(11) **EP 3 382 018 A1**

(12)

EUROPEAN PATENT APPLICATION published in accordance with Art. 153(4) EPC

(43) Date of publication: 03.10.2018 Bulletin 2018/40

(21) Application number: 16868667.3

(22) Date of filing: 25.11.2016

(51) Int CI.: C12N 15/09 (2006.01) C12N 1/15 (2006.01)

C12N 1/21 (2006.01) C12N 9/10 (2006.01) C07K 16/18 (2006.01) C12N 1/19 (2006.01) C12N 5/10 (2006.01)

(86) International application number:

PCT/JP2016/084958

(87) International publication number: WO 2017/090724 (01.06.2017 Gazette 2017/22)

(84) Designated Contracting States:

AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

Designated Extension States:

BA ME

Designated Validation States:

MA MD

(30) Priority: 25.11.2015 JP 2015229896

(71) Applicant: National University Corporation Gunma University Maebashi-shi, Gunma 371-8510 (JP) (72) Inventors:

 HATADA, Izuho Maebashi-shi Gunma 371-8510 (JP)

 MORITA, Sumiyo Maebashi-shi Gunma 371-8510 (JP)

 HORII, Takuro Maebashi-shi Gunma 371-8510 (JP)

(74) Representative: Gill Jennings & Every LLP
The Broadgate Tower
20 Primrose Street
London EC2A 2ES (GB)

(54) DNA METHYLATION EDITING KIT AND DNA METHYLATION EDITING METHOD

(57) A DNA methylation editing kit comprises: (1) a fusion protein of inactivated CRISPR-associated endonuclease Cas9 (dCas9) having no nuclease activity and a tag peptide array in which plural tag peptides are linked by linkers, or an RNA or DNA coding therefor; (2) a fusion protein(s) of a tag peptide-binding portion and a methy-

lase or demethylase, or an RNA(s) or DNA(s) coding therefor; and (3) a guide RNA(s) (gRNA(s)) comprising a sequence complementary to a DNA sequence within 1 kb of a desired site of methylation or demethylation, or a DNA(s) expressing the gRNA(s).

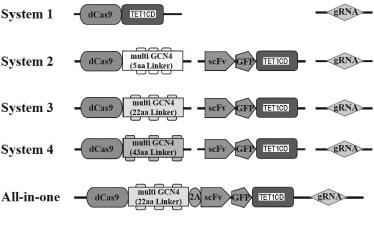


FIG.1

Description

Technical Field

5 [0001] The present invention relates to a DNA methylation editing kit and a DNA methylation editing method.

Background Art

[0002] The methylation of cytosine in genomic DNA is a typical modification of epigenetics (epigenome) regulating gene expression. Possible regulation of the methylation of a particular gene enables elucidation of epigenome diseases such as cancer, production of models of the diseases, and its application to epigenome treatment. Currently, treatment of cancer using the demethylation of the whole genome with 5-azacytosine or the like is put into practical use. However, the treatment affects all genes, and therefore, some doubt remains as to safety concerns. Therefore, development of a technology for regulating the methylation of a particular site has been desired.

[0003] As such a technology for regulating the methylation of a particular site, a technology for demethylating a particular gene by using a protein obtained by fusing TALEN and the catalytic domain of TET1 which is an enzyme involved in demethylation has been previously reported (Non Patent Literature 1). However, it was very time-consuming due to use of TALEN, which is a genome editing technology of the previous-generation, and the degree of demethylation has not been very high.

[0004] Examples of new-generation genome editing methods include a method of using CRISPR/Cas (Non Patent Literature 2). Although use and application of an array in which plural peptide epitopes are linked, and scFv which is a single-chain antibody for signal amplification have been reported (Non Patent Literature 3) as a CRISPR/Cas genome editing method, the method has not been known to be applied to regulation of DNA methylation.

25 Citation List

Non Patent Literature

[0005]

30

40

45

50

55

10

15

20

Non Patent Literature 1: Maeder ML et al. Nat Biotechnol, 31, 1137-1142, 2013

Non Patent Literature 2: JIKKEN IGAKU (YODOSHA CO., LTD.), July, 2014, pp. 1690-1714

Non Patent Literature 3: Tanenbaum ME et al. Cell 159, 635-646, 2014

35 Summary of Invention

Technical Problem

[0006] In view of the problems described above, an object of the present invention is to provide a DNA methylation editing kit and a DNA methylation editing method.

Solution to Problem

[0007] As a result of intensive study for solving the problems described above, the present inventors found that use of a CRISPR/Cas genome editing method enables the methylation of a particular site to be effectively regulated, and the present invention was thus accomplished.

[0008] In other words, the gist of the present invention is as follows.

[1] A DNA methylation editing kit comprising:

- (1) a fusion protein of inactivated CRISPR-associated endonuclease Cas9 (dCas9) having no nuclease activity and a tag peptide array in which a plurality of tag peptides are linked by linkers, or an RNA or DNA coding therefor;
 (2) a fusion protein(s) of a tag peptide-binding portion and a methylase or demethylase, or an RNA(s) or DNA(s) coding therefor; and
- (3) a guide RNA(s) (gRNA(s)) comprising a sequence complementary to a DNA sequence within 1 kb of a desired site of methylation or demethylation, or a DNA(s) expressing the gRNA(s).
- [2] The DNA methylation editing kit according to [1], wherein the demethylase is a catalytic domain (TET1CD) of

ten-eleven translocation 1.

5

10

15

20

25

30

35

40

45

50

55

- [3] The DNA methylation editing kit according to [1], wherein the methylase is DNA methyltransferase 3 beta (DNMT3B).
- [4] The DNA methylation editing kit according to any one of [1] to [3], wherein the tag peptides are peptide epitopes, and the tag peptide-binding portion is an anti-peptide-epitope antibody.
- [5] The DNA methylation editing kit according to [4], wherein the peptide epitopes are general control non-derepressible 4 (GCN4) peptide epitopes, and the anti-peptide-epitope antibody is an anti-GCN4 peptide epitope antibody.
- [6] The DNA methylation editing kit according to [4], wherein the peptide epitopes are His tags or EE tags, and the anti-peptide-epitope antibody is an anti-His tag antibody or an anti-EE tag antibody.
- [7] The DNA methylation editing kit according to any one of [4] to [6], wherein the antibody is a single-chain antibody (scFv).
 - [8] The DNA methylation editing kit according to any one of [1] to [3], wherein the tag peptides are a small fragment of a split protein, and the tag peptide-binding portion is a large fragment of the split protein.
 - [9] The DNA methylation editing kit according to [8], wherein the split protein is GFP.
- [10] The DNA methylation editing kit according to any one of [1] to [3], wherein the tag peptides are GVKESLV, and the tag peptide-binding portion is PDZ protein.
 - [11] The DNA methylation editing kit according to any one of [1] to [10], wherein the linkers consist of 5 to 100 amino acids.
 - [12] The DNA methylation editing kit according to any one of [1] to [11], wherein the linkers consist of 5 to 50 amino acids.
 - [13] The DNA methylation editing kit according to any one of [1] to [12], wherein the linkers consist of 10 to 50 amino acids.
 - [14] The DNA methylation editing kit according to any one of [1] to [13], wherein the fusion proteins of the (1) and/or (2) further include a selection marker.
 - [15] The DNA methylation editing kit according to any one of [1] to [14], which contains plural gRNAs
 - [16] The DNA methylation editing kit according to any one of [1] to [15], wherein all the DNAs of the (1) to (3) are contained in one vector.
 - [17] A DNA methylation editing method comprising transfecting a cell with the following (1) to (3):
 - (1) a fusion protein of inactivated CRISPR-associated endonuclease Cas9 (dCas9) having no nuclease activity and a tag peptide array in which a plurality of tag peptides are linked by linkers, or an RNA or DNA coding therefor;
 - (2) a fusion protein(s) of a tag peptide-binding portion and a methylase or demethylase, or an RNA(s) or DNA(s) coding therefor; and
 - (3) a guide RNA(s) (gRNA(s)) comprising a sequence complementary to a DNA sequence within 1 kb of a desired site of methylation or demethylation, or a DNA(s) expressing the gRNA(s).
 - [18] The DNA methylation editing method according to [17], wherein the fusion proteins of the (1) and/or (2) further include a selection marker.
 - [19] The DNA methylation editing method according to [18], further comprising selecting and collecting a cell expressing the selection marker.

Advantageous Effects of Invention

[0009] According to the present invention, it is possible to regulate the DNA methylation of a particular site, for example, to demethylate a methylated site, and to methylate an unmethylated site.

Brief Description of Drawings

[0010]

[Figure 1] Figure 1 is a view illustrating the components of transfected vectors (Example 1).

[Figure 2] Section (a) of Figure 2 is a view illustrating a STAT3 binding site and a mouse Gfap site. The STAT3 binding site has a methylation-sensitive CpG site (CG in TTCCGAGAA)). Targets 1 to 3 used as gRNAs (Gfap1-3) are indicated by black thick bars. Section (b) of Figure 2 is a graph illustrating the demethylation activity of dCas9 (system 1) directly bound to a TET1 catalytic domain (TET1CD) in which gRNAs targeting Gfap1-3 are used. The ordinate represents a value calculated by the Numerical Formula in the table (the same as the Numerical Formula 1 shown below) as a standardized demethylation percentage (%).

[Figure 3A] Figure 3A is a view illustrating a scheme of demethylation amplification based on dCas9 and a repeating

peptide array. Inactivated Cas9 (dCas9) fused with the repeating peptide array and having no nuclease activity can recruit plural pieces of scFv antibody-fused TET1CD. Therefore, the plural pieces of TET1CD can more effectively demethylate a target.

[Figure 3B] Figure 3B is a view illustrating a case in which the length of a linker separating each GCN4 peptide epitope fused with dCas9 is too short (left), a case in which the length is appropriate (center), and a case in which the length is too long (right).

[Figure 4] In section (a) of Figure 4, the ordinate represents a value calculated by the Numerical Formula 1 shown below as a standardized demethylation percentage (%). The abscissa represents the system of a vector used and the presence or absence of sorting. Target 2 of Gfap was used as a gRNA. Section (b) of Figure 4 is a view illustrating the methylation in the peripheries of target sites. ESCs transfected with gRNAs targeting system 3 and Gfap2 or a control gRNA were sorted by GFP, and methylation was analyzed by bisulfite sequencing. A black-and-white-style circle represents the percentage of the methylation, and the black represents methylation while the white represents unmethylation. The number under the circle represents each position. Statistical significances between all CpG site sets in the two groups (Gfap and control) were evaluated by Mann-Whitney U test.

[Figure 5] Figure 5 is a view illustrating the methylation in the peripheries of off-target sites 1 to 3 of a gRNA targeting Gfap2. ESCs transfected with gRNAs targeting system 3 and Gfap2 were sorted by GFP, and the methylation of the peripheries of the off-target sites 1 to 3 was analyzed by bisulfite sequencing. A black-and-white-style circle represents the percentage of the methylation, and the black represents methylation while the white represents unmethylation. The number under the circle represents each position. Statistical significances between all CpG site sets in the two groups (Gfap and control) were evaluated by Mann-Whitney U test. The underlined portions of the sequences represent portions in which Gfap2 targets and nucleotide sequences match with each other.

[Figure 6] Section (a) of Figure 6 illustrates CTCF binding sites and a mouse H19 site. The CTCF binding sites have methylation-sensitive CpG sites (m1 to m4). Sites 1 to 4 used in the targets of gRNAs are illustrated under vertically long bars representing m1 to m4. Section (b) of Figure 6 illustrates the demethylation of m2 in the CTCF binding sites using systems 1 and 3, and system 3 + sorting. The ordinate represents a value calculated by the Numerical Formula 1 shown below as a standardized demethylation percentage (%). The abscissa represents the system of a vector used and the presence or absence of sorting. Section (c) of Figure 6 is a graph illustrating the demethylation in the CTCF binding sites (m1 to m4) in the case of using system 3 + sorting. Left and right bars in each site of m1 to m4 represent demethylation in the case of using the target site 2 as a gRNA and demethylation in the case of using all the gRNAs of the target sites 1 to 4 together, respectively. The ordinate represents a value calculated by the Numerical Formula 1 shown below as a standardized demethylation percentage (%).

[Figure 7] Figure 7 is a view illustrating the components of transfected vectors (Example 2).

[Figure 8] Section (a) of Figure 8 illustrates CTCF binding sites and a mouse H19 site. The CTCF binding sites have methylation-sensitive CpG sites (m1 to m4). In Example 2, m2 was used as a target. Section (b) of Figure 8 illustrates the methylation of m2 in the CTCF binding sites using system 3 + sorting. The ordinate represents a value calculated by the following Numerical Formula 2 as a standardized methylation percentage (%).

Description of Embodiments

5

10

15

20

25

30

35

40

45

50

55

[0011] Embodiments of the present invention will be described in detail below.

[0012] In CRISPR/Cas, Cas9, which is a DNA-cleaving enzyme, forms a complex with a short RNA (guide RNA (gRNA)) comprising an about-20-bp sequence complementary to a target, and cleaves DNA as a target (Non Patent Literature 2). In such a case, when a mutant enzyme having no DNA cleavage activity, referred to as dCas9, is used, only binding to a target can be achieved without cleaving the target. Thus, recruitment of factors that perform methylation and demethylation by linking various components to dCas9 enables the methylation of a particular gene to be regulated. When a system where dCas9 linked with a tag peptide array comprising plural tag peptides, and a tag peptide-binding portion such as a single-chain antibody (scFv) for a tag peptide fused with a factor performing methylation and demethylation are used, and plural methylation factors or demethylation factors can be recruited for one molecule of dCas9, and an ability to perform the methylation or demethylation can be enhanced (Figure 3a).

[0013] In the present invention, first, a sequence (target sequence) complementary to a DNA sequence within 1 kb from a desired site of methylation or demethylation is produced, and a gRNA comprising the target sequence is produced. The gRNA has a property of forming a complex, with dCas9 having no nuclease activity.

When a fusion protein of dCas9 and a tag peptide array is produced, the gRNA forms a complex with the fusion protein, through dCas9, and therefore, a gRNA-dCas9- tag peptide array complex is formed. The gRNA is bound to a sequence complementary to a target sequence included in the gRNA, and therefore, the gRNA-dCas9- tag peptide array complex is bound to a DNA sequence within 1 kb from a desired site of methylation or demethylation. A fusion protein of a tag peptide-binding portion and a methylase or demethylase is recruited within 1 kb from the desired site of methylation or demethylation by binding of the tag peptide-binding portion to the tag peptide array. The recruited methylase or demethylase

ylase methylates or demethylates a site within 1 kb from its recruited portion (Figure 3a).

(DNA Methylation Editing Kit and DNA Methylation Editing Method)

[0014] The present invention relates to a DNA methylation editing kit comprising: (1) a fusion protein of inactivated CRISPR-associated endonuclease Cas9 (dCas9) having no nuclease activity and a tag peptide array in which plural tag peptides such as GCN4 are linked by linkers, or an RNA or DNA coding therefor; (2) a fusion protein(s) of a tag peptide-binding portion such as an anti-tag peptide antibody and a methylase or demethylase, or an RNA(s) or DNA(s) coding therefor; and (3) a guide RNA(s) (gRNA(s)) comprising a sequence complementary to a DNA sequence within 1 kb from a desired site of demethylation, or a DNA(s) expressing the gRNA(s). In addition, the present invention relates to a DNA methylation editing method comprising transfecting a cell with the (1) to (3) described above.

[0015] The DNA methylation editing includes both of the methylation of a DNA unmethylated site and the demethylation of a DNA methylated site.

15 (Inactivated Cas9 Having No Nuclease Activity)

[0016] CRISPR-associated endonuclease Cas9 (Cas9) includes two lobes of a REC lobe (REC: recognition) and a NUC lobe (NUC: nuclease), in which the NUC lobe is a site responsible for nuclease activity (Non Patent Literature 2). Thus, inactivated Cas9 (dCas9) having no nuclease activity in the present invention can be produced by introducing a mutation into the NUC lobe of Cas9. As a result, the nuclease activity of Cas9 can be inactivated while maintaining the capacity of binding to a target site. A site in which the mutation is introduced into the NUC lobe is not limited as long as only the nuclease activity can be inactivated. For example, mutation of Asp10 to alanine (D10A), mutation of His840 to alanine (H840A), and mutation of Asn863 to alanine (N863A) in Cas9 (UniProtKB/Swiss-Prot: Q99ZW2) are preferred. Such mutations may be one kind or a combination of two or more kinds thereof.

[0017] DNAs encoding dCas9 can be produced by introducing mutations into DNAs encoding Cas9 that can be obtained from GenBank and the like. Alternatively, plasmids comprising commercially available dCas9 may be obtained from Addgene and the like and used, DNAs encoding dCas9 may be obtained by PCR with the plasmids as templates or may be artificially produced using an artificial gene synthesis technology known to those skilled in the art, and methods of obtaining the DNAs are not limited. RNAs encoding dCas9 may be obtained by known molecular biological techniques, of which any may be used. For example, such an RNA may be obtained by using a DNA encoding the dCas9 as a template and triggering an RNA polymerase.

(Tag Peptide Array)

30

40

45

50

55

35 **[0018]** The tag peptide array in the present invention refers to a tag peptide array in which plural tag peptides are linked by linkers.

[0019] The tag peptides can be optionally selected in combination with a tag peptide-binding portion described later. Examples of the combination of the tag peptides and the tag peptide-binding portion include a combination of a peptide epitope and an antibody recognizing the peptide epitope, and a combination of the small fragment and large fragment of a split protein.

[0020] Examples of the combination of a peptide epitope and an antibody recognizing the peptide epitope include: GCN4 and an anti-GCN4 antibody; a His tag and an anti-His tag antibody; an EE hexapeptide and an anti-EE hexapeptide antibody; a c-Myc tag and an anti-c-Myc tag antibody; an HA tag and an anti-HA tag antibody; an S tag and an anti-S tag antibody; and a FLAG tag and an anti-FLAG tag antibody (Protein Engineering, Design & Selection vol. 24 no. 5 pp. 419-428, 2011). Among them, a peptide included in GCN4 is preferably used, the amino acid sequence of GCN4 can be obtained from, for example, PDB, and the DNA sequence of GCN4 can be obtained from GenBank or the like. Those skilled in the art can also obtain an RNA sequence corresponding to the DNA sequence on the basis of information on the DNA sequence by using nucleotide sequence conversion software and the like. The GCN4 peptide epitope can be used without limitation as long as being an epitope in GCN4, and an amino acid sequence represented by SEQ ID NO: 1 is preferred. Information on the amino acid sequences of the other tag peptides and the nucleotide sequences encoding the amino acid sequences can be obtained from known databases and the like.

[0021] The split protein refers to a pair of proteins in which, in the case of dividing a certain protein into two portions, the two portions of the protein are reassociated, thereby enabling formation of the same structure as that of the original protein. Particularly in the case of dividing the original protein into the two portions, one portion as a short peptide (small fragment) may be used with a tag peptide, and the other longer portion (large fragment) may be used as a tag peptide-binding portion (Current Opinion in Chemical Biology 2011, 15: 789-797). A known split protein can be used as the split protein which can be used for such a purpose, and examples thereof include GFP (green fluorescent protein).

[0022] Further, binding of a peptide and a protein domain is compiled into a database, and a combination of a tag

peptide and a tag peptide-binding portion can be found with reference to, for example, Peptide Binding Proteins Database (http://pepbind.bicpu.edu.in/home.php). For example, since PDZAlpha-Syntrophin PDZ protein interaction domain can be bound to GVKESLV (SEQ ID NO: 44), GVKESLV can be used with a tag peptide, and the PDZ domain can be used as a tag peptide-binding portion.

[0023] Further, the binding strength of a pair of a peptide and a peptide binding portion can be increased by connecting another unrelated domain with a linker and performing domain interface evolution. Methylation can be further efficiently regulated by using such a pair (Proc. Natl. Acad. Sci. USA, 2008, vol. 105 no. 18, 6578-6583).

[0025] The tag peptide array in the present invention refers to a tag peptide array in which assuming that a combination of a tag peptide and a linker is one unit, one or plural units are repeatedly linked. The plural units mean two or more units. The number of repeated units can be increased or decreased as appropriate depending on the distance between a target site and a methylated or demethylated site, the kind of a methylase or demethylase, and the like, and may be, for example, 3 to 5.

[0026] DNA encoding a tag peptide array can be produced by adding a DNA sequence encoding a desired linker to DNA encoding a tag peptide that can be obtained from GenBank or the like. A method of obtaining the DNA by a molecular biological technique based on information on a DNA sequence is known. For example, the DNA can be artificially produced using an artificial gene synthesis technology known to those skilled in the art, and the method of obtaining the DNA is not limited. Those skilled in the art can also obtain an RNA sequence corresponding to the DNA sequence on the basis of information on the DNA sequence by using nucleotide sequence conversion software and the like.

30 (Fusion Protein of dCas9 and Tag Peptide Array, or RNA or DNA Coding Therefor)

[0027] DNA encoding a fusion protein of dCas9 and a tag peptide array can be produced by binding of DNA encoding the dCas9 defined above and DNA encoding the tag peptide array by using an optional method including a well-known gene manipulation method, and is not particularly limited. A DNA sequence encoding a selection marker may also be inserted into the DNA encoding the fusion protein. The selection marker enables cells into which the DNA encoding the fusion protein is introduced to be selected by cell sorting or the like. Examples of the selection marker include, but are not limited to, genes encoding fluorescent proteins such as GFP, Ds-Red, and mCherry, and drug resistance genes such as puromycin resistance genes and neomycin resistance genes. The fusion protein or RNA encoding the fusion protein can be obtained by a known molecular biological technique using DNA encoding the fusion protein, and can be obtained by, for example, inserting DNA encoding the fusion protein into an appropriate expression vector and expressing the protein or the RNA.

(Tag peptide-binding portion)

10

35

40

45

50

55

[0028] As the tag peptide-binding portion, an anti-tag peptide (peptide epitope) antibody, the large fragment of a split protein, or the like can be used depending on the kind of a tag peptide, as described above. The anti-tag peptide antibody means an antibody that specifically recognizes a tag peptide. The anti-tag peptide antibody includes polyclonal antibodies and monoclonal antibodies. The monoclonal antibodies include monoclonal antibodies, the fragments of monoclonal antibodies, F(ab')₂ antibodies, F(ab') antibodies, short-chain antibodies (scFv), diabodies, and minibodies. DNA encoding the anti-tag peptide antibody can be obtained by a known molecular biological technique, can be obtained by amplifying, for example, a commercially available plasmid such as Addgene plasmid 60904 by PCR, or may be artificially produced using an artificial gene synthesis technology known to those skilled in the art, and a method of obtaining the DNA is not limited. The anti-tag peptide antibody or RNA encoding the anti-tag peptide antibody can be obtained by inserting the DNA encoding the anti-tag peptide antibody into an appropriate expression vector and expressing the protein or the RNA.

(Methylase and Demethylase)

[0029] The methylase in the present invention can be used without limitation as long as being an enzyme that catalyzes

the methylation of an unmethylated site, and includes a methylase which is an enzyme that methylates a particular base on a DNA nucleotide sequence, and a methyltransferase which is an enzyme transferring a methyl group to a particular base, and more specific examples thereof include DNA methyltransferase 3 beta (DNMT3B), DNA methyltransferase 3 alpha (DNMT3A), and DNA methyltransferase 1 (DNMT1). The demethylase in the present invention can be used without limitation as long as being an enzyme catalyzing a series of reaction leading to the demethylation of a methylation site, and includes ten-eleven translocation 1 (TET1), ten-eleven translocation 2 (TET2), ten-eleven translocation 3 (TET3), and thymine-DNA glycosylase(TDG). These enzymes may be a portion or the whole of an enzyme protein. Preferred examples of the portion of the enzyme protein include a catalytic domain of an enzyme. Information on the sequence of DNAs encoding the enzymes can be obtained from GenBank and the like, and the DNAs can be produced from the cDNAs of target animals such as human by PCR. Alternatively, the DNAs encoding the enzymes may be artificially produced using an artificial gene synthesis technology known to those skilled in the art, and methods of obtaining the DNAs are not limited. The enzymes or RNAs encoding the enzymes can be obtained by inserting the DNAs into an appropriate expression vector and expressing the proteins or RNAs.

(Fusion Protein of Tag peptide-binding portion and Methylase or Demethylase, or RNA or DNA Encoding Fusion Protein)

[0030] DNA encoding a fusion protein of a tag peptide-binding portion such as an anti-peptide-epitope antibody and a methylase or demethylase can be produced by linking DNA encoding the tag peptide-binding portion defined above with DNA encoding a methylase or demethylase by using an optional method including a well-known gene manipulation method, and is not particularly limited. A DNA sequence encoding a selection marker may also be inserted into DNA encoding the fusion protein. The selection marker enables cells into which the DNA encoding the fusion protein is introduced to be selected by cell sorting or the like. Examples of the selection marker include, but are not limited to, genes encoding fluorescent proteins such as GFP, Ds-Red, and mCherry, and drug resistance genes such as puromycin resistance genes and neomycin resistance genes. When a DNA sequence encoding a selection marker is inserted into the DNA encoding the fusion protein of the dCas9 and the tag peptide array, a selection marker different from the selection marker may be inserted into DNA encoding a fusion protein of a tag peptide-binding portion and a methylase or demethylase. The fusion protein or RNA encoding the fusion protein can be obtained by a known molecular biological technique using DNA encoding the fusion protein, and can be obtained by, for example, inserting DNA encoding the fusion protein into an appropriate expression vector and expressing the protein or the RNA.

(Guide RNA (gRNA) or DNA Expressing Guide RNA)

[0031] The guide RNA (gRNA) in the present invention is a guide RNA in which a tracrRNA and a crRNA are artificially linked in a CRISPER/Cas method. By a known technique based on an RNA sequence described in Non Patent Literature 2 (p. 1698), DNA corresponding to the RNA sequence can be obtained as DNA expressing tracrRNA. For example, the DNA may be artificially produced using an artificial gene synthesis technology known to those skilled in the art, and a method of obtaining the DNA is not limited. Alternatively, a plasmid that enables a desired gRNA to be expressed by inserting a DNA sequence corresponding to an arbitrary crRNA is commercially available (Addgene plasmid 41824 or the like) and may be therefore used. A sequence complementary to a DNA sequence within 1 kb from a desired site of methylation or demethylation is used as the crRNA. One kind of the gRNA is acceptable, or plural gRNAs each comprising different crRNAs may be used.

(All-in-One Vector)

10

30

35

40

45

50

55

[0032] The DNAs encoding the two fusion proteins described above may be further linked, resulting in DNA encoding a fusion protein of dCas9, a tag peptide array, a tag peptide-binding portion, and a methylase or demethylase, which may be incorporated into a vector and may be used. The vector comprising the DNA is referred to as an all-in-one vector. A linker may be inserted as appropriate into the DNA encoding the fusion protein. For example, when a 2A peptide derived from a virus is inserted as a linker between a fusion protein (regarded as a component 1) of dCas9 and a tag peptide array and a fusion protein (regarded as a component 2) of a tag peptide-binding portion and a methylase or demethylase, the 2A peptide is cleaved by the 2A peptidase in a cell, and therefore, the components 1 and 2 are prevented from being linked and expressed as two separated proteins. The all-in-one vector may also include a gRNA. [0033] Examples of vectors comprising desired genes in the present invention include a vector that can be replicated in a eukaryotic cell, a vector which maintaining an episome, and a vector incorporated into a host cell genome, and viral vectors are preferred, and adenovirus vectors, lentiviral vectors, and adeno-associated virus vectors are more preferred. Such a vector may include a selection marker. "Selection marker" refers to a genetic element which provides a selectable phenotype to a cell into which the selection marker is introduced, and is commonly a gene of which a gene product imparts resistance to an agent that inhibits cell proliferation or kills or wounds a cell. Specific examples thereof include

Neo gene, Hyg gene, hisD gene, Gpt gene, and Ble gene. Examples of a drug useful for selecting the presence of the selection marker include G418 for Neo, hygromycin for Hyg, histidinol for hisD, xanthine for Gpt, and bleomycin for Ble.

(Transfection into Cell)

5

10

15

20

25

30

35

40

45

50

[0034] Transfection of DNA, RNA, and a protein into a cell can be performed by using known optional means or may be performed using a commercially available reagent for transfection. For example, electroporation, Lipofectamine 2000 (Invitrogen), jetPRIME Kit (Polyplus-transfection), DreamFect (OZ Biosciences), GenePorter3000 (OZ Biosciences), Calcium Phosphate Transfection Kit (OZ Biosciences), and the like can be used for transfection of DNA. Electroporation, Lipofectamine 3000 (Invitrogen), RNAi Max (Invitrogen), MessengerMAX (Invitrogen), and the like can be used for transfection of RNA. Electroporation, Lipofectamine CRISPRMAX (Invitrogen), PULSin (Polyplus-transfection), Pro-DeliverIN (OZ Biosciences), BioPORTER Protein Delivery Reagent (Genlantis), and the like can be used for transfection of a protein. Transfection into a cell may also performed by forming a complex of a gRNA and a fusion protein of dCas9 and a tag peptide array, in advance, and transfecting the complex into the cell. DNA, RNA, or a protein can also be introduced into a fertilized egg by microinjection or electroporation.

EXAMPLES

[0035] The present invention will be further described below with reference to non-limiting examples. In the present examples, GCN4 was used as a tag peptide. However, the GCN4 can be replaced with another tag peptide.

Example 1. Demethylation of Target Using TET1CD

<Plasmid Construction for Target Demethylation>

[0036] A dCas9-TET1 catalytic domain (CD) fusion protein expression vector (pCAG-dCas9TET1CD) was produced by fusing cDNA encoding codon-optimized *S.pyogenes* Cas9 (dCas9) as a catalytically inactive nuclease to a catalytic domain in the N-terminus of human TET1CD (System 1). A dCas9 fragment was amplified from Addgene plasmid 48240 by PCR. A TET1CD fragment was amplified from human cDNA by PCR.

<Construction of gRNA>

[0038] A gRNA vector for Gfap or H19 was produced by inserting a target sequence into Addgene plasmid 41824. Cloning was performed by Gibson assembly system via the linearization of an AfIII site and the insertion of a gRNA fragment.

[0039] Target sequences are set forth in Table 1.

Table 1: Target Sequence

Target Name Methylation-Sensitive Site around Target Target Sequence Gfap_1 ATAGACATAATGGTCAGGGGTGG Gfap STAT3-binding site Gfap_2 GGATGCCAGGATGTCAGCCCCGG Gfap STAT3-binding site Gfap_3 ATATGGCAAGGGCAGCCCCGTGG Gfap STAT3-binding site H19DMR_1 GTGGGGGGCTCTTTAGGTTTGG H19DMR CTCF-binding site 1 H19DMR_2 ACCCTGGTCTTTACACACAAAGG H19DMR CTCF-binding site 2

(continued)

Target Name	Target Sequence	Methylation-Sensitive Site around Target
H19DMR_3	GAAGCTGTTATGTGCAACAA <u>GGG</u>	H19DMR CTCF-binding site 3
H19DMR_4	CAGATTTGGCTATAGCTAAA <u>TGG</u>	H19DMR CTCF-binding site 4

The underlines show PAM sequences.

Unrelated gRNA Sequence

Target Name	gRNA Sequence
UR_1	CCATTATTGCATTAATCTGA
UR_2	TAATGCAGCCAGAAAATGAC
UR_3	TCAGGGATCAAATTCTGAGC

<Cell Culture>

5

10

15

20

25

30

35

40

45

50

[0040] Embryonic stem cells (ESCs) were cultured in Dulbecco's modified Eagle's medium-high-concentration glucose (D6429-500ML, Sigma) to which 1% FBS, 17.5% KSR100 (10828028, Gibco), 0.2% of 2-mercaptoethanol (21985-023, Gibco), and 1×10^3 unit /mL (ESG1107, Millipore) of ESGRO mLIF were added under 37°C and 5% CO₂. The ESCs were transfected using Lipofectamine 2000 (Invitrogen) according to an attached protocol, and the cells were collected 48 hours after the transfection and directly used for an assay and a sort by FACSAriaII (BD Biosciences).

