drehmoment zur Bewegung des Ventilelementes durch die an dem beweglichen Abschnitt angreifende Strömung verursacht wird.

[0017] Weiter bevorzugt ist das Ventilelement zwischen zumindest zwei Schaltstellungen bewegbar, wobei diese Schaltstellungen beispielsweise durch Anschläge begrenzt bzw. definiert sein können. Es ist jedoch auch denkbar, dass das Ventilelement mehr als zwei Schaltstellungen einnehmen kann. Das Ventilelement kann gemäß einer ersten Ausführungsform der Erfindung als Umschaltventil zwischen zwei Strömungswegen wirken, wobei dann in einer ersten Schaltstellung ein erster Strömungsweg geöffnet und ein zweiter Strömungsweg geschlossen ist. Umgekehrt ist in einer zweiten Schaltstellung der erste Strömungsweg geschlossen und der zweite Strömungsweg geöffnet. Gemäß einer zweiten Ausführungsform der Erfindung kann das Ventilelement alternativ oder zusätzlich als Mischventil wirken.

[0018] Vorzugsweise kann das Ventilelement mit zumindest zwei Ventilöffnungen zweier Strömungskanäle derart zusammenwirken, dass die Ventilöffnungen der Strömungskanäle abhängig von der Schaltstellung des Ventilelementes unterschiedlich geöffnet sind. Im Falle eines Umschaltventils bedeutet dies, dass die Ventilöffnungen entweder vollständig geschlossen oder vollständig geöffnet sind. Bei Ausbildung als Mischventil sind auch Zwischenstellungen möglich, bei welchen die Ventilöffnungen nur teilweise geöffnet sind. Bei der Verwendung des Mischventils ist das Ventilelement vorzugsweise so ausgebildet, dass es bei seiner Bewegung jeweils eine der Ventilöffnungen weiter schließt und gleichzeitig die andere Ventilöffnung weiter öffnet. Bevorzugt erfolgt dies um dasselbe Maß. Es kann besonders einfach dadurch erreicht werden, dass ein einstückiges Ventilelement vorgesehen ist, welches beide Ventilöffnungen überdecken kann. Es ist jedoch erfindungsgemäß unter einem Ventilelement auch eine Anordnung zweier Ventilelemente zu verstehen, welche in geeigneter Weise zur gemeinsamen Bewegung miteinander gekoppelt sind.

[0019] Weiter bevorzugt spannen die zumindest zwei Ventilöffnungen jeweils eine Fläche auf, die sich parallel zu einer Bewegungsrichtung des Ventilelementes zwischen den zumindest zwei Schaltstellungen erstreckt. Das heißt, vorzugsweise wird das Ventilelement zum Öffnen und Schließen der Ventilöffnungen parallel zu diesen bzw. den von den Ventilöffnungen aufgespannten Flächen bewegt und nicht zum Öffnen und Schließen den Ventilöffnungen angenähert und von diesen entfernt. Dies ermöglicht eine sehr einfache konstruktive Ausgestaltung zweier wechselseitig von einem Ventilelement zu öffnenden und zu schließenden Ventilöffnungen. Ferner wirkt vorzugsweise ein an den Ventilöffnungen herrschender Druck nicht in Bewegungsrichtung des Ventilelementes.

[0020] Weiter bevorzugt ist das Ventilelement derart ausgestaltet und angeordnet, dass es durch die Flüssigkeitsströmung entlang einem ersten Bewegungspfad bzw. einer ersten Bewegungsbahn zwischen zumindest zwei Schaltstellungen bewegbar ist und zusätzlich durch einen von dem Laufrad erzeugten Druck entlang einem zweiten Bewegungspfad bzw. entlang einer zweiten Bewegungsbahn mit Kraft beaufschlagbar oder bewegbar ist, wobei der zweite Bewegungspfad gewinkelt zu dem ersten Bewegungspfad verläuft. Dies ermöglicht es, den Wechsel zwischen den Schaltstellungen sehr reibungsarm durchzuführen, da in diesem Zustand vorzugsweise das Ventilelement nicht an erforderlichen Ventilsitzen und/oder Anlageflächen anliegt oder an diesen relativ reibungsarm anliegt. Durch den Druck kann das Ventilelement so mit Kraft beaufschlagt werden, dass es an den Ventilsitzen zur Anlage kommt bzw. mit größerer Kraft dichtend gegen die Ventilsitze und/oder Anlageflächen gedrückt wird. In diesem Zustand tritt dann eine größere Reibung bzw. Haltekraft zwischen dem Ventilelement und den Ventilsitzen bzw. weiteren Anlageflächen auf, welche gleichzeitig dazu dienen können, das Ventilelement in der erreichten Schaltstellung zu halten.

[0021] So ist das Ventilelement bevorzugt entlang dem zweiten Bewegungspfad zwischen einer ersten gelösten Position, in welcher das Ventilelement zwischen den zumindest zwei Schaltstellungen bewegbar ist, und einer anliegenden Position, an welcher es an zumindest einer Anlagefläche anliegt, bewegbar. Darunter ist zu verstehen, dass das Ventilelement in der ersten Position gegebenenfalls ebenfalls an der Anlagefläche anliegen kann, jedoch so, dass es an der Anlagefläche relativ reibungsarm entlanggleiten kann. In der zweiten Position hingegen wird das Ventilelement so an die Anlagefläche angedrückt, dass eine stärkere Reibung zwischen dem Ventilelement und der Anlage auftritt, welche eine Haltekraft erzeugt, welche eine weitere Bewegung des Ventilelementes über die Flüssigkeitsströmung, wie es vorangehend beschrieben wurde, unterbindet. Durch eine solche Ausgestaltung ist es möglich, das Ventilelement durch entsprechenden Antrieb des Antriebsmotors und Ausbildung einer Flüssigkeitsströmung zu bewegen, solange nicht ein solcher Flüssigkeitsdruck erreicht wird, welcher das Ventilelement in Anlage mit der Anlagefläche drückt. Ein solcher Druck kann durch Drehzahlerhöhung und insbesondere sehr schnelle Drehzahlerhöhung des Antriebsmotors erreicht werden, so dass das Ventilelement dann gezielt in einer erreichten Schaltstellung gehalten werden kann. Vorzugsweise ist der Druck, bei welchem das Ventilelement an der Anlagefläche haltend zur Anlage kommt, so gewählt, das er niedriger als der niedrigste Betriebsdruck im Normalbetrieb des Kreiselpumpenaggregates ist. Der Druck kann durch ein Rückstellelement wie eine Rückstellfeder eingestellt sein, welche so angeordnet ist, dass sie das Ventilelement bei niedrigerem Druck in die gelöste erste Position bewegt.

