(19)
(11) EP 3 379 307 B9

(12) CORRECTED EUROPEAN PATENT SPECIFICATION
Note: Bibliography reflects the latest situation

(15) Correction information:
Corrected version no 1 (W1 B1)
Corrections, see
Description

(48) Corrigendum issued on:
27.10.2021 Bulletin 2021/43

(45) Mention of the grant of the patent:
14.07.2021 Bulletin 2021/28

(21) Application number: 16888211.6

(22) Date of filing: 27.12.2016
(51) International Patent Classification (IPC): 
G02B 6/26(2006.01)
G02B 6/38(2006.01)
G02B 6/02(2006.01)
(52) Cooperative Patent Classification (CPC):
G02B 6/02042; G02B 6/2555; G02B 6/3843; G02B 6/3885; G02B 6/4221
(86) International application number:
PCT/JP2016/088997
(87) International publication number:
WO 2017/130627 (03.08.2017 Gazette 2017/31)

(54)

ALIGNMENT DEVICE AND ALIGNMENT METHOD

AUSRICHTUNGSVORRICHTUNGEN UND AUSRICHTUNGSVERFAHREN

DISPOSITIF D'ALIGNEMENT ET PROCÉDÉ D'ALIGNEMENT


(84) Designated Contracting States:
AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

(30) Priority: 25.01.2016 JP 2016011873

(43) Date of publication of application:
26.09.2018 Bulletin 2018/39

(73) Proprietor: Nippon Telegraph and Telephone Corporation
Tokyo 100-8116 (JP)

(72) Inventors:
  • MATSUI, Takashi
    Musashino-shi Tokyo 180-8585 (JP)
  • NAKAJIMA, Kazuhide
    Musashino-shi Tokyo 180-8585 (JP)
  • SAKAMOTO, Taiji
    Musashino-shi Tokyo 180-8585 (JP)
  • SAITO, Koutaro
    Musashino-shi Tokyo 180-8585 (JP)

(74) Representative: Zech, Stefan Markus 
Meissner Bolte Patentanwälte Rechtsanwälte Partnerschaft mbB Postfach 86 06 24
81633 München
81633 München (DE)


(56) References cited: : 
WO-A1-2015/098863
JP-A- H 102 027
JP-A- H02 310 505
JP-A- 2002 328 253
JP-A- 2005 173 210
JP-A- 2014 122 962
US-A1- 2010 209 049
CN-B- 101 419 311
JP-A- H0 815 563
JP-A- H08 114 720
JP-A- 2005 099 362
JP-A- 2013 050 695
US-A- 5 758 000
   
  • KENGO WATANABE et al.: "Study of Fusion Splice for Single-mode Multicore Fiber", The Institute of Electrical Engineers of Japan Kenkyukai Shiryo, 17 November 2011 (2011-11-17), XP032078553,
   
Note: Within nine months from the publication of the mention of the grant of the European patent, any person may give notice to the European Patent Office of opposition to the European patent granted. Notice of opposition shall be filed in a written reasoned statement. It shall not be deemed to have been filed until the opposition fee has been paid. (Art. 99(1) European Patent Convention).


Description

FIELD



[0001] The embodiments of the present invention relate to an alignment apparatus that aligns an optical fiber, and an alignment method.

BACKGROUND



[0002] An alignment apparatus that aligns an optical fiber needs to not only perform alignment in the horizontal and vertical directions of a cross section of the optical fiber, but also align a rotation angle whose central axis is the longitudinal direction of the optical fiber. To align a rotation angle, some alignment apparatuses use active alignment, and some alignment apparatuses use passive alignment. Some alignment apparatuses using passive alignment perform alignment by observing an end face of an optical fiber, or by observing a side of an optical fiber by use of two markers on the orthogonal axis of the optical fiber.

[0003] Also, the technique of aligning an optical fiber having a core in its central portion, and the technique of aligning an optical fiber having two cores are published.

[0004] WO 2015 098863 A1 relates to a method for manufacturing a multi-core optical fiber and a multi-core optical fiber connector. It describes two aligning methods, that is, monitoring a marker of the fiber's end surface or via the side surface of the marker.

[0005] US 2010 0209049 A1 relates to a method of aligning a polarization-maintaining optical fiber, wherein a method that uses the fiber as a cylindrical optic to image a light source onto a detector in order to extract the rotational orientation is described.

SUMMARY



[0006] However, an alignment apparatus using active alignment is not suitable for work in a field, because a location where optical fibers are connected is apart from a location where power is monitored. An alignment apparatus that performs alignment by observing an end face of an optical fiber needs a complicated optical system such as a mirror for accurate core positioning. An alignment apparatus that performs alignment by observing a side of an optical fiber by use of two markers needs two types of different hole markers; an influence on connection characteristics of the hole markers is not clear.

[0007] In the technique of aligning an optical fiber having a core in its central portion, a connection method for enabling a connection in a predetermined polarization while performing rotation alignment is suggested. However, its applicability to a multi-core optical fiber is unclear; it is not clear if the connection of multi-core optical fibers by rotation alignment can be achieved. In the technique of aligning an optical fiber having two cores, applying the technique to an optical fiber having two cores is suggested. However, it is impossible to pinpoint each core for connection.

[0008] To solve the above problems, an alignment apparatus that can efficiently align an optical fiber, and an alignment method will be provided as set out in the appended claims.

BRIEF DESCRIPTION OF THE DRAWINGS



[0009] 

FIG. 1 is a block diagram showing a configuration example of the alignment apparatus according to the first embodiment.

FIG. 2 is a figure showing an operation example of a photographing unit according to the first embodiment.

