EP 3 382 536 A1

Patent Office

e brevers (11) EP 3 382 536 A1

(1 9) ’ e Hllmlmll‘m||m||‘||mllHm‘l“l“ll‘l“ll“”l |H|‘H||H‘|H||‘
Patentamt
0 European

(12) EUROPEAN PATENT APPLICATION
(43) Date of publication: (51) IntCl.:
03.10.2018 Bulletin 2018/40 GOGF 9/455(2018.07) GO6F 11/26 (2006.07)

GO6F 13/10(2006.07)
(21) Application number: 18154652.4

(22) Date of filing: 01.02.2018

(84) Designated Contracting States: (71) Applicant: The Boeing Company
AL AT BEBG CH CY CZDE DK EE ES FIFRGB Chicago, IL 60606-2016 (US)
GRHRHUIEISITLILTLULVMC MKMT NL NO
PL PT RO RS SE SI SK SM TR (72) Inventors:

Designated Extension States: * HOTRA, Jonathan Nicholas

BA ME St. Louis, MO Missouri 63166 (US)
Designated Validation States: * SHELTON, Jason W.

MA MD TN Edgewood, WA Washington 98372 (US)

(30) Priority: 31.03.2017 US 201715476025 (74) Representative: Cabinet Plasseraud

66, rue de la Chaussée d’Antin
75440 Paris Cedex 09 (FR)

(54) EMULATION OF HARDWARE COMPONENTS

(57) Systems and methods consistent with this disclosure provide for high fidelity emulation of special-purpose
hardware devices systems by virtual hardware. The systems and methods can emulate a physical hardware system in
a virtual machine by performing operations including constructing the virtual machine from the physical hardware system.
The operations can also include emulating hardware components of the physical hardware system in the virtual machine.
The operations can further include emulating operation the physical hardware system using the virtual machine based
on a memory map that reproduces memory locations used by the physical hardware system to exchange information.
Additionally, the operations can include performing testing of the physical hardware system via operation of the virtual
machine.

W, 100
VIRTUALIZATION
SYSTEM
110
S
PHYSICAL PROGFm" CODE
HW T ’I VIRTUAL
SYSTEM | hocumMENTATION MACHINE
105 130
- 147
UPDATED PROGRAM
CODE & DESCRIPTIONS 151
FIG. 1

Printed by Jouve, 75001 PARIS (FR) (Cont. next page)

EP 3 382 536 A1

503 | CONSTRUCT VIRTUAL MACHINE FROM PHYSICAL HARDWARE
SYSTEM (PHS)
505.__, !
EMULATE COMPONENTS OF PHS IN VIRTUAL MACHINE
507 :
d STORE PHS AND/OR EMULATED COMPONENTS OF PHS IN
DEVICE LIBRARY
509 | EMULATE OPERATION OF PHS USING VIRTUAL MACHINE AND
EMULATED COMPONENTS
511
~ CONFIGURE MEMORY LOCATIONS OF VIRTUALIZATION
SYSTEM USING MEMORY MAP
513._
~ EXCHANGE INFORMATION AMONG VIRTUAL MACHINE AND
EMULATED COMPONENTS VIA CORRESPONDING MEMORY
LOCATIONS
519,]
TEST THE PHS USING THE VIRTUAL MACHINE
523 !
™~ MODIFY PHS
527, Il
DEPLOY MODIFIED SW IN PHS

FIG. 5

500

1 EP 3 382 536 A1 2

Description
BACKGROUND

[0001] This disclosure relates to modeling and virtual-
ization. During engineering, development, and testing of
complex systems and devices, physical hardware (H/W)
can be alimited resource. As such, it may not be possible
for developers (e.g., scientists, engineers, software de-
velopers, and testers) involved in the development of
such systems to have access to the physical hardware
until very late in the development of the systems and
devices. For example, the developers may be required
to share a very limited number of prototypes or prepro-
duction units of physical hardware until full production
begins. As such, the developers may not be able to work
in parallel. Rather, development and testing of the prod-
uct may be delayed as each developer waits for their
respective opportunity to access one of the available
units.