[0022] Das Ventilelement und die Anlagefläche sind vorzugsweise so ausgestaltet, dass sie in der anliegenden Position miteinander kraft- und/oder formschlüssig in Eingriff treten, wobei über diesen Eingriff vorzugsweise eine größere Kraft übertragbar ist als zwischen der Flüssigkeitsströmung und dem zumindest einen beweglichen Abschnitt der Wandung. So wird sichergestellt, dass das Ventilelement, wenn es mit der Anlagefläche in Anlage ist, in der erreichten Schaltstellung gehalten wird und von der Flüssigkeitsströmung nicht weiterbewegt werden kann. Die Flüssigkeitsströmung kann dann weiter entlang dem beweglichen Abschnitt der Wandung strömen, wobei dieser nicht mehr mitbewegt wird.

[0023] Nachfolgend wird die Erfindung beispielhaft anhand der beigefügten Figuren beschrieben. In diesen zeigt:
Fig. 1
eine Explosionsansicht eines Kreiselpumpenaggregates gemäß einer ersten Ausführungsform der Erfindung,
Fig. 2
eine perspektivische Ansicht der Unterseite des Ventilelementes des Kreiselpumpenaggregates gemäß Fig. 1,
Fig. 3
eine perspektivische Ansicht des Pumpengehäuses des Kreiselpumpenaggregates gemäß Fig. 1 im geöffneten Zustand,
Fig. 4
eine Schnittansicht des Kreiselpumpenaggregates gemäß Fig. 1,
Fig. 5
eine Schnittansicht des Pumpengehäuses des Kreiselpumpenaggregates gemäß Fig. 4 mit dem Ventilelement in einer ersten Schaltstellung,
Fig. 6
eine Schnittansicht entsprechend Fig. 5 mit dem Ventilelement in einer zweiten Schaltstellung,
Fig. 7
schematisch den hydraulischen Aufbau mit einer Heizungsanlage mit einem Kreiselpumpenaggregat gemäß Fig. 1 bis 6,
Fig. 8
eine Explosionsansicht eines Kreiselpumpenaggregates gemäß einer zweiten Ausführungsform der Erfindung,
Fig. 9
eine Schnittansicht des Kreiselpumpenaggregates gemäß Fig. 8 mit dem Ventilelement in einer ersten Position,
Fig. 10
eine Schnittansicht entsprechend Fig. 9 mit dem Ventilelement in einer zweiten Position,
Fig. 11
eine Explosionsansicht eines Kreiselpumpenaggregates gemäß einer dritten Ausführungsform der Erfindung,
Fig. 12
eine Schnittansicht des Kreiselpumpenaggregates gemäß Fig. 11 mit dem Ventilelement in einer ersten Position,
Fig. 13
eine Schnittansicht entsprechend Fig. 12 mit dem Ventilelement in einer zweiten Position,
Fig. 14
eine Explosionsansicht eines Pumpengehäuses mit einem Ventilelement gemäß einer vierten Ausführungsform der Erfindung,
Fig. 15
eine Schnittansicht eines Kreiselpumpenaggregates gemäß der vierten Ausführungsform der Erfindung,
Fig. 16
eine Explosionsansicht eines Kreiselpumpenaggregates gemäß einer fünften Ausführungsform der Erfindung,
Fig. 17
eine Schnittansicht des Kreiselpumpenaggregates gemäß Fig. 16 mit dem Ventilelement in einer ersten Position, und
Fig. 18
eine Schnittansicht entsprechend Fig. 17 mit dem Ventilelement in einer zweiten Position.


[0024] Die in der nachfolgenden Beschreibung beschriebenen Ausführungsbeispiele des erfindungsgemäßen Kreiselpumpenaggregates betreffen Anwendungen in Heizungs- und/oder Klimasystemen, in welchen von dem Kreiselpumpenaggregat ein flüssiger Wärmeträger, insbesondere Wasser, umgewälzt wird.

[0025] Das Kreiselpumpenaggregat gemäß der ersten Ausführungsform der Erfindung weist ein Motorgehäuse 2 auf, in welchem ein elektrischer Antriebsmotor angeordnet ist. Dieser weist in bekannter Weise einen Stator 4 sowie einen Rotor 6 auf, welcher auf einer Rotorwelle 8 angeordnet ist. Der Rotor 6 dreht in einem Rotorraum, welcher von dem Statorraum, in welchem der Stator 4 angeordnet ist, durch ein Spaltrohr bzw. einen Spalttopf 10 getrennt ist. Das heißt, es handelt sich hierbei um einen nasslaufenden elektrischen Antriebsmotor. An einem Axialende ist das Motorgehäuse 2 mit einem Pumpengehäuse 12 verbunden, in welchem ein mit der Rotorwelle 8 drehfest verbundenes Laufrad 14 rotiert.