FIG. 3 is a figure for describing an operation example of the control unit according to the first embodiment.

FIG. 4 is a flowchart for describing an operation example of the control unit according to the first embodiment.

FIG. 5A is a figure showing a configuration example of an optical fiber according to the first embodiment.

FIG. 5B is a figure showing a configuration example of an optical fiber according to the first embodiment.

FIG. 6A is a figure showing an example of the luminances of side images according to the first embodiment.

FIG. 6B is a figure showing an example of the luminances of side images according to the first embodiment.

FIG. 6C is a figure showing an example of the luminances of side images according to the first embodiment.

FIG. 7 is a figure showing an example of the relationships between rotation angles and correlation coefficients according to the first embodiment.

FIG. 8 is a figure showing an example of the relationships between correlation coefficients in the X-axis direction and connection losses according to the first embodiment.

FIG. 9 is a figure showing an example of the relationships between correlation coefficients in the Y-axis direction and connection losses according to the first embodiment.

FIG. 10 is a figure showing an example of the relationships between correlation coefficients in the X-axis direction and correlation coefficients in the Y-axis direction according to the first embodiment.

FIG. 11 is a block diagram showing a configuration example of the alignment apparatus according to the second embodiment.


EMBODIMENTS



[0010] The embodiments will be described below with reference to the drawings.

<First Embodiment>



[0011] The alignment apparatus according to the embodiments aligns a rotation angle of an optical fiber. For example, the alignment apparatus rotatably retains an optical fiber, and, in the longitudinal direction of the optical fiber (direction where the optical fiber extends), fixes a different optical fiber from the aforementioned optical fiber. The alignment apparatus rotates the former optical fiber, and fixes it in the position of aligning with the latter optical fiber.

[0012] FIG. 1 shows a configuration example of an alignment apparatus 1 according to the first embodiment.

[0013] Here, the alignment apparatus 1 aligns an optical fiber 2a with an optical fiber 2b. The optical fibers 2a and 2b are, for example, multi-core fibers each of which has a plurality of cores in its cladding. The optical fibers 2a and 2b are, for example, four-core fibers or eight-core fibers. The configurations of the optical fibers 2a and 2b are not restricted to particular configurations.

[0014] As shown in FIG. 1, the alignment apparatus 1 comprises a control unit 10, a photographing unit 20, grippers 30 and 40, etc.

[0015] The control unit 10 controls the whole of the alignment apparatus 1. The control unit 10 aligns the optical fiber 2a on the basis of images photographed by the photographing unit 20.

[0016] The control unit 10 is comprised by a CPU, a ROM, a RAM, an NVM, and an interface, for example. The control unit 10 may be a desktop PC, a notebook PC, or a tablet PC, for example.

[0017] The functions achieved by the control unit 10 can be achieved by execution of a program by the CPU, for example. That is, the program is used for a computer that operates as at least a part of the alignment apparatus 1.

[0018] The functions of the control unit 10 will be described later.

[0019] The photographing unit 20 photographs side images of the optical fibers 2a and 2b. The photographing unit 20 is set in the vicinity of the position where an end face of the optical fiber 2a and an end face of the optical fiber 2b face each other, and photographs a side of the optical fiber 2a and a side of the optical fiber 2b at the same time, for example. The photographing unit 20 is comprised by a CCD, etc., for example. The photographing unit 20 photographs side images by use of visible light or invisible light. The photographing unit 20 transmits the photographed images to the control unit 10.

[0020] The photographing unit 20 photographs the optical fibers 2a and 2b on two sides. The photographing unit 20 photographs the optical fibers 2a and 2b in two directions orthogonal to each other, for example.

[0021] FIG. 2 shows an example of side images photographed by the photographing unit 20.

[0022] As shown in FIG. 2, when the optical fibers 2a and 2b are put in a plane, the horizontal and vertical directions are determined to be the X-axis direction and the Y-axis direction, respectively.

[0023] The photographing unit 20 photographs side images in the X-axis direction, and side images in the Y-axis direction. The photographing unit 20 is composed by, for example, a camera that photographs the optical fibers 2a and 2b in the X-axis direction (first direction), and a camera that photographs the optical fibers 2a and 2b in the Y-axis direction (second direction).

[0024] The gripper 30 grips the optical fiber 2a. The gripper 30 is comprised by a fiber holder in which V grooves are formed, etc., for example. The gripper 30 retains the optical fiber 2a by the fiber holder, etc.

[0025] The gripper 30 rotates the optical fiber 2a in the axis direction of the optical fiber 2a on the basis of a signal from the control unit 10. The gripper 30 comprises a driving unit, etc., and rotates the optical fiber 2a by transmitting motive power from the driving unit to the fiber holder, for example.

[0026] The gripper 40 grips the optical fiber 2b. The gripper 40 is comprised by a fiber holder in which V grooves are formed, etc., for example. The gripper 40 retains the optical fiber 2b by the fiber holder, etc.

[0027] Next, the functions achieved by the control unit 10 will be described.

[0028] FIG. 3 is a figure for describing the functions achieved by the control unit 10.

[0029] First, the control unit 10 has the function of acquiring side images of the optical fiber 2a, and side images (reference side images) of the optical fiber 2b (acquisition unit).

[0030] The control unit 10 acquires an image in the X-axis direction, and an image in the Y-axis direction from the photographing unit 20. The control unit 10 may transmit a signal for photographing images to the photographing unit 20, and receive an image in the X-axis direction, and an image in the Y-axis direction from the photographing unit 20, for example. The control unit 10 may acquire an image in the X-axis direction, and an image in the Y-axis direction transmitted from the photographing unit 20 with a predetermined timing.