<DNA Methylation Analysis>

[0041] Genomic DNA was treated using Epitect Plus DNA Bisulfite Kit (QIAGEN) according to an attached instruction. The modified DNA was amplified using the following PCR primers in Table 2.

Table 2: PCR Primer Sequence for Bisulfite Sequence

Primer Name	Primer Sequence	Methylation-Sensitive Site around Target	
GfapSTAT3-B3	TTGGTTAGTTTTTAGGATTTTTTT	Gfap STAT3-binding site (ES)	
GfapSTAT3-B4	AAAACTTCAAACCCATCTATCTCTTC	Giap 3 (A13-billuling site (E3)	
H19DMR-B1	AAGGAGATTATGTTTTATTTTTGGA	H19DMR CTCF-binding site 1	
H19DMR-B2	AAAAAAACTCAATCAATTACAATCC	TITIBUMN CTOF-billiding site 1	
Gfap_O1B1	TTGTAAAGGTAGGATTAATAAGGGAATT	Gfap off-target site 1	
Gfap_O1B2	AAAAAAACCCTTCAAAAAAAATCTA	Glap on-target site 1	
Gfap_O2B1	TTATTATTTATATTTGGAGGGAGGG	Gfon off target site 2	
Gfap_O2B2	ATTACACCAAAAAAATTTTAAAAAC	Gfap off-target site 2	
Gfap_O3B1	TTTAAATTTTTTTATGTGAATATGG	Gfap off-target site 3	
Gfap_O3B2	AAACATTTAATTCATTAATACACAC	Giap oil-taiget site o	

[0042] The percentages of the demethylation of the STAT3 site of Gfap and the m1 to m4 sites of H19 were determined by Combined Bisulfite Restriction Analysis (COBRA). The fragments amplified using the primers in Table 3 were cleaved with restriction enzymes having recognition sites in the sites and set forth in Table 3 below and subjected to polyacrylamide gel electrophoresis.

Table 3: COBRA Primer Sequence

primer name	primer sequence	Restriction enzyme	methylation sensitive site near the targets	
GfapSTAT3-B1	GTTGAAGATTTGGTAGTGTTGAGTT	Hpy188III	Gfap STAT3-binding site	
GfapSTAT3-B2	TAAAACATATAACAAAAACAACCCC	i ipy rooiii	Giap STATS-billuling site	
H19DMR-B1	AAGGAGATTATGTTTTATTTTTGGA	BstUI	H19DMR CTCF-binding site 1	
H19DMR-B2	AAAAAAACTCAATCAATTACAATCC	BSIOI	THE DWING OF OF-DIFFICING SILE I	
H19DMR-B1	AAGGAGATTATGTTTTATTTTTGGA	Rsal	H19DMR CTCF-binding site 2	
H19DMR-B2	AAAAAAACTCAATCAATTACAATCC	r (29d)	THEDWIN CTOR-billiding site 2	
H19DMR-B3	GGGTTTTTTTGGTTATTGAATTTTAA	BstUI	H19DMR CTCF-binding site 3	
H19DMR-B4	AATACACACATCTTACCACCCCTATA	Daloi	THEDWIN CHOP-billiding site 3	
H19DMR-B5	TTTTTGGGTAGTTTTTTTAGTTTTG	BstUI	H19DMR CTCF-binding site 4	
H19DMR-B6	ACACAAATACCTAATCCCTTTATTAAAC	DalOI	THEDWIN CHOP-billiding site 4	

[0043] The methylation was calculated as the ratio of cleaved DNA by densitometry analysis of a gel stained with ethidium bromide. In each assay, the methylation of cells transfected with a control vector (empty gRNA vector) was defined as 100% methylation (0% demethylation), and the demethylation of each sample was standardized by the control using the following Numerical Formula 1.

Numerical Formula 1

Demethylation of sample (%) = (methylation of control - methylation of

sample)/methylation of control \times 100

[0044] Bisulfite sequencing was carried out for the methylation analysis and off-target analysis of a peripheral region. The amplified fragment was ligated into a TOPO vector (Invitrogen), and sequencing of at least 14 clones was carried out. The sequencing was analyzed by a methylation analysis tool referred to as QUantification tool for Methylation Analysis (QUMA). Statistical significance between two groups of all sets in CpG sites was evaluated using Mann-Whitney U test (also referred to as Wilcoxon matched pairs signed ranks test is called) used for a test of nonparametric statistical significance.

<Results>

5

10

15

20

25

30

35

40

50

[0045] First, a simple design which was a direct fusion protein of inactivated Cas9 nuclease (dCas9) and TET1 was produced for methylation treatment. TET1 has a catalytic domain preserved in a C-terminus, and this domain has higher catalytic activity than that of a full-length protein. Therefore, the TET1 catalytic domain (TET1CD) was fused to dCas9 having inactive catalytic action (System 1 in Figure 1).

[0046] A cytosine residue in a STAT3-binding site located upstream of a gene encoding glial fibrillary acidic protein (GFAP) which is an astrocyte-specific marker was used as a target. The site is methylated in many cell types excluding astrocytes, and the demethylation of the site plays an important role in differentiation of neural precursor cells (NPCs) into astrocytes. Three targets around the STAT3-binding site were designed (Figure 2a), and a gRNA vector for the targets was produced. The gRNA vector was transiently introduced, together with a dCAS9-TET1CD fusion protein expression vector (pCAG-dCas9TET1CD), into embryonic stem cells (ESCs). The methylation of the STAT3-binding site was analyzed by Combined Bisulfite Restriction Analysis (COBRA). In each assay, the methylation of cells into which a gene was introduced together with a control vector (empty gRNA vector) was defined as 0% demethylation (100% methylation), and the demethylation of each sample was standardized by the control.

[0047] In the STAT3 site, the three gRNAs, Gfap1, Gfap2 and Gfap3, showed demethylations of 3%, 14%, and 9%, respectively (Figure 2b). In contrast, the unrelated gRNAs (UR1, UR2, and UR3) showed no demethylation. Thus, this simple system induced gRNA-dependent specific demethylation, but the degree of the demethylation was shown to be at most 14%.

[0048] Then, an attempt to amplify a demethylation ability was made using dCas9 fused in a repeating peptide sequence in order to recruit plural copies of the antibody fused TET1 hydroxylase catalytic domain (Figure 3a). For the demethylation of the Gfap STAT3 site, an expression vector of Gfap2gRNA, dCas9 having 10 copies of GCN4 peptides, and a GCN4 peptide antibody (scFv)-superfolder green fluorescent protein (sfGFP)-TET1CD fusion protein was used in ESCs (System 2 in Figure 1). However, the use of this System 2 did not allow the degree of the demethylation to be improved (Figure 4a). [0049] The length of a linker by which the sequence of a GCN4 peptide epitope comprising 19 amino acids was separated was examined in order to investigate the reason why System 2 failed to improve the degree of the demethylation. If the length of the linker is too short, it is considered that for the antibody-TET1CD fusion protein, a space for approaching and binding to the GCN4 peptide sequence is too narrow, and therefore, demethylation activity becomes insufficient. If the length of the linker is too long, it is considered that the antibody-TET1CD fusion protein is incapable of approaching a target methylated site (Figure 3b). The length of the linker of System 2 was 5 amino acids (System 2 in Figure 1).

[0050] An antibody-TET1CD fusion protein having a linker of which the length was 22 amino acids (System 3 in Figure 1) and a TET1CD fusion protein having a linker of which the length was 43 amino acids (System 4 in Figure 1) were produced, and the demethylation activities thereof were compared. Because of technological limitation in a synthetic gene technology, the numbers of copies of GCN4 peptides having a linker of which the length was 22 amino acids and a linker of which the length was 43 amino acids were decreased to 5 and 4, respectively. In spite of the decreases in the numbers of the copies of the GCN4 peptides, the linker of which the length was 22 amino acids showed a best demethylation of 43%. The linker of which the length was 44 amino acids showed a second highest activity, and the linker, as a prototype, of which the length was 5 amino acids showed the lowest activity (Figure 4a).

[0051] These results suggested that the length of a linker by which each GCN4 peptide unit sequence fused with dCas9 is separated is more important for demethylation activity than the number of copies of GCN4. The demethylation activity was prominently improved by increasing the length of the linker from 5 amino acids to 22 amino acids. This is considered to be because the 22 amino acids have a width enough for the antibody-TET1CD fusion protein to approach a peptide sequence. In contrast, the linker of which the length was 43 amino acids was considered to be long for the antibody-TET1CD fusion protein to approach a methylated site which was a target.

[0052] Cells into which a GFP expression vector was introduced were selected using fluorescence activated cell sorting (FACS) for the purpose of further improving demethylation efficiency. For this purpose, an all-in-one vector comprising a gRNA, dCas9 comprising the GCN4 sequence of System 3, and an antibody-sfGFP-TET1CD fusion protein was produced (Figure 1). The all-in-one introduced ESCs sorted by GFP showed roughly complete demethylation (Figure 4). The ESCs in to which System 3 was introduced and which was sorted by GFP also unexpectedly showed roughly complete demethylation (Figure 4). Complete demethylation in a target region was achieved by the promotion of the demethylation ability and the sorting technology.

[0053] Then, the range of the demethylation of a used sorted sample from a target site was investigated by bisulfite sequencing. The demethylation occurred even at a site located at least 100 bp or more apart from the target site (Figure 4b). Investigation of off-target activity by bisulfite sequencing using the same sample resulted in no observation of noticeable off-target activity (Figure 5).

[0054] Then, a similar experiment was conducted using a differential methylation region (DMR) of H19 as a paternal methylated imprinting gene. The DMR of H19 includes four methylation-sensitive CTCF binding sites (m1 to m4), which are important for adjusting H19 imprinting (Figure 6a). A gRNA (H19DMR2) targeting m2 was introduced, together with dCas9-TET1CD or System 3, into ESCs. The cells into which System 3 had been introduced and which were subjected to cell sorting after the introduction were also produced.

[0055] As a result, noticeable improvement in methylation in System 3 was observed in comparison with dCas9-TET1CD. Complete demethylation was observed at the m2 site in the cells sorted by GFP (Figure 6b). Further analyzation of the cells sorted by GFP for the methylation of a peripheral region showed complete demethylation at the m1 site located 200 bp apart from the target region (Figure 6c). In contrast, the slight demethylation of the m3 and m4 sites located 1 kb or more apart from the target site merely occurred (Figure 6c), and it was suggested that the effect of the demethylation was not greater than that of a site located 1 kb or more apart. In order to test the possibility of targeting of plural of sites, the gRNAs of m1 to m4 were introduced together with System 3 (H19DMR1-4). As a result, roughly complete demethylation was observed in all of the four sites (m1 to m4) in the cells sorted by GFP (Figure 6c). This showed that plural sites can be demethylated by using plural gRNAs.

Example 2. Methylation of Target Using Dnmt3b

10

30

35

45

50

[0056] The m2 site of H19 was methylated using System 3 (linker 22aa) in order to introduce methylation into a target. Experiments were conducted using (1) Dnmt3b, (2) Dnmt3bNLS, and (3) Dnmt3bNLS_N662R instead of TET1CD (Figure 7). (1) is a De novo methylase Dnmt3b, (2) is obtained by adding NLS (nuclear localization signal) to the C terminus of the Dnmt3b of (1), and (3) is obtained by changing the 662nd amino acid of (2) from asparagine (N) to arginine (R). This

amino acid substitution has been reported to improve methylation activity (Shen L et al. below). The plasmids used are as follows.

- (1) Dnmt3b: pCAG-scFvGCN4sfGFPDnmt3bF (SEQ ID NO: 41)
- (2) Dnmt3bNLS: pCAG-scFvGCN4sfGFPDnmt3bFNLS (SEQ ID NO: 42)
- (3) Dnmt3bNLS_N662R: pCAG-scFvGCN4sfGFPDnmt3bS1 (SEQ ID NO: 43)

[0057] Only cells into which genes were introduced and which emitted fluorescence were isolated based on fluorescence of GFP by a cell sorter 2 days after introduction of these systems of (1) to (3) into ES cells, and the methylation of the m2 of H19 was examined in a manner similar to that in the demethylation. The methylation was calculated as a methylation (%) standardized by a control, as shown in Numerical Formula 2. As a result, the methylations of the targets were (1) 54%, (2) 74%, and (3) 84%, revealing that methylation efficiency in the case of adding NLS was higher than that in the case of only Dnmt3b, and methylation efficiency in the case of the amino acid substitution of N662R was further higher (Figure 8).

15

5

Numerical Formula 2

Methylation (%) standardized by control = (methylation of sample - methylation of

20

control)/methylation of control \times 100

References

[0058] Shen L, Gao G, Zhang Y, Zhang H, Ye Z, Huang S, Huang J, Kang J. A single amino acid substitution confers enhanced methylation activity of mammalian Dnmt3b on chromatin DNA. Nucleic Acids Res. 38:6054-6064, 2010. doi: 10.1093/nar/gkq456.

```
SEQ ID NO: 1: GCN4
30
        SEQ ID NO: 2: linker 5
        SEQ ID NO: 3: linker 22
        SEQ ID NO: 4: linker 43
        SEQ ID NO: 5: 2A peptide
        SEQ ID NO: 6: pCAG-dCas9TET1CD
35
        SEQ ID NO: 7: pCAG-dCas9-10xGCN4_v4
        SEQ ID NO: 8: pCAG-scFvGCN4sfGFPTET1CD
        SEQ ID NO: 9: pCAG-dCas9-5xPlat2AflD
        SEQ ID NO: 10: pCAG-dCas9-3.5xSuper
        SEQ ID NO: 11: pPlatTET-gRNA2
40
        SEQ ID NO: 12: Gfap_1
        SEQ ID NO: 13: Gfap_2
        SEQ ID NO: 14: Gfap_3
        SEQ ID NO: 15: H19DMR_1
        SEQ ID NO: 16: H19DMR 2
45
        SEQ ID NO: 17: H19DMR_3
        SEQ ID NO: 18: H19DMR_4
        SEQ ID NO: 19: UR_1
        SEQ ID NO: 20: UR_2
        SEQ ID NO: 21: UR_3
50
        SEQ ID NO: 22: GfapSTAT3-B3
        SEQ ID NO: 23: GfapSTAT3-B4
        SEQ ID NO: 24: H19DMR-B1
        SEQ ID NO: 25: H19DMR-B2
        SEQ ID NO: 26: Gfap_O1B1
55
        SEQ ID NO: 27: Gfap_O1B2
        SEQ ID NO: 28: Gfap_O2B1
        SEQ ID NO: 29: Gfap_O2B2
```

SEQ ID NO: 30: Gfap_O3B1

SEQ ID NO: 31: Gfap_O3B2 SEQ ID NO: 32: GfapSTAT3-B1 SEQ ID NO: 33: GfapSTAT3-B2 SEQ ID NO: 34: H19DMR-B3 5 SEQ ID NO: 35: H19DMR-B4 **SEQ ID NO: 36: H19DMR-B5** SEQ ID NO: 37: H19DMR-B6 SEQ ID NO: 38: off target 1 SEQ ID NO: 39: off target 2 10 SEQ ID NO: 40: off target 3 SEQ ID NO: 41: pCAG-scFvGCN4sfGFPDnmt3bF SEQ ID NO: 42: pCAG-scFvGCN4sfGFPDnmt3bFNLS SEQ ID NO: 43: pCAG-scFvGCN4sfGFPDnmt3bS1 SEQ ID NO: 44: tag peptide GVKESLV 15 SEQ ID NO: 45: GS linker SEQ ID NO: 46: GS linker SEQ ID NO: 47: GS linker

Industrial Applicability

20

25

30

35

40

45

50

55

[0059] The methylation of a particular gene can be controlled according to the present invention. As a result, model cells and animals with diseases (epigenome diseases) occurring due to DNA methylation abnormality, such as cancers and imprinting diseases, can be produced. In addition, virus vectors and other delivery systems can be used for treatment of the diseases. In production of iPS cells, the iPS cells can be effectively produced by demethylating and activating a pluripotent gene such as Oct-4 according to the present invention.

SEQUENCE LISTING

```
<110> National University Corporation Gunma University
            <120> A kit and a method for editing DNA methylation
5
            <130> IP27016-6416
            <150> JP2015-229896
            <151> 2015-11-25
10
            <160> 47
            <170> PatentIn version 3.5
            <210> 1
15
            <211> 19
            <212> PRT
            <213> Saccharomyces cerevisiae
20
            Glu Glu Leu Leu Ser Lys Asn Tyr His Leu Glu Asn Glu Val Ala Arg
                            5
                                                10
            Leu Lys Lys
25
            <210>
                   2
            <211> 5
            <212> PRT
            <213> Artificial Sequence
30
            <220>
            <223> linker 5
            <400> 2
            Gly Ser Gly Ser Gly
35
            <210> 3
            <211> 22
            <212> PRT
40
            <213> Artificial Sequence
            <220>
            <223> linker 22
            <400> 3
45
            Gly Ser Gly Ser Gly Ser Gly Ser Gly Ser Gly Ser Gly Ser
                                                10
                                                                    15
            Gly Gly Ser Gly Ser Gly
                        20
50
            <210>
                  4
            <211>
                   43
            <212>
                  PRT
            <213> Artificial Sequence
55
            <220>
            <223> linker 43
```

```
<400> 4
        Gly Ser Gly Ser Gly Ser Gly Ser Gly Ser Gly Ser Gly Gly
                                            10
        Ser Gly Ser Gly Gly Ser Gly Ser Gly Ser Gly Ser Gly Ser
                                        25
5
        Gly Gly Ser Gly Ser Gly Ser Gly Ser Gly
                35
        <210>
               5
10
        <211>
               22
        <212>
              PRT
        <213>
              Artificial Sequence
        <220>
        <223> 2A peptide
15
        <400> 5
        Gly Ser Gly Ala Thr Asn Phe Ser Leu Leu Lys Gln Ala Gly Asp Val
                        5
        Glu Glu Asn Pro Gly Pro
                    20
20
        <210>
               6
        <211>
              11427
        <212>
              DNA
        <213>
              Artificial Sequence
        <220>
        <223> pCAG-dCas9TET1CD
        <400> 6
30
                                                                                60
        tagttattaa tagtaatcaa ttacggggtc attagttcat agcccatata tggagttccg
        cgttacataa cttacggtaa atggcccgcc tggctgaccg cccaacgacc cccgcccatt
                                                                               120
        gacgtcaata atgacgtatg ttcccatagt aacgccaata gggactttcc attgacgtca
                                                                               180
        atgggtggac tatttacggt aaactgccca cttggcagta catcaagtgt atcatatgcc
                                                                               240
        aagtacgccc cctattgacg tcaatgacgg taaatggccc gcctggcatt atgcccagta
                                                                               300
35
        catgacctta tgggactttc ctacttggca gtacatctac gtattagtca tcgctattac
                                                                               360
        catgggtcga ggtgagcccc acgttctgct tcactctccc catctccccc ccctccccac
                                                                                420
        ccccaatttt gtatttattt atttttaat tattttgtgc agcgatgggg gcggggggg
                                                                                480
        ggggggcgcg cgccaggcgg ggcggggcgg ggcgagggc ggggcggggc gaggcggaga
                                                                               540
        ggtgcggcgg cagccaatca gagcggcgcg ctccgaaagt ttccttttat ggcgaggcgg
                                                                                600
                                                                               660
        cggcggcggc ggccctataa aaagcgaagc gcgcggcggg cgggagtcgc tgcgttgcct
40
        tegeceegtg eecegeteeg egeegeeteg egeegeeege eeeggetetg aetgaeegeg
                                                                               720
        ttactcccac aggtgagcgg gcgggacggc ccttctcctc cgggctgtaa ttagcgcttg
                                                                               780
        gtttaatgac ggctcgtttc ttttctgtgg ctgcgtgaaa gccttaaagg gctccgggag
                                                                               840
        ggccctttgt gcgggggga gcggctcggg gggtgcgtgc gtgtgtgtgt gcgtggggag
                                                                               900
                                                                               960
        cgccgcgtgc ggcccgcgct gcccggcggc tgtgagcgct gcgggcgcgc cgcggggctt
        tgtgcgctcc gcgtgtgcgc gaggggagcg cggccggggg cggtgccccg cggtgcgggg
                                                                               1020
45
        gggctgcgag gggaacaaag gctgcgtgcg gggtgtgtgc gtgggggggt gagcaggggg
                                                                               1080
        tgtgggcgcg gcggtcgggc tgtaaccccc ccctgcaccc ccctccccga gttgctgagc
                                                                               1140
        acggcccggc ttcgggtgcg gggctccgtg cggggcgtgg cgcggggctc gccgtgccgg
                                                                              1200
        gcgggggtg gcggcaggtg ggggtgccgg gcggggggg gccgcctcgg gccggggagg
                                                                               1260
        gctcggggga ggggcgcggc ggccccggag cgccggcggc tgtcgaggcg cggcgagccg
                                                                               1320
50
                                                                               1380
        cagccattgc cttttatggt aatcgtgcga gagggcgcag ggacttcctt tgtcccaaat
        ctggcggagc cgaaatctgg gaggcgccgc cgcaccccct ctagcgggcg cgggcgaagc
                                                                               1440
        ggtgcggcgc cggcaggaag gaaatgggcg gggagggcct tcgtgcgtcg ccgcgccgcc
                                                                               1500
        gtccccttct ccatctccag cctcggggct gccgcagggg gacggctgcc ttcggggggg
                                                                              1560
        acggggcagg gcggggttcg gcttctggcg tgtgaccggc ggctctagag cctctgctaa
                                                                              1620
        ccatgttcat gccttcttct ttttcctaca gctcctgggc aacgtgctgg ttgttgtgct
                                                                              1680
55
        gtctcatcat tttggcaaag aattctgcag tcgacggtac catgtaccca tacgatgttc
                                                                              1740
        cagattacgc ttcgccgaag aaaaagcgca aggtcgaagc gtccgacaag aagtacagca
                                                                              1800
```

```
teggeetgge categgeace aactetgtgg getgggeegt gateacegae gagtacaagg
                                                                               1860
                                                                               1920
        tgcccagcaa gaaattcaag gtgctgggca acaccgaccg gcacagcatc aagaagaacc
                                                                               1980
        tgatcggagc cctgctgttc gacagcggcg aaacagccga ggccacccgg ctgaagagaa
                                                                                2040
        ccgccagaag aagatacacc agacggaaga accggatctg ctatctgcaa gagatcttca
                                                                               2100
        gcaacgagat ggccaaggtg gacgacagct tcttccacag actggaagag tccttcctgg
5
                                                                               2160
        tggaagagga taagaagcac gagcggcacc ccatcttcgg caacatcgtg gacgaggtgg
        cctaccacga gaagtacccc accatctacc acctgagaaa gaaactggtg gacagcaccg
                                                                               2220
                                                                                2280
        acaaggccga cctgcggctg atctatctgg ccctggccca catgatcaag ttccggggcc
        acttectgat egagggegae etgaaceeeg acaacagega egtggacaag etgtteatee
                                                                                2340
                                                                               2400
        agctggtgca gacctacaac cagctgttcg aggaaaaccc catcaacgcc agcggcgtgg
10
                                                                                2460
        acgccaaggc catcctgtct gccagactga gcaagagcag acggctggaa aatctgatcg
        cccagctgcc cggcgagaag aagaatggcc tgttcggcaa cctgattgcc ctgagcctgg
                                                                                2520
        gcctgacccc caacttcaag agcaacttcg acctggccga ggatgccaaa ctgcagctga
                                                                               2580
                                                                               2640
        gcaaggacac ctacgacgac gacctggaca acctgctggc ccagatcggc gaccagtacg
        ccgacctgtt tctggccgcc aagaacctgt ccgacgccat cctgctgagc gacatcctga
                                                                               2700
                                                                               2760
        gagtgaacac cgagatcacc aaggcccccc tgagcgcctc tatgatcaag agatacgacg
15
        agcaccacca ggacctgacc ctgctgaaag ctctcgtgcg gcagcagctg cctgagaagt
                                                                               2820
                                                                               2880
        acaaagagat tttcttcgac cagagcaaga acggctacgc cggctacatt gacggcggag
                                                                                2940
        ccagccagga agagttctac aagttcatca agcccatcct ggaaaagatg gacggcaccg
                                                                                3000
        aggaactgct cgtgaagctg aacagagagg acctgctgcg gaagcagcgg accttcgaca
                                                                               3060
        acggcagcat cccccaccag atccacctgg gagagctgca cgccattctg cggcggcagg
                                                                               3120
        aagattttta cccattcctg aaggacaacc gggaaaagat cgagaagatc ctgaccttcc
20
        gcatccccta ctacgtgggc cctctggcca ggggaaacag cagattcgcc tggatgacca
                                                                               3180
        gaaagagcga ggaaaccatc accccctgga acttcgagga agtggtggac aagggcgctt
                                                                                3240
                                                                                3300
        ccgcccagag cttcatcgag cggatgacca acttcgataa gaacctgccc aacgagaagg
                                                                                3360
        tgctgcccaa gcacagcctg ctgtacgagt acttcaccgt gtataacgag ctgaccaaag
        tgaaatacgt gaccgaggga atgagaaagc ccgccttcct gagcggcgag cagaaaaagg
                                                                                3420
        ccatcgtgga cctgctgttc aagaccaacc ggaaagtgac cgtgaagcag ctgaaagagg
                                                                                3480
                                                                               3540
        actacttcaa gaaaatcgag tgcttcgact ccgtggaaat ctccggcgtg gaagatcggt
                                                                               3600
        tcaacgcctc cctgggcaca taccacgatc tgctgaaaat tatcaaggac aaggacttcc
                                                                                3660
        tggacaatga ggaaaacgag gacattctgg aagatatcgt gctgaccctg acactgtttg
        aggacagaga gatgatcgag gaacggctga aaacctatgc ccacctgttc gacgacaaag
                                                                                3720
        tgatgaagca gctgaagcgg cggagataca ccggctgggg caggctgagc cggaagctga
                                                                                3780
30
                                                                                3840
        tcaacggcat ccgggacaag cagtccggca agacaatcct ggatttcctg aagtccgacg
                                                                                3900
        gcttcgccaa cagaaacttc atgcagctga tccacgacga cagcctgacc tttaaagagg
        acatccagaa agcccaggtg tccggccagg gcgatagcct gcacgagcac attgccaatc
                                                                               3960
        tggccggcag ccccgccatt aagaagggca tcctgcagac agtgaaggtg gtggacgagc
                                                                                4020
                                                                                4080
        tcgtgaaagt gatgggccgg cacaagcccg agaacatcgt gatcgaaatg gccagagaga
35
        accagaccac ccagaaggga cagaagaaca gccgcgagag aatgaagcgg atcgaagagg
                                                                                4140
        gcatcaaaga gctgggcagc cagatcctga aagaacaccc cgtggaaaac acccagctgc
                                                                                4200
                                                                                4260
        agaacgagaa gctgtacctg tactacctgc agaatgggcg ggatatgtac gtggaccagg
                                                                                4320
        aactggacat caaccggctg tccgactacg atgtggacgc catcgtgcct cagagctttc
        tgaaggacga ctccatcgac aacaaggtgc tgaccagaag cgacaagaac cggggcaaga
                                                                                4380
                                                                                4440
        gcgacaacgt gccctccgaa gaggtcgtga agaagatgaa gaactactgg cggcagctgc
40
                                                                                4500
        tgaacgccaa gctgattacc cagagaaagt tcgacaatct gaccaaggcc gagagaggcg
                                                                                4560
        gcctgagcga actggataag gccggcttca tcaagagaca gctggtggaa acccggcaga
        tcacaaagca cgtggcacag atcctggact cccggatgaa cactaagtac gacgagaatg
                                                                                4620
        acaagctgat ccgggaagtg aaagtgatca ccctgaagtc caagctggtg tccgatttcc
                                                                                4680
                                                                                4740
        ggaaggattt ccagttttac aaagtgcgcg agatcaacaa ctaccaccac gcccacgacg
                                                                                4800
        cctacctgaa cgccgtcgtg ggaaccgccc tgatcaaaaa gtaccctaag ctggaaagcg
45
        agttcgtgta cggcgactac aaggtgtacg acgtgcggaa gatgatcgcc aagagcgagc
                                                                                4860
                                                                                4920
        aggaaatcgg caaggctacc gccaagtact tcttctacag caacatcatg aactttttca
                                                                                4980
        agaccgagat taccctggcc aacggcgaga tccggaagcg gcctctgatc gagacaaacg
        gcgaaaccgg ggagatcgtg tgggataagg gccgggattt tgccaccgtg cggaaagtgc
                                                                                5040
        tgagcatgcc ccaagtgaat atcgtgaaaa agaccgaggt gcagacaggc ggcttcagca
                                                                                5100
50
                                                                                5160
        aagagtetat eetgeecaag aggaacageg ataagetgat egeeagaaag aaggaetggg
        accctaagaa gtacggcggc ttcgacagcc ccaccgtggc ctattctgtg ctggtggtgg
                                                                                5220
                                                                                5280
        ccaaagtgga aaagggcaag tccaagaaac tgaagagtgt gaaagagctg ctggggatca
        ccatcatgga aagaagcagc ttcgagaaga atcccatcga ctttctggaa gccaagggct
                                                                               5340
                                                                               5400
        acaaagaagt gaaaaaggac ctgatcatca agctgcctaa gtactccctg ttcgagctgg
                                                                               5460
        aaaacggccg gaagagaatg ctggcctctg ccggcgaact gcagaaggga aacgaactgg
55
        ccctgccctc caaatatgtg aacttcctgt acctggccag ccactatgag aagctgaagg
                                                                                5520
        gctcccccga ggataatgag cagaaacagc tgtttgtgga acagcacaag cactacctgg
                                                                               5580
```