[0026] An dem dem Pumpengehäuse 12 entgegengesetzten Axialende des Motorgehäuses 2 ist ein Elektronikgehäuse 16 angeordnet, welches eine Steuerelektronik bzw. Steuereinrichtung zur Ansteuerung des elektrischen Antriebsmotors in dem Pumpengehäuse 2 beinhaltet. Das Elektronikgehäuse 16 könnte in entsprechender Weise auch an einer anderen Seite des Statorgehäuses 2 angeordnet sein.

[0027] In dem Pumpengehäuse 12 ist darüber hinaus ein bewegliches Ventilelement 18 angeordnet. Dieses Ventilelement 18 ist auf einer Achse 20 im Inneren des Pumpengehäuses 12 drehbar gelagert, und zwar so, dass die Drehachse des Ventilelementes 18 mit der Drehachse X des Laufrades 14 fluchtet. Die Achse 20 ist am Boden des Pumpengehäuses 12 drehfest fixiert. Das Ventilelement 18 ist nicht nur um die Achse 20 drehbar, sondern um ein gewisses Maß in Längsrichtung X bewegbar. In einer Richtung wird diese lineare Bewegbarkeit durch das Pumpengehäuse 12, an welches das Ventilelement 18 mit seinem Außenumfang anschlägt, begrenzt. In der entgegengesetzten Richtung wird die Bewegbarkeit durch die Mutter 22 begrenzt, mit welcher das Ventilelement 18 auf der Achse 20 befestigt ist. Es ist zu verstehen, dass statt der Mutter 22 auch eine andere axiale Befestigung des Ventilelementes 18 auf der Achse 20 gewählt werden könnte.

[0028] Das Ventilelement 18 bildet ein Trennelement, welches in dem Pumpengehäuse 12 einen Saugraum 24 von einem Druckraum 26 trennt. In dem Druckraum 26 rotiert das Laufrad 14. Der Druckraum 26 ist mit dem Druckanschluss bzw. Druckstutzen 28 des Kreiselpumpenaggregates verbunden, welcher den Auslass des Kreiselpumpenaggregates bildet. In den Saugraum 24 münden zwei saugseitige Eingänge 28 und 30, von welchen der Eingang 28 mit einem ersten Sauganschluss 32 und der Eingang 30 mit einem zweiten Sauganschluss 34 des Pumpengehäuses 12 verbunden ist.

[0029] Das Ventilelement 18 ist scheibenförmig ausgebildet und übernimmt gleichzeitig die Funktion einer üblichen Deflektorplatte, welche den Saugraum 24 von dem Druckraum 26 trennt. Das heißt, es dient im Bereich des Druckraums der Strömungsführung und bildet einen Teil der Wandung des Druckraumes 26. Das Ventilelement 18 weist eine zentrale Saugöffnung 36 auf, welche einen vorstehenden umfänglichen Kragen aufweist, der mit dem Saugmund 38 des Laufrades 14 in Eingriff ist und im Wesentlichen mit dem Saugmund 38 in dichter Anlage ist. Dem Laufrad 14 zugewandt ist das Ventilelement 18 im Wesentlichen glatt ausgebildet. An der dem Laufrad 14 abgewandten Seite weist das Ventilelement zwei ringförmige Dichtflächen 40 auf, welche in diesem Ausführungsbeispiel auf geschlossenen rohrförmigen Stutzen gelegen sind. Die beiden ringförmigen Dichtflächen 40 sind an zwei diametral entgegengesetzten Positionen auf dem Dichtelement 18 bezüglich dessen Drehachse X angeordnet, so dass sie im Umfangsbereich der Eingänge 28 und 30 am Boden des Pumpengehäuses 12 in dichte Anlage treten können, um die Eingänge 28 und 30 zu verschließen. In einer Winkelposition 90° versetzt zu den Dichtflächen 40 sind Stützelemente 42 angeordnet, welche ebenfalls am Umfangsbereich der Eingänge 28, 30 zur Anlage kommen können, aber so voneinander beabstandet sind, dass sie die Eingänge 28, 30 dann nicht verschließen. Die Eingänge 28 und 30 liegen nicht auf einer Durchmesserlinie bezüglich der Drehachse X, sondern auf einer radial versetzten Geraden, so dass bei Drehung des Ventilelementes 18 um die Drehachse X in einer ersten Schaltstellung der Eingang 38 von einer Dichtfläche 40 verschlossen ist, während die Stützelemente 42 an dem Eingang 30 liegen und diesen öffnen. In einer zweiten Schaltstellung ist der Eingang 30 von einer Dichtfläche 40 verschlossen, während die Stützelemente 42 im Umfangsbereich des Einganges 28 anliegen und diesen öffnen. Die erste Schaltstellung, in welcher der Eingang 38 verschlossen und der Eingang 30 geöffnet ist, ist in Fig. 5 gezeigt. Die zweite Schaltstellung, in welcher der Eingang 30 verschlossen und der Eingang 28 geöffnet ist, ist in Fig. 6 dargestellt. Das bedeutet, durch eine Drehung des Ventilelementes um 90° um die Drehachse X kann zwischen den beiden Schaltstellungen umgeschaltet werden. Die beiden Schaltstellungen werden durch ein Anschlagelement 44, welches abwechselnd an zwei Anschlägen 46 in dem Pumpengehäuse 12 anschlägt, begrenzt.