[0031] The control unit 10 extracts a side image (first side image) of the optical fiber 2a and a side image (first reference side image) of the optical fiber 2b from an image in the X-axis direction. The control unit 10 extracts a side image (second side image) of the optical fiber 2a and a side image (second reference side image) of the optical fiber 2b from an image in the Y-axis direction.

[0032] The control unit 10 has the function of calculating correlation coefficients on the basis of the luminances of side images of the optical fiber 2a and those of side images of the optical fiber 2b (calculation unit). That is, the control unit 10 calculates a correlation coefficient between the luminances of the optical fiber 2a and those of the optical fiber 2b in the X-axis direction, and calculates a correlation coefficient between the luminances of the optical fiber 2a and those of the optical fiber 2b in the Y-axis direction.

[0033] The control unit 10 averages the luminances of side images of the optical fiber 2a along the longitudinal direction of the optical fiber 2a, for example. That is, the control unit 10 acquires a luminance string of the optical fiber 2a in the longitudinal direction, and averages the luminance string. The control unit 10 acquires the average value of the luminance string as an average luminance of the pixel value of the string (i.e., pixel value in the axis orthogonal to the longitudinal direction in the side images) .

[0034] In the same manner, the control unit 10 acquires average luminances of side images of the optical fiber 2b.

[0035] The control unit 10 calculates a correlation coefficient ZNCC according to equation 1 given below, for example.



[0036] Here, L(i), R(i), and M respectively indicate the i-th average luminance of the optical fiber 2a, the i-th average luminance of the optical fiber 2b, and the total number of pixels.
L
indicates the average value of L(i).
R
indicates the average value of R(i).

[0037] Here, a correlation coefficient (first correlation coefficient) calculated from side images in the X-axis direction is determined to be a ZNCC-X, and a correlation coefficient (second correlation coefficient) calculated from side images in the Y-axis direction is determined to be a ZNCC-Y.

[0038] The control unit 10 has the function of rotating the optical fiber 2a in the axis direction of the optical fiber 2a so that correlation coefficients peak (rotation processing unit). Here, a rotation angle is an angle at which the optical fiber 2a rotates in the axis direction of the optical fiber 2a from an initial position.

[0039] The control unit 10, once calculating correlation coefficients ZNCCs, rotates the optical fiber 2a through the gripper 30, for example. The control unit 10 once again calculates correlation coefficients ZNCCs. The control unit 10 repeats such operations, and pinpoints the peak of correlation coefficients ZNCCs.

[0040] The control unit 10 determines a rotation angle at which a ZNCC-X and a ZNCC-Y get peak values, within the scope of the ZNCC-X and the ZNCC-Y each of which exceeds a predetermined threshold, to be a rotation angle at which correlation coefficients peak, for example.

[0041] Next, an operation example of the control unit 10 will be described.

[0042] FIG. 4 is a flowchart for describing an operation example of the control unit 10.

[0043] Here, the optical fiber 2a is set in the gripper 30, and the optical fiber 2b is set in the gripper 40.

[0044] First, the control unit 10 acquires side images from the photographing unit 20 (S11). That is, the control unit 10 acquires side images of the optical fibers 2a and 2b in the X-axis direction, and side images of the optical fibers 2a and 2b in the Y-axis direction.

[0045] Once the side images are acquired, the control unit 10 calculates correlation coefficients ZNCCs on the basis of the side images (S12). That is, the control unit 10 calculates a ZNCC-X and a ZNCC-Y.

[0046] Upon calculating the correlation coefficients ZNCCs, the control unit 10 determines if the correlation coefficients ZNCCs are equal to or greater than a predetermined threshold (S13). That is, the control unit 10 determines if the ZNCC-X is equal to or greater than a predetermined threshold, and the ZNCC-Y is equal to or greater than a predetermined threshold.

[0047] Once it is determined that the correlation coefficients ZNCCs are not equal to or greater than a predetermined threshold (S13, NO), the control unit 10 rotates the optical fiber 2a at a relatively wide angle (S14). Upon rotating the optical fiber 2a at a relatively wide angle, the control unit 10 returns to S11.

[0048] Once it is determined that the correlation coefficients ZNCCs are equal to or greater than a predetermined threshold (S13, YES), the control unit 10 rotates the optical fiber 2a at a relatively narrow angle (S15). Upon rotating the optical fiber 2a at a relatively narrow angle, the control unit 10 acquires side images from the photographing unit 20 (S16). Once the side images are acquired, the control unit 10 calculates correlation coefficients ZNCCs on the basis of the side images (S17).

[0049] Once the correlation coefficients ZNCCs are calculated, the control unit 10 determines if the correlation coefficients ZNCCs are equal to or greater than the preceding correlation coefficients ZNCCs (i.e., correlation coefficients ZNCCs at the preceding rotation angle) (S18) . The control unit 10 may determine if a ZNCC-X is equal to or greater than a preceding ZNCC-X, and a ZNCC-Y is equal to or greater than a preceding ZNCC-Y, for example. The control unit 10 may determine if at least one of a ZNCC-X and a ZNCC-Y is equal to or greater than a preceding ZNCC-X or ZNCC-Y.

[0050] Upon determining that the correlation coefficients ZNCCs are not equal to or greater than the preceding correlation coefficients ZNCCs (S18, NO), the control unit 10 returns to S15.

[0051] When the correlation coefficients ZNCCs are determined to be equal to or greater than the preceding correlation coefficients ZNCCs (S18, YES), the control unit 10 rotates the optical fiber 2a backward at an angle that cancels the rotation in S15 (S19).

[0052] Upon rotating the optical fiber 2a backward, the control unit 10 finishes the operations.