	acgagatcat	cgagcagatc	agcgagttct	ccaagagagt	gatectggee	gacgctaatc	5640
		gctgtccgcc					5700
		ccacctgttt					5760
		catcgaccgg					5820
5		gagcatcacc					5880
		caagaagaag					5940
		ctgtcttgat					6000
		accaagtgtt					6060
		aataaggata					6120
10		aattgctaag					6180 6240
70		gcagcgtaca					6300
		tggcatccct atacaatggg					6360
		tcaaggaatt					6420
		gtactttaat					6480
		aagctctccc					6540
15		agctccaatt					6600
		tgttgcccga					6660
		ttgcctggac					6720
		tgtggtttgt					6780
		gcagctccat					6840
20	gctccaagga	aggaatggaa	gccaagatca	aatctggggc	catcgaggtc	ctggcacccc	6900
	gccgcaaaaa	aagaacgtgt	ttcactcagc	ctgttccccg	ttctggaaag	aagagggctg	6960
	cgatgatgac	agaggttctt	gcacataaga	taagggcagt	ggaaaagaaa	cctattcccc	7020
		gaagaataac					7080
		taacactgag					7140
25		aagttcagac					7200
23		ggcatctcca					7260
		gaatgacgca					7320
		gccttcggga					7380 7 44 0
		gcttggcgaa					7500
		ttctgagcct ctccttcctc					7560 7560
30		ttctgaagca					7620
		tgaggagaaa					7680
		tgcaaatatt					7740
		ccggcgagag					7800
		cctctccctt					7860
35		aaacaagatt					7920
		aaaagaccag					7980
	aattgaacca	aattccttct	cataaagcat	taacattaac	ccatgacaat	gttgtcaccg	8040
	tgtcccctta	tgctctcaca	cacgttgcgg	ggccctataa	ccattgggtc	tgagcggccg	8100
		tcataatcag					8160
40		tccccctgaa					8220
40		cttataatgg					8280
		cactgcattc					8340
		agcgttaata	_		_	_	8400
		caataggccg					8460 8520
		agtgttgttc					8580
45		gggcgaaaaa tttttggggt					8640
		agagettgae					8700
	_	gcgggcgcta					8760
		gcgcttaatg					8820
		acccctattt					8880
50		ccctgataaa					8940
		tgtggaatgt					9000
		tgcaaagcat					9060
		caggcagaag					9120
		ctccgcccat					9180
55		taatttttt					9240
20		agtgaggagg					9300
	gacaggatga	ggatcgtttc	gcatgattga	acaagatgga	ttgcacgcag	gttctccggc	9360

```
cgcttgggtg gagaggctat tcggctatga ctgggcacaa cagacaatcg gctgctctga
                                                                              9480
        tgccgccgtg ttccggctgt cagcgcaggg gcgcccggtt ctttttgtca agaccgacct
                                                                              9540
        gtccggtgcc ctgaatgaac tgcaagacga ggcagcgcgg ctatcgtggc tggccacgac
        gggcgttcct tgcgcagctg tgctcgacgt tgtcactgaa gcgggaaggg actggctgct
                                                                              9600
        attgggcgaa gtgccggggc aggatctcct gtcatctcac cttgctcctg ccgagaaagt
                                                                              9660
5
        atccatcatg gctgatgcaa tgcggcggct gcatacgctt gatccggcta cctgcccatt
                                                                              9720
        cgaccaccaa gcgaaacatc gcatcgagcg agcacgtact cggatggaag ccggtcttgt
                                                                              9780
                                                                              9840
        cgatcaggat gatctggacg aagagcatca ggggctcgcg ccagccgaac tgttcgccag
        gctcaaggcg agcatgcccg acggcgagga tctcgtcgtg acccatggcg atgcctgctt
                                                                              9900
                                                                              9960
        gccgaatatc atggtggaaa atggccgctt ttctggattc atcgactgtg gccggctggg
10
                                                                             10020
        tgtggcggac cgctatcagg acatagcgtt ggctacccgt gatattgctg aagagcttgg
        cggcgaatgg gctgaccgct tcctcgtgct ttacggtatc gccgctcccg attcgcagcg
                                                                             10080
        categeette tategeette ttgacgagtt ettetgageg ggactetggg gttegaaatg
                                                                             10140
        accgaccaag cgacgcccaa cctgccatca cgagatttcg attccaccgc cgccttctat
                                                                             10200
        gaaaggttgg gcttcggaat cgttttccgg gacgccggct ggatgatcct ccagcgcggg
                                                                             10260
        gateteatge tggagttett egeceaceet agggggagge taactgaaac aeggaaggag
                                                                             10320
15
        acaataccgg aaggaacccg cgctatgacg gcaataaaaa gacagaataa aacgcacggt
                                                                             10380
        gttgggtcgt ttgttcataa acgcggggtt cggtcccagg gctggcactc tgtcgatacc
                                                                             10440
        10500
        ccaagttcgg gtgaaggccc agggctcgca gccaacgtcg gggcggcagg ccctgccata
                                                                             10560
        gcctcaggtt actcatatat actttagatt gatttaaaac ttcattttta atttaaaagg
                                                                             10620
        atctaggtga agatcctttt tgataatctc atgaccaaaa tcccttaacg tgagttttcg
                                                                             10680
20
        ttccactgag cgtcagaccc cgtagaaaag atcaaaggat cttcttgaga tccttttttt
                                                                             10740
        ctgcgcgtaa tctgctgctt gcaaacaaaa aaaccaccgc taccagcggt ggtttgtttg
                                                                             10800
                                                                             10860
        ccggatcaag agctaccaac tctttttccg aaggtaactg gcttcagcag agcgcagata
                                                                             10920
        ccaaatactg tccttctagt gtagccgtag ttaggccacc acttcaagaa ctctgtagca
        ccgcctacat acctcgctct gctaatcctg ttaccagtgg ctgctgccag tggcgataag
                                                                             10980
25
        tegtgtetta eegggttgga eteaagaega tagttaeegg ataaggegea geggteggge
                                                                             11040
        tgaacggggg gttcgtgcac acagcccagc ttggagcgaa cgacctacac cgaactgaga
                                                                             11100
                                                                             11160
        tacctacagc gtgagctatg agaaagcgcc acgcttcccg aagggagaaa ggcggacagg
        tatccggtaa gcggcagggt cggaacagga gagcgcacga gggagcttcc agggggaaac
                                                                             11220
        gcctggtatc tttatagtcc tgtcgggttt cgccacctct gacttgagcg tcgatttttg
                                                                             11280
        tgatgctcgt caggggggcg gagcctatgg aaaaacgcca gcaacgcggc ctttttacgg
                                                                             11340
30
        ttcctggcct tttgctggcc ttttgctcac atgttctttc ctgcgttatc ccctgattct
                                                                             11400
                                                                             11427
        gtggataacc gtattaccgc catgcat
        <210>
              7
        <211>
              10188
35
        <212>
              DNA
        <213>
              Artificial Sequence
        <220>
        <223>
              pCAG-dCas9-10xGCN4_v4
40
        <400> 7
        tagttattaa tagtaatcaa ttacggggtc attagttcat agcccatata tggagttccg
                                                                                60
        cgttacataa cttacggtaa atggcccgcc tggctgaccg cccaacgacc cccgcccatt
                                                                               120
        gacgtcaata atgacgtatg ttcccatagt aacgccaata gggactttcc attgacgtca
                                                                               180
                                                                               240
        atgggtggac tatttacggt aaactgccca cttggcagta catcaagtgt atcatatgcc
45
        aagtacgccc cctattgacg tcaatgacgg taaatggccc gcctggcatt atgcccagta
                                                                               300
        catgacctta tgggactttc ctacttggca gtacatctac gtattagtca tcgctattac
                                                                               360
        catgggtcga ggtgagcccc acgttctgct tcactctccc catctccccc ccctccccac
                                                                               420
        ccccaatttt gtatttattt atttttaat tattttgtgc agcgatgggg gcggggggg
                                                                               480
        ggggggcgcg cgccaggcgg ggcggggcgg ggcgaggggc ggggcggggc gaggcggaga
                                                                               540
50
        ggtgcggcgg cagccaatca gagcggcgcg ctccgaaagt ttccttttat ggcgaggcgg
                                                                               600
        cggcggcggc ggccctataa aaagcgaagc gcgcggcggg cgggagtcgc tgcgttgcct
                                                                               660
                                                                               720
        tegeceegtg eccegeteeg egeegeeteg egeegeeege eccegetetg actgacegeg
                                                                               780
        ttactcccac aggtgagcgg gcgggacggc ccttctcctc cgggctgtaa ttagcgcttg
                                                                               840
        gtttaatgac ggctcgtttc ttttctgtgg ctgcgtgaaa gccttaaagg gctccgggag
        ggccctttgt gcgggggga gcggctcggg gggtgcgtgc gtgtgtgtgt gcgtggggag
                                                                               900
55
        cgccgcgtgc ggcccgcgct gcccggcggc tgtgagcgct gcgggcgcgg cgcggggctt
                                                                               960
                                                                              1020
        tgtgcgctcc gcgtgtgcgc gaggggagcg cggccggggg cggtgccccg cggtgcgggg
```

```
gggctgcgag gggaacaaag gctgcgtgcg gggtgtgtgc gtgggggggt gagcaggggg
                                                                               1080
                                                                               1140
        tgtgggcgcg gcggtcgggc tgtaaccccc ccctgcaccc ccctccccga gttgctgagc
                                                                               1200
        acggcccggc ttcgggtgcg gggctccgtg cggggcgtgg cgcggggctc gccgtgccgg
        geggggggtg geggeaggtg ggggtgeegg gegggggggg geegeetegg geeggggagg
                                                                               1260
        gctcggggga ggggcgcggc ggccccggag cgccggcggc tgtcgaggcg cggcgagccg
                                                                               1320
5
                                                                               1380
        cagecattge ettttatggt aategtgega gagggegeag ggaetteett tgteecaaat
        ctggcggagc cgaaatctgg gaggcgccgc cgcaccccct ctagcgggcg cgggcgaagc
                                                                               1440
        ggtgcggcgc cggcaggaag gaaatgggcg gggagggcct tcgtgcgtcg ccgcccgcc
                                                                               1500
        qtccccttct ccatctccag cctcqqqqct qccqcaqqqq qacqqctqcc ttcqqqqqqq
                                                                               1560
                                                                               1620
        acggggcagg gcggggttcg gcttctggcg tgtgaccggc ggctctagag cctctgctaa
10
                                                                               1680
        ccatgttcat gccttcttct ttttcctaca gctcctgggc aacgtgctgg ttgttgtgct
        gtctcatcat tttggcaaag aattctgcag tcgacggtac cgcgggcccc ctaggctacg
                                                                               1740
        cgcgccacca tgcccaagaa gaagcgcaag gtgggacgcg tctgcaggat atcaagcttg
                                                                               1800
                                                                               1860
        cggtaccgcg ggcccgggat cgccaccatg gacaagaagt acagcatcgg cctggccatc
        ggcaccaact ctgtgggctg ggccgtgatc accgacgagt acaaggtgcc cagcaagaaa
                                                                               1920
                                                                               1980
        ttcaaggtgc tgggcaacac cgaccggcac agcatcaaga agaacctgat cggcgccctg
15
        ctgttcgaca gcggagaaac agccgaggcc acccggctga agagaaccgc cagaagaaga
                                                                               2040
                                                                               2100
        tacaccagac ggaagaaccg gatctgctat ctgcaagaga tcttcagcaa cgagatggcc
                                                                               2160
        aaggtggacg acagcttctt ccacagactg gaagagtcct tcctggtgga agaggataag
        aagcacgagc ggcaccccat cttcggcaac atcgtggacg aggtggccta ccacgagaag
                                                                               2220
                                                                               2280
        taccccacca tctaccacct gagaaagaaa ctggtggaca gcaccgacaa ggccgacctg
                                                                               2340
        cggctgatct atctggccct ggcccacatg atcaagttcc ggggccactt cctgatcgag
20
        ggcgacctga accccgacaa cagcgacgtg gacaagctgt tcatccagct ggtgcagacc
                                                                               2400
        tacaaccage tgttcgagga aaaccccate aacgccageg gegtggaege caaggccate
                                                                               2460
                                                                               2520
        ctgtctgcca gactgagcaa gagcagacgg ctggaaaatc tgatcgccca gctgcccggc
                                                                               2580
        gagaagaaga atggcctgtt cggcaacctg attgccctga gcctgggcct gacccccaac
        ttcaagagca acttcgacct ggccgaggat gccaaactgc agctgagcaa ggacacctac
                                                                               2640
25
        gacgacgacc tggacaacct gctggcccag atcggcgacc agtacgccga cctgtttctg
                                                                               2700
                                                                               2760
        gccgccaaga acctgtccga cgccatcctg ctgagcgaca tcctgagagt gaacaccgag
                                                                               2820
        atcaccaagg cccccttgag cgcctctatg atcaagagat acgacgagca ccaccaggac
                                                                               2880
        ctgaccctgc tgaaagctct cgtgcggcag cagctgcctg agaagtacaa agagattttc
        ttcgaccaga gcaagaacgg ctacgccggc tacatcgatg gcggagccag ccaggaagag
                                                                               2940
                                                                               3000
        ttctacaagt tcatcaagcc catcctggaa aagatggacg gcaccgagga actgctcgtg
30
                                                                               3060
        aagctgaaca gagaggacct gctgcggaag cagcggacct tcgacaacgg cagcatcccc
                                                                               3120
        caccagatcc acctgggaga gctgcacgcc attctgcggc ggcaggaaga tttttaccca
        ttcctgaagg acaaccggga aaagatcgag aagatcctga ccttccgcat cccctactac
                                                                               3180
        gtgggccctc tggccagggg aaacagcaga ttcgcctgga tgaccagaaa gagcgaggaa
                                                                               3240
                                                                               3300
        accatcaccc cctggaactt cgaggaagtg gtggacaagg gcgccagcgc ccagagcttc
        atcgagcgga tgaccaactt cgataagaac ctgcccaacg agaaggtgct gcccaagcac
                                                                               3360
35
        agcctgctgt acgagtactt caccgtgtac aacgagctga ccaaagtgaa atacgtgacc
                                                                               3420
                                                                               3480
        gagggaatga gaaagcccgc cttcctgagc ggcgagcaga aaaaagccat cgtggacctg
        ctgttcaaga ccaaccggaa agtgaccgtg aagcagctga aagaggacta cttcaagaaa
                                                                               3540
        atcgagtgct tcgactccgt ggaaatctcc ggcgtggaag atcggttcaa cgcctccctg
                                                                               3600
                                                                               3660
        ggcacatacc acgatctgct gaaaattatc aaggacaagg acttcctgga caatgaggaa
40
                                                                               3720
        aacgaggaca ttctggaaga tatcgtgctg accctgacac tgtttgagga cagagagatg
                                                                               3780
        atcgaggaac ggctgaaaac ctatgcccac ctgttcgacg acaaagtgat gaagcagctg
                                                                               3840
        aagcggcgga gatacaccgg ctggggcagg ctgagccgga agctgatcaa cggcatccgg
        gacaagcagt ccggcaagac aatcctggat ttcctgaagt ccgacggctt cgccaacaga
                                                                               3900
                                                                               3960
        aacttcatgc agctgatcca cgacgacagc ctgaccttta aagaggacat ccagaaagcc
                                                                               4020
        caggtgtccg gccagggcga tagcctgcac gagcacattg ccaatctggc cggcagcccc
45
        gccattaaga agggcatcct gcagacagtg aaggtggtgg acgagctcgt gaaagtgatg
                                                                               4080
        ggccggcaca agcccgagaa catcgtgatc gaaatggcca gagagaacca gaccacccag
                                                                               4140
                                                                               4200
        aagggacaga agaacagccg cgagagaatg aagcggatcg aagagggcat caaagagctg
                                                                               4260
        ggcagccaga tcctgaaaga acaccccgtg gaaaacaccc agctgcagaa cgagaagctg
        tacctgtact acctgcagaa tgggcgggat atgtacgtgg accaggaact ggacatcaac
                                                                               4320
50
                                                                               4380
        cggctgtccg actacgatgt ggacgctatc gtgcctcaga gctttctgaa ggacgactcc
        atcgataaca aagtgctgac tcggagcgac aagaaccggg gcaagagcga caacgtgccc
                                                                               4440
                                                                               4500
        tccgaagagg tcgtgaagaa gatgaagaac tactggcgcc agctgctgaa tgccaagctg
        attacccaga ggaagttcga caatctgacc aaggccgaga gaggcggcct gagcgaactg
                                                                               4560
                                                                               4620
        gataaggccg gcttcatcaa gagacagctg gtggaaaccc ggcagatcac aaagcacgtg
        gcacagatcc tggactcccg gatgaacact aagtacgacg agaacgacaa actgatccgg
                                                                               4680
55
        gaagtgaaag tgatcaccct gaagtccaag ctggtgtccg atttccggaa ggatttccag
                                                                               4740
        ttttacaaag tgcgcgagat caacaactac caccacgccc acgacgccta cctgaacgcc
                                                                               4800
```

	gtcgtgggaa	ccgccctgat	caaaaagtac	cctaagctgg	aaagcgagtt	cgtgtacggc	4860
	gactacaagg	tgtacgacgt	gcggaagatg	atcgccaaga	gcgagcagga	aatcggcaag	4920
					ttttcaagac		4980
					caaacggcga		5040
5					aagtgctgtc		5100
· ·					tcagcaaaga		5160
					actgggaccc		5220
					tggtggccaa		5280
					ggatcaccat		5340
					agggctacaa		5400
10					agctggaaaa		5460
					aactggccct		5520
					tgaagggctc		5580
					acctggacga		5640
					ctaatctgga		5700
					aggccgagaa		5760
15					agtactttga		5820
							5880
					ccaccctgat		5940
					tgggaggcga		6000
					ccaagaaaaa		6060
					gtgggagcaa		6120
20					tgagcaagaa		
					gagaagaact		6180
					ggagcggaag		6240
					gactaaagaa		6300
					acgaagtggc		6360
25					accacctcga		6420
20					tatccaagaa		6480
					gagaggaact		6540
					gatcgggcag		6600
					gattaaagaa		6660
					atgaggtagc		6720
30					atcatcttga		6780
					acataggtgg		6840
					gccataccac		6900
					acctgaaaca		6960
					gttacaaata		7020
					ctagttgtgg		7080
35					attttgttaa		7140
					gaaatcggca		7200
					ccagtttgga		7260
	actattaaag	aacgtggact	ccaacgtcaa	agggcgaaaa	accgtctatc	agggcgatgg	7320
	cccactacgt	gaaccatcac	cctaatcaag	ttttttgggg	tcgaggtgcc	gtaaagcact	7380
40	aaatcggaac	cctaaaggga	gcccccgatt	tagagcttga	cggggaaagc	cggcgaacgt	7440
40	ggcgagaaag	gaagggaaga	aagcgaaagg	agcgggcgct	agggcgctgg	caagtgtagc	7500
	ggtcacgctg	cgcgtaacca	ccacacccgc	cgcgcttaat	gcgccgctac	agggcgcgtc	7560
	aggtggcact	tttcggggaa	atgtgcgcgg	aacccctatt	tgtttatttt	tctaaataca	7620
	ttcaaatatg	tatccgctca	tgagacaata	accctgataa	atgcttcaat	aatattgaaa	7680
	aaggaagagt	cctgaggcgg	aaagaaccag	ctgtggaatg	tgtgtcagtt	agggtgtgga	7740
45	aagtccccag	gctccccagc	aggcagaagt	atgcaaagca	tgcatctcaa	ttagtcagca	7800
	accaggtgtg	gaaagtcccc	aggctcccca	gcaggcagaa	gtatgcaaag	catgcatctc	7860
	aattagtcag	caaccatagt	cccgccccta	actccgccca	tcccgcccct	aactccgccc	7920
	agttccgccc	attctccgcc	ccatggctga	ctaattttt	ttatttatgc	agaggccgag	7980
					gcttttttgg		8040
					cgcatgattg		8100
50					ttcggctatg		8160
					tcagcgcagg		8220
					ctgcaagacg		8280
					gtgctcgacg		8340
					caggatetee		8400
					atgcggcggc		8460
55					cgcatcgagc		8520
					gaagagcatc		8580

```
qccaqccqaa ctqttcqcca qqctcaaqqc qaqcatqccc qacqqcqaqq atctcqtcqt
                                                                              8640
                                                                              8700
        gacccatggc gatgcctgct tgccgaatat catggtggaa aatggccgct tttctggatt
                                                                              8760
        categactgt ggccggctgg gtgtggcgga ccgctatcag gacatagcgt tggctacccg
        tgatattgct gaagagcttg gcggcgaatg ggctgaccgc ttcctcgtgc tttacggtat
                                                                              8820
        cgccgctccc gattcgcagc gcatcgcctt ctatcgcctt cttgacgagt tcttctgagc
                                                                              8880
5
        gggactctgg ggttcgaaat gaccgaccaa gcgacgccca acctgccatc acgagatttc
                                                                              8940
        gattccaccg ccgccttcta tgaaaggttg ggcttcggaa tcgttttccg ggacgccggc
                                                                              9000
        tggatgatec tecagegegg ggateteatg etggagttet tegeceacec tagggggagg
                                                                              9060
        ctaactqaaa cacqqaaqqa qacaataccq qaaqqaaccc qcqctatqac qqcaataaaa
                                                                              9120
                                                                              9180
        agacagaata aaacgcacgg tgttgggtcg tttgttcata aacgcggggt tcggtcccag
10
        ggctggcact ctgtcgatac cccaccgaga ccccattggg gccaatacgc ccgcgtttct
                                                                              9240
        teetttteee caccecacce eccaagtteg ggtgaaggee cagggetege agecaacgte
                                                                              9300
        ggggcggcag gccctgccat agcctcaggt tactcatata tactttagat tgatttaaaa
                                                                              9360
        cttcattttt aatttaaaag gatctaggtg aagatccttt ttgataatct catgaccaaa
                                                                              9420
        atcccttaac gtgagttttc gttccactga gcgtcagacc ccgtagaaaa gatcaaagga
                                                                              9480
                                                                              9540
        tcttcttgag atcctttttt tctgcgcgta atctgctgct tgcaaacaaa aaaaccaccg
15
        ctaccagcgg tggtttgttt gccggatcaa gagctaccaa ctctttttcc gaaggtaact
                                                                              9600
        ggcttcagca gagcgcagat accaaatact gtccttctag tgtagccgta gttaggccac
                                                                              9660
        cacttcaaga actctgtagc accgcctaca tacctcgctc tgctaatcct gttaccagtg
                                                                              9720
        gctgctgcca gtggcgataa gtcgtgtctt accgggttgg actcaagacg atagttaccg
                                                                              9780
                                                                              9840
        gataaggcgc agcggtcggg ctgaacgggg ggttcgtgca cacagcccag cttggagcga
                                                                              9900
        acgacctaca ccgaactgag atacctacag cgtgagctat gagaaagcgc cacgcttccc
20
        gaagggagaa aggcggacag gtatccggta agcggcaggg tcggaacagg agagcgcacg
                                                                              9960
        agggagette cagggggaaa cgcetggtat etttatagte etgtegggtt tegecacete
                                                                             10020
                                                                             10080
        tgacttgagc gtcgattttt gtgatgctcg tcaggggggc ggagcctatg gaaaaacgcc
                                                                             10140
        agcaacgcgg cctttttacg gttcctggcc ttttgctggc cttttgctca catgttcttt
        cctgcgttat cccctgattc tgtggataac cgtattaccg ccatgcat
                                                                             10188
25
        <210>
               8
        <211>
               8829
        <212>
              DNA
        <213>
               Artificial Sequence
30
        <220>
        <223>
              pCAG-scFvGCN4sfGFPTET1CD
        <400>
35
        tagttattaa tagtaatcaa ttacggggtc attagttcat agcccatata tggagttccg
                                                                                60
        cgttacataa cttacggtaa atggcccgcc tggctgaccg cccaacgacc cccgcccatt
                                                                               120
                                                                               180
        gacgtcaata atgacgtatg ttcccatagt aacgccaata gggactttcc attgacgtca
        atgggtggac tatttacggt aaactgccca cttggcagta catcaagtgt atcatatgcc
                                                                               240
        aagtacgccc cctattgacg tcaatgacgg taaatggccc gcctggcatt atgcccagta
                                                                               300
                                                                               360
        catgacetta tgggaettte etaettggea gtacatetae gtattagtea tegetattae
40
                                                                               420
        catgggtcga ggtgagcccc acgttctgct tcactctccc catctccccc ccctccccac
        ccccaatttt gtatttattt atttttaat tattttgtgc agcgatgggg gcggggggg
                                                                               480
        540
        ggtgcggcgg cagccaatca gagcggcgcg ctccgaaagt ttccttttat ggcgaggcgg
                                                                               600
                                                                               660
        cggcggcggc ggccctataa aaagcgaagc gcgcggcggg cgggagtcgc tgcgttgcct
                                                                               720
        tegeceegtg eecegeteeg egeegeeteg egeegeeege eeeggetetg aetgaeegeg
45
        ttactcccac aggtgagcgg gcgggacggc ccttctcctc cgggctgtaa ttagcgcttg
                                                                               780
        gtttaatgac ggctcgtttc ttttctgtgg ctgcgtgaaa gccttaaagg gctccgggag
                                                                               840
                                                                               900
        ggccctttgt gcgggggga gcggctcggg gggtgcgtgc gtgtgtgtgt gcgtggggag
        cgccgcgtgc ggcccgcgct gcccggcggc tgtgagcgct gcgggcgcgg cgcggggctt
                                                                               960
        tgtgcgctcc gcgtgtgcgc gaggggagcg cggccggggg cggtgccccg cggtgcgggg
                                                                              1020
50
                                                                              1080
        gggctgcgag gggaacaaag gctgcgtgcg gggtgtgtgtgc gtgggggggt gagcaggggg
        tgtgggcgcg gcggtcgggc tgtaaccccc ccctgcaccc ccctccccga gttgctgagc
                                                                              1140
                                                                              1200
        acggcccggc ttcgggtgcg gggctccgtg cggggcgtgg cgcggggctc gccgtgccgg
        gcgggggtg gcggcaggtg ggggtgccgg gcgggcggg gccgcctcgg gccggggagg
                                                                              1260
                                                                              1320
        gctcggggga ggggcgcggc ggccccggag cgccggcggc tgtcgaggcg cggcgagccg
        cagccattgc cttttatggt aatcgtgcga gagggcgcag ggacttcctt tgtcccaaat
                                                                              1380
55
        ctggcggagc cgaaatctgg gaggcgccgc cgcaccccct ctagcgggcg cgggcgaagc
                                                                              1440
        ggtgcggcgc cggcaggaag gaaatgggcg gggagggcct tcgtgcgtcg ccgcccgcc
                                                                              1500
```

```
qtccccttct ccatctccaq cctcqqqqct qccqcaqqqq qacqqctqcc ttcqqqqqqq
                                                                               1560
                                                                               1620
        acggggcagg gcggggttcg gcttctggcg tgtgaccggc ggctctagag cctctgctaa
                                                                               1680
        ccatgttcat gccttcttct ttttcctaca gctcctgggc aacgtgctgg ttgttgtgct
        gtctcatcat tttggcaaag aattctgcag tcgacggtac catgggcccc gacatcgtga
                                                                               1740
        tgacccagag ccccagcagc ctgagcgcca gcgtgggcga ccgcgtgacc atcacctgcc
                                                                               1800
5
        gcagcagcac cggcgccgtg accaccagca actacgccag ctgggtgcag gagaagcccg
                                                                               1860
        gcaagctgtt caagggcctg atcggcggca ccaacaaccg cgccccggc gtgcccagcc
                                                                               1920
        getteagegg cageetgate ggegacaagg ceaccetgae cateageage etgeageeeg
                                                                               1980
        aggacttcgc cacctacttc tgcgccctgt ggtacagcaa ccactgggtg ttcggccagg
                                                                               2040
                                                                               2100
        gcaccaaggt ggagctgaag cgcggcggcg gcggcagcgg cggcggcggc agcggcggcg
10
                                                                               2160
        gcggcagcag cggcggcggc agcgaggtga agctgctgga gagcggcggc ggcctggtgc
        agcccggcgg cagcctgaag ctgagctgcg ccgtgagcgg cttcagcctg accgactacg
                                                                               2220
        gcgtgaactg ggtgcgccag gcccccggcc gcggcctgga gtggatcggc gtgatctggg
                                                                               2280
        gcgacggcat caccgactac aacagcgccc tgaaggaccg cttcatcatc agcaaggaca
                                                                               2340
        acggcaagaa caccgtgtac ctgcagatga gcaaggtgcg cagcgacgac accgccctgt
                                                                               2400
                                                                               2460
        actactgcgt gaccggcctg ttcgactact ggggccaggg caccctggtg accgtgagca
15
        gctacccata cgatgttcca gattacgctg gtggaggcgg aggttctggg ggaggaggta
                                                                               2520
        gtggcggtgg tggttcagga ggcggcggaa gcttggatcc aggtggaggt ggaagcggta
                                                                               2580
        gcaaaggaga agaacttttc actggagttg tcccaattct tgttgaatta gatggtgatg
                                                                               2640
        ttaatgggca caaattttct gtccgtggag agggtgaagg tgatgctaca aacggaaaac
                                                                               2700
                                                                               2760
        tcacccttaa atttatttgc actactggaa aactacctgt tccgtggcca acacttgtca
        ctactctgac ctatggtgtt caatgctttt cccgttatcc ggatcacatg aaacggcatg
                                                                               2820
20
        actttttcaa qaqtqccatq cccqaaqqtt atqtacaqqa acqcactata tctttcaaaq
                                                                               2880
        atgacqqqac ctacaaqacq cqtqctqaaq tcaaqtttqa aqqtqatacc cttqttaatc
                                                                               2940
                                                                               3000
        gtatcgagtt aaagggtatt gattttaaag aagatggaaa cattcttgga cacaaactcg
                                                                               3060
        agtacaactt taactcacac aatgtataca tcacggcaga caaacaaaag aatggaatca
        aagctaactt caaaattcgc cacaacgttg aagatggttc cgttcaacta gcagaccatt
                                                                               3120
25
        atcaacaaaa tactccaatt ggcgatggcc ctgtcctttt accagacaac cattacctgt
                                                                               3180
                                                                               3240
        cgacacaatc tgtcctttcg aaagatccca acgaaaagcg tgaccacatg gtccttcttg
                                                                               3300
        agtttgtaac tgctgctggg attacacatg gcatggatga gctctacaaa ggtggaggtc
                                                                               3360
        ggaccggtgg cggtggcgga ggggctagca gatccgaact gcccacctgc agctgtcttg
        atcgagttat acaaaaagac aaaggcccat attatacaca ccttggggca ggaccaagtg
                                                                               3420
                                                                               3480
        ttgctgctgt cagggaaatc atggagaata ggtatggtca aaaaggaaac gcaataagga
30
        tagaaatagt agtgtacacc ggtaaagaag ggaaaagctc tcatgggtgt ccaattgcta
                                                                               3540
        agtgggtttt aagaagaagc agtgatgaag aaaaagttct ttgtttggtc cggcagcgta
                                                                               3600
        caggccacca ctgtccaact gctgtgatgg tggtgctcat catggtgtgg gatggcatcc
                                                                               3660
        ctcttccaat ggccgaccgg ctatacacag agctcacaga gaatctaaag tcatacaatg
                                                                               3720
        ggcaccctac cgacagaaga tgcaccctca atgaaaatcg tacctgtaca tgtcaaggaa
                                                                               3780
35
        ttgatccaga gacttgtgga gcttcattct cttttggctg ttcatggagt atgtacttta
                                                                               3840
        atggctgtaa gtttggtaga agcccaagcc ccagaagatt tagaattgat ccaagctctc
                                                                               3900
                                                                               3960
        ccttacatga aaaaaacctt gaagataact tacagagttt ggctacacga ttagctccaa
        tttataagca gtatgctcca gtagcttacc aaaatcaggt ggaatatgaa aatgttgccc
                                                                               4020
        gagaatgtcg gcttggcagc aaggaaggtc gtcccttctc tggggtcact gcttgcctgg
                                                                               4080
                                                                               4140
        acttctgtgc tcatccccac agggacattc acaacatgaa taatggaagc actgtggttt
40
                                                                               4200
        gtaccttaac tcgagaagat aaccgctctt tgggtgttat tcctcaagat gagcagctcc
                                                                               4260
        atgtgctacc tctttataag ctttcagaca cagatgagtt tggctccaag gaaggaatgg
        aagccaagat caaatctggg gccatcgagg tcctggcacc ccgccgcaaa aaaagaacgt
                                                                               4320
        gtttcactca gcctgttccc cgttctggaa agaagagggc tgcgatgatg acagaggttc
                                                                               4380
                                                                               4440
        ttgcacataa gataagggca gtggaaaaga aacctattcc ccgaatcaag cggaagaata
                                                                               4500
        actcaacaac aacaaacaac agtaagcctt cgtcactgcc aaccttaggg agtaacactg
45
        agaccgtgca acctgaagta aaaagtgaaa ccgaacccca ttttatctta aaaagttcag
                                                                               4560
                                                                               4620
        acaacactaa aacttattcg ctgatgccat ccgctcctca cccagtgaaa gaggcatctc
        caggettete etggteeceg aagactgett cagecacace ageteeactg aagaatgacg
                                                                               4680
        caacagcctc atgcgggttt tcagaaagaa gcagcactcc ccactgtacg atgccttcgg
                                                                               4740
        gaagactcag tggtgccaat gcagctgctg ctgatggccc tggcatttca cagcttggcg
                                                                               4800
50
        aagtggctcc tctccccacc ctgtctgctc ctgtgatgga gcccctcatt aattctgagc
                                                                               4860
        cttccactgg tgtgactgag ccgctaacgc ctcatcagcc aaaccaccag ccctccttcc
                                                                               4920
        tcacctctcc tcaagacctt gcctcttctc caatggaaga agatgagcag cattctgaag
                                                                               4980
                                                                               5040
        cagatgagee tecateagae gaacceetat etgatgaeee cetgteacet getgaggaga
                                                                               5100
        aattgcccca cattgatgag tattggtcag acagtgagca catctttttg gatgcaaata
        ttggtggggt ggccatcgca cctgctcacg gctcggtttt gattgagtgt gcccggcgag
                                                                               5160
55
        agetgeacge taccactect gttgageace ceaaccgtaa teatecaace egeetetece
                                                                               5220
                                                                               5280
        ttgtctttta ccagcacaaa aacctaaata agccccaaca tggttttgaa ctaaacaaga
```