[0030] In einer Ruhestellung, das heißt, wenn das Kreiselpumpenaggregat nicht in Betrieb ist, drückt eine Feder 48 das Ventilelement 18 in eine gelöste Stellung, in welcher der Außenumfang des Ventilelementes 18 nicht dicht an dem Pumpengehäuse 12 und die Dichtflächen 40 nicht dicht im Umfangsbereich der Eingänge 28 und 30 anliegen, so dass das Ventilelement 18 um die Achse 20 drehen kann. Wenn nun von der Steuereinrichtung 17 in dem Elektronikgehäuse 16 der Antriebsmotor in Drehung versetzt wird, so dass das Laufrad 14 rotiert, wird in dem Druckraum 26 eine umlaufende Strömung erzeugt, welche über Reibung an der Stirnseite des Ventilelementes 18 dieses in Drehrichtung der Strömung mitdreht. Das Ventilelement 18 bildet somit einen beweglichen Abschnitt der Wandung des Druckraumes 26, welcher durch die Strömung mitbewegt wird. Die Steuereinrichtung 17 ist so ausgebildet, dass sie den Antriebsmotor wahlweise in zwei Drehrichtungen antreiben kann. So kann das Ventilelement 18 um die Drehachse X je nach Drehrichtung des Laufrades 14 über die von dem Laufrad 14 in Rotation versetzte Strömung ebenfalls in zwei Drehrichtungen bewegt werden, da die Strömung im Umfangsbereich des Laufrades 14 stets in dessen Drehrichtung verläuft. So kann das Ventilelement 18 zwischen den beiden durch die Anschläge 46 begrenzten Schaltstellungen gedreht werden.

[0031] Wenn das Laufrad 14 mit ausreichender Drehzahl rotiert, baut sich in dem Druckraum 26 ein Druck auf, welcher an der Oberfläche des Ventilelementes 18, welche die Saugöffnung 36 umgibt, eine Druckkraft erzeugt, welche der Federkraft der Feder 48 entgegengesetzt ist, so dass das Ventilelement 18 gegen die Federkraft der Feder 48 in axialer Richtung X so bewegt wird, dass es an seinem Außenumfang an einer ringförmigen Anlageschulter 50 an dem Pumpengehäuse 12 dichtend zur Anlage kommt. Gleichzeitig kommt je nach Schaltstellung eine der Dichtflächen 40 im Umfang eines der Eingänge 28 und 30 dichtend zur Anlage, so dass einer der Eingänge 28, 30 verschlossen wird. An dem anderen Eingang kommen die Stützelemente 42 zur Anlage, so dass dieser Eingang offen bleibt und ein Strömungsweg von diesem Eingang 28, 30 zu der Saugöffnung 36 und von dort in das Innere des Laufrades 14 gegeben ist. Durch die Anlage des Ventilelementes 18 an der Anlageschulter 50 und der Dichtfläche 40 im Umfangsbereich eines der Eingänge 28, 30 wird gleichzeitig eine reibschlüssige Anlage zwischen Ventilelement 18 und Pumpengehäuse 12 geschaffen. Diese reibschlüssige Anlage sorgt dafür, dass das Ventilelement 18 in der erreichten Schaltstellung gehalten wird. Dies ermöglicht es, den Antriebsmotor kurzzeitig wieder außer Betrieb zu nehmen und in der entgegengesetzten Drehrichtung wieder in Betrieb zu nehmen, ohne dass das Ventilelement 18 gedreht wird. Erfolgt das Ausschalten und wieder in Betrieb nehmen des Motors schnell genug, verringert sich der Druck in dem Druckraum 26 nicht so weit, dass das Ventilelement 18 sich wieder in axialer Richtung in seine gelöste Position bewegen kann. Dies ermöglicht es, das Laufrad beim Betrieb des Kreiselpumpenaggregates stets in seiner bevorzugten Drehrichtung, für welche die Schaufeln ausgelegt sind, anzutreiben und die entgegengesetzte Drehrichtung lediglich zum Bewegen des Ventilelementes 18 in die entgegengesetzte Drehrichtung zu nutzen.

[0032] Das beschriebene Kreiselpumpenaggregat gemäß der ersten Ausführungsform der Erfindung kann beispielsweise in einem Heizungssystem eingesetzt werden, wie es in Fig. 7 gezeigt ist. Ein derartiges Heizungssystem findet üblicherweise in Wohnungen oder Wohnhäusern Verwendung und dient zur Erwärmung des Gebäudes und zur Bereitstellung von erwärmtem Brauchwasser. Die Heizungsanlage weist eine Wärmequelle 52, beispielsweise in Form eines Gasheizkessels, auf. Ferner ist ein Heizkreis 54 vorhanden, welcher beispielsweise durch verschiedene Heizkörper eines Gebäudes führt. Darüber hinaus ist ein Sekundärwärmetauscher 56 vorgesehen, über welchen Brauchwasser erwärmt werden kann. In derartigen Heizungsanlagen ist üblicherweise ein Umschaltventil erforderlich, welches den Wärmeträgerstrom wahlweise durch den Heizkreis 54 oder Sekundärwärmetauscher 56 lenkt. Mit dem erfindungsgemäßen Kreiselpumpenaggregat 1 wird diese Ventilfunktion durch das Ventilelement 18, welches in das Kreiselpumpenaggregat 1 integriert ist, übernommen. Die Steuerung erfolgt von der Steuereinrichtung 17 in dem Elektronikgehäuse 16. An den Druckanschluss 27 des Pumpengehäuses 12 ist die Wärmequelle 52 angeschlossen. An den Sauganschluss 32 ist ein Strömungsweg 58 angeschlossen, während an den Sauganschluss 34 ein Strömungsweg 60 durch den Heizkreis 54 angeschlossen ist. So kann je nach Schaltstellung des Ventilelementes 18 zwischen dem Strömungsweg 58 durch den Sekundärwärmetauscher 56 oder dem Strömungsweg 60 durch den Heizkreis 54 umgeschaltet werden, ohne dass ein Ventil mit einem zusätzlichen Antrieb erforderlich wäre.