[0053] Next, the specific embodiments will be described.

[0054] First, a configuration example of an optical fiber 2 (2a and 2b) will be described.

[0055] FIGS. 5 show examples of section views of the optical fiber 2.

[0056] Here, a case where the optical fiber 2 is a four-core fiber or an eight-core fiber will be described.

[0057] FIG. 5 (a) shows an example of a section view when the optical fiber 2 is a four-core fiber.

[0058] As shown in FIG. 5 (a), the optical fiber 2 is comprised by a circular cladding 21a, four cores 21b, a marker 21c, etc.

[0059] The four cores 21b are formed in positions that are symmetric to one another with respect to the central portion of the cladding 21a.

[0060] The marker 21c is comprised by a material whose refractive index is lower than the cladding 21a. The marker 21c may be a hole. The marker 21c is formed further to an outer side than the four cores 21b.

[0061] Here, the core gap, the cladding, and the mode field diameter in a wavelength of 1310 nm are 40 µm, 125 µm, and 8.6 µm, respectively.

[0062] FIG. 5 (b) shows an example of a section view when the optical fiber 2 is an eight-core fiber.

[0063] As shown in FIG. 5 (b), the optical fiber 2 is comprised by a circular cladding 22a, eight cores 22b, a marker 22c, etc.

[0064] The eight cores 22b are formed in positions that are symmetric to one another with respect to the central portion of the cladding 22a.

[0065] The marker 22c is comprised by a material whose refractive index is lower than the cladding 22a. The marker 22c may be a hole. The marker 22c is formed further to an inner side than the four cores 22b.

[0066] Here, the core gap, the cladding, and the mode field diameter in a wavelength of 1310 nm are 40 µm, 175 µm, and 8.6 µm, respectively.

[0067] Next, the relationships between average luminances and pixel values will be described.

[0068] FIGS. 6 are graphs showing the relationships between average luminances and pixel values in the X-axis direction at predetermined rotation angles.

[0069] In FIGS. 6, the horizontal axes indicate positions (pixel values) in the cross-section direction, and the vertical axes indicate average luminance values. The solid lines indicate the average luminances of the optical fiber 2a. The broken lines indicate the average luminances of the optical fiber 2b.

[0070] FIG. 6 (a) shows an example when the optical fiber 2 is a four-core fiber (case of FIG. 5 (a)). FIG. 6 (b) shows an example when the optical fiber 2 is an eight-core fiber (case of FIG. 5 (b)). FIG. 6 (c) shows an example when the optical fiber 2 is a single-mode fiber.

[0071] As shown in FIGS. 6 (a) and 6 (b), when the optical fiber 2 is a multi-core fiber, a plurality of clear peaks are observed. The more the number of cores increases, the more the number of peaks also increases. When the optical fiber 2 is a multi-core fiber, the curve of the average luminances of the optical fiber 2a and that of the average luminances of the optical fiber 2b differ from each other.

[0072] As shown in FIG. 6 (c), when the optical fiber 2 is a single-mode fiber, since the cross section configuration is concentric, the average luminances are symmetric with respect to the central axis of the optical fiber 2. The curve of the average luminances of the optical fiber 2a and that of the average luminances of the optical fiber 2b are nearly correspondent.

[0073] The ZNCC-Xs in FIGS. 6 (a), 6 (b), and 6 (c) are 0.848, 0.847, and 0.999, respectively.

[0074] Next, the relationships between rotation angles and correlation coefficients will be described.

[0075] FIG. 7 is a graph showing the relationships between rotation angles, and correlation coefficients obtainable from side images in the X-axis direction.

[0076] In FIG. 7, the horizontal axis indicates rotation angles of the optical fiber 2a, and the vertical axis indicates ZNCC-Xs. The plotted circles indicate ZNCC-Xs when the optical fiber 2 is a four-core fiber. The plotted triangles indicate ZNCC-Xs when the optical fiber 2 is an eight-core fiber. The plotted squares indicate ZNCC-Xs when the optical fiber 2 is a single-mode fiber.

[0077] As shown in FIG. 7, when the optical fiber 2 is a four-core fiber, there are four peaks at 90-degree intervals at rotation angles of 0 to 360 degrees. The number of peaks, and intervals correspond to the number of cores, and disposition of the optical fiber 2.

[0078] When the optical fiber 2 is a four-core fiber, the peak values of ZNCC-Xs are 0.994, 0.990, 0.990, and 0.993 in the order of angle from narrowest to widest. The peak value around 60 degrees is the highest. At a rotation angle corresponding to the peak value around 60 degrees, the marker 21c of the optical fiber 2a and the marker 21c of the optical fiber 2b are correspondent. Accordingly, it has turned out that when there is a marker more to an outer side than the cores, it is possible to align a rotation angle as well as the marker.

[0079] As shown in FIG. 7, when the optical fiber 2 is an eight-core fiber, there are eight peaks at 45-degree intervals at rotation angles of 0 to 360 degrees. The number of peaks and intervals correspond to the number of cores, and disposition of the optical fiber 2. When the optical fiber 2 is an eight-core fiber, ZNCC-Xs have a clearer dependency on rotation angles than the optical fiber 2 that is a four-core fiber. This would be because more cores overlapping strengthens the contrast of stripes of a side image, and influences correlation coefficients between the average luminances of the optical fiber 2a and the average luminances of the optical fiber 2b.

[0080] When the optical fiber 2 is a four-core or eight-core fiber, it has been confirmed that at rotation angles corresponding to peak values, the maximum light power is obtained by active alignment.