	++ > > < + + + < >	aaat aaaaaa	~at ~	202222+022	accet acces	annnnaa	5340
					ggcctcagag	_	
					tgaattgaac		5400
					cgtgtcccct		5460
					cgcgactcta		5520
5					acctcccaca		5580
	aacctgaaac	ataaaatgaa	tgcaattgtt	gttgttaact	tgtttattgc	agcttataat	5640
	ggttacaaat	aaagcaatag	catcacaaat	ttcacaaata	aagcattttt	ttcactgcat	5700
	tctagttgtg	gtttgtccaa	actcatcaat	gtatcttaag	gcgtaaattg	taagcgttaa	5760
					tcatttttta		5820
					gagatagggt		5880
10					tccaacgtca		5940
					ccctaatcaa		6000
					agcccccgat		6060
							6120
					aaagcgaaag		6180
					accacacccg		
15					aatgtgcgcg		6240
					atgagacaat		6300
					gaaagaacca		6360
	gtgtgtcagt	tagggtgtgg	aaagtcccca	ggctccccag	caggcagaag	tatgcaaagc	6420
	atgcatctca	attagtcagc	aaccaggtgt	ggaaagtccc	caggctcccc	agcaggcaga	6480
	agtatgcaaa	gcatgcatct	caattagtca	gcaaccatag	tcccgcccct	aactccgccc	6540
20	atcccgcccc	taactccgcc	cagttccgcc	cattctccgc	cccatggctg	actaattttt	6600
					tattccagaa		6660
					gagacaggat		6720
					gccgcttggg		6780
					gatgccgccg		6840
					ctgtccggtg		6900
25			_		acgggcgttc		6960
					ctattgggcg		7020
					gtatccatca		7080
							7140
					ttcgaccacc		
					gtcgatcagg		7200
30					aggctcaagg		7260
					ttgccgaata		7320
					ggtgtggcgg		7380
	ggacatagcg	ttggctaccc	gtgatattgc	tgaagagctt	ggcggcgaat	gggctgaccg	7440
	cttcctcgtg	ctttacggta	tegeegetee	cgattcgcag	cgcatcgcct	tctatcgcct	7500
	tcttgacgag	ttcttctgag	cgggactctg	gggttcgaaa	tgaccgacca	agcgacgccc	7560
35	aacctgccat	cacgagattt	cgattccacc	gccgccttct	atgaaaggtt	gggcttcgga	7620
	atcgttttcc	gggacgccgg	ctggatgatc	ctccagcgcg	gggatctcat	gctggagttc	7680
	ttcgcccacc	ctagggggag	gctaactgaa	acacggaagg	agacaatacc	ggaaggaacc	7740
					gtgttgggtc		7800
					ccccaccgag		7860
					ccccaagttc		7920
40					tagcctcagg		7980
					ggatctaggt		8040
					cgttccactg		8100
					ttctgcgcgt		8160
							8220
45					tgccggatca		8280
45					taccaaatac		
					caccgcctac		8340
					agtcgtgtct		8400
					gctgaacggg		8460
					gatacctaca		8520
50					ggtatccggt		8580
50	gtcggaacag	gagagcgcac	gagggagctt	ccagggggaa	acgcctggta	tctttatagt	8640
	cctgtcgggt	ttcgccacct	ctgacttgag	cgtcgatttt	tgtgatgctc	gtcagggggg	8700
	cggagcctat	ggaaaaacgc	cagcaacgcg	gcctttttac	ggttcctggc	cttttgctgg	8760
					ctgtggataa		8820
	gccatgcat	=	= =	_	= = =	=	8829
							•

<210> 9

<211>

```
<212>
               DNA
        <213>
               Artificial Sequence
        <220>
5
        <223> pCAG-dCas9-5xPlat2Af1D
        <400>
        tagttattaa tagtaatcaa ttacqqqqtc attaqttcat agcccatata tqqaqttccq
                                                                                 60
                                                                                120
        cgttacataa cttacggtaa atggcccgcc tggctgaccg cccaacgacc cccgcccatt
10
                                                                                180
        gacgtcaata atgacgtatg ttcccatagt aacgccaata gggactttcc attgacgtca
        atgggtggac tatttacggt aaactgccca cttggcagta catcaagtgt atcatatgcc
                                                                                240
        aagtacgccc cctattgacg tcaatgacgg taaatggccc gcctggcatt atgcccagta
                                                                                300
        catgacetta tgggacette ctacttggca gtacatetac gtattagtca tegetattac
                                                                                360
        catgggtcga ggtgagcccc acgttctgct tcactctccc catctccccc ccctccccac
                                                                                420
        ccccaatttt qtatttattt attttttaat tattttqtqc aqcqatqqqq qcqqqqqqq
                                                                                480
15
        ggggggcgcg cgccaggcgg ggcggggcgg ggcgaggggc ggggcggggc gaggcggaga
                                                                                540
        ggtgcggcgg cagccaatca gagcggcgcg ctccgaaagt ttccttttat ggcgaggcgg
                                                                                600
        cggcggcggc ggccctataa aaagcgaagc gcgcggcggg cgggagtcgc tgcgttgcct
                                                                                660
        tegeceegtg eecegeteeg egeegeeteg egeegeeege eeeggetetg aetgaeegeg
                                                                                720
                                                                                780
        ttactcccac aggtgagcgg gcgggacggc ccttctcctc cgggctgtaa ttagcgcttg
        gtttaatgac ggctcgtttc ttttctgtgg ctgcgtgaaa gccttaaagg gctccgggag
                                                                                840
20
        ggccctttgt gcgggggga gcggctcggg gggtgcgtgc gtgtgtgtgt gcgtggggag
                                                                                900
        caccacatac acccacaca acccacacaca tataaacact acaaacaca caccaaaact
                                                                                960
                                                                               1020
        tgtgcgctcc gcgtgtgcgc gaggggagcg cggccggggg cggtgccccg cggtgcgggg
                                                                               1080
        gggctgcgag gggaacaaag gctgcgtgcg gggtgtgtgc gtgggggggt gagcaggggg
        tgtgggcgcg gcggtcgggc tgtaaccccc ccctgcaccc ccctccccga gttgctgagc
                                                                               1140
25
        acggcccggc ttcgggtgcg gggctccgtg cggggcgtgg cgcggggctc gccgtgccgg
                                                                               1200
                                                                               1260
        gcgggggtg gcggcaggtg ggggtgccgg gcgggcggg gccgcctcgg gccggggagg
        gctcggggga ggggcgcgc ggccccggag cgccggcgc tgtcgaggcg cggcgagccg
                                                                               1320
                                                                               1380
        cagccattgc cttttatggt aatcgtgcga gagggcgcag ggacttcctt tgtcccaaat
        ctggcggagc cgaaatctgg gaggcgccgc cgcaccccct ctagcgggcg cgggcgaagc
                                                                               1440
                                                                               1500
        ggtgcggcgc cggcaggaag gaaatgggcg gggagggcct tcgtgcgtcg ccgccgcc
30
                                                                               1560
        gtccccttct ccatctccag cctcggggct gccgcagggg gacggctgcc ttcggggggg
                                                                               1620
        acggggcagg gcggggttcg gcttctggcg tgtgaccggc ggctctagag cctctgctaa
        ccatgttcat gccttcttct ttttcctaca gctcctgggc aacgtgctgg ttgttgtgct
                                                                               1680
        gtctcatcat tttggcaaag aattctgcag tcgacggtac cgcgggcccc ctaggctacg
                                                                               1740
        cgcgccacca tgcccaagaa gaagcgcaag gtgggacgcg tctgcaggat atcaagcttg
                                                                               1800
35
        cggtaccgcg ggcccgggat cgccaccatg gacaagaagt acagcatcgg cctggccatc
                                                                               1860
        ggcaccaact ctgtgggctg ggccgtgatc accgacgagt acaaggtgcc cagcaagaaa
                                                                               1920
        ttcaaggtgc tgggcaacac cgaccggcac agcatcaaga agaacctgat cggcgccctg
                                                                               1980
        ctgttcgaca gcggagaaac agccgaggcc acccggctga agagaaccgc cagaagaaga
                                                                               2040
        tacaccagac ggaagaaccg gatctgctat ctgcaagaga tcttcagcaa cgagatggcc
                                                                               2100
                                                                               2160
        aaggtggacg acagcttctt ccacagactg gaagagtcct tcctggtgga agaggataag
40
                                                                               2220
        aagcacgagc ggcaccccat cttcggcaac atcgtggacg aggtggccta ccacgagaag
        taccccacca tctaccacct gagaaagaaa ctggtggaca gcaccgacaa ggccgacctg
                                                                               2280
        cggctgatct atctggccct ggcccacatg atcaagttcc ggggccactt cctgatcgag
                                                                               2340
        ggcgacctga accccgacaa cagcgacgtg gacaagctgt tcatccagct ggtgcagacc
                                                                               2400
                                                                               2460
        tacaaccage tgttcgagga aaaccccate aacgccageg gegtggaege caaggccate
        ctgtctgcca gactgagcaa gagcagacgg ctggaaaatc tgatcgccca gctgcccggc
                                                                               2520
45
        gagaagaaga atggcctgtt cggcaacctg attgccctga gcctgggcct gacccccaac
                                                                               2580
        ttcaagagca acttcgacct ggccgaggat gccaaactgc agctgagcaa ggacacctac
                                                                               2640
        gacgacgacc tggacaacct gctggcccag atcggcgacc agtacgccga cctgtttctg
                                                                               2700
                                                                               2760
        gccgccaaga acctgtccga cgccatcctg ctgagcgaca tcctgagagt gaacaccgag
        atcaccaagg ccccctgag cgcctctatg atcaagagat acgacgagca ccaccaggac
                                                                               2820
50
        ctgaccctgc tgaaagctct cgtgcggcag cagctgcctg agaagtacaa agagattttc
                                                                               2880
        ttcgaccaga gcaagaacgg ctacgccggc tacatcgatg gcggagccag ccaggaagag
                                                                               2940
        ttctacaagt tcatcaagcc catcctggaa aagatggacg gcaccgagga actgctcgtg
                                                                               3000
        aagctgaaca gagaggacct gctgcggaag cagcggacct tcgacaacgg cagcatcccc
                                                                               3060
                                                                               3120
        caccagatcc acctgggaga gctgcacgcc attctgcggc ggcaggaaga tttttaccca
        ttcctgaagg acaaccggga aaagatcgag aagatcctga ccttccgcat cccctactac
                                                                               3180
55
        gtgggccctc tggccagggg aaacagcaga ttcgcctgga tgaccagaaa gagcgaggaa
                                                                               3240
                                                                               3300
        accatcaccc cctggaactt cgaggaagtg gtggacaagg gcgccagcgc ccagagcttc
```

```
atcgagcgga tgaccaactt cgataagaac ctgcccaacg agaaggtgct gcccaagcac
                                                                               3360
                                                                               3420
        agcctgctgt acgagtactt caccgtgtac aacgagctga ccaaagtgaa atacgtgacc
                                                                               3480
        gagggaatga gaaagcccgc cttcctgagc ggcgagcaga aaaaagccat cgtggacctg
        ctgttcaaga ccaaccggaa agtgaccgtg aagcagctga aagaggacta cttcaagaaa
                                                                               3540
        atcgagtgct tcgactccgt ggaaatctcc ggcgtggaag atcggttcaa cgcctccctg
                                                                               3600
5
        ggcacatacc acgatctgct gaaaattatc aaggacaagg acttcctgga caatgaggaa
                                                                               3660
        aacgaggaca ttctggaaga tatcgtgctg accctgacac tgtttgagga cagagagatg
                                                                               3720
                                                                               3780
        atcgaggaac ggctgaaaac ctatgcccac ctgttcgacg acaaagtgat gaagcagctg
        aagcggcgga gatacaccgg ctggggcagg ctgagccgga agctgatcaa cggcatccgg
                                                                               3840
                                                                               3900
        gacaagcagt ccggcaagac aatcctggat ttcctgaagt ccgacggctt cgccaacaga
10
                                                                               3960
        aacttcatgc agctgatcca cgacgacagc ctgaccttta aagaggacat ccagaaagcc
        caggtgtccg gccagggcga tagcctgcac gagcacattg ccaatctggc cggcagcccc
                                                                               4020
        gccattaaga agggcatcct gcagacagtg aaggtggtgg acgagctcgt gaaagtgatg
                                                                               4080
        ggccggcaca agcccgagaa catcgtgatc gaaatggcca gagagaacca gaccacccag
                                                                               4140
        aagggacaga agaacagccg cgagagaatg aagcggatcg aagagggcat caaagagctg
                                                                               4200
                                                                               4260
        ggcagccaga tcctgaaaga acaccccgtg gaaaacaccc agctgcagaa cgagaagctg
15
        tacctgtact acctgcagaa tgggcgggat atgtacgtgg accaggaact ggacatcaac
                                                                               4320
        eggetgteeg actaegatgt ggaegetate gtgeeteaga getttetgaa ggaegaetee
                                                                               4380
        atcgataaca aagtgctgac tcggagcgac aagaaccggg gcaagagcga caacgtgccc
                                                                               4440
        tccgaagagg tcgtgaagaa gatgaagaac tactggcgcc agctgctgaa tgccaagctg
                                                                               4500
                                                                               4560
        attacccaga ggaagttcga caatctgacc aaggccgaga gaggcggcct gagcgaactg
        gataaggccg gcttcatcaa gagacagctg gtggaaaccc ggcagatcac aaagcacgtg
                                                                               4620
20
        gcacagatcc tggactcccg gatgaacact aagtacgacg agaacgacaa actgatccgg
                                                                               4680
        qaaqtqaaaq tqatcaccct qaaqtccaaq ctqqtqtccq atttccqqaa qqatttccaq
                                                                               4740
                                                                               4800
        ttttacaaag tgcgcgagat caacaactac caccacgccc acgacgccta cctgaacgcc
                                                                               4860
        gtcgtgggaa ccgccctgat caaaaagtac cctaagctgg aaagcgagtt cgtgtacggc
        gactacaagg tgtacgacgt gcggaagatg atcgccaaga gcgagcagga aatcggcaag
                                                                               4920
25
        gctaccqcca agtacttctt ctacaqcaac atcatqaact ttttcaaqac cqaqattacc
                                                                               4980
                                                                               5040
        ctggccaacg gcgagatccg gaagcggcct ctgatcgaga caaacggcga aacaggcgag
                                                                               5100
        atcgtgtggg ataagggccg ggactttgcc accgtgcgga aagtgctgtc tatgccccaa
                                                                               5160
        gtgaatatcg tgaaaaagac cgaggtgcag acaggcggct tcagcaaaga gtctatcctg
        cccaagagga acagcgacaa gctgatcgcc agaaagaagg actgggaccc taagaagtac
                                                                               5220
        ggcggcttcg acagccccac cgtggcctat tctgtgctgg tggtggccaa agtggaaaag
                                                                               5280
30
                                                                               5340
        ggcaagtcca agaaactgaa gagtgtgaaa gagctgctgg ggatcaccat catggaaaga
                                                                               5400
        agcagcttcg agaagaatcc catcgacttt ctggaagcca agggctacaa agaagtgaaa
        aaggacctga tcatcaagct gcctaagtac tccctgttcg agctggaaaa cggccggaag
                                                                               5460
        agaatgctgg cctctgccgg cgaactgcag aagggaaacg aactggccct gccctccaaa
                                                                               5520
        tatgtgaact tcctgtacct ggccagccac tatgagaagc tgaagggctc ccccgaggat
                                                                               5580
35
        aatgagcaga aacagctgtt tgtggaacag cacaaacact acctggacga gatcatcgag
                                                                               5640
        cagatcagcg agttctccaa gagagtgatc ctggccgacg ctaatctgga caaggtgctg
                                                                               5700
        agcgcctaca acaagcacag agacaagcct atcagagagc aggccgagaa tatcatccac
                                                                               5760
        ctgtttaccc tgaccaatct gggagcccct gccgccttca agtactttga caccaccatc
                                                                               5820
        gaccggaaga ggtacaccag caccaaagag gtgctggacg ccaccctgat ccaccagagc
                                                                               5880
                                                                               5940
        atcaccggcc tgtacgagac acggatcgac ctgtctcagc tgggaggcga cgcctatccc
40
                                                                               6000
        tatgacgtgc ccgattatgc cagcctgggc agcggctccc ccaagaaaaa acgcaaggtg
                                                                               6060
        gaagateeta agaaaaageg gaaagtggae ggeattggta gtgggageaa eggeageage
        ggatccaacg gtccgactga cgccgcggaa gaggagcttc tgagcaaaaa ctatcacctc
                                                                               6120
        gaaaacgagg ttgcgcgact gaagaaagga agcgggtccg gtggaagtgg ctccggatct
                                                                               6180
                                                                               6240
        ggaggttctg gcagcggagg tagcggcagt ggcgaagagc tccttagtaa gaactatcat
                                                                               6300
        ctggaaaatg aggtagcgcg cttaaagaaa gggtcgggaa gtggcggcag cggaagtggg
45
        agtggaggga gcggttctgg cggttccggc agtggagagg agttgctgtc taagaactac
                                                                               6360
        cacttagaaa acgaagtcgc acggctaaaa aaaggttccg gctccggcgg ctccggttct
                                                                               6420
                                                                               6480
        ggaagcgggg gctcgggatc aggtggatct ggatcaggag aggaattgct ttccaaaaac
                                                                               6540
        taccaccttg agaatgaggt ggccaggtta aagaagggga gcggctcggg gggtagtgga
        tcggggtcgg gcgggtcagg aagcggtggt agcggatctg gggaggagct gctctcgaag
                                                                               6600
50
                                                                               6660
        aattaccatt tggagaacga agtggcgaga ctaaagaagg gaagcggtag tggtggttca
        gggtctggtt caggtggcag tgggtctggg ggctcagggt ccgggtaggc ggccgcgact
                                                                               6720
        ctagatcata atcagccata ccacatttgt agaggtttta cttgctttaa aaaacctccc
                                                                               6780
        acacctcccc ctgaacctga aacataaaat gaatgcaatt gttgttgtta acttgtttat
                                                                               6840
                                                                               6900
        tgcagcttat aatggttaca aataaagcaa tagcatcaca aatttcacaa ataaagcatt
        tttttcactg cattctagtt gtggtttgtc caaactcatc aatgtatctt aaggcgtaaa
                                                                               6960
55
        ttgtaagcgt taatattttg ttaaaattcg cgttaaattt ttgttaaatc agctcatttt
                                                                               7020
                                                                               7080
        ttaaccaata ggccgaaatc ggcaaaatcc cttataaatc aaaagaatag accgagatag
```