[0033] Das zweite Ausführungsbeispiel gemäß Fig. 8 bis 10 unterscheidet sich von dem ersten Ausführungsbeispiel im Aufbau des Ventilelementes 18'. Auch in diesem Ausführungsbeispiel trennt das Ventilelement 18' als Trennelement den Druckraum 26 von einem Saugraum 24 des Pumpengehäuses 12 und bildet einen beweglichen Abschnitt der strömungsführenden Wandung des Druckraumes 26. Das Ventilelement 18 weist eine zentrale Saugöffnung 36' auf, in welche der Saugmund 38 des Laufrades 14 dichtend eingreift. Der Saugöffnung 36 entgegengesetzt weist das Ventilelement 18' eine Öffnung 62 auf, welche abhängig von der Schaltstellung des Ventilelementes 18' wahlweise mit einem der Eingänge 28, 30 zur Deckung gebracht werden kann. Die Eingänge 28`,30` unterscheiden sich in diesem Ausführungsbeispiel in ihrer Formgebung von den Eingängen 28, 30 gemäß der vorangehenden Ausführungsform. Das Ventilelement 18' weist einen zentralen Vorsprung 64 auf, welcher in ein zentrales Loch 60 im Boden des Pumpengehäuses 12 eingreift und dort um die Drehachse X drehend gelagert ist. Gleichzeitig lässt der Vorsprung 64 in dem Loch 66 ebenfalls eine Axialbewegung entlang der Drehachse X zu, welche in einer Richtung durch den Boden des Pumpengehäuses 12 und in der anderen Richtung durch das Laufrad 14 begrenzt wird. An seinem Außenumfang weist das Ventilelement 18' einen Stift 68 auf, welcher in einer halbkreisförmigen Nut 70 am Boden des Pumpengehäuses 12 eingreift. Die Enden der Nut 70 dienen als Anschlagflächen für den Stift 68 in den beiden möglichen Schaltstellungen des Ventilelementes 18', wobei in einer ersten Schaltstellung die Öffnung 62 über dem Eingang 28' und in einer zweiten Schaltstellung die Öffnung 62 über dem Eingang 30' liegt und der jeweils andere Eingang durch den Boden des Ventilelementes 18' verschlossen wird. Die Drehbewegung des Ventilelementes 18' zwischen den beiden Schaltstellungen erfolgt auch in diesem Ausführungsbeispiel durch die in dem Druckraum 26 von dem Laufrad 14 verursachte Strömung. Um diese noch besser auf das Ventilelement 18' zu übertragen, ist es mit in dem Druckraum 26 gerichteten Vorsprüngen 72 versehen. Wenn das Kreiselpumpenaggregat 1 außer Betrieb genommen wird, drückt die Feder 48 das Ventilelement 18' in die in Fig. 10 gezeigte gelöste Stellung, in welcher es nicht am Boden im Umfang der Eingänge 28' und 30' anliegt. In dieser stößt es axial mit einem zentralen Zapfen 74 an der Stirnseite der Motorwelle 8 an und wird durch diesen Anschlag in seiner axialen Bewegung begrenzt. Wenn der Druck in dem Druckraum 26 ausreichend groß ist, wird das Ventilelement 18' in die in Fig. 9 gezeigte anliegende Position gedrückt, in welcher das Ventilelement 18' am Boden des Pumpengehäuses 12 im Umfangsbereich der Eingänge 28' und 30' zur Anlage kommt und gleichzeitig der Zapfen 24 von der Stirnseite der Rotorwelle 8 abgehoben ist. In dieser Position rotiert das Laufrad 14 dann im Normalbetrieb des Umwälzpumpenaggregates.

[0034] Das dritte Ausführungsbeispiel gemäß Fig. 11 bis 13 zeigt eine weitere mögliche Ausgestaltung des Ventilelementes 18". Dieses Ausführungsbeispiel unterscheidet sich von den vorangehenden Ausführungsbeispielen im Aufbau des Ventilelementes 18". Dieses ist als Ventiltrommel ausgebildet. Das Pumpengehäuse 12 entspricht im Wesentlichen dem Aufbau gemäß Fig. 1 bis 6, wobei insbesondere die Anordnung der Eingänge 28 und 30 der anhand des ersten Ausführungsbeispiels beschriebenen Anordnung entspricht. Die Ventiltrommel des Ventilelementes 18" besteht aus einem topfförmigen Unterteil, welches durch einen Deckel 78 verschlossen ist. Der Deckel 78 ist dem Druckraum 26 zugewandt und weist die zentrale Saugöffnung 36 auf, welche mit ihrem axial gerichteten Kragen in den Saugmund 38 des Laufrades 14 eingreift. Der Deckel 78 bildet somit einen beweglichen Abschnitt der strömungsführenden Wandungen des Druckraumes 26. An der entgegengesetzten Seite weist der Boden des Unterteils 36 eine Eintrittsöffnung 80 auf, welche je nach Schaltstellung mit einem der Eingänge 28, 30 zur Deckung gebracht wird, während der jeweils andere Eingang 28, 30 durch den Boden des Unterteils 26 verschlossen wird. Das Ventilelement 18'' ist drehbar auf einer Achse 20 gelagert, welche im Boden des Pumpengehäuses 12 befestigt ist, wobei die Drehachse, die durch die Achse 20 definiert wird, der Drehachse X des Laufrades 14 entspricht. Auch in diesem Ausführungsbeispiel ist das Ventilelement 18" entlang der Achse 20 um ein gewisses Maß axial verschiebbar, wobei auch hier eine Feder 48 vorgesehen ist, welche in der Ruhelage das Ventilelement 18" in seine in Fig. 13 gezeigte gelöste Stellung drückt. Diese axiale Stellung wird auch in diesem Ausführungsbeispiel durch die Mutter 22 begrenzt. In der gelösten Stellung ist das Ventilelement 18", wie vorangehend beschrieben, durch die Strömung, welche von dem Laufrad 14 verursacht wird, drehbar, das heißt, es wird eine hydraulische Kupplung zwischen Laufrad 14 und Ventilelement 18" hergestellt. In der anliegenden Position, welche in Fig. 12 gezeigt ist, wird je nach Schaltstellung zum einen einer der Eingänge 28, 30 dicht verschlossen. Zum anderen erfolgt auch eine Abdichtung zwischen Saugraum 24 und Druckraum 26 durch die Anlage des Ventilelementes 18" an der Anlageschulter 50.