[0002] The limited availability of physical hardware can
be addressed using a desktop test environment (DTE),
which may be a generic computing device (e.g., a per-
sonal computer) on which software of the physical hard-
ware is hosted using an approach that modifies an Ap-
plication Program Interface (API) layer of the software.
In such approach, the DTE may use the same application
software source code as the corresponding hardware de-
vice. However, the application software source code is
rehosted to run on a PC host and compiled as an exe-
cutable of a personal computer (e.g., desktop computer).
In order to allow the hardware target software to run on
ahostpersonal computer the infrastructure software (e.g.
drivers and board support package (BSP)) is removed
and the APl is modified to accommodate virtual 1/0 at
the API layer to communicate with other simulations or
emulations on the personal computer. This infrastructure
software must be removed to rehost the software be-
cause some DTEs do not attempt to emulate several
components of the physical hardware. The absence of
these and other components can result in poor fidelity.
[0003] In testing situations, any problems related the
missing components are unlikely to be discovered until
the software is running on the physical hardware. For
example, during integrated system testing, the various
components may not operate as expected, even though
testing had been performed using the conventional DTE.
As a result, the application software may be revised and
re-tested, which adds to the time and cost of develop-
ment. Additionally, in cybersecurity applications, the
missing components represents attack vectors that can-
not be tested in the conventional DTE. Furthermore, in
situations where the software has been recompiled for
rehosting on the DTE, the resulting assembly language
does not match the assembly language used in the phys-
ical hardware, which provides another potential attack
vector that cannot be tested using the DTE.

15

20

25

30

35

40

45

50

55

SUMMARY

[0004] The present disclosure provides for emulation
of a physical hardware system in a virtual machine. Sys-
tems, methods, and computer-program products perform
operations including constructing a virtual machine from
the physical hardware system. The operations can also
include emulating hardware components of the physical
hardware system in the virtual machine. The operations
can further include emulating operation of the physical
hardware system using the virtual machine based on a
memory map that reproduces memory locations used by
the physical hardware system to exchange information.
Additionally, the operations can include performing test-
ing of the physical hardware system via operation of the
virtual machine.

[0005] Additionally, implementations consistent with
the present disclosure provide a virtualization system for
emulating a physical hardware system. The virtualization
system can include a processor, a data storage device,
and program instructions stored on the data storage de-
vice. When executed by the processor the program in-
structions can control the virtualization system to perform
operations including emulating operation of the physical
hardware system using a virtual machine based on a
memory map. The memory map can reproduce memory
locations used by the physical hardware system to ex-
change information.

[0006] Further, implementations consistent with the
present disclosure provide a virtualization system that
can provide emulated components emulating hardware
components to be tested. The virtualization system can
also store memory locations of a physical hardware sys-
tem corresponding to the hardware components. The vir-
tualization system can further send information from the
hardware components via the memory locations corre-
sponding to the hardware components. Additionally, the
virtualization system can receive information sent to the
hardware components via the memory locations corre-
sponding to the hardware components.

[0007] The features, functions, and advantages that
have been discussed can be achieved independently in
various embodiments or may be combined in yet other
embodiments further details of which can be seen with
reference to the following description and drawings.

BRIEF DESCRIPTION OF THE DRAWINGS

[0008] The accompanying drawings, which are incor-
porated in and constitute a part of this specification, il-
lustrate the present teachings and together with the de-
scription, serve to explain the principles of the disclosure.

FIG. 1 shows a system block diagram illustrating an
example of an environment for implementing sys-
tems and processes in accordance with aspects of
the present disclosure.

FIG. 2 shows a system block diagram illustrating an

3 EP 3 382 536 A1 4

example of a physical hardware system in accord-
ance with aspects of the present disclosure.

FIG. 3 shows a system block diagram illustrating an
example of a virtualization system in accordance
with aspects of the present disclosure.

FIG. 4 shows an example of a memory map in ac-
cordance an embodiment of the present disclosure.
FIG. 5 shows a process flow diagram illustrating vir-
tual machine construction and product development
utilization operations performed in accordance with
aspects of the present disclosure.

FIG. 6 shows a process flow diagram illustrating vir-
tual machine construction operations performed in
accordance with virtual machine construction as-
pects of the present disclosure.