[0081] When the optical fiber 2 is a single-mode fiber, ZNCC-Xs have almost no dependency on rotation angles.

[0082] Next, the relationships between correlation coefficients and connection losses will be described.

[0083] Here, a case where the optical fiber 2 is a four-core fiber will be described.

[0084] FIGS. 8 and 9 are graphs showing the relationships between correlation coefficients, and connection losses when the optical fibers 2a and 2b are fusion-spliced.

[0085] FIGS. 8 and 9 show connection losses of the four cores 21b (21b-1 to 21b-4) of the optical fiber 2. FIG. 8 is a graph showing the relationships between ZNCC-Xs and connection losses. FIG. 9 is a graph showing the relationships between ZNCC-Ys and connection losses.

[0086] In FIGS. 8 and 9, the horizontal axes indicate correlation coefficients (ZNCC-Xs in FIG. 8, and ZNCC-Ys in FIG. 9). The vertical axes indicate connection losses (dB). The plotted circles, triangles, squares, and crosses indicate connection losses of the core 21b-1, the core 21b-2, the core 21b-3, and the core 21b-4, respectively.

[0087] As shown in FIGS. 8 and 9, as ZNCC-Xs and ZNCC-Ys get closer to 1, connection losses decrease. As also shown in FIG. 8, when ZNCC-Xs are equal to or greater than 0.975, connection losses get equal to or less than 0.5 dB. As shown in FIG. 9, when ZNCC-Ys are equal to or greater than 0.964, connection losses get equal to or less than 0.5 dB.

[0088] Here, the maximum value of connection losses obtained by active alignment is 0.5 dB.

[0089] The connection loss of 0.5 dB is considered to be caused by core position accuracy inherently comprised by a measured four-core fiber. Accordingly, by performing rotation alignment so that correlation coefficients obtain a peak value by use of side images of the optical fiber 2, low connection losses that are nearly equal to those in active alignment can be achieved.

[0090] FIG. 10 is a figure showing the relationships between ZNCC-Xs and ZNCC-Ys.

[0091] In FIG. 10, the horizontal axis indicates ZNCC-Xs, and the vertical axis indicates ZNCC-Ys. The plotted circles indicate that connection losses are equal to or less than 0.5 dB. The plotted squares indicate that connection losses are equal to or greater than 0.5 dB.

[0092] The dotted line indicates the threshold of ZNCC-Xs at which connection losses get equal to or less than 0.5 dB (e.g., 0.975). The broken line indicates the threshold of ZNCC-Ys at which connection losses get equal to or less than 0.5 dB (e.g., 0.964).

[0093] By setting a rotation angle so that a ZNCC-X and a ZNCC-Y obtain peak values within the scope of the ZNCC-X and the ZNCC-Y each of which is equal to or greater than a predetermined threshold, a low connection loss can be achieved. For example, a threshold is set at 0.964, and by setting a rotation angle so that both a ZNCC-X and a ZNCC-Y obtain peak values within the scope of the ZNCC-X and the ZNCC-Y each of which is equal to or greater than the threshold, a connection loss can be reduced.

[0094] An alignment apparatus configured as above obtains side images of an optical fiber. The alignment apparatus calculates average luminances from the side images. The alignment apparatus defines a rotation angle at which correlation coefficients between the average luminances of the optical fiber and those of another optical fiber peak as an aligned rotation angle. As a result, the alignment apparatus can efficiently align the optical fiber.

<Second Embodiment>



[0095] Next, the second embodiment will be described.

[0096] The alignment apparatus according to the second embodiment differs from that in the first embodiment in that an optical fiber is aligned with respect to a connector.

[0097] FIG. 11 shows a configuration example of an alignment apparatus 101 according to the second embodiment.

[0098] Here, the alignment apparatus 101 aligns an optical fiber 102 with a connector 103 at a predetermined angle. The optical fiber 102 is configured in the same manner as the optical fiber 2. The connector 103 is an SC ferrule or an MT ferrule, for example.

[0099] As shown in FIG. 11, the alignment apparatus 101 comprises a control unit 110, a photographing unit 120, a gripper 130, etc.

[0100] The control unit 110 controls the whole of the alignment apparatus 101. The control unit 110 aligns the optical fiber 102 on the basis of images photographed by the photographing unit 120.

[0101] The control unit 110 is comprised by a CPU, a ROM, a RAM, an NVM, and an interface, for example. The control unit 110 may be a desktop PC, a notebook PC, or a tablet PC, for example.

[0102] The functions achieved by the control unit 110 can be achieved by execution of a program by the CPU, for example. That is, the program is used for a computer that operates as at least a part of the alignment apparatus 101.

[0103] The photographing unit 120 photographs side images of the optical fiber 102. The photographing unit 120 is configured in the same manner as the photographing unit 20.

[0104] The gripper 130 retains the optical fiber 102, and rotates the optical fiber 102 in the axis direction of the optical fiber 102 on the basis of a signal from the control unit 110. The gripper 130 is configured in the same manner as the gripper 30.

[0105] The control unit 110 previously stores reference side images. Here, the reference side images are side images of the optical fiber 102 at an appropriate rotation angle (aligned rotation angle).

[0106] The control unit 110 aligns the optical fiber 102 on the basis of the side images of the optical fiber 102 and the reference side images. That is, the control unit 110 rotates the optical fiber 102 so that correlation coefficients between the average luminances of the side images of the optical fiber 102 and those of the reference side images peak. The method for aligning the optical fiber 102 by the control unit 110 is the same as the method for aligning the optical fiber 2a by the control unit 10.

[0107] The control unit 110 may previously store the average luminances of the reference side images.