7140

ggttgagtgt tgttccagtt tggaacaaga gtccactatt aaagaacgtg gactccaacg

```
7200
        tcaaagggcg aaaaaccgtc tatcagggcg atggcccact acgtgaacca tcaccctaat
                                                                               7260
        caagtttttt ggggtcgagg tgccgtaaag cactaaatcg gaaccctaaa gggagcccc
                                                                               7320
        gatttagagc ttgacgggga aagccggcga acgtggcgag aaaggaaggg aagaaagcga
        aaggagcggg cgctagggcg ctggcaagtg tagcggtcac gctgcgcgta accaccacac
                                                                               7380
5
        ccgccgcgct taatgcgccg ctacagggcg cgtcaggtgg cacttttcgg ggaaatgtgc
                                                                               7440
        gcggaacccc tatttgttta tttttctaaa tacattcaaa tatgtatccg ctcatgagac
                                                                               7500
                                                                               7560
        aataaccctg ataaatgctt caataatatt gaaaaaggaa gagtcctgag gcggaaagaa
        ccaqctqtqq aatqtqtct aqttaqqqtq tqqaaaqtcc ccaqqctccc caqcaqqcaq
                                                                               7620
                                                                               7680
        aagtatgcaa agcatgcatc tcaattagtc agcaaccagg tgtggaaagt ccccaggctc
10
        cccagcaggc agaagtatgc aaagcatgca tctcaattag tcagcaacca tagtcccgcc
                                                                               7740
        cctaactccg cccatcccgc ccctaactcc gcccagttcc gcccattctc cgccccatgg
                                                                               7800
        ctgactaatt tttttattt atgcagaggc cgaggccgcc tcggcctctg agctattcca
                                                                               7860
        gaagtagtga ggaggctttt ttggaggcct aggcttttgc aaagatcgat caagagacag
                                                                               7920
        gatgaggatc gtttcgcatg attgaacaag atggattgca cgcaggttct ccggccgctt
                                                                               7980
                                                                               8040
        gggtggagag gctattcggc tatgactggg cacaacagac aatcggctgc tctgatgccg
15
        ccgtgttccg gctgtcagcg caggggcgcc cggttctttt tgtcaagacc gacctgtccg
                                                                               8100
        gtgccctgaa tgaactgcaa gacgaggcag cgcggctatc gtggctggcc acgacgggcg
                                                                               8160
        ttccttgcgc agctgtgctc gacgttgtca ctgaagcggg aagggactgg ctgctattgg
                                                                               8220
        gcgaagtgcc ggggcaggat ctcctgtcat ctcaccttgc tcctgccgag aaagtatcca
                                                                               8280
                                                                               8340
        tcatggctga tgcaatgcgg cggctgcata cgcttgatcc ggctacctgc ccattcgacc
        accaagcgaa acatcgcatc gagcgagcac gtactcggat ggaagccggt cttgtcgatc
                                                                               8400
20
        aggatgatct ggacgaagag catcaggggc tcgcccagc cgaactgttc gccaggctca
                                                                               8460
        aggcgagcat gcccgacggc gaggatctcg tcgtgaccca tggcgatgcc tgcttgccga
                                                                               8520
                                                                               8580
        atatcatggt ggaaaatggc cgcttttctg gattcatcga ctgtggccgg ctgggtgtgg
                                                                               8640
        cggaccgcta tcaggacata gcgttggcta cccgtgatat tgctgaagag cttggcggcg
        aatgggctga ccgcttcctc gtgctttacg gtatcgccgc tcccgattcg cagcgcatcg
                                                                               8700
25
        ccttctatcg ccttcttgac gagttcttct gagcgggact ctggggttcg aaatgaccga
                                                                               8760
        ccaagcgacg cccaacctgc catcacgaga tttcgattcc accgccgcct tctatgaaag
                                                                               8820
        gttgggcttc ggaatcgttt tccgggacgc cggctggatg atcctccagc gcggggatct
                                                                               8880
                                                                               8940
        catgctggag ttcttcgccc accctagggg gaggctaact gaaacacgga aggagacaat
        accggaagga acccgcgcta tgacggcaat aaaaagacag aataaaacgc acggtgttgg
                                                                               9000
                                                                               9060
        gtcgtttgtt cataaacgcg gggttcggtc ccagggctgg cactctgtcg ataccccacc
30
        gagaccccat tggggccaat acgcccgcgt ttcttccttt tccccacccc acccccaag
                                                                               9120
                                                                               9180
        ttcgggtgaa ggcccagggc tcgcagccaa cgtcggggcg gcaggccctg ccatagcctc
        aggttactca tatatacttt agattgattt aaaacttcat ttttaattta aaaggatcta
                                                                               9240
        ggtgaagatc ctttttgata atctcatgac caaaatccct taacgtgagt tttcgttcca
                                                                               9300
        ctgagcgtca gaccccgtag aaaagatcaa aggatcttct tgagatcctt tttttctgcg
                                                                               9360
35
        cqtaatctqc tqcttqcaaa caaaaaaacc accqctacca qcqqtqqttt qtttqccqqa
                                                                               9420
        tcaagagcta ccaactcttt ttccgaaggt aactggcttc agcagagcgc agataccaaa
                                                                               9480
                                                                               9540
        tactgtcctt ctagtgtagc cgtagttagg ccaccacttc aagaactctg tagcaccgcc
        tacatacctc gctctgctaa tcctgttacc agtggctgct gccagtggcg ataagtcgtg
                                                                               9600
        tcttaccggg ttggactcaa gacgatagtt accggataag gcgcagcggt cgggctgaac
                                                                               9660
        ggggggttcg tgcacacagc ccagcttgga gcgaacgacc tacaccgaac tgagatacct
                                                                               9720
40
        acagcgtgag ctatgagaaa gcgccacgct tcccgaaggg agaaaggcgg acaggtatcc
                                                                               9780
        ggtaagcggc agggtcggaa caggagagcg cacgagggag cttccagggg gaaacgcctg
                                                                               9840
        gtatctttat agtcctgtcg ggtttcgcca cctctgactt gagcgtcgat ttttgtgatg
                                                                               9900
        ctcgtcaggg gggcggagcc tatggaaaaa cgccagcaac gcggcctttt tacggttcct
                                                                               9960
        ggccttttgc tggccttttg ctcacatgtt ctttcctgcg ttatcccctg attctgtgga
                                                                              10020
                                                                              10042
        taaccgtatt accgccatgc at
45
        <210>
              10
        <211>
               10042
        <212>
              DNA
50
        <213>
              Artificial Sequence
        <220>
        <223>
              pCAG-dCas9-3.5xSuper
        <400> 10
55
        tagttattaa tagtaatcaa ttacggggtc attagttcat agcccatata tggagttccg
                                                                                 60
        cgttacataa cttacggtaa atggcccgcc tggctgaccg cccaacgacc cccgcccatt
                                                                                120
```

```
qacqtcaata atqacqtatq ttcccataqt aacqccaata qqqactttcc attqacqtca
                                                                                180
                                                                                240
        atgggtggac tatttacggt aaactgccca cttggcagta catcaagtgt atcatatgcc
                                                                                300
        aagtacgccc cctattgacg tcaatgacgg taaatggccc gcctggcatt atgcccagta
                                                                                360
        catgacctta tgggactttc ctacttggca gtacatctac gtattagtca tcgctattac
        catgggtcga ggtgagcccc acgttctgct tcactctccc catctccccc ccctccccac
                                                                                420
5
        ccccaatttt gtatttattt atttttaat tattttgtgc agcgatgggg gcggggggg
                                                                                480
        ggggggcgcg cgccaggcgg ggcggggcgg ggcgaggggc ggggcggggc gaggcggaga
                                                                                540
        ggtgcggcgg cagccaatca gagcggcgcg ctccgaaagt ttccttttat ggcgaggcgg
                                                                                600
        cggcggcggc ggccctataa aaagcgaagc gcgcggggg cgggagtcgc tgcgttgcct
                                                                                660
                                                                                720
        tegeceegtg eccegeteeg egeegeeteg egeegeeege eceggetetg actgacegeg
10
        ttactcccac aggtgagcgg gcgggacggc ccttctcctc cgggctgtaa ttagcgcttg
                                                                                780
        gtttaatgac ggctcgtttc ttttctgtgg ctgcgtgaaa gccttaaagg gctccgggag
                                                                                840
        ggccctttgt gcgggggga gcggctcggg gggtgcgtgc gtgtgtgtgt gcgtggggag
                                                                                900
        cgccgcgtgc ggcccgcgct gcccggcggc tgtgagcgct gcgggcgcgg cgcggggctt
                                                                                960
        tgtgcgctcc gcgtgtgcgc gaggggagcg cggccggggg cggtgccccg cggtgcgggg
                                                                               1020
                                                                               1080
        gggctgcgag gggaacaaag gctgcgtgcg gggtgtgtgcg gtgggggggt gagcaggggg
15
        tgtgggcgcg gcggtcgggc tgtaaccccc ccctgcaccc ccctccccga gttgctgagc
                                                                               1140
        acggcccggc ttcgggtgcg gggctccgtg cggggcgtgg cgcggggctc gccgtgccgg
                                                                               1200
        gcggggggtg gcggcaggtg ggggtgccgg gcgggggggg gccgcctcgg gccggggagg
                                                                               1260
        gctcggggga ggggcgcggc ggccccggag cgccggcggc tgtcgaggcg cggcgagccg
                                                                               1320
                                                                               1380
        cagccattgc cttttatggt aatcgtgcga gagggcgcag ggacttcctt tgtcccaaat
        ctggcggagc cgaaatctgg gaggcgccgc cgcaccccct ctagcgggcg cgggcgaagc
                                                                               1440
20
        ggtgcggcgc cggcaggaag gaaatgggcg gggagggcct tcgtgcgtcg ccgcccgcc
                                                                               1500
        qtccccttct ccatctccaq cctcqqqqct qccqcaqqqq qacqqctqcc ttcqqqqqqq
                                                                               1560
                                                                               1620
        acggggcagg gcggggttcg gcttctggcg tgtgaccggc ggctctagag cctctgctaa
                                                                               1680
        ccatgttcat gccttcttct ttttcctaca gctcctgggc aacgtgctgg ttgttgtgct
        gtctcatcat tttggcaaag aattctgcag tcgacggtac cgcgggcccc ctaggctacg
                                                                               1740
25
        cgcgccacca tgcccaagaa gaagcgcaag gtgggacgcg tctgcaggat atcaagcttg
                                                                               1800
                                                                               1860
        cggtaccgcg ggcccgggat cgccaccatg gacaagaagt acagcatcgg cctggccatc
                                                                               1920
        ggcaccaact ctgtgggctg ggccgtgatc accgacgagt acaaggtgcc cagcaagaaa
        ttcaaggtgc tgggcaacac cgaccggcac agcatcaaga agaacctgat cggcgccctg
                                                                               1980
        ctgttcgaca gcggagaaac agccgaggcc acccggctga agagaaccgc cagaagaaga
                                                                               2040
                                                                               2100
        tacaccagac ggaagaaccg gatctgctat ctgcaagaga tcttcagcaa cgagatggcc
30
                                                                               2160
        aaggtggacg acagcttctt ccacagactg gaagagtcct tcctggtgga agaggataag
        aagcacgagc ggcaccccat cttcggcaac atcgtggacg aggtggccta ccacgagaag
                                                                               2220
        taccccacca tctaccacct gagaaagaaa ctggtggaca gcaccgacaa ggccgacctg
                                                                               2280
        cggctgatct atctggccct ggcccacatg atcaagttcc ggggccactt cctgatcgag
                                                                               2340
        ggcgacctga accccgacaa cagcgacgtg gacaagctgt tcatccagct ggtgcagacc
                                                                               2400
35
        tacaaccage tgttegagga aaaccccate aacgccageg gegtggaege caaggccate
                                                                               2460
        ctgtctgcca gactgagcaa gagcagacgg ctggaaaatc tgatcgccca gctgcccggc
                                                                               2520
                                                                               2580
        gagaagaaga atggcctgtt cggcaacctg attgccctga gcctgggcct gacccccaac
        ttcaagagca acttcgacct ggccgaggat gccaaactgc agctgagcaa ggacacctac
                                                                               2640
        gacgacgacc tggacaacct gctggcccag atcggcgacc agtacgccga cctgtttctg
                                                                               2700
                                                                               2760
        gccgccaaga acctgtccga cgccatcctg ctgagcgaca tcctgagagt gaacaccgag
40
                                                                               2820
        atcaccaagg ccccctgag cgcctctatg atcaagagat acgacgagca ccaccaggac
                                                                               2880
        ctgaccctgc tgaaagctct cgtgcggcag cagctgcctg agaagtacaa agagattttc
        ttcgaccaga gcaagaacgg ctacgccggc tacatcgatg gcggagccag ccaggaagag
                                                                               2940
        ttctacaagt tcatcaagcc catcctggaa aagatggacg gcaccgagga actgctcgtg
                                                                               3000
                                                                               3060
        aagctgaaca gagaggacct gctgcggaag cagcggacct tcgacaacgg cagcatcccc
                                                                               3120
        caccagatcc acctgggaga gctgcacgcc attctgcggc ggcaggaaga tttttaccca
45
        ttcctgaagg acaaccggga aaagatcgag aagatcctga ccttccgcat cccctactac
                                                                               3180
                                                                               3240
        gtgggccctc tggccagggg aaacagcaga ttcgcctgga tgaccagaaa gagcgaggaa
        accatcaccc cctggaactt cgaggaagtg gtggacaagg gcgccagcgc ccagagcttc
                                                                               3300
                                                                               3360
        atcgagcgga tgaccaactt cgataagaac ctgcccaacg agaaggtgct gcccaagcac
        agcctgctgt acgagtactt caccgtgtac aacgagctga ccaaagtgaa atacgtgacc
                                                                               3420
50
                                                                               3480
        gagggaatga gaaagcccgc cttcctgagc ggcgagcaga aaaaagccat cgtggacctg
        ctgttcaaga ccaaccggaa agtgaccgtg aagcagctga aagaggacta cttcaagaaa
                                                                               3540
                                                                               3600
        atcgagtgct tcgactccgt ggaaatctcc ggcgtggaag atcggttcaa cgcctccctg
        ggcacatacc acgatctgct gaaaattatc aaggacaagg acttcctgga caatgaggaa
                                                                               3660
                                                                               3720
        aacgaggaca ttctggaaga tatcgtgctg accctgacac tgtttgagga cagagagatg
        atcgaggaac ggctgaaaac ctatgcccac ctgttcgacg acaaagtgat gaagcagctg
                                                                               3780
55
        aagcggcgga gatacaccgg ctggggcagg ctgagccgga agctgatcaa cggcatccgg
                                                                               3840
                                                                               3900
        gacaagcagt ccggcaagac aatcctggat ttcctgaagt ccgacggctt cgccaacaga
```

```
aacttcatgc agctgatcca cgacgacagc ctgaccttta aagaggacat ccagaaagcc
                                                                                3960
                                                                                4020
        caggtgtccg gccagggcga tagcctgcac gagcacattg ccaatctggc cggcagcccc
                                                                                4080
        gccattaaga agggcatcct gcagacagtg aaggtggtgg acgagctcgt gaaagtgatg
                                                                                4140
        ggccggcaca agcccgagaa catcgtgatc gaaatggcca gagagaacca gaccacccag
        aagggacaga agaacagccg cgagagaatg aagcggatcg aagagggcat caaagagctg
                                                                                4200
5
                                                                               4260
        ggcagccaga tcctgaaaga acaccccgtg gaaaacaccc agctgcagaa cgagaagctg
        tacctgtact acctgcagaa tgggcgggat atgtacgtgg accaggaact ggacatcaac
                                                                                4320
                                                                                4380
        cggctgtccg actacgatgt ggacgctatc gtgcctcaga gctttctgaa ggacgactcc
        atcgataaca aagtgctgac tcggagcgac aagaaccggg gcaagagcga caacgtgccc
                                                                                4440
                                                                                4500
        tccgaagagg tcgtgaagaa gatgaagaac tactggcgcc agctgctgaa tgccaagctg
10
                                                                                4560
        attacccaga ggaagttcga caatctgacc aaggccgaga gaggcggcct gagcgaactg
        gataaggccg gcttcatcaa gagacagctg gtggaaaccc ggcagatcac aaagcacgtg
                                                                                4620
        gcacagatcc tggactcccg gatgaacact aagtacgacg agaacgacaa actgatccgg
                                                                                4680
                                                                                4740
        gaagtgaaag tgatcaccct gaagtccaag ctggtgtccg atttccggaa ggatttccag
        ttttacaaag tgcgcgagat caacaactac caccacgccc acgacgccta cctgaacgcc
                                                                               4800
                                                                                4860
        gtcgtgggaa ccgccctgat caaaaagtac cctaagctgg aaagcgagtt cgtgtacggc
15
        gactacaagg tgtacgacgt gcggaagatg atcgccaaga gcgagcagga aatcggcaag
                                                                               4920
                                                                                4980
        gctaccgcca agtacttctt ctacagcaac atcatgaact ttttcaagac cgagattacc
        ctggccaacg gcgagatccg gaagcggcct ctgatcgaga caaacggcga aacaggcgag
                                                                                5040
                                                                                5100
        atcgtgtggg ataagggccg ggactttgcc accgtgcgga aagtgctgtc tatgccccaa
        gtgaatatcg tgaaaaagac cgaggtgcag acaggcggct tcagcaaaga gtctatcctg
                                                                               5160
                                                                               5220
        cccaagagga acagcgacaa gctgatcgcc agaaagaagg actgggaccc taagaagtac
20
        ggcggcttcg acagccccac cgtggcctat tctgtgctgg tggtggccaa agtggaaaag
                                                                               5280
                                                                                5340
        ggcaagtcca agaaactgaa gagtgtgaaa gagctgctgg ggatcaccat catggaaaga
                                                                                5400
        agcagetteg agaagaatee categaettt etggaageea agggetacaa agaagtgaaa
                                                                                5460
        aaggacctga tcatcaagct gcctaagtac tccctgttcg agctggaaaa cggccggaag
        agaatgctgg cctctgccgg cgaactgcag aagggaaacg aactggccct gccctccaaa
                                                                                5520
        tatgtgaact teetgtaeet ggeeageeac tatgagaage tgaagggete eeeegaggat
                                                                               5580
                                                                               5640
        aatgagcaga aacagctgtt tgtggaacag cacaaacact acctggacga gatcatcgag
                                                                               5700
        cagatcagcg agttctccaa gagagtgatc ctggccgacg ctaatctgga caaggtgctg
                                                                                5760
        agogoctaca acaagcacag agacaagcot atcagagago aggocgagaa tatcatocac
        ctgtttaccc tgaccaatct gggagcccct gccgccttca agtactttga caccaccatc
                                                                               5820
        gaccggaaga ggtacaccag caccaaagag gtgctggacg ccaccctgat ccaccagagc
                                                                               5880
30
                                                                               5940
        atcaccggcc tgtacgagac acggatcgac ctgtctcagc tgggaggcga cgcctatccc
                                                                                6000
        tatgacgtgc ccgattatgc cagcctgggc agcggctccc ccaagaaaaa acgcaaggtg
        gaagateeta agaaaaageg gaaagtggae ggeattggta gtgggageaa eggeageage
                                                                                6060
        ggatccaacg gtccgactga cgccgcggaa gaggaactcc tatcaaagaa ttatcacttg
                                                                               6120
        gaaaacgaag tggctagact gaaaaagggg tcgggaagcg gaggtagtgg gtctggagga
                                                                                6180
35
        agcggatcag gaggtagcgg ctccggcgga tcgggtgggt ccggctcagg cggatcgggt
                                                                                6240
        tctggggggt caggttcagg tggatctggt tccggcgaag aactcctttc caagaactac
                                                                                6300
                                                                                6360
        catttggaga atgaagtggc cagactcaag aaagggagcg ggtccggtgg ctccggatct
                                                                                6420
        ggtggatcgg gaagtggggg atcaggttcc ggagggtcag gcggttcagg gtcaggaggc
        agtggctcgg gggggagcgg ctctggcggc tcagggtcgg gagaggagtt actcagtaag
                                                                                6480
                                                                                6540
        aactatcacc tcgaaaatga agtcgctcgc ctcaaaaaaag gatcaggatc tggcgggtct
40
                                                                               6600
        gggagtggcg gcagcggtag cggcggaagt ggttctggtg ggtcaggggg ctccggtagc
        gggggaagtg gcagtggagg gtcgggtagc ggtggttcag gttcggggga agaacttctc
                                                                                6660
                                                                                6720
        agcaagaatt accacctaga gaacgaagta gcccgcctaa aaaagtaggc ggccgcgact
        ctagatcata atcagccata ccacatttgt agaggtttta cttgctttaa aaaacctccc
                                                                                6780
                                                                                6840
        acacctcccc ctgaacctga aacataaaat gaatgcaatt gttgttgtta acttgtttat
                                                                                6900
        tgcagcttat aatggttaca aataaagcaa tagcatcaca aatttcacaa ataaagcatt
45
        tttttcactg cattctagtt gtggtttgtc caaactcatc aatgtatctt aaggcgtaaa
                                                                                6960
        ttgtaagcgt taatattttg ttaaaattcg cgttaaattt ttgttaaatc agctcatttt
                                                                                7020
        ttaaccaata ggccgaaatc ggcaaaatcc cttataaatc aaaagaatag accgagatag
                                                                               7080
                                                                                7140
        ggttgagtgt tgttccagtt tggaacaaga gtccactatt aaagaacgtg gactccaacg
        tcaaagggcg aaaaaccgtc tatcagggcg atggcccact acgtgaacca tcaccctaat
                                                                               7200
50
                                                                               7260
        caagtttttt ggggtcgagg tgccgtaaag cactaaatcg gaaccctaaa gggagccccc
        gatttagagc ttgacgggga aagccggcga acgtggcgag aaaggaaggg aagaaagcga
                                                                                7320
                                                                                7380
        aaggageggg egetagggeg etggeaagtg tageggteae getgegegta accaecaea
                                                                               7440
        ccgccgcgct taatgcgccg ctacagggcg cgtcaggtgg cacttttcgg ggaaatgtgc
                                                                               7500
        gcggaacccc tatttgttta tttttctaaa tacattcaaa tatgtatccg ctcatgagac
        aataaccctg ataaatgctt caataatatt gaaaaaggaa gagtcctgag gcggaaagaa
                                                                               7560
55
        ccagctgtgg aatgtgtgtc agttagggtg tggaaagtcc ccaggctccc cagcaggcag
                                                                               7620
                                                                               7680
        aagtatgcaa agcatgcatc tcaattagtc agcaaccagg tgtggaaagt ccccaggctc
```

```
cccagcagge agaagtatge aaagcatgea teteaattag teagcaacea tagteeegee
                                                                               7800
        cctaactccg cccatcccgc ccctaactcc gcccagttcc gcccattctc cgccccatgg
                                                                               7860
        ctgactaatt ttttttattt atgcagagge cgaggeegee teggeetetg agetatteea
                                                                               7920
        gaagtagtga ggaggctttt ttggaggcct aggcttttgc aaagatcgat caagagacag
        gatgaggatc gtttcgcatg attgaacaag atggattgca cgcaggttct ccggccgctt
                                                                               7980
5
                                                                               8040
        gggtggagag gctattcggc tatgactggg cacaacagac aatcggctgc tctgatgccg
        ccgtgttccg gctgtcagcg caggggcgcc cggttctttt tgtcaagacc gacctgtccg
                                                                               8100
                                                                               8160
        qtqccctqaa tqaactqcaa qacqaqqcaq cqcqqctatc qtqqctqqcc acqacqqqcq
        ttccttqcqc aqctqtqctc qacqttqtca ctqaaqcqqq aaqqqactqq ctqctattqq
                                                                               8220
                                                                               8280
        gcgaagtgcc ggggcaggat ctcctgtcat ctcaccttgc tcctgccgag aaagtatcca
10
                                                                               8340
        tcatggctga tgcaatgcgg cggctgcata cgcttgatcc ggctacctgc ccattcgacc
        accaagegaa acategeate gagegageae gtaeteggat ggaageeggt ettgtegate
                                                                               8400
        aggatgatct ggacgaagag catcaggggc tcgcgccagc cgaactgttc gccaggctca
                                                                               8460
        aggegageat gecegaegge gaggateteg tegtgaecea tggegatgee tgettgeega
                                                                               8520
        atatcatggt ggaaaatggc cgcttttctg gattcatcga ctgtggccgg ctgggtgtgg
                                                                               8580
                                                                               8640
        cggaccgcta tcaggacata gcgttggcta cccgtgatat tgctgaagag cttggcggcg
15
        aatgggctga ccgcttcctc gtgctttacg gtatcgccgc tcccgattcg cagcgcatcg
                                                                               8700
        ccttctatcg ccttcttgac gagttcttct gagcgggact ctggggttcg aaatgaccga
                                                                               8760
        ccaagegacg cccaacetge cateacgaga tttegattee accgeegeet tetatgaaag
                                                                               8820
        gttgggette ggaategttt teegggaege eggetggatg atecteeage geggggatet
                                                                               8880
                                                                               8940
        catgctggag ttcttcgccc accctagggg gaggctaact gaaacacgga aggagacaat
        accggaagga acccgcgcta tgacggcaat aaaaagacag aataaaacgc acggtgttgg
                                                                               9000
20
        gtcgtttgtt cataaacgcg gggttcggtc ccagggctgg cactctgtcg ataccccacc
                                                                               9060
        gagaccccat tggggccaat acgcccgcgt ttcttccttt tccccacccc acccccaag
                                                                               9120
        ttcgggtgaa ggcccagggc tcgcagccaa cgtcggggcg gcaggccctg ccatagcctc
                                                                               9180
                                                                               9240
        aggttactca tatatacttt agattgattt aaaacttcat ttttaattta aaaggatcta
        ggtgaagatc ctttttgata atctcatgac caaaatccct taacgtgagt tttcgttcca
                                                                               9300
25
        ctgagcqtca gaccccqtag aaaagatcaa aggatcttct tgagatcctt tttttctgcg
                                                                               9360
                                                                               9420
        cqtaatctqc tqcttqcaaa caaaaaaacc accqctacca qcqqtqqttt qtttqccqqa
                                                                               9480
        tcaagagcta ccaactcttt ttccgaaggt aactggcttc agcagagcgc agataccaaa
                                                                               9540
        tactgtcctt ctagtgtagc cgtagttagg ccaccacttc aagaactctg tagcaccgcc
        tacatacctc gctctgctaa tcctgttacc agtggctgct gccagtggcg ataagtcgtg
                                                                               9600
        tcttaccggg ttggactcaa gacgatagtt accggataag gcgcagcggt cgggctgaac
                                                                               9660
30
        ggggggttcg tgcacacagc ccagcttgga gcgaacgacc tacaccgaac tgagatacct
                                                                               9720
        acagcgtgag ctatgagaaa gcgccacgct tcccgaaggg agaaaggcgg acaggtatcc
                                                                               9780
        ggtaagcggc agggtcggaa caggagagcg cacgagggag cttccagggg gaaacgcctg
                                                                               9840
        gtatctttat agtcctgtcg ggtttcgcca cctctgactt gagcgtcgat ttttgtgatg
                                                                               9900
        ctcgtcaggg gggcggagcc tatggaaaaa cgccagcaac gcggcctttt tacggttcct
                                                                               9960
35
        ggccttttgc tggccttttg ctcacatgtt ctttcctgcg ttatcccctg attctgtgga
                                                                              10020
        taaccgtatt accgccatgc at
                                                                              10042
        <210>
               11
        <211>
               14283
40
        <212>
               DNA
        <213>
               Artificial Sequence
        <220>
        <223>
               pPlatTET-gRNA2
45
        <400>
        tagttattaa tagtaatcaa ttacggggtc attagttcat agcccatata tggagttccg
                                                                                 60
                                                                                120
        cgttacataa cttacggtaa atggcccgcc tggctgaccg cccaacgacc cccgcccatt
                                                                                180
        gacgtcaata atgacgtatg ttcccatagt aacgccaata gggactttcc attgacgtca
        atgggtggac tatttacggt aaactgccca cttggcagta catcaagtgt atcatatgcc
                                                                                240
50
                                                                                300
        aagtacgccc cctattgacg tcaatgacgg taaatggccc gcctggcatt atgcccagta
        catgacetta tgggacette ctacttggca gtacatetac gtattagtca tegetattac
                                                                                360
        catgggtcga ggtgagcccc acgttctgct tcactctccc catctcccc ccctccccac
                                                                                420
        ccccaatttt gtatttattt attttttaat tattttgtgc agcgatgggg gcggggggg
                                                                                480
                                                                                540
        ggggggcgcg cgccaggcgg ggcggggcgg ggcgaggggc ggggcggggc gaggcggaga
        ggtgcggcgg cagccaatca gagcggcgcg ctccgaaagt ttccttttat ggcgaggcgg
                                                                                600
55
        cggcggcggc ggccctataa aaagcgaagc gcgcggcggg cgggagtcgc tgcgttgcct
                                                                                660
                                                                                720
        tegeceegtg eecegeteeg egeegeeteg egeegeeege eeeggetetg aetgaeegeg
```

```
ttactcccac aggtgagcgg gcgggacggc ccttctcctc cgggctgtaa ttagcgcttg
                                                                                780
                                                                                840
        gtttaatgac ggctcgtttc ttttctgtgg ctgcgtgaaa gccttaaagg gctccgggag
                                                                                900
        ggccctttgt gcgggggga gcggctcggg gggtgcgtgc gtgtgtgtgt gcgtggggag
                                                                                960
        cgccgcgtgc ggcccgcgct gcccggcggc tgtgagcgct gcggggcgcgg cgcggggctt
                                                                                1020
        tgtgcgctcc gcgtgtgcgc gaggggagcg cggccggggg cggtgccccg cggtgcgggg
5
                                                                               1080
        gggctgcgag gggaacaaag gctgcgtgcg gggtgtgtgcg gtgggggggt gagcaggggg
        tgtgggcgcg gcggtcgggc tgtaaccccc ccctgcaccc ccctccccga gttgctgagc
                                                                               1140
                                                                               1200
        acggcccggc ttcgggtgcg gggctccgtg cggggcgtgg cgcggggctc gccgtgccgg
        qcqqqqqtq qcqqcaqqtq qqqqtqccqq qcqqqqqqqq qccqcctcqq qccqqqqaqq
                                                                               1260
                                                                               1320
        gctcggggga ggggcgcggc ggccccggag cgccggcggc tgtcgaggcg cggcgagccg
10
                                                                               1380
        cagccattgc cttttatggt aatcgtgcga gagggcgcag ggacttcctt tgtcccaaat
        ctggcggagc cgaaatctgg gaggcgccgc cgcaccccct ctagcgggcg cgggcgaagc
                                                                               1440
        ggtgcggcgc cggcaggaag gaaatgggcg gggagggcct tcgtgcgtcg ccgcgccgcc
                                                                               1500
                                                                               1560
        gtccccttct ccatctccag cctcggggct gccgcagggg gacggctgcc ttcggggggg
        acggggcagg gcggggttcg gcttctggcg tgtgaccggc ggctctagag cctctgctaa
                                                                               1620
                                                                               1680
        ccatgttcat gccttcttct ttttcctaca gctcctgggc aacgtgctgg ttgttgtgct
15
        gtctcatcat tttggcaaag aattcccccg cgatcgcgcc accatgccca agaagaagcg
                                                                               1740
                                                                               1800
        caaggtggga cgcgtctgca ggatatcaag cttgcggtac cgcgggcccg ggatcgccac
                                                                               1860
        catggacaag aagtacagca tcggcctggc catcggcacc aactctgtgg gctgggccgt
                                                                                1920
        gatcaccgac gagtacaagg tgcccagcaa gaaattcaag gtgctgggca acaccgaccg
                                                                               1980
        gcacagcatc aagaagaacc tgatcggcgc cctgctgttc gacagcggag aaacagccga
                                                                               2040
        ggccacccgg ctgaagagaa ccgccagaag aagatacacc agacggaaga accggatctg
20
        ctatctgcaa gagatcttca gcaacgagat ggccaaggtg gacgacagct tcttccacag
                                                                               2100
        actggaagag tccttcctgg tggaagagga taagaagcac gagcggcacc ccatcttcgg
                                                                                2160
                                                                               2220
        caacatcgtg gacgaggtgg cctaccacga gaagtacccc accatctacc acctgagaaa
                                                                               2280
        gaaactggtg gacagcaccg acaaggccga cctgcggctg atctatctgg ccctggccca
        catgatcaag ttccggggcc acttcctgat cgagggcgac ctgaaccccg acaacagcga
                                                                                2340
25
        cgtggacaag ctgttcatcc agctggtgca gacctacaac cagctgttcg aggaaaaccc
                                                                               2400
                                                                               2460
        catcaacgcc agcggcgtgg acgccaaggc catcctgtct gccagactga gcaagagcag
                                                                               2520
        acggctggaa aatctgatcg cccagctgcc cggcgagaag aagaatggcc tgttcggcaa
        cctgattgcc ctgagcctgg gcctgacccc caacttcaag agcaacttcg acctggccga
                                                                                2580
        ggatgccaaa ctgcagctga gcaaggacac ctacgacgac gacctggaca acctgctggc
                                                                               2640
                                                                               2700
        ccagatcggc gaccagtacg ccgacctgtt tctggccgcc aagaacctgt ccgacgccat
30
                                                                               2760
        cctgctgagc gacatcctga gagtgaacac cgagatcacc aaggcccccc tgagcgcctc
                                                                                2820
        tatgatcaag agatacgacg agcaccacca ggacctgacc ctgctgaaag ctctcgtgcg
        gcagcagctg cctgagaagt acaaagagat tttcttcgac cagagcaaga acggctacgc
                                                                               2880
                                                                               2940
        cggctacatc gatggcggag ccagccagga agagttctac aagttcatca agcccatcct
                                                                               3000
        ggaaaagatg gacggcaccg aggaactgct cgtgaagctg aacagagagg acctgctgcg
        gaagcagcgg accttcgaca acggcagcat cccccaccag atccacctgg gagagctgca
                                                                                3060
35
        cgccattctg cggcggcagg aagattttta cccattcctg aaggacaacc gggaaaagat
                                                                               3120
                                                                                3180
        cgagaagatc ctgaccttcc gcatccccta ctacgtgggc cctctggcca ggggaaacag
                                                                                3240
        cagattegee tggatgacea gaaagagega ggaaaceate acceeetgga acttegagga
        agtggtggac aagggcgcca gcgcccagag cttcatcgag cggatgacca acttcgataa
                                                                                3300
                                                                               3360
        gaacctgccc aacgagaagg tgctgcccaa gcacagcctg ctgtacgagt acttcaccgt
40
                                                                               3420
        gtacaacgag ctgaccaaag tgaaatacgt gaccgaggga atgagaaagc ccgccttcct
                                                                               3480
        gageggegag cagaaaaaag ceategtgga cetgetgtte aagaceaace ggaaagtgae
                                                                                3540
        cgtgaagcag ctgaaagagg actacttcaa gaaaatcgag tgcttcgact ccgtggaaat
        ctccggcgtg gaagatcggt tcaacgcctc cctgggcaca taccacgatc tgctgaaaat
                                                                                3600
                                                                                3660
        tatcaaggac aaggacttcc tggacaatga ggaaaacgag gacattctgg aagatatcgt
                                                                                3720
        gctgaccctg acactgtttg aggacagaga gatgatcgag gaacggctga aaacctatgc
45
        ccacctgttc gacgacaaag tgatgaagca gctgaagcgg cggagataca ccggctgggg
                                                                                3780
                                                                                3840
        caggctgagc cggaagctga tcaacggcat ccgggacaag cagtccggca agacaatcct
                                                                               3900
        ggatttcctg aagtccgacg gcttcgccaa cagaaacttc atgcagctga tccacgacga
                                                                                3960
        cagcctgacc tttaaagagg acatccagaa agcccaggtg tccggccagg gcgatagcct
        gcacgagcac attgccaatc tggccggcag ccccgccatt aagaagggca tcctgcagac
                                                                                4020
50
                                                                                4080
        agtgaaggtg gtggacgagc tcgtgaaagt gatgggccgg cacaagcccg agaacatcgt
        gatcgaaatg gccagagaga accagaccac ccagaaggga cagaagaaca gccgcgagag
                                                                                4140
                                                                                4200
        aatgaagcgg atcgaagagg gcatcaaaga gctgggcagc cagatcctga aagaacaccc
        cgtggaaaac acccagctgc agaacgagaa gctgtacctg tactacctgc agaatgggcg
                                                                               4260
                                                                                4320
        ggatatgtac gtggaccagg aactggacat caaccggctg tccgactacg atgtggacgc
        tatcgtgcct cagagctttc tgaaggacga ctccatcgat aacaaagtgc tgactcggag
                                                                                4380
55
        cgacaagaac cggggcaaga gcgacaacgt gccctccgaa gaggtcgtga agaagatgaa
                                                                                4440
        gaactactgg cgccagctgc tgaatgccaa gctgattacc cagaggaagt tcgacaatct
                                                                                4500
```

	gaccaaggcc	gagagaggcg	gcctgagcga	actggataag	gccggcttca	tcaagagaca	4560
	gctggtggaa	acccggcaga	tcacaaagca	cgtggcacag	atcctggact	cccggatgaa	4620
	cactaagtac	gacgagaacg	acaaactgat	ccgggaagtg	aaagtgatca	ccctgaagtc	4680
	caagctggtg	tccgatttcc	ggaaggattt	ccagttttac	aaagtgcgcg	agatcaacaa	4740
5		gcccacgacg					4800
	gtaccctaag	ctggaaagcg	agttcgtgta	cggcgactac	aaggtgtacg	acgtgcggaa	4860
	gatgatcgcc	aagagcgagc	aggaaatcgg	caaggctacc	gccaagtact	tcttctacag	4920
	caacatcatg	aactttttca	agaccgagat	taccctggcc	aacggcgaga	tccggaagcg	4980
	gcctctgatc	gagacaaacg	gcgaaacagg	cgagatcgtg	tgggataagg	gccgggactt	5040
		cggaaagtgc					5100
10		ggcttcagca					5160
		aaggactggg					5220
		ctggtggtgg					5280
		ctggggatca					5340
		gccaagggct					5400
15		ttcgagctgg					5460
		aacgaactgg					5520
		aagctgaagg					5580
		cactacctgg					5640
		gacgctaatc					5700
		gagcaggccg					5760
20		ttcaagtact					5820
		gacgccaccc	_				5880
		cagctgggag					5940
		tcccccaaga					6000 6060
		ggtagtggga					
25		cttctgagca					6120 6180
20		tccggtggaa					
		gagctcctta					6240 6300
		ggaagtggcg					6360
		gaggagttgc					6420
		tccggctccg					6480
30		ggagaggaat					6540
		gggagcggct					6600
		tctggggagg aagggaagcg					6660
		gggtccggga					6720
		ggagacgtgg					6780
35		agccccagca					6840
00		accggcgccg					6900
		ttcaagggcc					6960
		ggcagcctga					7020
		gccacctact					7080
		gtggagctga					7140
40		agcggcggcg					7200
		ggcagcctga					7260
		tgggtgcgcc					7320
		atcaccgact					7380
		aacaccgtgt					7440
45		gtgaccggcc					7500
40		tacgatgttc					7560
		ggtggttcag					7620
		gaagaacttt					7680
		cacaaatttt					7740
		aaatttattt					7800
50		acctatggtg					7860
		aagagtgcca					7920
		acctacaaga					7980
		ttaaagggta					8040
		tttaactcac					8100
		ttcaaaattc					8160
55		aatactccaa					8220
		tctgtccttt					8280
	-	-					

```
tgagtttgta actgctgctg ggattacaca tggcatggat gagctctaca aaggtggagg
                                                                               8340
                                                                               8400
        teggaceggt ggeggtggeg gaggggetag cagateegaa etgeecaeet geagetgtet
                                                                               8460
        tgatcgagtt atacaaaaag acaaaggccc atattataca caccttgggg caggaccaag
        tgttgctgct gtcagggaaa tcatggagaa taggtatggt caaaaaggaa acgcaataag
                                                                               8520
        qataqaaata qtaqtqtaca ccqqtaaaqa aqqqaaaaqc tctcatqqqt qtccaattqc
                                                                               8580
5
        taagtgggtt ttaagaagaa gcagtgatga agaaaaagtt ctttgtttgg tccggcagcg
                                                                               8640
        tacaggccac cactgtccaa ctgctgtgat ggtggtgctc atcatggtgt gggatggcat
                                                                               8700
                                                                               8760
        ccctcttcca atggccgacc ggctatacac agagctcaca gagaatctaa agtcatacaa
        tgggcaccct accgacagaa gatgcaccct caatgaaaat cgtacctgta catgtcaagg
                                                                               8820
                                                                               8880
        aattgatcca gagacttgtg gagcttcatt ctcttttggc tgttcatgga gtatgtactt
10
                                                                               8940
        taatggctgt aagtttggta gaagcccaag ccccagaaga tttagaattg atccaagctc
        tcccttacat gaaaaaaacc ttgaagataa cttacagagt ttggctacac gattagctcc
                                                                               9000
        aatttataag cagtatgctc cagtagctta ccaaaatcag gtggaatatg aaaatgttgc
                                                                               9060
        ccgagaatgt cggcttggca gcaaggaagg tcgtcccttc tctggggtca ctgcttgcct
                                                                               9120
        ggacttctgt gctcatcccc acagggacat tcacaacatg aataatggaa gcactgtggt
                                                                               9180
                                                                               9240
        ttgtacctta actcgagaag ataaccgctc tttgggtgtt attcctcaag atgagcagct
15
        ccatgtgcta cctctttata agctttcaga cacagatgag tttggctcca aggaaggaat
                                                                               9300
        ggaagccaag atcaaatctg gggccatcga ggtcctggca ccccgccgca aaaaaagaac
                                                                               9360
        gtgtttcact cagcctgttc cccgttctgg aaagaagagg gctgcgatga tgacagaggt
                                                                               9420
        tcttgcacat aagataaggg cagtggaaaa gaaacctatt ccccgaatca agcggaagaa
                                                                               9480
        taactcaaca acaacaaaca acagtaagcc ttcgtcactg ccaaccttag ggagtaacac
                                                                               9540
                                                                               9600
        tgagaccgtg caacctgaag taaaaagtga aaccgaaccc cattttatct taaaaagttc
20
        agacaacact aaaacttatt cgctgatgcc atccgctcct cacccagtga aagaggcatc
                                                                               9660
        tccaggcttc tcctggtccc cgaagactgc ttcagccaca ccagctccac tgaagaatga
                                                                               9720
                                                                               9780
        cgcaacagcc tcatgcgggt tttcagaaag aagcagcact ccccactgta cgatgccttc
                                                                               9840
        gggaagactc agtggtgcca atgcagctgc tgctgatggc cctggcattt cacagcttgg
        cgaagtggct cctctcccca ccctgtctgc tcctgtgatg gagcccctca ttaattctga
                                                                               9900
25
        qccttccact qqtqtqactq aqccqctaac qcctcatcaq ccaaaccacc aqccctcctt
                                                                               9960
        cctcacctct cctcaagacc ttgcctcttc tccaatggaa gaagatgagc agcattctga
                                                                              10020
        agcagatgag cctccatcag acgaacccct atctgatgac cccctgtcac ctgctgagga
                                                                              10080
        gaaattgccc cacattgatg agtattggtc agacagtgag cacatctttt tggatgcaaa
                                                                              10140
        tattggtggg gtggccatcg cacctgctca cggctcggtt ttgattgagt gtgcccggcg
                                                                              10200
        agagetgeac getaceacte etgttgagea ceceaacegt aateateeaa eeegeetete
                                                                              10260
30
                                                                              10320
        ccttgtcttt taccagcaca aaaacctaaa taagccccaa catggttttg aactaaacaa
                                                                              10380
        gattaagttt gaggctaaag aagctaagaa taagaaaatg aaggcctcag agcaaaaaga
        ccaggcagct aatgaaggtc cagaacagtc ctctgaagta aatgaattga accaaattcc
                                                                              10440
        ttctcataaa gcattaacat taacccatga caatgttgtc accgtgtccc cttatgctct
                                                                              10500
        cacacacgtt gcggggccct ataaccattg ggtctgagcg gccgcgactc tagatcataa
                                                                              10560
35
        tcagccatac cacatttgta gaggttttac ttgctttaaa aaacctccca cacctccccc
                                                                              10620
        tgaacctgaa acataaaatg aatgcaattg ttgttgttaa cttgtttatt gcagcttata
                                                                              10680
                                                                              10740
        atggttacaa ataaagcaat agcatcacaa atttcacaaa taaagcattt ttttcactgc
        attctagttg tggtttgtcc aaactcatca atgtatcttg gcgcgcctgt acaaaaaagc
                                                                              10800
        aggetttaaa ggaaccaatt cagtegactg gateeggtae caaggteggg caggaagagg
                                                                              10860
                                                                              10920
        gcctatttcc catgattcct tcatatttgc atatacgata caaggctgtt agagagataa
40
                                                                              10980
        ttagaattaa tttgactgta aacacaaaga tattagtaca aaatacgtga cgtagaaagt
        aataatttct tgggtagttt gcagttttaa aattatgttt taaaatggac tatcatatgc
                                                                              11040
        ttaccgtaac ttgaaagtat ttcgatttct tggctttata tatcttaagt taaaataagg
                                                                              11100
                                                                              11160
        ctagtccgtt atcaacttga aaaagtggca ccgagtcggt gctttttttc tagacccagc
                                                                              11220
        tttcttgtac aaagttggca ttaggcgcgc caaggcgtaa attgtaagcg ttaatatttt
        gttaaaattc gcgttaaatt tttgttaaat cagctcattt tttaaccaat aggccgaaat
                                                                              11280
45
        cggcaaaatc ccttataaat caaaagaata gaccgagata gggttgagtg ttgttccagt
                                                                              11340
        ttggaacaag agtccactat taaagaacgt ggactccaac gtcaaagggc gaaaaaccgt
                                                                              11400
                                                                              11460
        ctatcagggc gatggcccac tacgtgaacc atcaccctaa tcaagttttt tggggtcgag
        gtgccgtaaa gcactaaatc ggaaccctaa agggagcccc cgatttagag cttgacgggg
                                                                              11520
        aaagccggcg aacgtggcga gaaaggaagg gaagaaagcg aaaggagcgg gcgctagggc
                                                                              11580
50
        gctggcaagt gtagcggtca cgctgcgcgt aaccaccaca cccgccgcgc ttaatgcgcc
                                                                              11640
        gctacagggc gcgtcaggtg gcacttttcg gggaaatgtg cgcggaaccc ctatttgttt
                                                                              11700
        atttttctaa atacattcaa atatgtatcc gctcatgaga caataaccct gataaatgct
                                                                              11760
        tcaataatat tgaaaaagga agagtcctga ggcggaaaga accagctgtg gaatgtgtgt
                                                                              11820
        cagttagggt gtggaaagtc cccaggctcc ccagcaggca gaagtatgca aagcatgcat
                                                                              11880
        ctcaattagt cagcaaccag gtgtggaaag tccccaggct ccccagcagg cagaagtatg
                                                                              11940
55
        caaagcatgc atctcaatta gtcagcaacc atagtcccgc ccctaactcc gcccatcccg
                                                                              12000
        cccctaactc cgcccagttc cgcccattct ccgccccatg gctgactaat tttttttatt
                                                                              12060
```

```
tatgcagagg ccgaggccgc ctcggcctct gagctattcc agaagtagtg aggaggcttt
       tttggaggcc taggcttttg caaagatcga tcaagagaca ggatgaggat cgtttcgcat
                                                                              12180
       gattgaacaa gatggattgc acgcaggttc tccggccgct tgggtggaga ggctattcgg
                                                                              12240
                                                                              12300
       ctatgactgg gcacaacaga caatcggctg ctctgatgcc gccgtgttcc ggctgtcagc
       gcaggggcgc ccggttcttt ttgtcaagac cgacctgtcc ggtgccctga atgaactgca
                                                                              12360
5
       agacgaggca gcgcggctat cgtggctggc cacgacgggc gttccttgcg cagctgtgct
                                                                              12420
       cgacgttgtc actgaagcgg gaagggactg gctgctattg ggcgaagtgc cggggcagga
                                                                              12480
       totoctgtca totoacottg ctcctgccga gaaagtatcc atcatggctg atgcaatgcg
                                                                              12540
       gcggctgcat acgcttgatc cggctacctg cccattcgac caccaagcga aacatcgcat
                                                                              12600
       cqaqcqaqca cqtactcqqa tqqaaqccqq tcttqtcqat caqqatqatc tqqacqaaqa
                                                                              12660
10
       qcatcaqqqq ctcqcccaq ccqaactqtt cqccaqqctc aaqqcqaqca tqcccqacqq
                                                                              12720
       cgaggatete gtegtgacee atggegatge etgettgeeg aatateatgg tggaaaatgg
                                                                              12780
       ccgcttttct ggattcatcg actgtggccg gctgggtgtg gcggaccgct atcaggacat
                                                                              12840
                                                                              12900
       agcgttggct acccgtgata ttgctgaaga gcttggcggc gaatgggctg accgcttcct
       cgtgctttac ggtatcgccg ctcccgattc gcagcgcatc gccttctatc gccttcttga
                                                                              12960
       cgagttcttc tgagcgggac tctggggttc gaaatgaccg accaagcgac gcccaacctg
                                                                              13020
15
       ccatcacgag atttcgattc caccgccgcc ttctatgaaa ggttgggctt cggaatcgtt
                                                                              13080
       ttccgggacg ccggctggat gatcctccag cgcggggatc tcatgctgga gttcttcgcc
                                                                              13140
       caccctaggg ggaggctaac tgaaacacgg aaggagacaa taccggaagg aacccgcgct
                                                                              13200
       atgacggcaa taaaaagaca gaataaaacg cacggtgttg ggtcgtttgt tcataaacgc
                                                                              13260
       ggggttcggt cccagggctg gcactctgtc gataccccac cgagacccca ttggggccaa
                                                                              13320
20
       tacgcccgcg tttcttcctt ttccccaccc cacccccaa gttcgggtga aggcccaggg
                                                                              13380
       ctcgcagcca acgtcggggc ggcaggccct gccatagcct caggttactc atatatactt
                                                                              13440
       tagattgatt taaaacttca tttttaattt aaaaggatct aggtgaagat cctttttgat
                                                                              13500
       aatctcatga ccaaaatccc ttaacgtgag ttttcgttcc actgagcgtc agaccccgta
                                                                              13560
       gaaaagatca aaggatcttc ttgagatcct ttttttctgc gcgtaatctg ctgcttgcaa
                                                                              13620
       acaaaaaaac caccgctacc agcggtggtt tgtttgccgg atcaagagct accaactctt
                                                                              13680
25
       tttccgaagg taactggctt cagcagagcg cagataccaa atactgtcct tctagtgtag
                                                                              13740
       ccgtagttag gccaccactt caagaactct gtagcaccgc ctacatacct cgctctgcta
                                                                              13800
       atcctgttac cagtggctgc tgccagtggc gataagtcgt gtcttaccgg gttggactca
                                                                              13860
       agacgatagt taccggataa ggcgcagcgg tcgggctgaa cggggggttc gtgcacacag
                                                                              13920
       cccagcttgg agcgaacgac ctacaccgaa ctgagatacc tacagcgtga gctatgagaa
                                                                              13980
30
       agcgccacgc ttcccgaagg gagaaaggcg gacaggtatc cggtaagcgg cagggtcgga
                                                                              14040
       acaggagagc gcacgaggga gcttccaggg ggaaacgcct ggtatcttta tagtcctgtc
                                                                              14100
       gggtttcgcc acctctgact tgagcgtcga tttttgtgat gctcgtcagg ggggcggagc
                                                                              14160
       ctatggaaaa acqccagcaa cqcqqccttt ttacqqttcc tqqccttttq ctqqcctttt
                                                                              14220
       gctcacatgt tctttcctgc gttatcccct gattctgtgg ataaccgtat taccgccatg
                                                                              14280
                                                                              14283
       cat.
35
       <210>
              12
       <211>
              23
       <212>
              DNA
40
       <213>
              Artificial Sequence
       <220>
       <223>
              Gfap 1
       <400> 12
45
                                                                                 23
       atagacataa tggtcagggg tgg
       <210>
              13
       <211>
              23
       <212>
50
       <213>
              Artificial Sequence
       <220>
       <223>
              Gfap_2
55
       <400> 13
                                                                                 23
       ggatgccagg atgtcagccc cgg
```