FIG. 7 shows a process flow diagram including op-
erations performed in accordance with virtual ma-
chine construction with connection to systems out-
side the virtual machine aspects of the present dis-
closure.

[0009] It should be noted that some details of the fig-
ures have been simplified and are drawn to facilitate un-
derstanding of the present teachings, rather than to main-
tain strict structural accuracy, detail, and scale.

DETAILED DESCRIPTION

[0010] Systems and methods disclose herein are di-
rected to providing high fidelity emulation of special-pur-
pose hardware devices using virtual hardware. Imple-
mentations consistent with the present disclosure enable
emulation of physical hardware using virtual hardware
without the need to develop or modify APIs (as in, e.g.,
a DTE). Additionally, rehosting software (e.g., software
binaries) of the physical hardware is avoided by gener-
ating virtual hardware that can read values written to
memory locations that are substantially equivalent to
those used by the physical hardware to obtain informa-
tion from other resources in the system. Doing so allows
for the software of the physical hardware to run in the
virtual hardware with substantially no modification.
[0011] In implementations, systems and methods dis-
closed herein can be used to generate virtual hardware
for use in developing and testing special-purpose hard-
ware, such as avionics line replaceable units (LRUSs), in-
dustrial control devices, and other special-purpose hard-
ware devices. Further, implementations disclosed herein
allow for data capture from the virtual hardware devices
in a lab (e.g., how a component operates) and subse-
quent data capture of the same device type in any loca-
tion (on the flight line, in the factory floor, etc.).

[0012] In accordance with aspects of the present dis-
closure, the virtual hardware substantially matches the
physical hardware, which enables developers to work in
parallel, and which allows for problems to be caught early
in product development. Additionally, the virtual hard-
ware can provide test points for test and analysis (e.g.,

10

15

20

25

30

35

40

45

50

55

cybersecurity analysis) that would be inaccessible in the
physical hardware system. For example, the virtual hard-
ware may allow a developer to access and monitor sub-
stantially all memory accesses, instructions executed,
I/0 activities, and register states of the emulated physical
hardware. As a result, implementations of the systems
and methods disclosed herein can substantially reduce
the time and costinvolved in developing and testing hard-
ware systems.

[0013] FIG. 1 shows ablock diagram illustrating an ex-
ample of an environment 100 for implementing systems
and processes in accordance with aspects of the present
disclosure. Environment 100 can include a physical hard-
ware system 105 and a virtualization system 110. The
physical hardware system 105 can be comprised of one
or more computer-implemented hardware components
and one or more communication channels. For example,
the physical hardware system 105 can be an avionics
LRU, such a mission computer, a navigation unit, a com-
munication unit, an engine management unit, a crew in-
terface unit, a threat detection unit, electronic counter-
measures unit, stores management unit, and the like.
Additionally, for example, the physical hardware system
105 can be an integrated avionics unit comprised of one
or more modules incorporating the functionality of some
or all of the above avionics units.

[0014] While FIG. 1 is described above as an existing
physical hardware system 105, it is understood that the
physical hardware system 105 can be a new system that
is under development and, therefore, not yet fully imple-
mented or produced. In implementations, the physical
hardware system 105 can be a pre-prototype unit com-
prised of partially implemented in software and/or hard-
ware. For example, the physical hardware system 105
can be software executed by a temporary computing de-
vice (e.g., a breadboard system, a test bed system,
and/or commercial-off-the-shelf system).

[0015] The virtualization system 110 can be a comput-
ing system comprised of hardware and software that can
emulate other devices. In implementations, the virtuali-
zation system 110 can be one or more general purpose
computers, such as a server or a desktop computer (e.g.,
a DTE) that hosts one or more virtual machines 130 that
emulate physical hardware systems, such as the physical
hardware system 105, as well as their hardware and soft-
ware interfaces (e.g., peripherals, datalinks, interrupt be-
havior, and timing requirements). Additionally, the virtual
machine 130 execute an exact or substantially exact
copy (e.g., an image) of the application software execut-
ed by the physical hardware system 105. In implemen-
tations, the virtualization system 110 can include, e.g., a
hypervisor or virtual machine monitor software. For ex-
ample, the virtualization system 110 can use QUICK EM-
ULATOR ("QEMU"), which is an open source software
application that performs hardware virtualization.
[0016] The virtual machine 130 can be an emulation
of the physical hardware system 105 within the virtuali-
zation system 110. Information for creating the virtual