[0108] The alignment apparatus 101 is applied to alignment of a rotation angle of an optical fiber with respect to various members of a connector, such as fixation to the flange of an optical fiber adhesively fixed to a ferrule.

[0109] An alignment apparatus configured as above can rotate an optical fiber at an angle at which correlation coefficients between the average luminances of reference side images and those of side images of the optical fiber peak. As a result, the alignment apparatus can rotate the optical fiber at an appropriate angle with respect to a connector. Accordingly, the alignment apparatus can align a rotation angle of the optical fiber with respect to the connector.

[0110] The method described in each embodiment can be, as a program (software means) that can be executed by a calculator (computer), stored in a storage medium such as a magnetic disk (floppy (registered trademark) disk, hard disk, etc.), an optical disk (CD-ROM, DVD, MO, etc.), and a semiconductor memory (ROM, RAM, flash memory, etc.), and distributed through transmission by a communication medium. A program to be stored in a medium also encompasses a setting program that has a calculator configure a software means to be executed by the calculator (not only an execution program, but also a table or a data configuration). A calculator for achieving the present apparatus reads a program recorded in a storage medium, or, according to circumstances, constructs by a setting program a software means, which controls operation, thereby executing the above processing. A storage medium in this specification is not restricted to distribution use, and encompasses a storage medium such as a magnetic disk, and a semiconductor memory provided in a calculator, or in equipment connected through a network.


Claims

1. An alignment apparatus that aligns a multi-core optical fiber (2a,120) whose cross section has a marker (21c), comprising:

an acquisition unit (10) that acquires one or more side images of the multi-core optical fiber and corresponding one or more reference side images, wherein the reference side images are previously stored side images of the multi-core optical fiber at an aligned rotation angle or are side images of another multi-core optical fiber (2b) to which the multi-core optical fiber is being aligned;

a calculation unit (10) that averages luminance of the side image in the axis direction of the multi-core optical fiber, averages luminance of the reference side images in the axis direction of the multi-core optical fiber, and calculates correlation coefficients between averaged luminance of the side image and averaged luminance of the reference side image; and

a rotation processing unit (10) that rotates the multi-core optical fiber in the axis direction of the multi-core optical fiber so that the correlation coefficients peak,

wherein the calculation unit calculates correlation coefficients according to

the i indicates positions in a cross-section direction of the multi-core optical fiber;

L(i) indicates the i-th average luminance of the side image;

R(i) indicates the i-th average luminance of the reference side image;

M indicates the total number of i;

L indicates the average value of L(i); and

R indicates the average value of R(i).


 
2. The alignment apparatus according to claim 1, wherein
the acquisition unit (10) acquires a first side image photographed in a first direction of the multi-core optical fiber, and a second side image photographed in a second direction different from the first direction,
the reference side image is comprised by a first reference side image corresponding to the first side image, and a second reference side image corresponding to the second side image, and
the calculation unit (10) averages luminances of the first side image and luminances of the first reference side image in the axis direction of the multi-core optical fiber, calculates a first correlation coefficient from averaged luminances of the first side image and averaged luminances of the first reference side image, averages luminances of the second side image and luminances of the second reference side image in the axis direction of the multi-core optical fiber, and calculates a second correlation coefficient from averaged luminances of the second side image and averaged luminances of the second reference side image, as the correlation coefficients.
 
3. The alignment apparatus according to claim 2, wherein the rotation processing unit (10) rotates the multi-core optical fiber so that the first correlation coefficient and the second correlation coefficient peak within a scope of the first correlation coefficient and the second correlation coefficient each of which is equal to or greater than 0.964.
 
4. The alignment apparatus according to claim 2, wherein the second direction is orthogonal to the first direction.
 
5. The alignment apparatus according to any of claims 1 to 4, wherein the reference side image is a side image of a multi-core optical fiber (2a,120) aligning with the multi-core optical fiber.
 
6. The alignment apparatus according to any of claims 1 to 5, wherein the reference side image is a side image of a multi-core optical fiber (2a,120) at a predetermined angle.
 
7. An alignment method for aligning a multi-core optical fiber (2a,120) whose cross section has a marker (21c), comprising:

acquiring one or more side images of the multi-core optical fiber and corresponding one or more reference side images, wherein the reference side images are previously stored side images of the multi-core optical fiber at an aligned rotation angle or are side images of another multi-core optical fiber (2b) to which the multi-core optical fiber is being aligned;

averaging luminance of the side image in the axis direction of the multi-core optical fiber;

averaging luminance of the reference side images in the axis direction of the multi-core optical fiber;

calculating correlation coefficients between averaged luminance of the side image and averaged luminance of the reference side image; and

rotating the multi-core optical fiber in the axis direction of the multi-core optical fiber so that the correlation coefficients peak,

wherein the calculating is calculating correlation coefficients according to

the i indicates positions in a cross-section direction of the multi-core optical fiber;

L(i) indicates the i-th average luminance of the side image;

R(i) indicates the i-th average luminance of the reference side image;

M indicates the total number of i;

L indicates the average value of L(i); and

R indicates the average value of R(i).