	<210>	14
	<211>	
	<212>	
		Artificial Sequence
	\213/	Artificial Sequence
5	-220	
	<220>	G5 3
	<223>	Gfap_3
	<400>	14
	atatgg	caag ggcagccccg tgg
10		
	<210>	15
	<211>	23
	<212>	
45		Artificial Sequence
15	1215	metriciar bequence
	<220>	
		111 ODWD 1
	<223>	H19DMR_1
		1.5
20	<400>	
20	gtgggg	gggc tctttaggtt tgg
	<210>	
	<211>	
25	<212>	
-	<213>	Artificial Sequence
		_
	<220>	
		H19DMR_2
		
30	<400>	16
		gtct ttacacacaa agg
	accerg	geet tracacacaa agg
	ع م 10 م ح	17
	<210>	
35	<211>	
	<212>	
	<213>	Artificial Sequence
	<220>	
	<223>	H19DMR_3
40		_
	<400>	17
		gtta tgtgcaacaa ggg
	gaaget	good ogogoddodd ggg
	<210>	1.0
45	<210> <211>	
	<212>	
	<213>	Artificial Sequence
	<220>	
50	<223>	H19DMR_4
	<400>	18
		tggc tatagctaaa tgg
55	<210>	19
	<211>	
	~~!!>	Z. U

	<212>		
	<213>	Artificial Sequence	
	.000		
	<220>	1	
5	<223>	UR_I	
	<400>	19	
		ttgc attaatctga	20
	CCGCCG	oogo accaacega	
10	<210>	20	
	<211>	20	
	<212>		
	<213>	Artificial Sequence	
15	<220>	0	
	<223>	UR_Z	
	<400>	20	
		agcc agaaaatgac	20
	Juage		
20			
	<210>		
	<211>		
	<212>		
	<213>	Artificial Sequence	
25	10005		
	<220> <223>	IID 2	
	<223>	UK_3	
	<400>	21	
		atca aattctgagc	20
30	333		
	<210>		
	<211>		
	<212>		
35	<213>	Artificial Sequence	
	<220>		
		GfapSTAT3-B3	
	12237	Claptinis bs	
	<400>	22	
40	ttggtt	agtt tttaggattt ttttt	25
	0.7.5		
	<210>		
	<211>		
45	<212>		
	\213>	Artificial Sequence	
	<220>		
		GfapSTAT3-B4	
50	<400>		
	aaaact	tcaa acccatctat ctcttc	26
	J010:	24	
	<210> <211>		
55	<211> <212>		
		Artificial Sequence	

	<220> <223>	H19DMR-B1	
	<400>		٥-
5	aaggag	atta tgttttattt ttgga	25
	<210> <211>		
	<211>		
10		Artificial Sequence	
	<220>		
		H19DMR-B2	
15	<400>	25 actc aatcaattac aatcc	25
	aaaaaa		20
	<210>	26	
	<211>	— -	
20	<212>		
	<213>	Artificial Sequence	
	<220>		
	<223>	Gfap_01B1	
25	<400>	26	
		aggt aggattaata agggaatt	28
	<210>	27	
30	<211>		
	<212>	DNA Artificial Sequence	
	\Z13 /	Artificial Sequence	
	<220>		
35	<223>	Gfap_O1B2	
	<400>	27	
	aaaaaa	aacc cttcaaaaaa aatcta	26
40	<210>		
	<211>		
	<212>	DNA Artificial Sequence	
		Artificial bequence	
45	<220>		
	<223>	Gfap_02B1	
	<400>		
	ttatta	ttta tatttggagg gaggg	25
50			
	<210>		
	<211>		
	<212>	DNA Artificial Sequence	
	~213/	vicitional pednemos	
55	<220>		
	<223>	Gfap_02B2	

	<400> attaca	29 ccaa aaaaatttta aaaac	25
5	<210> <211> <212>	25 DNA	
	<213>	Artificial Sequence	
10	<220> <223>	Gfap_03B1	
	<400>	30	
	tttaaa	tttt tttatgtgaa tatgg	25
15			
10	<210>		
	<211>		
	<212>		
	<213>	Artificial Sequence	
20	<220>		
	<223>	Gfap_03B2	
	<400>	31	
		ttaa ttcattaata cacac	25
25			
	<210>	32	
	<211>	25	
	<212>		
30	<213>	Artificial Sequence	
30	<220>		
	<223>	GfapSTAT3-B1	
	<400>	32 gatt tggtagtgtt gagtt	25
35	guugaa	gatt tygtagtgtt gagtt	23
	101.05	22	
	<210> <211>		
	<212>		
40	<213>	Artificial Sequence	
	<220>		
		GfapSTAT3-B2	
45	<400>	33 atat aacaaaaca acccc	25
	caaaac		20
	<210>	24	
	<210> <211>		
50	<212>		
		Artificial Sequence	
	-2000 5		
	<220> <223>	H19DMR-B3	
	-123/		
55	<400>		
	gggttt	tttt ggttattgaa ttttaa	26

	<210>	35	
	<211>		
	<212>		
	<213>	Artificial Sequence	
5			
0	<220>		
		W1 0DMD D4	
	<223>	H19DMR-B4	
	<400>	35	
		acaca tottaccaco cotata	26
10	aacaca	louda coccación cocaca	
	<210>	36	
	<211>	25	
	<212>		
15	\Z13 >	Artificial Sequence	
	<220>		
	<223>	H19DMR-B5	
	_		
	<400>	36	
20			~ -
20	tttttg	ggta gttttttag ttttg	25
	<210>	37	
	<211>		
25	<212>		
	<213>	Artificial Sequence	
		-	
	<220>		
		WI ODER DC	
	<223>	H19DMR-B6	
30	<400>	37	
	acacaa	natac ctaatccctt tattaaac	28
	<210>		
35	<211>	23	
00	<212>	DNA	
		Artificial Sequence	
	-213/	morrotar bequence	
	.000		
	<220>		
	<223>	off target 1	
40			
	<400>	38	
			23
	gugaca	acagg atgtcagccc ggg	23
15	<210>	39	
45	<211>		
	<212>		
	<213>	Artificial Sequence	
	<220>		
50		off target 2	
•			
		22	
	<400>		
	ccatgo	stggg atgtcagccc tgg	23
	·		
55	<210>	40	
	<211>	43	

```
<212>
              DNA
        <213>
              Artificial Sequence
        <220>
        <223> off target 3
5
        <400> 40
                                                                                23
        gtcaccttgg atgtcagccc cgg
10
        <210>
               41
        <211>
               9243
        <212>
               DNA
        <213>
              Artificial Sequence
        <220>
15
        <223>
              pCAG-scFvGCN4sfGFPDnmt3bF
        <400>
        tagttattaa tagtaatcaa ttacggggtc attagttcat agcccatata tggagttccg
                                                                                60
        cgttacataa cttacggtaa atggcccgcc tggctgaccg cccaacgacc cccgcccatt
                                                                               120
        gacgtcaata atgacgtatg ttcccatagt aacgccaata gggactttcc attgacgtca
                                                                               180
20
        atgggtggac tatttacggt aaactgccca cttggcagta catcaagtgt atcatatgcc
                                                                               240
        aagtacgccc cctattgacg tcaatgacgg taaatggccc gcctggcatt atgcccagta
                                                                               300
                                                                               360
        catgacetta tgggacttte etaettggea gtacatetae gtattagtea tegetattae
        catgggtcga ggtgagcccc acgttctgct tcactctccc catctccccc ccctccccac
                                                                               420
        ccccaatttt gtatttattt attttttaat tattttgtgc agcgatgggg gcggggggg
                                                                               480
25
        540
        ggtgcggcgg cagccaatca gagcggcgcg ctccgaaagt ttccttttat ggcgaggcgg
                                                                               600
                                                                               660
        cggcggcggc ggccctataa aaagcgaagc gcgcggcggg cgggagtcgc tgcgttgcct
                                                                               720
        tegeceegtg eccegeteeg egeegeeteg egeegeeege eccegetetg actgacegeg
        ttactcccac aggtgagcgg gcgggacggc ccttctcctc cgggctgtaa ttagcgcttg
                                                                               780
                                                                               840
        gtttaatgac ggctcgtttc ttttctgtgg ctgcgtgaaa gccttaaagg gctccgggag
30
                                                                               900
        ggccctttgt gcgggggga gcggctcggg gggtgcgtgc gtgtgtgtgt gcgtggggag
        cgccgcgtgc ggcccgcgct gcccggcggc tgtgagcgct gcggggcgcgg cgcggggctt
                                                                               960
        tgtgcgctcc gcgtgtgcgc gaggggagcg cggccggggg cggtgccccg cggtgcgggg
                                                                              1020
        gggctgcgag gggaacaaag gctgcgtgcg gggtgtgtgc gtgggggggt gagcaggggg
                                                                              1080
        tgtgggcgcg gcggtcgggc tgtaaccccc ccctgcaccc ccctccccga gttgctgagc
                                                                              1140
35
        acggcccggc ttcgggtgcg gggctccgtg cggggcgtgg cgcggggctc gccgtgccgg
                                                                              1200
        gcgggggtg gcggcaggtg ggggtgccgg gcgggcggg gccgcctcgg gccggggagg
                                                                              1260
                                                                              1320
        gctcggggga ggggcgcggc ggccccggag cgccggcggc tgtcgaggcg cggcgagccg
        cagccattgc cttttatggt aatcgtgcga gagggcgcag ggacttcctt tgtcccaaat
                                                                              1380
        ctggcggagc cgaaatctgg gaggcgccgc cgcaccccct ctagcgggcg cgggcgaagc
                                                                              1440
                                                                              1500
        ggtgcggcgc cggcaggaag gaaatgggcg gggagggcct tcgtgcgtcg ccgccgcc
40
                                                                              1560
        gtccccttct ccatctccag cctcggggct gccgcagggg gacggctgcc ttcggggggg
        acggggcagg gcggggttcg gcttctggcg tgtgaccggc ggctctagag cctctgctaa
                                                                              1620
        ccatgttcat gccttcttct ttttcctaca gctcctgggc aacgtgctgg ttgttgtgct
                                                                              1680
        gtctcatcat tttggcaaag aattctgcag tcgacggtac catgggcccc gacatcgtga
                                                                              1740
                                                                              1800
        tgacccagag ccccagcagc ctgagcgcca gcgtgggcga ccgcgtgacc atcacctgcc
                                                                              1860
        gcagcagcac cggcgccgtg accaccagca actacgccag ctgggtgcag gagaagcccg
45
        gcaagctgtt caagggcctg atcggcggca ccaacaaccg cgcccccggc gtgcccagcc
                                                                              1920
        gcttcagcgg cagcctgatc ggcgacaagg ccaccctgac catcagcagc ctgcagcccg
                                                                              1980
        aggacttcgc cacctacttc tgcgccctgt ggtacagcaa ccactgggtg ttcggccagg
                                                                              2040
        qcaccaaggt ggagctgaag cgcggcggcg gcggcagcgg cggcggcggc agcggcggcg
                                                                              2100
        gcggcagcag cggcggcggc agcgaggtga agctgctgga gagcggcggc ggcctggtgc
                                                                              2160
50
                                                                              2220
        agcccggcgg cagcctgaag ctgagctgcg ccgtgagcgg cttcagcctg accgactacg
        gcgtgaactg ggtgcgccag gcccccggcc gcggcctgga gtggatcggc gtgatctggg
                                                                              2280
        gcgacggcat caccgactac aacagcgccc tgaaggaccg cttcatcatc agcaaggaca
                                                                              2340
        acggcaagaa caccgtgtac ctgcagatga gcaaggtgcg cagcgacgac accgccctgt
                                                                              2400
                                                                              2460
        actactgcgt gaccggcctg ttcgactact ggggccaggg caccctggtg accgtgagca
        gctacccata cgatgttcca gattacgctg gtggaggcgg aggttctggg ggaggaggta
                                                                              2520
55
        gtggcggtgg tggttcagga ggcggcggaa gcttggatcc aggtggaggt ggaagcggta
                                                                              2580
        gcaaaggaga agaacttttc actggagttg tcccaattct tgttgaatta gatggtgatg
                                                                              2640
```

```
ttaatqqqca caaattttct qtccqtqqaq aqqqtqaaqq tqatqctaca aacqqaaaac
                                                                               2700
                                                                               2760
        tcacccttaa atttatttgc actactggaa aactacctgt tccgtggcca acacttgtca
                                                                               2820
        ctactctgac ctatggtgtt caatgctttt cccgttatcc ggatcacatg aaacggcatg
                                                                               2880
        actttttcaa gagtgccatg cccgaaggtt atgtacagga acgcactata tctttcaaag
        atgacgggac ctacaagacg cgtgctgaag tcaagtttga aggtgatacc cttgttaatc
                                                                               2940
5
        gtatcgagtt aaagggtatt gattttaaag aagatggaaa cattcttgga cacaaactcg
                                                                               3000
        agtacaactt taactcacac aatgtataca tcacggcaga caaacaaaag aatggaatca
                                                                               3060
                                                                               3120
        aagctaactt caaaattcgc cacaacgttg aagatggttc cgttcaacta gcagaccatt
        atcaacaaaa tactccaatt ggcgatggcc ctgtcctttt accagacaac cattacctgt
                                                                               3180
        cgacacaatc tgtcctttcg aaagatccca acgaaaagcg tgaccacatg gtccttcttg
                                                                               3240
10
                                                                               3300
        agtttgtaac tgctgctggg attacacatg gcatggatga gctctacaaa ggtggaggtc
        ggaccggtgg cggtggcgga ggggctagca tgaagggaga cagcagacat ctgaatgaag
                                                                               3360
        aagagggtgc cagcgggtat gaggagtgca ttatcgttaa tgggaacttc agtgaccagt
                                                                               3420
                                                                               3480
        cctcagacac gaaggatgct ccctcacccc cagtcttgga ggcaatctgc acagagccag
        tctgcacacc agagaccaga ggccgcaggt caagctcccg gctgtctaag agggaggtct
                                                                               3540
                                                                               3600
        ccagccttct gaattacacg caggacatga caggagatgg agacagagat gatgaagtag
15
        atgatgggaa tggctctgat attctaatgc caaagctcac ccgtgagacc aaggacacca
                                                                               3660
        ggacgcgctc tgaaagcccg gctgtccgaa cccgacatag caatgggacc tccagcttgg
                                                                               3720
        agaggcaaag agcctccccc agaatcaccc gaggtcggca gggccgccac catgtgcagg
                                                                               3780
        agtaccctgt ggagtttccg gctaccaggt ctcggagacg tcgagcatca tcttcagcaa
                                                                               3840
                                                                               3900
        gcacgccatg gtcatcccct gccagcgtcg acttcatgga agaagtgaca cctaagagcg
        tcagtacccc atcagttgac ttgagccagg atggagatca ggagggtatg gataccacac
                                                                               3960
20
        aggtggatgc agagagcaga gatggagaca gcacagagta tcaggatgat aaagagtttg
                                                                               4020
        qaataqqtqa cctcqtqtqq qqaaaqatca aqqqcttctc ctqqtqqcct qccatqqtqq
                                                                               4080
                                                                               4140
        tgtcctggaa agccacctcc aagcgacagg ccatgcccgg aatgcgctgg gtacagtggt
                                                                               4200
        ttggtgatgg caagttttct gagatctctg ctgacaaact ggtggctctg gggctgttca
        gccagcactt taatctggct accttcaata agctggtttc ttataggaag gccatgtacc
                                                                               4260
25
        acactetgga gaaageeagg gttegagetg geaagacett eteeageagt eetggagagt
                                                                               4320
        cactggagga ccagctgaag cccatgctgg agtgggccca cggtggcttc aagcctactg
                                                                               4380
                                                                               4440
        ggatcgaggg cctcaaaccc aacaagaagc aaccagtggt taataagtcg aaggtgcgtc
                                                                               4500
        gttcagacag taggaactta gaacccagga gacgcgagaa caaaagtcga agacgcacaa
        ccaatgactc tgctgcttct gagtcccccc cacccaagcg cctcaagaca aatagctatg
                                                                               4560
                                                                               4620
        gcgggaagga ccgaggggag gatgaggaga gccgagaacg gatggcttct gaagtcacca
30
                                                                               4680
        acaacaaggg caatctggaa gaccgctgtt tgtcctgtgg aaagaagaac cctgtgtcct
        tccaccccct ctttgagggt gggctctgtc agagttgccg ggatcgcttc ctagagctct
                                                                               4740
                                                                               4800
        tctacatgta tgatgaggac ggctatcagt cctactgcac cgtgtgctgt gagggccgtg
        aactgctgct gtgcagtaac acaagctgct gcagatgctt ctgtgtggag tgtctggagg
                                                                               4860
        tgctggtggg cgcaggcaca gctgaggatg ccaagctgca ggaaccctgg agctgctata
                                                                               4920
35
        tgtgcctccc tcagcgctgc catggggtcc tccgacgcag gaaagattgg aacatgcgcc
                                                                               4980
        tgcaagactt cttcactact gatcctgacc tggaagaatt tgagccaccc aagttgtacc
                                                                               5040
                                                                               5100
        cagcaattcc tgcagccaaa aggaggccca ttagagtcct gtctctgttt gatggaattg
        caacggggta cttggtgctc aaggagttgg gtattaaagt ggaaaagtac attgcctccg
                                                                               5160
        aagtctgtgc agagtccatc gctgtgggaa ctgttaagca tgaaggccag atcaaatatg
                                                                               5220
                                                                               5280
        tcaatgacgt ccggaaaatc accaagaaaa atattgaaga gtggggcccg ttcgacttgg
40
                                                                               5340
        tgattggtgg aagcccatgc aatgatctct ctaacgtcaa tcctgcccgc aaaggtttat
                                                                               5400
        atgagggcac aggaaggctc ttcttcgagt tttaccactt gctgaattat acccgcccca
        aggagggcga caaccgtcca ttcttctgga tgttcgagaa tgttgtggcc atgaaagtga
                                                                               5460
        atgacaagaa agacatctca agattcctgg catgtaaccc agtgatgatc gatgccatca
                                                                               5520
                                                                               5580
        aggtgtctgc tgctcacagg gcccggtact tctggggtaa cctacccgga atgaacaggc
                                                                               5640
        ccgtgatggc ttcaaagaat gataagctcg agctgcagga ctgcctggag ttcagtagga
45
        cagcaaagtt aaagaaagtg cagacaataa ccaccaagtc gaactccatc agacagggca
                                                                               5700
        aaaaccagct tttccctgta gtcatgaatg gcaaggacga cgttttgtgg tgcactgagc
                                                                               5760
        togaaaggat cttcggcttc cctgctcact acacggacgt gtccaacatg ggccgcggcg
                                                                               5820
                                                                               5880
        cccqtcaqaa qctqctqqqc aqqtcctqqa qtqtaccqqt catcaqacac ctqtttqccc
        ccttgaagga ctactttgcc tgtgaatagg cggccgcgac tctagatcat aatcagccat
                                                                               5940
50
                                                                               6000
        accacatttg tagaggtttt acttgcttta aaaaacctcc cacacctccc cctgaacctg
        aaacataaaa tgaatgcaat tgttgttgtt aacttgttta ttgcagctta taatggttac
                                                                               6060
        aaataaagca atagcatcac aaatttcaca aataaagcat tttttcact gcattctagt
                                                                               6120
        tgtggtttgt ccaaactcat caatgtatct taaggcgtaa attgtaagcg ttaatatttt
                                                                               6180
        gttaaaattc gcgttaaatt tttgttaaat cagctcattt tttaaccaat aggccgaaat
                                                                               6240
        cogcaaaatc ccttataaat caaaagaata gaccgagata gggttgagtg ttgttccagt
                                                                               6300
55
        ttggaacaag agtccactat taaagaacgt ggactccaac gtcaaagggc gaaaaaccgt
                                                                               6360
                                                                               6420
        ctatcagggc gatggcccac tacgtgaacc atcaccctaa tcaagttttt tggggtcgag
```