[0035] In diesem Ausführungsbeispiel ist die Lagerung des Ventilelementes 18" auf der Achse 20 darüber hinaus durch zwei Hülsen 82 und 84 gekapselt, so dass diese Bereiche vor Verunreinigungen durch das geförderte Fluid geschützt sind und gegebenenfalls vorab geschmiert werden können. Es wird eine möglichst leichtgängige Lagerung angestrebt, um die leichte Drehbarkeit des Ventilelementes 18" durch die von dem Laufrad 14 verursachte Strömung zu gewährleisten. Es ist zu verstehen, dass auch bei den anderen hier beschriebenen Ausführungsbeispielen die Lagerung entsprechend gekapselt sein könnte.

[0036] Fig. 14 und 15 zeigen ein viertes Ausführungsbeispiel, bei welchem der Aufbau des Pumpengehäuses 12 dem Aufbau des Pumpengehäuses 12 gemäß dem ersten und dem dritten Ausführungsbeispiel entspricht. In diesem Ausführungsbeispiel wird die Drehbewegung des Ventilelementes 18c durch die saugseitige Strömung, das heißt, die in den Saugmund 38 des Laufrades 14 eintretende Strömung, unterstützt. Auch in diesem Ausführungsbeispiel ist das Ventilelement 18c im Wesentlichen trommelförmig ausgebildet und weist einen dem Druckraum 26 zugewandten Deckel 28 mit der zentralen Saugöffnung 36 auf, welche mit dem Saugmund 38, wie vorangehend beschrieben wurde, in Eingriff ist. Das hier gezeigte Unterteil 76b weist zwei Eintrittsöffnungen 80 auf, welche je nach Schaltstellung mit einem der Eingänge 28, 30 zur Überdeckung gebracht werden können, wobei der jeweils andere Eingang 28, 30 durch den Boden des Unterteils 46b dicht verschlossen wird, wie es beim vorangehenden Ausführungsbeispiel beschrieben wurde. Zwischen dem Unterteil 76b und dem Deckel 78 ist ein Leitrad 86 mit Schaufeln angeordnet, in welches die Strömung aus den Eintrittsöffnungen 80 radial eintritt und axial zu der zentralen Saugöffnung 36 austritt. Das Leitrad 86 ist ein strömungsführendes Bauteil, welches mit seinen Wandungen der Strömungsführung dient und von der Strömung als beweglicher Teil der strömungsführenden Wandungen mitbewegt werden kann. Durch die Schaufeln des Leitrades 86 wird ebenfalls ein Drehmoment um die Achse 20 erzeugt, durch welches das Ventilelement 18c zwischen den Schaltstellungen bewegt werden kann. Dies funktioniert im Wesentlichen so, wie es vorangehend beschrieben wurde. Es kann auch zusätzlich eine Feder 48, wie sie vorangehend beschrieben wurde, vorgesehen sein, um das Ventilelement 18c in eine gelöste Stellung zu bewegen. Da durch die Formgebung der Schaufeln des Leitrades 86 stets ein Drehmoment in derselben Richtung erzeugt wird, unabhängig davon, in welcher Richtung das Laufrad 14 rotiert, erfolgt bei diesem Ausführungsbeispiel die Rückstellbewegung durch ein Gewicht 88. Im Betrieb befindet sich das Kreiselpumpenaggregat stets in der Einbaulage, welche in Fig. 15 gezeigt ist, in welcher sich die Drehachse X horizontal erstreckt. Wenn das Kreiselpumpenaggregat ausgeschaltet ist, dreht sich das Ventilelement 18c um die Achse 20 stets so, dass das Gewicht 88 unten liegt. Durch das von dem Leitrad 86 erzeugte Drehmoment kann das Ventilelement 18c gegen diese von dem Gewicht 88 erzeugte Rückstellkraft gedreht werden, wobei durch sehr schnelle Inbetriebnahme des Antriebsmotors in dem Druckraum 26 so schnell ein Druck aufgebaut werden kann, dass das Ventilelement 18c in seine anliegende Stellung tritt, wie sie oben beschrieben wurde, in welcher es kraftschlüssig drehfest am Pumpengehäuse 12 gehalten wird, ohne aus seiner Ruhelage herausbewegt zu werden. Es ist zu verstehen, dass eine Rückstellung des Ventilelementes durch Schwerkraft oder eine andere Rückstellkraft unabhängig vom Antrieb auch bei den anderen hier beschriebenen Ausführungsbeispielen zur Anwendung kommen könnte.