 


Ansprüche

1. Ausrichtungsvorrichtung, die einen Mehrkernlichtwellenleiter (2a, 120) ausrichtet, dessen Querschnitt einen Marker (21c) hat, aufweisend:

eine Erfassungseinheit (10), die ein oder mehrere Seitenbild/er des Mehrkernlichtwellenleiters und ein entsprechendes oder mehrere entsprechende Referenzseitenbild/er erfasst, wobei es sich bei den Referenzseitenbildern um zuvor gespeicherte Seitenbilder des Mehrkernlichtwellenleiters in einem ausgerichteten Drehwinkel oder um Seitenbilder eines anderen Mehrkernlichtwellenleiters (2b) handelt, auf den der Mehrkernlichtwellenleiter ausgerichtet wird;

eine Berechnungseinheit (10), welche die Leuchtdichte des Seitenbilds in der Achsenrichtung des Mehrkernlichtwellenleiters mittelt, die Leuchtdichte der Referenzseitenbilder in der Achsenrichtung des Mehrkernlichtwellenleiters mittelt und Korrelationskoeffizienten zwischen der gemittelten Leuchtdichte des Seitenbilds und der gemittelten Leuchtdichte des Referenzseitenbilds berechnet; und

eine Drehverarbeitungseinheit (10), die den Mehrkernlichtwellenleiter in der Achsenrichtung des Mehrkernlichtwellenleiters so dreht, dass die Korrelationskoeffizienten einen Höchststand erreichen,

wobei die Berechnungseinheit Korrelationskoeffizienten berechnet gemäß

worin das i Positionen in einer Querschnittsrichtung des Mehrkernlichtwellenleiters angibt;

L(i) die i-te mittlere Leuchtdichte des Seitenbilds angibt;

R(i) die i-te mittlere Leuchtdichte des Referenzseitenbilds angibt;

M die Gesamtanzahl von i angibt;

L den Mittelwert von L(i) angibt; und

R den Mittelwert von R(i) angibt.


 
2. Ausrichtungsvorrichtung nach Anspruch 1, wobei
die Erfassungseinheit (10) ein erstes Seitenbild, das in einer ersten Richtung des Mehrkernlichtwellenleiters fotografiert ist, und ein zweites Seitenbild erfasst, das in einer zweiten Richtung fotografiert ist, die sich von der ersten Richtung unterscheidet,
das Referenzseitenbild sich aus einem ersten Referenzseitenbild, das dem ersten Seitenbild entspricht, und einem zweiten Referenzseitenbild zusammensetzt, das dem zweiten Seitenbild entspricht, und
die Berechnungseinheit (10) Leuchtdichten des ersten Seitenbilds und Leuchtdichten des ersten Referenzseitenbilds in der Achsenrichtung des Mehrkernlichtwellenleiters mittelt, einen ersten Korrelationskoeffizienten aus den gemittelten Leuchtdichten des ersten Seitenbilds und den gemittelten Leuchtdichten des ersten Referenzseitenbilds berechnet, die Leuchtdichten des zweiten Seitenbilds und die Leuchtdichten des zweiten Referenzseitenbilds in der Achsenrichtung des Mehrkernlichtwellenleiters mittelt und einen zweiten Korrelationskoeffizienten aus den gemittelten Leuchtdichten des zweiten Seitenbilds und den gemittelten Leuchtdichten des zweiten Referenzseitenbilds als Korrelationskoeffizienten berechnet.
 
3. Ausrichtungsvorrichtung nach Anspruch 2, wobei die Drehverarbeitungseinheit (10) den Mehrkernlichtwellenleiter so dreht, dass der erste Korrelationskoeffizient und der zweite Korrelationskoeffizient innerhalb eines Umfangs des ersten Korrelationskoeffizienten und des zweiten Korrelationskoeffizienten einen Höchststand erreichen, der jeweils gleich oder größer als 0,964 ist.
 
4. Ausrichtungsvorrichtung nach Anspruch 2, wobei die zweite Richtung orthogonal zur ersten Richtung ist.
 
5. Ausrichtungsvorrichtung nach einem der Ansprüche 1 bis 4, wobei es sich bei dem Referenzseitenbild um ein Seitenbild eines sich mit dem Mehrkernlichtwellenleiter ausrichtenden Mehrkernlichtwellenleiters (2a, 120) handelt.
 
6. Ausrichtungsvorrichtung nach einem der Ansprüche 1 bis 5, wobei es sich bei dem Referenzseitenbild um ein Seitenbild einer Mehrkernlichtwellenleiters (2a, 120) in einem vorbestimmten Winkel handelt.
 
7. Ausrichtungsverfahren zum Ausrichten eines Mehrkernlichtwellenleiters (2a, 120), dessen Querschnitt einen Marker (21c) hat,
Erfassen eines Seitenbilds oder mehrerer Seitenbilder des Mehrkernlichtwellenleiters und eines entsprechenden Referenzseitenbilds oder mehrerer entsprechender Referenzseitenbilder, wobei es sich bei den Referenzseitenbildern um zuvor gespeicherte Seitenbilder des Mehrkernlichtwellenleiters in einem ausgerichteten Drehwinkel oder um Seitenbilder eines anderen Mehrkernlichtwellenleiters (2b) handelt, auf den der Mehrkernlichtwellenleiter ausgerichtet wird;
Mitteln der Leuchtdichte des Seitenbilds in der Achsenrichtung des Mehrkernlichtwellenleiters;
Mitteln der Leuchtdichte der Referenzseitenbilder in der Achsenrichtung des Mehrkernlichtwellenleiters;
Berechnen von Korrelationskoeffizienten zwischen der gemittelten Leuchtdichte des Seitenbilds und der gemittelten Leuchtdichte des Referenzseitenbilds; und
Drehen des Mehrkernlichtwellenleiters in der Achsenrichtung des Mehrkernlichtwellenleiters, und zwar so, dass die Korrelationskoeffizienten einen Höchststand erreichen,
wobei die Berechnung darin besteht, Korrelationskoeffizienten zu berechnen gemäß

worin das i Positionen in einer Querschnittsrichtung des Mehrkernlichtwellenleiters angibt;
L(i) die i-te mittlere Leuchtdichte des Seitenbilds angibt;
R(i) die i-te mittlere Leuchtdichte des Referenzseitenbilds angibt;
M die Gesamtanzahl von i angibt;
L den Mittelwert von L(i) angibt; und
R den Mittelwert von R(i) angibt.
 