6480

```
qtqccqtaaa qcactaaatc qqaaccctaa aqqqaqcccc cqatttaqaq cttqacqqqq
                                                                                6540
        aaagccggcg aacgtggcga gaaaggaagg gaagaaagcg aaaggagcgg gcgctagggc
                                                                                6600
        gctggcaagt gtagcggtca cgctgcgcgt aaccaccaca cccgccgcgc ttaatgcgcc
        gctacagggc gcgtcaggtg gcacttttcg gggaaatgtg cgcggaaccc ctatttgttt
                                                                                6660
        atttttctaa atacattcaa atatqtatcc qctcatqaqa caataaccct qataaatqct
                                                                                6720
5
                                                                                6780
        tcaataatat tgaaaaagga agagtcctga ggcggaaaga accagctgtg gaatgtgtgt
        cagttagggt gtggaaagtc cccaggctcc ccagcaggca gaagtatgca aagcatgcat
                                                                                6840
                                                                                6900
        ctcaattagt cagcaaccag gtgtggaaag tccccaggct ccccagcagg cagaagtatg
        caaagcatgc atctcaatta gtcagcaacc atagtcccgc ccctaactcc gcccatcccg
                                                                                6960
                                                                               7020
        cccctaactc cgcccagttc cgcccattct ccgccccatg gctgactaat tttttttatt
10
                                                                                7080
        tatgcagagg ccgaggccgc ctcggcctct gagctattcc agaagtagtg aggaggcttt
        tttggaggcc taggcttttg caaagatcga tcaagagaca ggatgaggat cgtttcgcat
                                                                                7140
        gattgaacaa gatggattgc acgcaggttc tccggccgct tgggtggaga ggctattcgg
                                                                                7200
                                                                               7260
        ctatgactgg gcacaacaga caatcggctg ctctgatgcc gccgtgttcc ggctgtcagc
        gcaggggcgc ccggttcttt ttgtcaagac cgacctgtcc ggtgccctga atgaactgca
                                                                               7320
                                                                               7380
        agacgaggca gcgcggctat cgtggctggc cacgacgggc gttccttgcg cagctgtgct
15
        cgacgttgtc actgaagcgg gaagggactg gctgctattg ggcgaagtgc cggggcagga
                                                                               7440
                                                                               7500
        tetectgtea teteacettg etectgeega gaaagtatee ateatggetg atgeaatgeg
        geggetgeat aegettgate eggetacetg eccattegae caccaagega aacategeat
                                                                                7560
        cgagcgagca cgtactcgga tggaagccgg tcttgtcgat caggatgatc tggacgaaga
                                                                                7620
                                                                                7680
        gcatcagggg ctcgcgccag ccgaactgtt cgccaggctc aaggcgagca tgcccgacgg
                                                                                7740
        cgaggatete gtegtgaeee atggegatge etgettgeeg aatateatgg tggaaaatgg
20
        ccgcttttct ggattcatcg actgtggccg gctgggtgtg gcggaccgct atcaggacat
                                                                               7800
        agogttggct accogtgata ttgctgaaga gcttggcggc gaatgggctg accgcttcct
                                                                                7860
                                                                                7920
        cgtgctttac ggtatcgccg ctcccgattc gcagcgcatc gccttctatc gccttcttga
                                                                                7980
        cgagttette tgagegggae tetggggtte gaaatgaceg accaagegae geceaacetg
        ccatcacgag atttcgattc caccgccgcc ttctatgaaa ggttgggctt cggaatcgtt
                                                                                8040
25
        ttccgggacg ccggctggat gatcctccag cgcggggatc tcatgctgga gttcttcgcc
                                                                               8100
                                                                               8160
        caccctaggg ggaggctaac tgaaacacgg aaggagacaa taccgggaagg aacccgcgct
                                                                               8220
        atgacggcaa taaaaagaca gaataaaacg cacggtgttg ggtcgtttgt tcataaacgc
                                                                                8280
        ggggttcggt cccagggctg gcactctgtc gataccccac cgagacccca ttggggccaa
        tacgcccgcg tttcttcctt ttccccaccc cacccccaa gttcgggtga aggcccaggg
                                                                               8340
                                                                                8400
        ctcgcagcca acgtcggggc ggcaggccct gccatagcct caggttactc atatatactt
30
                                                                                8460
        tagattgatt taaaacttca tttttaattt aaaaggatct aggtgaagat cctttttgat
        aatctcatga ccaaaatccc ttaacgtgag ttttcgttcc actgagcgtc agaccccgta
                                                                                8520
        gaaaagatca aaggatcttc ttgagatcct ttttttctgc gcgtaatctg ctgcttgcaa
                                                                               8580
        acaaaaaaac caccgctacc agcggtggtt tgtttgccgg atcaagagct accaactctt
                                                                               8640
        tttccgaagg taactggctt cagcagagcg cagataccaa atactgtcct tctagtgtag
                                                                                8700
35
        ccgtagttag gccaccactt caagaactct gtagcaccgc ctacatacct cgctctgcta
                                                                                8760
        atcctgttac cagtggctgc tgccagtggc gataagtcgt gtcttaccgg gttggactca
                                                                                8820
        agacgatagt taccggataa ggcgcagcgg tcgggctgaa cggggggttc gtgcacacag
                                                                                8880
        cccagcttgg agcgaacgac ctacaccgaa ctgagatacc tacagcgtga gctatgagaa
                                                                                8940
        agcgccacgc ttcccgaagg gagaaaggcg gacaggtatc cggtaagcgg cagggtcgga
                                                                               9000
                                                                               9060
        acaggagage gcacgaggga gcttccaggg ggaaacgcct ggtatcttta tagtcctgtc
40
                                                                               9120
        gggtttcgcc acctctgact tgagcgtcga tttttgtgat gctcgtcagg ggggcggagc
        ctatggaaaa acgccagcaa cgcggccttt ttacggttcc tggccttttg ctggcctttt
                                                                                9180
        gctcacatgt tctttcctgc gttatcccct gattctgtgg ataaccgtat taccgccatg
                                                                                9240
        cat
                                                                                9243
45
        <210>
               42
        <211>
               9264
        <212>
               DNA
        <213>
               Artificial Sequence
50
        <220>
        <223>
               pCAG-scFvGCN4sfGFPDnmt3bFNLS
        <400>
        tagttattaa tagtaatcaa ttacggggtc attagttcat agcccatata tggagttccg
                                                                                 60
        cgttacataa cttacggtaa atggcccgcc tggctgaccg cccaacgacc cccgcccatt
                                                                                120
55
        gacgtcaata atgacgtatg ttcccatagt aacgccaata gggactttcc attgacgtca
                                                                                180
        atgggtggac tatttacggt aaactgccca cttggcagta catcaagtgt atcatatgcc
                                                                                240
```

```
aagtacgccc cctattgacg tcaatgacgg taaatggccc gcctggcatt atgcccagta
                                                                                300
                                                                                360
        catgacetta tgggacttte etaettggca gtacatetae gtattagtea tegetattae
                                                                                420
        catgggtcga ggtgagcccc acgttctgct tcactctccc catctccccc ccctccccac
        ccccaatttt gtatttattt atttttaat tattttgtgc agcgatgggg gcggggggg
                                                                                480
        ggggggcgcg cgccaggcgg ggcggggcgg ggcgaggggc ggggcggggc gaggcggaga
                                                                                540
5
        ggtgcggcgg cagccaatca gagcggcgcg ctccgaaagt ttccttttat ggcgaggcgg
                                                                                600
        cggcggcggc ggccctataa aaagcgaagc gcgcggcggg cgggagtcgc tgcgttgcct
                                                                                660
                                                                                720
        tegeceegtg eccegeteeg egecgeeteg egecgeeege eccegetetg actgacegeg
        ttactcccac aggtgagcgg gcgggacggc ccttctcctc cgggctgtaa ttagcgcttg
                                                                                780
                                                                                840
        gtttaatgac ggctcgtttc ttttctgtgg ctgcgtgaaa gccttaaagg gctccgggag
10
                                                                                900
        ggccctttgt gcgggggga gcggctcggg gggtgcgtgc gtgtgtgtgt gcgtggggag
        cgccgcgtgc ggcccgcgct gcccggcggc tgtgagcgct gcggggcgcg cgcggggctt
                                                                                960
        tgtgcgctcc gcgtgtgcgc gaggggagcg cggccggggg cggtgccccg cggtgcgggg
                                                                               1020
                                                                               1080
        gggctgcgag gggaacaaag gctgcgtgcg gggtgtgtgc gtggggggt gagcaggggg
        tgtgggcgcg gcggtcgggc tgtaaccccc ccctgcaccc ccctccccga gttgctgagc
                                                                               1140
                                                                               1200
        acggcccggc ttcgggtgcg gggctccgtg cggggcgtgg cgcggggctc gccgtgccgg
15
        gcgggggtg gcggcaggtg ggggtgccgg gcgggcggg gccgcctcgg gccggggagg
                                                                               1260
                                                                               1320
        gctcggggga ggggcgcggc ggccccggag cgccggcggc tgtcgaggcg cggcgagccg
                                                                               1380
        cagccattgc cttttatggt aatcgtgcga gagggcgcag ggacttcctt tgtcccaaat
        ctggcggagc cgaaatctgg gaggcgccgc cgcaccccct ctagcgggcg cgggcgaagc
                                                                               1440
                                                                               1500
        ggtgcggcgc cggcaggaag gaaatgggcg gggagggcct tcgtgcgtcg ccgccgcc
        gtccccttct ccatctccag cctcggggct gccgcagggg gacggctgcc ttcggggggg
                                                                               1560
20
        acggggcagg gcggggttcg gcttctggcg tgtgaccggc ggctctagag cctctgctaa
                                                                               1620
        ccatgttcat gccttcttct ttttcctaca gctcctgggc aacgtgctgg ttgttgtgct
                                                                               1680
                                                                               1740
        gtctcatcat tttggcaaag aattctgcag tcgacggtac catgggcccc gacatcgtga
                                                                               1800
        tgacccagag ccccagcagc ctgagcgcca gcgtgggcga ccgcgtgacc atcacctgcc
        gcagcagcac cggcgccgtg accaccagca actacgccag ctgggtgcag gagaagcccg
                                                                               1860
25
        gcaagctgtt caagggcctg atcggcggca ccaacaaccg cgcccccggc gtgcccagcc
                                                                               1920
                                                                               1980
        gcttcagcgg cagcctgatc ggcgacaagg ccaccctgac catcagcagc ctgcagcccg
                                                                               2040
        aggacttcgc cacctacttc tgcgccctgt ggtacagcaa ccactgggtg ttcggccagg
                                                                               2100
        gcaccaaggt ggagctgaag cgcggcggcg gcggcagcgg cggcggcggc agcggcggcg
        gcggcagcag cggcggcggc agcgaggtga agctgctgga gagcggcggc ggcctggtgc
                                                                               2160
        agcccggcgg cagcctgaag ctgagctgcg ccgtgagcgg cttcagcctg accgactacg
                                                                               2220
30
                                                                               2280
        gcgtgaactg ggtgcgccag gcccccggcc gcggcctgga gtggatcggc gtgatctggg
                                                                               2340
        gcgacggcat caccgactac aacagcgccc tgaaggaccg cttcatcatc agcaaggaca
        acggcaagaa caccgtgtac ctgcagatga gcaaggtgcg cagcgacgac accgccctgt
                                                                               2400
        actactgcgt gaccggcctg ttcgactact ggggccaggg caccctggtg accgtgagca
                                                                               2460
        gctacccata cgatgttcca gattacgctg gtggaggcgg aggttctggg ggaggaggta
                                                                               2520
35
        gtggcggtgg tggttcagga ggcggcggaa gcttggatcc aggtggaggt ggaagcggta
                                                                               2580
        gcaaaggaga agaacttttc actggagttg tcccaattct tgttgaatta gatggtgatg
                                                                               2640
                                                                               2700
        ttaatgggca caaattttct gtccgtggag agggtgaagg tgatgctaca aacggaaaac
        tcacccttaa atttatttgc actactggaa aactacctgt tccgtggcca acacttgtca
                                                                               2760
        ctactctgac ctatggtgtt caatgctttt cccgttatcc ggatcacatg aaacggcatg
                                                                               2820
                                                                               2880
        actttttcaa gagtgccatg cccgaaggtt atgtacagga acgcactata tctttcaaag
40
                                                                               2940
        atgacgggac ctacaagacg cgtgctgaag tcaagtttga aggtgatacc cttgttaatc
                                                                               3000
        gtatcgagtt aaagggtatt gattttaaag aagatggaaa cattcttgga cacaaactcg
        agtacaactt taactcacac aatgtataca tcacggcaga caaacaaaag aatggaatca
                                                                               3060
        aagctaactt caaaattcgc cacaacgttg aagatggttc cgttcaacta gcagaccatt
                                                                               3120
                                                                               3180
        atcaacaaaa tactccaatt ggcgatggcc ctgtcctttt accagacaac cattacctgt
                                                                               3240
        cgacacaatc tgtcctttcg aaagatccca acgaaaagcg tgaccacatg gtccttcttg
45
        agtttgtaac tgctgctggg attacacatg gcatggatga gctctacaaa ggtggaggtc
                                                                               3300
                                                                               3360
        ggaccggtgg cggtggcgga ggggctagca tgaagggaga cagcagacat ctgaatgaag
                                                                               3420
        aagagggtgc cagcgggtat gaggagtgca ttatcgttaa tgggaacttc agtgaccagt
                                                                               3480
        cctcagacac gaaggatgct ccctcacccc cagtcttgga ggcaatctgc acagagccag
        tctgcacacc agagaccaga ggccgcaggt caagctcccg gctgtctaag agggaggtct
                                                                               3540
50
                                                                               3600
        ccagccttct gaattacacg caggacatga caggagatgg agacagagat gatgaagtag
        atgatgggaa tggctctgat attctaatgc caaagctcac ccgtgagacc aaggacacca
                                                                               3660
                                                                               3720
        ggacgcgctc tgaaagcccg gctgtccgaa cccgacatag caatgggacc tccagcttgg
        agaggcaaag agcctccccc agaatcaccc gaggtcggca gggccgccac catgtgcagg
                                                                               3780
                                                                               3840
        agtaccctgt ggagtttccg gctaccaggt ctcggagacg tcgagcatca tcttcagcaa
        gcacgccatg gtcatcccct gccagcgtcg acttcatgga agaagtgaca cctaagagcg
                                                                               3900
55
        tcagtacccc atcagttgac ttgagccagg atggagatca ggagggtatg gataccacac
                                                                               3960
                                                                               4020
        aggtggatgc agagagcaga gatggagaca gcacagagta tcaggatgat aaagagtttg
```

```
qaataqqtqa cctcqtqtqq qqaaaqatca aqqqcttctc ctqqtqqcct qccatqqtqq
                                                                               4080
                                                                               4140
        tgtcctggaa agccacctcc aagcgacagg ccatgcccgg aatgcgctgg gtacagtggt
                                                                               4200
        ttggtgatgg caagttttct gagatctctg ctgacaaact ggtggctctg gggctgttca
        gccagcactt taatctggct accttcaata agctggtttc ttataggaag gccatgtacc
                                                                               4260
        acactetgga gaaageeagg gttegagetg geaagacett eteeageagt eetggagagt
                                                                               4320
5
        cactggagga ccagctgaag cccatgctgg agtgggccca cggtggcttc aagcctactg
                                                                               4380
        ggatcgaggg cctcaaaccc aacaagaagc aaccagtggt taataagtcg aaggtgcgtc
                                                                               4440
                                                                               4500
        qttcaqacaq taqqaactta qaacccaqqa qacqcqaqaa caaaaqtcqa aqacqcacaa
        ccaatgactc tgctgcttct gagtcccccc cacccaagcg cctcaagaca aatagctatg
                                                                               4560
                                                                               4620
        gcgggaagga ccgaggggag gatgaggaga gccgagaacg gatggcttct gaagtcacca
10
        acaacaaggg caatctggaa gaccgctgtt tgtcctgtgg aaagaagaac cctgtgtcct
                                                                               4680
        tccaccccct ctttgagggt gggctctgtc agagttgccg ggatcgcttc ctagagctct
                                                                               4740
        tctacatgta tgatgaggac ggctatcagt cctactgcac cgtgtgctgt gagggccgtg
                                                                               4800
        aactgctgct gtgcagtaac acaagctgct gcagatgctt ctgtgtggag tgtctggagg
                                                                               4860
        tgctggtggg cgcaggcaca gctgaggatg ccaagctgca ggaaccctgg agctgctata
                                                                               4920
        tgtgcctccc tcagcgctgc catggggtcc tccgacgcag gaaagattgg aacatgcgcc
                                                                               4980
15
        tgcaagactt cttcactact gatcctgacc tggaagaatt tgagccaccc aagttgtacc
                                                                               5040
        cagcaattcc tgcagccaaa aggaggccca ttagagtcct gtctctgttt gatggaattg
                                                                               5100
        caacggggta cttggtgctc aaggagttgg gtattaaagt ggaaaagtac attgcctccg
                                                                               5160
        aagtctgtgc agagtccatc gctgtgggaa ctgttaagca tgaaggccag atcaaatatg
                                                                               5220
                                                                               5280
        tcaatgacgt ccggaaaatc accaagaaaa atattgaaga gtggggcccg ttcgacttgg
        tgattggtgg aagcccatgc aatgatctct ctaacgtcaa tcctgcccgc aaaggtttat
                                                                               5340
20
        atgagggcac aggaaggctc ttcttcgagt tttaccactt gctgaattat acccgcccca
                                                                               5400
        aggagggga caaccqtcca ttcttctqqa tqttcqaqaa tqttqtqqcc atqaaaqtqa
                                                                               5460
                                                                               5520
        atgacaagaa agacatctca agattcctgg catgtaaccc agtgatgatc gatgccatca
                                                                               5580
        aggtgtctgc tgctcacagg gcccggtact tctggggtaa cctacccgga atgaacaggc
        ccgtgatggc ttcaaagaat gataagctcg agctgcagga ctgcctggag ttcagtagga
                                                                               5640
25
        cagcaaagtt aaagaaagtg cagacaataa ccaccaagtc gaactccatc agacagggca
                                                                               5700
                                                                               5760
        aaaaccagct tttccctgta gtcatgaatg gcaaggacga cgttttgtgg tgcactgagc
        togaaaggat cttoggotto cotgetoact acacggacgt gtocaacatg ggccgcggcg
                                                                               5820
                                                                               5880
        cccgtcagaa gctgctgggc aggtcctgga gtgtaccggt catcagacac ctgtttgccc
        ccttgaagga ctactttgcc tgtgaaccaa aaaagaagcg gaaagtctag gcggccgcga
                                                                               5940
                                                                               6000
        ctctagatca taatcagcca taccacattt gtagaggttt tacttgcttt aaaaaaacctc
30
        ccacacctcc ccctgaacct gaaacataaa atgaatgcaa ttgttgttgt taacttgttt
                                                                               6060
                                                                               6120
        attgcagctt ataatggtta caaataaagc aatagcatca caaatttcac aaataaagca
        tttttttcac tgcattctag ttgtggtttg tccaaactca tcaatgtatc ttaaggcgta
                                                                               6180
        aattgtaagc gttaatattt tgttaaaatt cgcgttaaat ttttgttaaa tcagctcatt
                                                                               6240
        ttttaaccaa taggccgaaa tcggcaaaat cccttataaa tcaaaagaat agaccgagat
                                                                               6300
35
        agggttgagt gttgttccag tttggaacaa gagtccacta ttaaagaacg tggactccaa
                                                                               6360
        cgtcaaaggg cgaaaaaccg tctatcaggg cgatggccca ctacgtgaac catcacccta
                                                                               6420
        atcaagtttt ttggggtcga ggtgccgtaa agcactaaat cggaacccta aagggagccc
                                                                               6480
        ccgatttaga gcttgacggg gaaagccggc gaacgtggcg agaaaggaag ggaagaaagc
                                                                               6540
        gaaaggagcg ggcgctaggg cgctggcaag tgtagcggtc acgctgcgcg taaccaccac
                                                                               6600
                                                                               6660
        accegeegeg ettaatgege egetaeaggg egegteaggt ggeaetttte ggggaaatgt
40
                                                                               6720
        gcgcggaacc cctatttgtt tatttttcta aatacattca aatatgtatc cgctcatgag
                                                                               6780
        acaataaccc tgataaatgc ttcaataata ttgaaaaagg aagagtcctg aggcggaaag
        aaccagctgt ggaatgtgtg tcagttaggg tgtggaaagt ccccaggctc cccagcaggc
                                                                               6840
        agaagtatgc aaagcatgca tctcaattag tcagcaacca ggtgtggaaa gtccccaggc
                                                                               6900
                                                                               6960
        tccccagcag gcagaagtat gcaaagcatg catctcaatt agtcagcaac catagtcccg
                                                                               7020
        cccctaactc cgcccatccc gcccctaact ccgcccagtt ccgcccattc tccgccccat
45
        ggctgactaa tttttttat ttatgcagag gccgaggccg cctcggcctc tgagctattc
                                                                               7080
        cagaagtagt gaggaggett ttttggagge ctaggetttt geaaagateg atcaagagae
                                                                               7140
        aggatgagga tcgtttcgca tgattgaaca agatggattg cacgcaggtt ctccggccgc
                                                                               7200
                                                                               7260
        ttgggtggag aggctattcg gctatgactg ggcacaacag acaatcggct gctctgatgc
                                                                               7320
        cgccgtgttc cggctgtcag cgcaggggcg cccggttctt tttgtcaaga ccgacctgtc
50
                                                                               7380
        cggtgccctg aatgaactgc aagacgaggc agcgcggcta tcgtggctgg ccacgacggg
        cgttccttgc gcagctgtgc tcgacgttgt cactgaagcg ggaagggact ggctgctatt
                                                                               7440
        gggcgaagtg ccggggcagg atctcctgtc atctcacctt gctcctgccg agaaagtatc
                                                                               7500
                                                                               7560
        catcatggct gatgcaatgc ggcggctgca tacgcttgat ccggctacct gcccattcga
                                                                               7620
        ccaccaagcg aaacatcgca tcgagcgagc acgtactcgg atggaagccg gtcttgtcga
        tcaggatgat ctggacgaag agcatcaggg gctcgcgcca gccgaactgt tcgccaggct
                                                                               7680
55
        caaggcgagc atgcccgacg gcgaggatct cgtcgtgacc catggcgatg cctgcttgcc
                                                                               7740
                                                                               7800
        gaatatcatg gtggaaaatg gccgcttttc tggattcatc gactgtggcc ggctgggtgt
```

```
ggcggaccgc tatcaggaca tagcgttggc tacccgtgat attgctgaag agcttggcgg
                                                                               7860
                                                                               7920
        cgaatgggct gaccgcttcc tcgtgcttta cggtatcgcc gctcccgatt cgcagcgcat
                                                                                7980
        cgccttctat cgccttcttg acgagttctt ctgagcggga ctctggggtt cgaaatgacc
                                                                                8040
        gaccaagcga cgcccaacct gccatcacga gatttcgatt ccaccgccgc cttctatgaa
        aggttgggct tcggaatcgt tttccgggac gccggctgga tgatcctcca gcgcggggat
                                                                               8100
5
                                                                               8160
        ctcatgctgg agttcttcgc ccaccctagg gggaggctaa ctgaaacacg gaaggagaca
        ataccggaag gaacccgcgc tatgacggca ataaaaagac agaataaaac gcacggtgtt
                                                                               8220
                                                                                8280
        qqqtcqtttq ttcataaacq cqqqqttcqq tcccaqqqct qqcactctqt cqatacccca
        ccgagacccc attggggcca atacgcccgc gtttcttcct tttccccacc ccaccccca
                                                                               8340
                                                                                8400
        agttcgggtg aaggcccagg gctcgcagcc aacgtcgggg cggcaggccc tgccatagcc
10
                                                                                8460
        tcaggttact catatatact ttagattgat ttaaaacttc atttttaatt taaaaggatc
        taggtgaaga tootttttga taatotoatg accaaaatoo ottaacgtga gttttcgtto
                                                                                8520
        cactgagcgt cagaccccgt agaaaagatc aaaggatctt cttgagatcc tttttttctg
                                                                               8580
        cgcgtaatct gctgcttgca aacaaaaaaa ccaccgctac cagcggtggt ttgtttgccg
                                                                               8640
        gatcaagagc taccaactct ttttccgaag gtaactggct tcagcagagc gcagatacca
                                                                               8700
                                                                               8760
        aatactgtcc ttctagtgta gccgtagtta ggccaccact tcaagaactc tgtagcaccg
15
        cctacatacc tcgctctgct aatcctgtta ccagtggctg ctgccagtgg cgataagtcg
                                                                               8820
        tgtcttaccg ggttggactc aagacgatag ttaccggata aggcgcagcg gtcgggctga
                                                                               8880
        acggggggtt cgtgcacaca gcccagcttg gagcgaacga cctacaccga actgagatac
                                                                                8940
        ctacagcgtg agctatgaga aagcgccacg cttcccgaag ggagaaaggc ggacaggtat
                                                                                9000
        ccggtaagcg gcagggtcgg aacaggagag cgcacgaggg agcttccagg gggaaacgcc
                                                                               9060
        tggtatettt atagteetgt egggtttege cacetetgae ttgagegteg atttttgtga
                                                                                9120
20
        tgctcgtcag gggggcggag cctatggaaa aacgccagca acgcggcctt tttacggttc
                                                                                9180
        ctggcctttt gctggccttt tgctcacatg ttctttcctg cgttatcccc tgattctgtg
                                                                                9240
                                                                                9264
        gataaccgta ttaccgccat gcat
25
        <210>
               43
        <211>
               9264
        <212>
               DNA
        <213>
               Artificial Sequence
        <220>
30
        <223>
               pCAG-scFvGCN4sfGFPDnmt3bS1
        <400>
        tagttattaa tagtaatcaa ttacggggtc attagttcat agcccatata tggagttccg
                                                                                 60
        cgttacataa cttacggtaa atggcccgcc tggctgaccg cccaacgacc cccgcccatt
                                                                                120
35
        gacgtcaata atgacgtatg ttcccatagt aacgccaata gggactttcc attgacgtca
                                                                                180
        atgggtggac tatttacggt aaactgccca cttggcagta catcaagtgt atcatatgcc
                                                                                240
                                                                                300
        aagtacgccc cctattgacg tcaatgacgg taaatggccc gcctggcatt atgcccagta
        catgacctta tgggactttc ctacttggca gtacatctac gtattagtca tcgctattac
                                                                                360
        catgggtcga ggtgagcccc acgttctgct tcactctccc catctccccc ccctccccac
                                                                                420
                                                                                480
        ccccaatttt gtatttattt attttttaat tattttgtgc agcgatgggg gcggggggg
40
                                                                                540
        ggggggcgcg cgccaggcgg ggcggggcgg ggcgaggggc ggggcggggc gaggcggaga
        ggtgcggcgg cagccaatca gagcggcgcg ctccgaaagt ttccttttat ggcgaggcgg
                                                                                600
        cggcggcggc ggccctataa aaagcgaagc gcgcggcggg cgggagtcgc tgcgttgcct
                                                                                660
        tegeceegtg eccegeteeg egeegeeteg egeegeeege eeeggetetg aetgacegeg
                                                                                720
        ttactcccac aggtgagcgg gcgggacggc ccttctcctc cgggctgtaa ttagcgcttg
                                                                                780
                                                                                840
        gtttaatgac ggctcgtttc ttttctgtgg ctgcgtgaaa gccttaaagg gctccgggag
45
        ggccctttgt gcgggggga gcggctcggg gggtgcgtgc gtgtgtgtgt gcgtggggag
                                                                                900
        cgccgcgtgc ggcccgcgct gcccggcggc tgtgagcgct gcgggcgcgg cgcggggctt
                                                                                960
                                                                               1020
        tgtgcgctcc gcgtgtgcgc gaggggagcg cggccggggg cggtgccccg cggtgcgggg
                                                                               1080
        gggctgcgag gggaacaaag gctgcgtgcg gggtgtgtgtgc gtgggggggt gagcaggggg
        tgtgggcgcg gcggtcgggc tgtaaccccc ccctgcaccc ccctccccga gttgctgagc
                                                                               1140
50
                                                                               1200
        acggcccggc ttcgggtgcg gggctccgtg cggggcgtgg cgcggggctc gccgtgccgg
        gcggggggtg gcggcaggtg ggggtgccgg gcgggggggg gccgcctcgg gccggggagg
                                                                               1260
        gctcggggga ggggcgcggc ggccccggag cgccggcggc tgtcgaggcg cggcgagccg
                                                                               1320
        cagccattgc cttttatggt aatcgtgcga gagggcgcag ggacttcctt tgtcccaaat
                                                                               1380
                                                                               1440
        ctggcggagc cgaaatctgg gaggcgccgc cgcaccccct ctagcgggcg cgggcgaagc
        ggtgcggcgc cggcaggaag gaaatgggcg gggagggcct tcgtgcgtcg ccgcgccgcc
                                                                               1500
55
        gtccccttct ccatctccag cctcggggct gccgcagggg gacggctgcc ttcggggggg
                                                                               1560
        acggggcagg gcggggttcg gcttctggcg tgtgaccggc ggctctagag cctctgctaa
                                                                               1620
```

```
ccatgttcat gccttcttct ttttcctaca gctcctgggc aacgtgctgg ttgttgtgct
                                                                               1680
                                                                               1740
        gtctcatcat tttggcaaag aattctgcag tcgacggtac catgggcccc gacatcgtga
                                                                               1800
        tgacccagag ccccagcagc ctgagcgcca gcgtgggcga ccgcgtgacc atcacctgcc
        gcagcagcac cggcgccgtg accaccagca actacgccag ctgggtgcag gagaagcccg
                                                                               1860
        gcaagctgtt caagggcctg atcggcggca ccaacaaccg cgcccccggc gtgcccagcc
                                                                               1920
5
                                                                               1980
        gcttcagcgg cagcctgatc ggcgacaagg ccaccctgac catcagcagc ctgcagcccg
        aggacttcgc cacctacttc tgcgccctgt ggtacagcaa ccactgggtg ttcggccagg
                                                                               2040
                                                                               2100
        gcaccaaggt ggagctgaag cgcggcggcg gcggcagcgg cggcggcggc agcggcggcg
        qcqqcaqcaq cqqcqqcqqc aqcqaqqtqa aqctqctqqa qaqcqqcqqc qqcctqqtqc
                                                                               2160
                                                                               2220
        agcccggcgg cagcctgaag ctgagctgcg ccgtgagcgg cttcagcctg accgactacg
10
                                                                               2280
        gcgtgaactg ggtgcgccag gcccccggcc gcggcctgga gtggatcggc gtgatctggg
        gcgacggcat caccgactac aacagcgccc tgaaggaccg cttcatcatc agcaaggaca
                                                                               2340
        acggcaagaa caccgtgtac ctgcagatga gcaaggtgcg cagcgacgac accgccctgt
                                                                               2400
        actactgcgt gaccggcctg ttcgactact ggggccaggg caccctggtg accgtgagca
                                                                               2460
        gctacccata cgatgttcca gattacgctg gtggaggcgg aggttctggg ggaggaggta
                                                                               2520
                                                                               2580
        gtggcggtgg tggttcagga ggcggcggaa gcttggatcc aggtggaggt ggaagcggta
15
        gcaaaggaga agaacttttc actggagttg tcccaattct tgttgaatta gatggtgatg
                                                                               2640
        ttaatgggca caaattttct gtccgtggag agggtgaagg tgatgctaca aacggaaaac
                                                                               2700
        tcacccttaa atttatttgc actactggaa aactacctgt tccgtggcca acacttgtca
                                                                               2760
        ctactctgac ctatggtgtt caatgctttt cccgttatcc ggatcacatg aaacggcatg
                                                                               2820
                                                                               2880
        actttttcaa gagtgccatg cccgaaggtt atgtacagga acgcactata tctttcaaag
        atgacgggac ctacaagacg cgtgctgaag tcaagtttga aggtgatacc cttgttaatc
                                                                               2940
20
        qtatcqaqtt aaaqqqtatt qattttaaaq aaqatqqaaa cattcttqqa cacaaactcq
                                                                               3000
        aqtacaactt taactcacac aatqtataca tcacqqcaqa caaacaaaaq aatqqaatca
                                                                               3060
                                                                               3120
        aagctaactt caaaattcgc cacaacgttg aagatggttc cgttcaacta gcagaccatt
                                                                               3180
        atcaacaaaa tactccaatt ggcgatggcc ctgtcctttt accagacaac cattacctgt
        cgacacaatc tgtcctttcg aaagatccca acgaaaagcg tgaccacatg gtccttcttg
                                                                               3240
25
        agtttqtaac tqctqctqqq attacacatq qcatqqatqa qctctacaaa qqtqqaqqtc
                                                                               3300
        ggaccggtgg cggtggcgga ggggctagca tgaagggaga cagcagacat ctgaatgaag
                                                                               3360
                                                                               3420
        aagagggtgc cagcgggtat gaggagtgca ttatcgttaa tgggaacttc agtgaccagt
                                                                               3480
        cctcagacac gaaggatgct ccctcacccc cagtcttgga ggcaatctgc acagagccag
        tctgcacacc agagaccaga ggccgcaggt caagctcccg gctgtctaag agggaggtct
                                                                               3540
                                                                               3600
        ccagccttct gaattacacg caggacatga caggagatgg agacagagat gatgaagtag
30
                                                                               3660
        atgatgggaa tggctctgat attctaatgc caaagctcac ccgtgagacc aaggacacca
                                                                               3720
        ggacgcgctc tgaaagcccg gctgtccgaa cccgacatag caatgggacc tccagcttgg
        agaggcaaag agcctccccc agaatcaccc gaggtcggca gggccgccac catgtgcagg
                                                                               3780
        agtaccctgt ggagtttccg gctaccaggt ctcggagacg tcgagcatca tcttcagcaa
                                                                               3840
        gcacgccatg gtcatcccct gccagcgtcg acttcatgga agaagtgaca cctaagagcg
                                                                               3900
35
        tcagtacccc atcagttgac ttgagccagg atggagatca ggagggtatg gataccacac
                                                                               3960
        aggtggatgc agagagcaga gatggagaca gcacagagta tcaggatgat aaagagtttg
                                                                               4020
                                                                               4080
        gaataggtga cctcgtgtgg ggaaagatca agggcttctc ctggtggcct gccatggtgg
        tgtcctggaa agccacctcc aagcgacagg ccatgcccgg aatgcgctgg gtacagtggt
                                                                               4140
        ttggtgatgg caagttttct gagatctctg ctgacaaact ggtggctctg gggctgttca
                                                                               4200
                                                                               4260
        gccagcactt taatctggct accttcaata agctggtttc ttataggaag gccatgtacc
40
                                                                               4320
        acactetgga gaaageeagg gttegagetg geaagacett etceageagt eetggagagt
                                                                               4380
        cactggagga ccagctgaag cccatgctgg agtgggccca cggtggcttc aagcctactg
        ggatcgaggg cctcaaaccc aacaagaagc aaccagtggt taataagtcg aaggtgcgtc
                                                                               4440
        gttcagacag taggaactta gaacccagga gacgcgagaa caaaagtcga agacgcacaa
                                                                               4500
                                                                               4560
        ccaatgactc tgctgcttct gagtcccccc cacccaagcg cctcaagaca aatagctatg
                                                                               4620
        gcgggaagga ccgaggggag gatgaggaga gccgagaacg gatggcttct gaagtcacca
45
        acaacaaggg caatctggaa gaccgctgtt tgtcctgtgg aaagaagaac cctgtgtcct
                                                                               4680
        tccacccct ctttgagggt gggctctgtc agagttgccg ggatcgcttc ctagagctct
                                                                               4740
        tctacatgta tgatgaggac ggctatcagt cctactgcac cgtgtgctgt gagggccgtg
                                                                               4800
                                                                               4860
        aactgctgct gtgcagtaac acaagctgct gcagatgctt ctgtgtggag tgtctggagg
                                                                               4920
        tgctggtggg cgcaggcaca gctgaggatg ccaagctgca ggaaccctgg agctgctata
50
        tgtgcctccc tcagcgctgc catggggtcc tccgacgcag gaaagattgg aacatgcgcc
                                                                               4980
        tgcaagactt cttcactact gatcctgacc tggaagaatt tgagccaccc aagttgtacc
                                                                               5040
        cagcaattcc tgcagccaaa aggaggccca ttagagtcct gtctctgttt gatggaattg
                                                                               5100
        caacggggta cttggtgctc aaggagttgg gtattaaagt ggaaaagtac attgcctccg
                                                                               5160
                                                                               5220
        aagtctgtgc agagtccatc gctgtgggaa ctgttaagca tgaaggccag atcaaatatg
        tcaatgacgt ccggaaaatc accaagaaaa atattgaaga gtggggcccg ttcgacttgg
                                                                               5280
55
        tgattggtgg aagcccatgc aatgatctct ctagagtcaa tcctgcccgc aaaggtttat
                                                                               5340
                                                                               5400
        atgagggcac aggaaggctc ttcttcgagt tttaccactt gctgaattat acccgcccca
```

```
aggagggga caaccqtcca ttcttctqqa tqttcqaqaa tqttqtqqcc atqaaaqtqa
                                                                               5460
                                                                               5520
        atgacaagaa agacatctca agattcctgg catgtaaccc agtgatgatc gatgccatca
        aggtgtctgc tgctcacagg gcccggtact tctggggtaa cctacccgga atgaacaggc
                                                                               5580
        ccgtgatggc ttcaaagaat gataagctcg agctgcagga ctgcctggag ttcagtagga
                                                                               5640
        cagcaaagtt aaagaaagtg cagacaataa ccaccaagtc gaactccatc agacagggca
                                                                               5700
5
        aaaaccagct tttccctgta gtcatgaatg gcaaggacga cgttttgtgg tgcactgagc
                                                                               5760
        tcgaaaggat cttcggcttc cctgctcact acacggacgt gtccaacatg ggccgcggcg
                                                                               5820
        cccgtcagaa gctgctgggc aggtcctgga gtgtaccggt catcagacac ctgtttgccc
                                                                               5880
        ccttgaagga ctactttgcc tgtgaaccaa aaaagaagcg gaaagtctag gcggccgcga
                                                                               5940
                                                                               6000
        ctctagatca taatcagcca taccacattt gtagaggttt tacttgcttt aaaaaaacctc
10
                                                                               6060
        ccacacctcc ccctgaacct gaaacataaa atgaatgcaa ttgttgttgt taacttgttt
        attgcagctt ataatggtta caaataaagc aatagcatca caaatttcac aaataaagca
                                                                               6120
        tttttttcac tgcattctag ttgtggtttg tccaaactca tcaatgtatc ttaaggcgta
                                                                               6180
        aattgtaagc gttaatattt tgttaaaatt cgcgttaaat ttttgttaaa tcagctcatt
                                                                               6240
        ttttaaccaa taggccgaaa tcggcaaaat cccttataaa tcaaaagaat agaccgagat
                                                                               6300
                                                                               6360
        agggttgagt gttgttccag tttggaacaa gagtccacta ttaaagaacg tggactccaa
15
        cgtcaaaggg cgaaaaaccg tctatcaggg cgatggccca ctacgtgaac catcacccta
                                                                               6420
        atcaagtttt ttggggtcga ggtgccgtaa agcactaaat cggaacccta aagggagccc
                                                                               6480
        ccgatttaga gcttgacggg gaaagccggc gaacgtggcg agaaaggaag ggaagaaagc
                                                                               6540
        gaaaggagcg ggcgctaggg cgctggcaag tgtagcggtc acgctgcgcg taaccaccac
                                                                               6600
                                                                               6660
        accegeegeg ettaatgege egetacaggg egegteaggt ggeaetttte ggggaaatgt
        gcgcggaacc cctatttgtt tatttttcta aatacattca aatatgtatc cgctcatgag
                                                                               6720
20
        acaataaccc tgataaatgc ttcaataata ttgaaaaagg aagagtcctg aggcggaaag
                                                                               6780
        aaccaqctqt qqaatqtqtq tcaqttaqqq tqtqqaaaqt ccccaqqctc cccaqcaqqc
                                                                               6840
                                                                               6900
        agaagtatgc aaagcatgca tctcaattag tcagcaacca ggtgtggaaa gtccccaggc
                                                                               6960
        tccccagcag gcagaagtat gcaaagcatg catctcaatt agtcagcaac catagtcccg
        cccctaactc cgcccatccc gcccctaact ccgcccagtt ccgcccattc tccgccccat
                                                                               7020
25
        ggctgactaa tttttttat ttatgcagag gccgaggccg cctcggcctc tgagctattc
                                                                               7080
                                                                               7140
        cagaaqtaqt qaqqaqqctt ttttqqaqqc ctaqqctttt qcaaaqatcq atcaaqaqac
        aggatgagga tcgtttcgca tgattgaaca agatggattg cacgcaggtt ctccggccgc
                                                                               7200
                                                                               7260
        ttgggtggag aggctattcg gctatgactg ggcacaacag acaatcggct gctctgatgc
        cgccgtgttc cggctgtcag cgcaggggcg cccggttctt tttgtcaaga ccgacctgtc
                                                                               7320
                                                                               7380
        cggtgccctg aatgaactgc aagacgaggc agcgcggcta tcgtggctgg ccacgacggg
30
        cgttccttgc gcagctgtgc tcgacgttgt cactgaagcg ggaagggact ggctgctatt
                                                                               7440
                                                                               7500
        gggcgaagtg ccggggcagg atctcctgtc atctcacctt gctcctgccg agaaagtatc
        catcatggct gatgcaatgc ggcggctgca tacgcttgat ccggctacct gcccattcga
                                                                               7560
        ccaccaagcg aaacatcgca tcgagcgagc acgtactcgg atggaagccg gtcttgtcga
                                                                               7620
        tcaggatgat ctggacgaag agcatcaggg gctcgcgcca gccgaactgt tcgccaggct
                                                                               7680
        caaggegage atgeeegacg gegaggatet egtegtgace catggegatg eetgettgee
35
                                                                               7740
        gaatatcatg gtggaaaatg gccgcttttc tggattcatc gactgtggcc ggctgggtgt
                                                                               7800
                                                                               7860
        ggcggaccgc tatcaggaca tagcgttggc tacccgtgat attgctgaag agcttggcgg
        cgaatgggct gaccgcttcc tcgtgcttta cggtatcgcc gctcccgatt cgcagcgcat
                                                                               7920
        cgccttctat cgccttcttg acgagttctt ctgagcggga ctctggggtt cgaaatgacc
                                                                               7980
                                                                               8040
        gaccaagcga cgcccaacct gccatcacga gatttcgatt ccaccgccgc cttctatgaa
40
                                                                               8100
        aggttgggct tcggaatcgt tttccgggac gccggctgga tgatcctcca gcgcggggat
                                                                               8160
        ctcatgctgg agttcttcgc ccaccctagg gggaggctaa ctgaaacacg gaaggagaca
        ataccggaag gaacccgcgc tatgacggca ataaaaagac agaataaaac gcacggtgtt
                                                                               8220
        gggtcgtttg ttcataaacg cggggttcgg tcccagggct ggcactctgt cgatacccca
                                                                               8280
                                                                               8340
        ccgagacccc attggggcca atacgcccgc gtttcttcct tttccccacc ccaccccca
                                                                               8400
        agttcgggtg aaggcccagg gctcgcagcc aacgtcgggg cggcaggccc tgccatagcc
45
        tcaggttact catatatact ttagattgat ttaaaacttc atttttaatt taaaaggatc
                                                                               8460
                                                                               8520
        taggtgaaga teetttttga taateteatg accaaaatee ettaaegtga gttttegtte
        cactgagcgt cagaccccgt agaaaagatc aaaggatctt cttgagatcc tttttttctg
                                                                               8580
                                                                               8640
        cgcgtaatct gctgcttgca aacaaaaaaa ccaccgctac cagcggtggt ttgtttgccg
        gatcaagage taccaactet ttttccgaag gtaactgget tcagcagage geagatacca
                                                                               8700
50
                                                                               8760
        aatactgtcc ttctagtgta gccgtagtta ggccaccact tcaagaactc tgtagcaccg
        cctacatacc tcgctctgct aatcctgtta ccagtggctg ctgccagtgg cgataagtcg
                                                                               8820
        tgtcttaccg ggttggactc aagacgatag ttaccggata aggcgcagcg gtcgggctga
                                                                               8880
                                                                               8940
        acggggggtt cgtgcacaca gcccagcttg gagcgaacga cctacaccga actgagatac
                                                                               9000
        ctacagcgtg agctatgaga aagcgccacg cttcccgaag ggagaaaggc ggacaggtat
        ccqqtaaqcq gcagggtcgq aacaggagag cgcacgaggg agcttccagg gggaaacgcc
                                                                               9060
55
        tggtatcttt atagtcctgt cgggtttcgc cacctctgac ttgagcgtcg atttttgtga
                                                                               9120
        tgctcgtcag gggggcggag cctatggaaa aacgccagca acgcggcctt tttacggttc
                                                                               9180
```

```
ctggcctttt gctggccttt tgctcacatg ttctttcctg cgttatcccc tgattctgtg
                                                                          9240
     gataaccgta ttaccgccat gcat
                                                                          9264
     <210> 44
5
     <211> 7
      <212> PRT
     <213> Artificial Sequence
     <220>
10
     <223> tag peptide
     <400> 44
     Gly Val Lys Glu Ser Leu Val
15
     <210> 45
      <211>
            5
      <212> PRT
      <213> Artificial Sequence
20
     <220>
     <223> GS linker
     <400> 45
     Gly Ser Gly Ser Gly
25
     <210> 46
      <211> 22
      <212> PRT
30
     <213> Artificial Sequence
     <220>
     <223> GS linker
35
     <400> 46
     Gly Ser Gly Ser Gly Ser Gly Ser Gly Ser Gly Ser Gly Ser
                                         10
                                                            15
     Gly Gly Ser Gly Ser Gly
                 20
40
     <210> 47
     <211> 43
     <212> PRT
45
     <213> Artificial Sequence
     <220>
     <223> GS linker
50
     <400> 47
     Gly Ser Gly Ser Gly Ser Gly Ser Gly Ser Gly Ser Gly Gly
                     5
                                         10
                                                            15
     Ser Gly Ser Gly Gly Ser Gly Ser Gly Ser Gly Ser Gly Ser
                                                        30
                 20
                                     25
     Gly Gly Ser Gly Ser Gly Ser Gly Ser Gly
             35
```