[0037] Das fünfte Ausführungsbeispiel gemäß Fig. 16 bis 18 unterscheidet sich von den vorangehenden Ausführungsbeispielen wiederum im Aufbau des Ventilelementes. Bei diesem Ausführungsbeispiel ist das Ventilelement 18d konisch ausgebildet. Das Ventilelement 18d weist ein konisches topfförmiges Unterteil 76d auf, welches durch einen Deckel 78d verschlossen ist, wobei in dem Deckel 78d wiederum eine zentrale Saugöffnung 36 ausgebildet ist, welche in der vorangehend beschriebenen Weise mit dem Saugmund 38 des Laufrades 14 in Eingriff ist. Der Deckel 78d grenzt an den Druckraum 26 an und bildet dort einen beweglichen Abschnitt der strömungsführenden Wandung. In der konischen Umfangsfläche des Unterteiles 76b sind Eintrittsöffnungen 90 ausgebildet, welche durch Drehung des Ventilelementes 18d mit Eingängen, welche mit den Sauganschlüssen 32 und 34 verbunden sind, wahlweise zur Überdeckung gebracht werden können, um einen Strömungsweg durch das Innere des Ventilelementes 18d zu der Saugöffnung 36 herzustellen. Zwischen den Eintrittsöffnungen 90 sind an dem konischen Unterteil Dichtflächen 92 ausgebildet, welche den jeweils anderen Eingang verschließen können. Wie auch das Ausführungsbeispiel 2 gemäß Fig. 8 bis 10 weist hier das Ventilelement 18d einen stiftförmigen Vorsprung 64 auf, welcher in einer Ausnehmung am Boden des Pumpengehäuses 12 eingreift und dort das Ventilelement 18d um die Drehachse X drehend lagert. Dabei ist auch hier eine axiale Bewegung zwischen einer gelösten Position, wie sie in Fig. 18 gezeigt ist, und einer anliegenden Position, wie sie in Fig. 17 gezeigt ist, möglich. In der gelösten Position liegt das Unterteil 76d des Ventilelementes 18d im Wesentlichen nicht an dem Pumpengehäuse 12 an, so dass es durch die Strömung im Druckraum 26 drehbar ist, wie es bei den vorangehend beschriebenen Ausführungsbeispielen beschrieben wurde. Dabei kann hier abhängig von der Drehrichtung des Laufrades 14 wiederum ein Hin-und-Her-Bewegen des Ventilelementes 18d erreicht werden, wobei die Drehbewegung des Ventilelementes 18d auch hier wieder durch nicht gezeigte Anschläge begrenzt werden kann. In der anliegenden Position gemäß Fig. 17 erfolgt zum einen eine dichte Anlage des Ventilelementes 18d, zum anderen wird es kraftschlüssig gehalten, so dass es wiederum, solange der Druck im Druckraum 26 ausreichend groß ist, auch bei einem Drehrichtungswechsel des Laufrades 14 nicht zwischen den Schaltstellungen bewegt wird.

[0038] In den beschriebenen Ausführungsbeispielen dient das Pumpengehäuse 12 als kombiniertes Ventil- und Pumpengehäuse, welches einteilig ausgebildet ist. Es ist jedoch zu verstehen, dass das Pumpengehäuse 12 in entsprechender Weise mehrteilig ausgebildet sein könnte. Darüber hinaus wäre es möglich, ein getrenntes Pumpengehäuse sowie ein getrenntes Ventilgehäuse vorzusehen, wobei das Ventilgehäuse lediglich das Ventilelement 18 und das Pumpengehäuse 12 lediglich das Laufrad 12 beherbergt. Ein solches Pumpengehäuse und Ventilgehäuse könnten in geeigneter Weise durch Strömungswege miteinander verbunden sein oder auch direkt aneinandergesetzt sein, sodass insgesamt im Wesentlichen eine Form erreicht wird, wie bei dem einteiligen Pumpengehäuse gemäß der vorangehenden Beschreibung.

Bezugszeichenliste



[0039] 
1
Kreiselpumpenaggregat
2
Motorgehäuse
4
Stator
6
Rotor
8
Rotorwelle
10
Spaltrohr
12
Pumpengehäuse
14
Laufrad
16
Elektronikgehäuse
17
Steuereinrichtung
18,18', 18", 18c, 18d
Ventilelement
20
Achse
22
Mutter
24
Saugraum
26
Druckraum
27
Druckanschluss
28, 30
Eingänge
28', 30'
Eingänge
32, 34
Sauganschlüsse
36, 36'
Saugöffnung
38
Saugmund
40
Dichtflächen
42
Stützelemente
44
Anschlagelement
46
Anschläge
48
Feder
50
Anlageschulter
52
Wärmequelle
54
Heizkreis
56
Sekundärwärmetauscher
58,60
Strömungswege
62
Öffnung
64
Vorsprung
66
Loch
68
Stift
70
Nut
72
Vorsprünge
74
Zapfen
76, 76b, 76d
Unterteil
78, 78d
Deckel
80
Eintrittsöffnung
82, 84
Hülsen
86
Leitrad
90
Gewicht
90
Eintrittsöffnung
92
Dichtflächen
X
Drehachse



Ansprüche

1. Hydraulische Baueinheit mit einem Kreiselpumpenaggregot, welches einen elektrischen Antriebsmotor (4, 6) sowie zumindest ein von diesem angetriebenes Laufrad (14) aufweist, sowie zumindest einem Ventilelement (18), welches derart angeordnet ist, dass es durch eine von dem Laufrad (14) verursachte Flüssigkeitsströmung bewegbar ist,
dadurch gekennzeichnet, dass
zumindest ein Abschnitt (18; 78) einer einen Strömungsweg in der hydraulischen Baueinheit begrenzenden Wandung beweglich ausgebildet ist,
dieser bewegliche Abschnitt (18; 78; 86) der Wandung Teil des Ventilelementes (18) ist oder mit dem Ventilelement (18) zu dessen Bewegung verbunden ist, und dass
dieser bewegliche Abschnitt (18; 78; 86) zumindest teilweise bewirkt durch Reibungskräfte von der entlang der Wandung verlaufenden Flüssigkeitsströmung bewegbar ist.
 
2. Hydraulische Baueinheit nach Anspruch 1, dadurch gekennzeichnet, dass der zumindest eine bewegliche Abschnitt (18; 78; 86) der Wandung derart angeordnet ist, dass er parallel zu der entlang der Wandung verlaufenden Flüssigkeitsströmung bewegbar ist.
 