Revendications

1. Appareil d'alignement qui aligne une fibre optique multicœur (2a, 120) dont la section transversale a un marqueur (21c), comprenant :

une unité d'acquisition (10) qui acquiert une ou plusieurs image(s) latérale(s) de la fibre optique multicœur et une ou plusieurs image(s) latérale(s) de référence correspondante(s), où les images latérales de référence sont des images latérales préalablement stockées de la fibre optique multicœur à un angle de rotation aligné ou sont des images latérales d'une autre fibre optique multicœur (2b) à laquelle la fibre optique multicœur est alignée ;

une unité de calcul (10) qui fait la moyenne de la luminance de l'image latérale dans la direction de l'axe de la fibre optique multicœur, qui fait la moyenne de la luminance des images latérales de référence dans la direction de l'axe de la fibre optique multicœur, et qui calcule les coefficients de corrélation entre la luminance moyenne de l'image latérale et la luminance moyenne de l'image latérale de référence ; et

une unité de traitement de rotation (10) qui fait tourner la fibre optique multicœur dans la direction de l'axe de la fibre optique multicœur de sorte que les coefficients de corrélation atteignent un pic,

dans lequel l'unité de calcul calcule les coefficients de corrélation selon

le i indique des positions dans une direction de section transversale de la fibre optique multicœur ;

L(i) indique la i-ième luminance moyenne de l'image latérale ;

R(i) indique la i-ième luminance moyenne de l'image latérale de référence ;

M indique le nombre total de i ;

L indique la valeur moyenne de L(i) ; et

R indique la valeur moyenne de R(i).


 
2. Appareil d'alignement selon la revendication 1, dans lequel
l'unité d'acquisition (10) acquiert une première image latérale photographiée dans une première direction de la fibre optique multicœur, et une deuxième image latérale photographiée dans une deuxième direction différente de la première direction,
l'image latérale de référence est constituée d'une première image latérale de référence correspondant à la première image latérale, et d'une deuxième image latérale de référence correspondant à la deuxième image latérale, et
l'unité de calcul (10) fait la moyenne des luminances de la première image latérale et des luminances de la première image latérale de référence dans la direction de l'axe de la fibre optique multicœur, calcule un premier coefficient de corrélation à partir des luminances moyennes de la première image latérale et des luminances moyennes de la première image latérale de référence, fait la moyenne des luminances de la deuxième image latérale et des luminances de la deuxième image latérale de référence dans la direction de l'axe de la fibre optique multicœur, et calcule un deuxième coefficient de corrélation à partir des luminances moyennes de la deuxième image latérale et des luminances moyennes de la deuxième image latérale de référence, comme étant les coefficients de corrélation.
 
3. Appareil d'alignement selon la revendication 2, dans lequel l'unité de traitement de rotation (10) fait tourner la fibre optique multicœur de sorte que le premier coefficient de corrélation et le deuxième coefficient de corrélation atteignent un pic dans la portée du premier coefficient de corrélation et du deuxième coefficient de corrélation dont chacun est supérieur ou égal à 0,964.
 
4. Appareil d'alignement selon la revendication 2, dans lequel la deuxième direction est orthogonale à la première direction.
 
5. Appareil d'alignement selon l'une des revendications 1 à 4, dans lequel l'image latérale de référence est une image latérale d'une fibre optique multicœur (2a, 120) s'alignant avec la fibre optique multicœur.
 
6. Appareil d'alignement selon l'une des revendications 1 à 5, dans lequel l'image latérale de référence est une image latérale d'une fibre optique multicœur (2a, 120) à un angle prédéterminé.
 
7. Procédé d'alignement pour aligner une fibre optique multicœur (2a, 120) dont la section transversale a un marqueur (21c), comprenant le fait :

d'acquérir une ou plusieurs image(s) latérale(s) de la fibre optique multicœur et une ou plusieurs image(s) latérale(s) de référence correspondante(s), où les images latérales de référence sont des images latérales préalablement stockées de la fibre optique multicœur à un angle de rotation aligné ou sont des images latérales d'une autre fibre optique multicœur (2b) à laquelle la fibre optique multicœur est alignée ;

de faire la moyenne de la luminance de l'image latérale dans la direction de l'axe de la fibre optique multicœur ;

de faire la moyenne de la luminance des images latérales de référence dans la direction de l'axe de la fibre optique multicœur ;

de calculer les coefficients de corrélation entre la luminance moyenne de l'image latérale et la luminance moyenne de l'image latérale de référence ; et

de faire tourner la fibre optique multicœur dans la direction de l'axe de la fibre optique multicœur de sorte que les coefficients de corrélation atteignent un pic,

dans lequel le calcul consiste à calculer les coefficients de corrélation selon

le i indique des positions dans une direction de section transversale de la fibre optique multicœur ;

L(i) indique la i-ième luminance moyenne de l'image latérale ;

R(i) indique la i-ième luminance moyenne de l'image latérale de référence ;

M indique le nombre total de i ;

L indique la valeur moyenne de L(i) ; et

R indique la valeur moyenne de R(i).


 




Drawing






































Cited references

REFERENCES CITED IN THE DESCRIPTION



This list of references cited by the applicant is for the reader's convenience only. It does not form part of the European patent document. Even though great care has been taken in compiling the references, errors or omissions cannot be excluded and the EPO disclaims all liability in this regard.

Patent documents cited in the description