Claims

- 1. A DNA methylation editing kit comprising:
 - (1) a fusion protein of inactivated CRISPR-associated endonuclease Cas9 (dCas9) having no nuclease activity and a tag peptide array in which a plurality of tag peptides are linked by linkers, or an RNA or DNA coding therefor; (2) a fusion protein(s) of a tag peptide-binding portion and a methylase or demethylase, or an RNA(s) or DNA(s) coding therefor; and
 - (3) a guide RNA(s) (gRNA(s)) comprising a sequence complementary to a DNA sequence within 1 kb of a desired site of methylation or demethylation, or a DNA(s) expressing the gRNA(s).
- 2. The DNA methylation editing kit according to claim 1, wherein the demethylase is a catalytic domain (TET1CD) of ten-eleven translocation 1.
- 15 3. The DNA methylation editing kit according to claim 1, wherein the methylase is DNA methyltransferase 3 beta (DNMT3B).
 - 4. The DNA methylation editing kit according to any one of claims 1 to 3, wherein the tag peptides are peptide epitopes, and the tag peptide-binding portion is an anti-peptide-epitope antibody.
 - 5. The DNA methylation editing kit according to claim 4, wherein the peptide epitopes are general control non-derepressible 4 (GCN4) peptide epitopes, and the anti-peptide-epitope antibody is an anti-GCN4 peptide epitope antibody.
- The DNA methylation editing kit according to claim 4, wherein the peptide epitopes are His tags or EE tags, and the 25 anti-peptide-epitope antibody is an anti-His tag antibody or an anti-EE tag antibody.
 - 7. The DNA methylation editing kit according to any one of claims 4 to 6, wherein the antibody is a single-chain antibody
- 30 8. The DNA methylation editing kit according to any one of claims 1 to 3, wherein the tag peptides are a small fragment of a split protein, and the tag peptide-binding portion is a large fragment of the split protein.
 - 9. The DNA methylation editing kit according to claim 8, wherein the split protein is GFP.
 - 10. The DNA methylation editing kit according to any one of claims 1 to 3, wherein the tag peptides are GVKESLV (SEQ ID NO: 44), and the tag peptide-binding portion is PDZ protein.
- 11. The DNA methylation editing kit according to any one of claims 1 to 10, wherein the linkers consist of 5 to 100 amino acids.
 - 12. The DNA methylation editing kit according to any one of claims 1 to 11, wherein the linkers consist of 5 to 50 amino
- 45 13. The DNA methylation editing kit according to any one of claims 1 to 12, wherein the linkers consist of 10 to 50 amino acids.
 - 14. The DNA methylation editing kit according to any one of claims 1 to 13, wherein the fusion proteins of the (1) and/or (2) further comprise a selection marker.
 - 15. The DNA methylation editing kit according to any one of claims 1 to 14, which contains plural gRNAs.
 - 16. The DNA methylation editing kit according to any one of claims 1 to 15, wherein all the DNAs of the (1) to (3) are contained in a vector.
 - 17. A DNA methylation editing method comprising transfecting a cell with the following (1) to (3):
 - (1) a fusion protein of inactivated CRISPR-associated endonuclease Cas9 (dCas9) having no nuclease activity

48

10

5

20

35

40

50

55

and a tag peptide array in which a plurality of tag peptides are linked by linkers, or an RNA or DNA coding therefor; (2) a fusion protein(s) of a tag peptide-binding portion and a methylase or demethylase, or an RNA(s) or DNA(s) coding therefor; and

- (3) a guide RNA(s) (gRNA(s)) comprising a sequence complementary to a DNA(s) sequence within 1 kb of a desired site of methylation or demethylation, or a DNA expressing the gRNA(s).
- **18.** The DNA methylation editing method according to claim 17, wherein the fusion proteins of the (1) and/or (2) further comprise a selection marker.
- **19.** The DNA methylation editing method according to claim 18, further comprising selecting and collecting a cell expressing the selection marker.

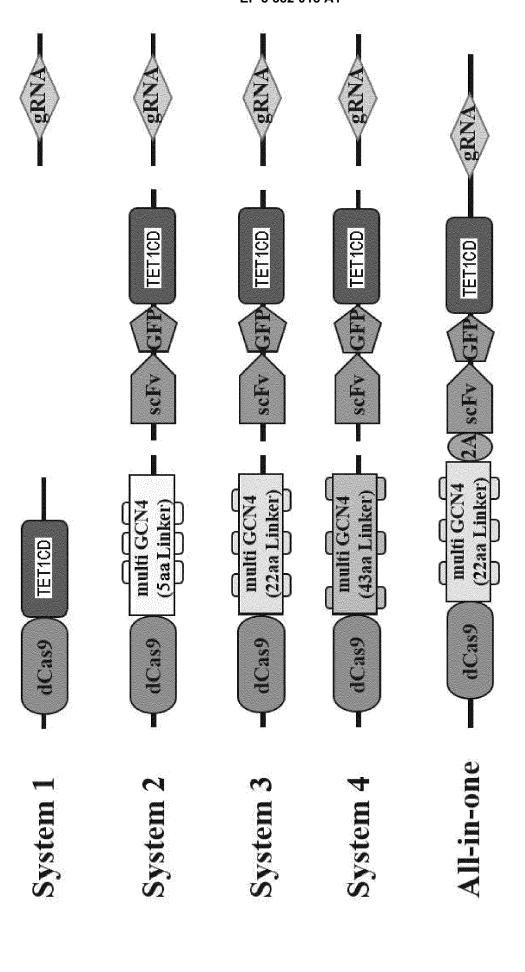
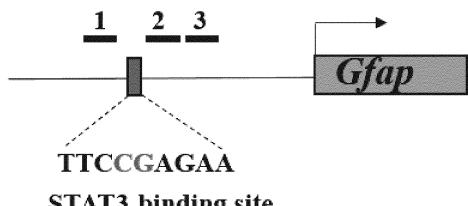



FIG. 1

(a)

Target sites

STAT3-binding site

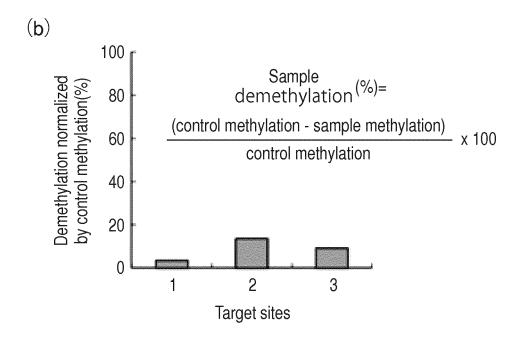


FIG.2

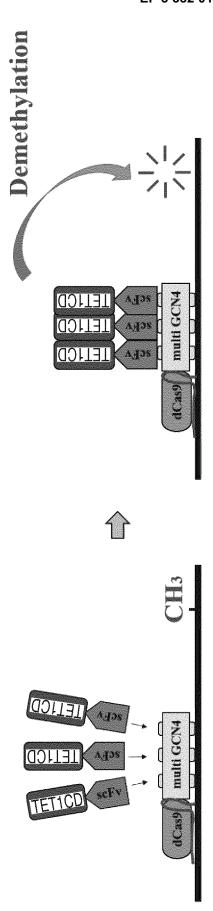
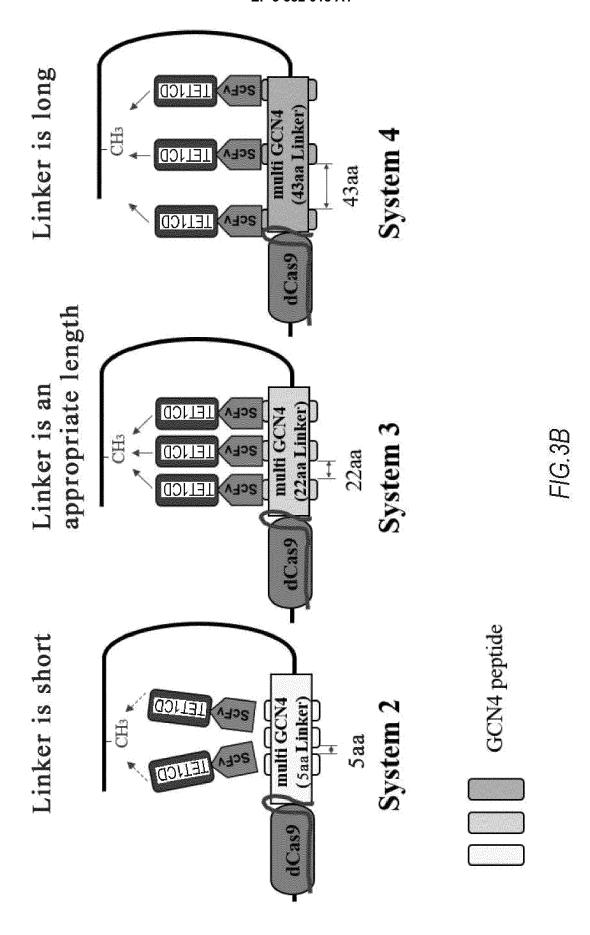
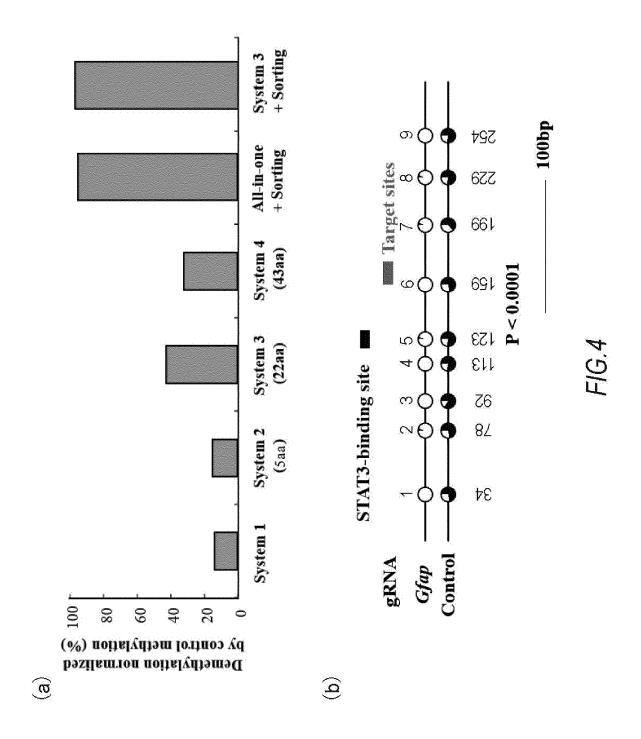




FIG.34

53

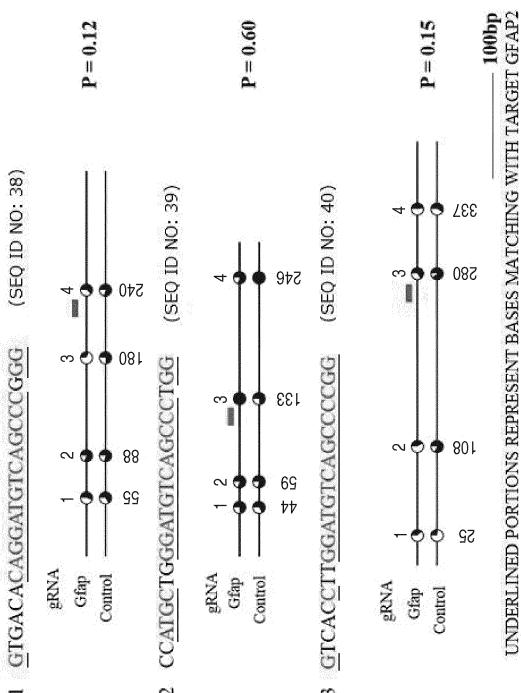
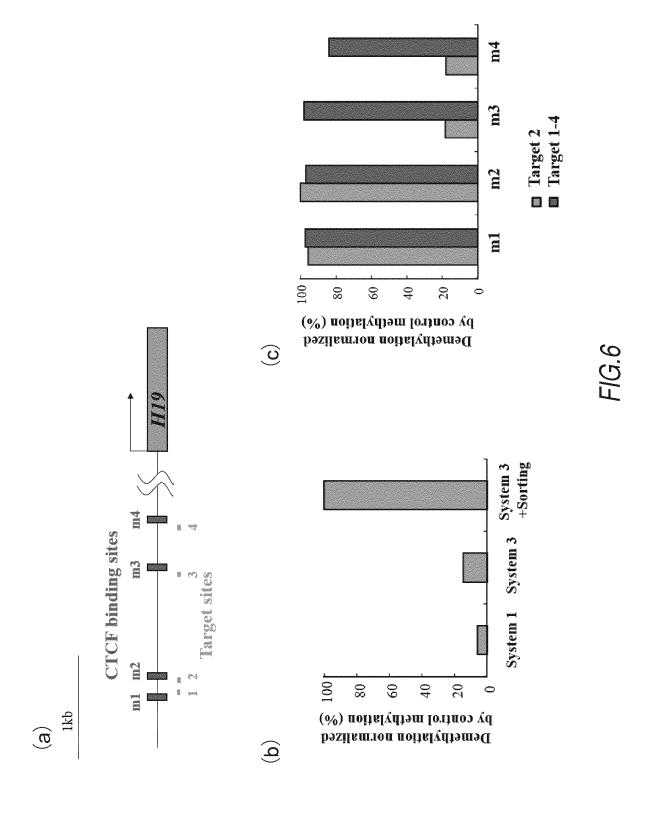
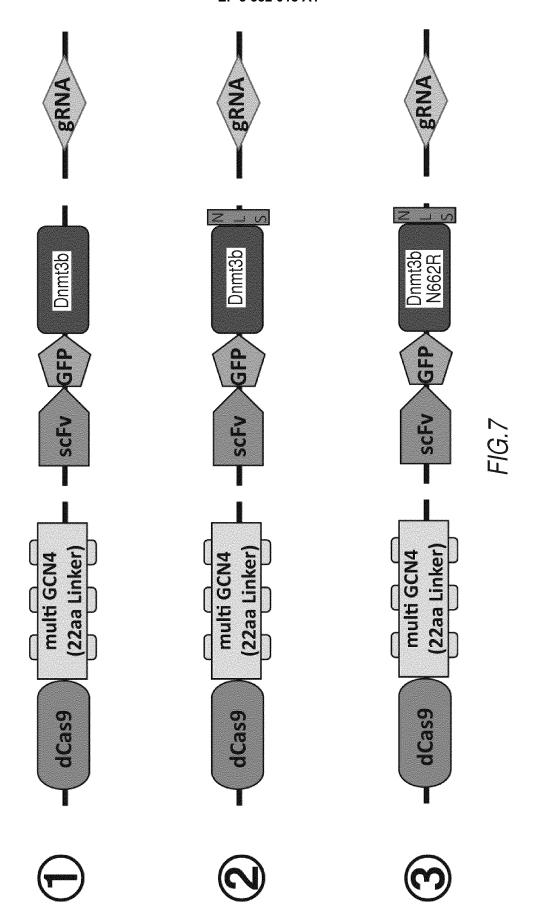
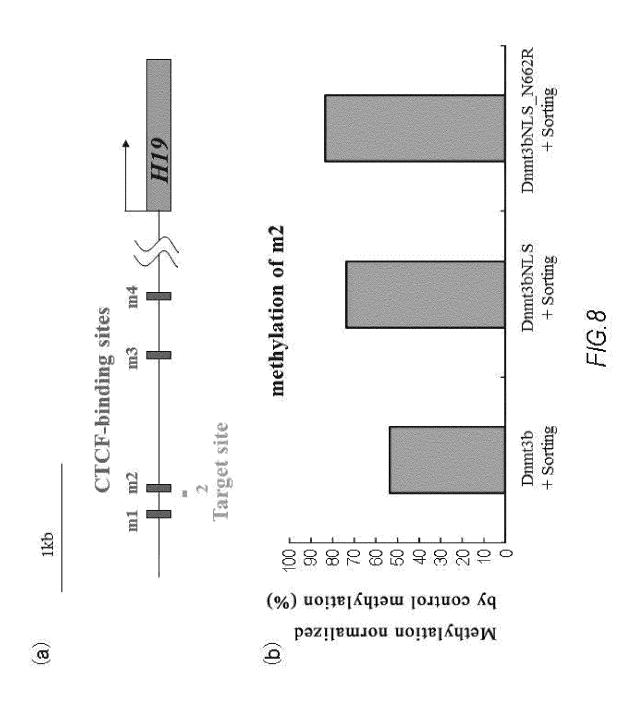





FIG.5 Target homology

INTERNATIONAL SEARCH REPORT International application No. PCT/JP2016/084958 A. CLASSIFICATION OF SUBJECT MATTER 5 C12N15/09(2006.01)i, C07K16/18(2006.01)i, C12N1/15(2006.01)i, C12N1/19 (2006.01)i, C12N1/21(2006.01)i, C12N5/10(2006.01)i, C12N9/10(2006.01)i According to International Patent Classification (IPC) or to both national classification and IPC FIELDS SEARCHED Minimum documentation searched (classification system followed by classification symbols) 10 C12N15/09, C07K16/18, C12N1/15, C12N1/19, C12N1/21, C12N5/10, C12N9/10 Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched Jitsuyo Shinan Koho 1922-1996 Jitsuyo Shinan Toroku Koho 1996-2017 15 1971-2017 1994-2017 Kokai Jitsuyo Shinan Koho Toroku Jitsuyo Shinan Koho Electronic data base consulted during the international search (name of data base and, where practicable, search terms used) JSTPlus/JMEDPlus/JST7580(JDreamIII), CAplus/MEDLINE/BIOSIS/WPIDS(STN), DWPI (Thomson Innovation) 20 DOCUMENTS CONSIDERED TO BE RELEVANT Category* Citation of document, with indication, where appropriate, of the relevant passages Relevant to claim No. Υ TANENBAUM E. M. et al., A Protein-Tagging 1 - 19System for Signal Amplification in Gene Expression and Fluorescence Imaging, Cell, 25 2014, Vol.159, pp.635-646 Υ MAEDER M. L. et al., Targeted DNA demethylation 1 - 19and activation of endogenous genes using programmable TALE-TET1 fusion proteins, Nature Biotechnology, 2013, Vol.31, No.12, 30 pp.1137-1142 Υ MALI P. et al., Cas9 as a versatile tool for 1-19 engineering biology, Nature Methods, Vol.10, No.10, 2013, pp.957-963 35 Further documents are listed in the continuation of Box C. See patent family annex. 40 later document published after the international filing date or priority date and not in conflict with the application but cited to understand Special categories of cited documents: "A" document defining the general state of the art which is not considered to the principle or theory underlying the invention "E" earlier application or patent but published on or after the international filing document of particular relevance; the claimed invention cannot be considered novel or cannot be considered to involve an inventive step when the document is taken alone document which may throw doubts on priority claim(s) or which is "L" 45 cited to establish the publication date of another citation or other document of particular relevance; the claimed invention cannot be special reason (as specified) considered to involve an inventive step when the document is combined with one or more other such documents, such combination being obvious to a person skilled in the art document referring to an oral disclosure, use, exhibition or other means document published prior to the international filing date but later than the priority date claimed document member of the same patent family Date of the actual completion of the international search Date of mailing of the international search report 50 16 January 2017 (16.01.17) 31 January 2017 (31.01.17) Name and mailing address of the ISA/ Authorized officer Japan Patent Office 3-4-3, Kasumigaseki, Chiyoda-ku, 55 Tokyo 100-8915, Japan Telephone No.

Form PCT/ISA/210 (second sheet) (January 2015)

INTERNATIONAL SEARCH REPORT International application No. PCT/JP2016/084958

	C (Continuation)	C (Continuation). DOCUMENTS CONSIDERED TO BE RELEVANT					
5	Category*			Relevant to claim No.			
10	Y			1-19			
15	Y	WO 2014/152432 A2 (THE GENERAL HOSPITAL 25 September 2014 (25.09.2014), claims 7 to 9, 24; page 22, lines 17 to & US 2014/0295556 A1 & US 2014/029555 & EP 2970986 A2 & KR 10-2015-013 & CN 105408483 A	18 7 A1	1-19			
20	Y	SHEN L. et al., A single amino acid substitution confers enhanced methylatio activity of mammalian Dnmt3b on chromati Nucleic Acids Research, 2010, Vol.38, Nopp.6054-6064	n DNA,	3-19			
25	Y	CABANTOUS S. et al., A new protein-prote interaction sensor based on tripartite s GFP association, Scientific Reports, 201 Vol.3, pp.2854/1-2854/9	plit-	8-9			
30	Y	SKELTON N. J. et al., Origins of PDZ dom ligand specificity, The Journal of Biolo Chemistry, 2003, Vol.278, No.9, pp.7645-	gical	10			
35	P,X/P,Y	MORITA S. et al., Targeted DNA demethyla vivo using dCas9-peptide repeat and scFv catalytic domain fusions, Nature Biotech 2016.10, Vol.34, No.10, pp.1060-1065, Ep AUG 2016	TET1 nology,	1-2,4-7, 11-19/3,8-10			
40							
45							
50							
55	Earn DCT/IS A /2.1	10 (continuation of cooped shoot) (Innuary 2015)					

Form PCT/ISA/210 (continuation of second sheet) (January 2015)

REFERENCES CITED IN THE DESCRIPTION

This list of references cited by the applicant is for the reader's convenience only. It does not form part of the European patent document. Even though great care has been taken in compiling the references, errors or omissions cannot be excluded and the EPO disclaims all liability in this regard.

Non-patent literature cited in the description

- MAEDER ML et al. Nat Biotechnol, 2013, vol. 31, 1137-1142 [0005]
- JIKKEN IGAKU. YODOSHA CO., LTD, July 2014, 1690-1714 [0005]
- TANENBAUM ME et al. Cell, 2014, vol. 159, 635-646
 [0005]
- Protein Engineering, Design & Selection, 2011, vol. 24 (5), 419-428 [0020]
- Current Opinion in Chemical Biology, 2011, vol. 15, 789-797 [0021]
- *Proc. Natl. Acad. Sci. USA*, 2008, vol. 105 (18), 6578-6583 **[0023]**
- SHEN L; GAO G; ZHANG Y; ZHANG H; YE Z; HUANG S; HUANG J; KANG J. A single amino acid substitution confers enhanced methylation activity of mammalian Dnmt3b on chromatin DNA. *Nucleic Acids Res.*, 2010, vol. 38, 6054-6064 [0058]