3. Hydraulische Baueinheit nach Anspruch 1 oder 2, dadurch gekennzeichnet, dass der zumindest eine bewegliche Abschnitt (18; 78) der Wandung einen sich druckseitig von dem Kreiselpumpenaggregat erstreckenden Strömungsweg (26) begrenzt.
 
4. Hydraulische Baueinheit nach einem der vorangehenden Ansprüche, dadurch gekennzeichnet, dass der zumindest eine bewegliche Abschnitt der Wandung einen sich saugseitig von dem Kreiselpumpenaggregat (1) erstreckenden Strömungsweg (86) begrenzt.
 
5. Hydraulische Baueinheit nach einem der vorangehenden Ansprüche, dadurch gekennzeichnet, dass der bewegliche Abschnitt (18; 78; 86) der Wandung derart ausgebildet und angeordnet ist, dass er durch eine Verlustenergie, welche von den Reibungskräften an der Wandung des Strömungsweges verursacht wird, gemeinsam mit dem zumindest einen Ventilelement (18) bewegbar ist.
 
6. Hydraulische Baueinheit nach einem der vorangehenden Ansprüche, dadurch gekennzeichnet, dass der zumindest eine Abschnitt (18; 78; 86) der Wandung drehbar in einem Pumpengehäuse (12) gelagert ist und vorzugsweise gemeinsam mit dem zumindest einen Ventilelement (18) drehbar in dem Pumpengehäuse (12) gelagert ist.
 
7. Hydraulische Baueinheit nach Anspruch 6, dadurch gekennzeichnet, dass der zumindest eine bewegliche Abschnitt (18; 78; 86) derart ausgestaltet ist, dass die an ihm durch die Flüssigkeitsströmung wirkenden Reibungskräfte größer sind als diejenigen Reibungskräfte, welche in einer Lagerung des beweglichen Abschnittes (18; 78; 86) und des zumindest einen Ventilelementes (18) auftreten.
 
8. Hydraulische Baueinheit nach einem der vorangehenden Ansprüche, gekennzeichnet durch ein bewegliches Trennelement (18; 78), welches einen Saugraum (24) im Inneren eines Pumpengehäuses (12) des Kreiselpumpenaggregates von einem das Laufrad (14) umgebenden Druckraum (26) trennt, wobei eine dem Druckraum (26) zugewandte Oberfläche und/oder eine dem Saugraum (24) zugewandte Oberfläche des Trennelementes (18; 78) den zumindest einen beweglichen Abschnitt der Wandung bildet.
 
9. Hydraulische Baueinheit nach Anspruch 8, dadurch gekennzeichnet, dass das Trennelement (18; 78) einen Saugmund (38) des Laufrades (14) ringförmig umgibt.
 
10. Hydraulische Baueinheit nach Anspruch 8 oder 9, dadurch gekennzeichnet, dass das Trennelement (18; 78) von dem Ventilelement (18) gebildet wird.
 
11. Hydraulische Baueinheit nach Anspruch 10, dadurch gekennzeichnet, dass das Ventilelement (18) an einem zentralen Lager (20) drehbar gelagert ist, wobei sich die Drehachse (X) des Ventilelementes (18) vorzugsweise fluchtend zu der Drehachse (X) des Antriebsmotors (4, 6) erstreckt.
 
12. Hydraulische Baueinheit nach einem der vorangehenden Ansprüche, dadurch gekennzeichnet, dass das Ventilelement (18) zwischen zumindest zwei Schaltstellungen bewegbar ist.
 
13. Hydraulische Baueinheit nach einem der vorangehenden Ansprüche, dadurch gekennzeichnet, dass das Ventilelement (18) mit zumindest zwei Ventilöffnungen (28, 30) zweier Strömungskanäle derart zusammenwirkt, dass die Ventilöffnungen (28, 30) der Strömungskanäle abhängig von der Schaltstellung des Ventilelementes (18) unterschiedlich geöffnet sind.
 
14. Hydraulische Baueinheit nach Anspruch 13, dadurch gekennzeichnet, dass die zumindest zwei Ventilöffnungen (28, 30) jeweils eine Fläche aufspannen, welche sich parallel zu einer Bewegungsrichtung des Ventilelementes (18) zwischen den zumindest zwei Schaltstellungen erstreckt.
 
15. Hydraulische Baueinheit nach einem der vorangehenden Ansprüche, dadurch gekennzeichnet, dass das Ventilelement (18) derart ausgestaltet und angeordnet ist, dass es durch die Flüssigkeitsströmung entlang einem ersten Bewegungspfad zwischen zumindest zwei Schaltstellungen bewegbar ist und zusätzlich durch einen von dem Laufrad (14) erzeugten Druck entlang einem zweiten Bewegungspfad mit Kraft beaufschlagbar oder bewegbar ist, wobei der zweite Bewegungspfad gewinkelt zu dem ersten Bewegungspfad verläuft.
 
16. Hydraulische Baueinheit nach Anspruch 15, dadurch gekennzeichnet, dass das Ventilelement (18) entlang dem zweiten Bewegungspfad zwischen einer ersten gelösten Position, in welcher das Ventilelement (18) zwischen den zumindest zwei Schaltstellungen bewegbar ist, und einer anliegenden Position, an welcher es an zumindest einer Anlagefläche anliegt, bewegbar ist.
 
17. Hydraulische Baueinheit nach Anspruch 16, dadurch gekennzeichnet, dass das Ventilelement (18) und die Anlagefläche derart ausgestaltet sind, dass sie in der anliegenden Position miteinander kraft- und/oder formschlüssig in Eingriff treten, wobei über diesen Eingriff vorzugsweise eine größere Kraft übertragbar ist als zwischen der Flüssigkeitsströmung und dem zumindest einen beweglichen Abschnitt (18; 78; 86) der Wandung.
 




Zeichnung











































Recherchenbericht









Recherchenbericht