5 EP 3 382 536 A1 6

machine 130 can be obtained from the physical hardware
system 105 and from program code 143 and documen-
tation 147 describing the physical hardware system 105.
For example, the program code 143 can be the applica-
tion code for the physical hardware system 105 (e.g., an
avionics LRU). The program code 143 can also include
the source code (e.g., operating system), interface code
(e.g., timing and formatting), and/or interrupt logic of
hardware components and the communication links in-
cluded in the physical hardware system 105. The docu-
mentation 147 can be information defining operational
requirements and operating details of the hardware com-
ponents and the communication links of the physical
hardware system 105. For example, the documentation
147 can be technical specifications and infrastructure
software.

[0017] The virtual machine 130 can be used for engi-
neering, development and testing of the physical hard-
ware system 105 before, during, and after its production.
For example, prior to actual production of physical hard-
ware, the virtual machine can be used to develop and
debug pre-production software expected to be imple-
mented in the physical hardware system 105. As such,
development and testing of the hardware and software
can occur in parallel. Additionally, during development
of the physical hardware system 105 when few, if any,
physical hardware units are available, developers can
work with the virtual machine 130. Because the virtual
machine 130 substantially matches the physical hard-
ware system 105, each developer involved in the devel-
opment and production of the physical hardware system
105 can implement a copy of the virtual machine 130 at
their respective workstations (e.g., a respective virtuali-
zation system 110). The high-fidelity emulation provided
by the virtual machine 130 allows for problems to be
caught early and will provide considerable cost savings
during development. Updated program code and/or de-
scriptions 151 implemented in the virtual machine 130
can be fed back into the physical hardware system 105
to increase the rate of development. Further, after the
physical hardware system 105 is fielded, the virtual ma-
chine 130 can be used to support, test, and update the
physical hardware system 105. For example, in an air-
craft accident investigation, the particular build of soft-
ware used in the aircraft can be imaged (e.g., as program
code 143) and executed in the virtual machine 130 using
the virtualization system 110.

[0018] FIG. 2 shows a system block diagram illustrat-
ing an example of a physical hardware system 105 in
accordance with aspects of the present disclosure. The
physical hardware system 105 can be the same or similar
to that previously described. The physical hardware sys-
tem 105 includes hardware and software that may be
emulated by virtual hardware (e.g., virtual machine 130)
using a virtualization system (e.g., virtualization system
110) in accordance with aspects of the present disclo-
sure.

[0019] The physical hardware system 105 can com-

10

15

20

25

30

35

40

45

50

55

prise any type of computing system including a general
and/or specific purpose hardware capable of executing
computer program instructions installed thereon (e.g., a
personal computer, server, application-specific comput-
ing device, etc.). It is understood that the physical hard-
ware system 105 is only representative of various pos-
sible equivalent-computing devices. To this extent, inem-
bodiments, the functionality provided by the physical
hardware system 105 can be any combination of general
and/or specific purpose hardware and/or computer pro-
gram instructions used for a variety of applications (e.g.,
industrial control and/or automation). In implementa-
tions, the physical hardware system 105 can be special-
purpose device, such as an avionics LRU.

[0020] The physical hardware system 105 can be com-
prised of various components, including one or more
processors 225, one or more memory devices 231, one
or more storage devices 233, one or more input/output
(I/0) devices 235, and one or more network interface
devices 237. The processors 225 can include a micro-
processor, a microchip, and/or an application-specific in-
tegrated circuit. The memory devices 231 can include
one or more of a local storage, such as random access
memory (RAM) and a cache memory, employed during
execution of program instructions. The storage devices
233 can comprise a computer-readable, non-volatile
hardware devices that stores information and program
instructions. For example, the storage system 233 can
be one or more flash drives, non-volatile memory and/or
hard disk drives. The 1/O devices 235 can include any
device thatenables anindividual to interact with the phys-
ical hardware system 105 (e.g., a user interface) and/or
any device that enables the physical hardware system
105 to communicate with one or more other computing
devices using any type of communications link. The 1/0
device 235 can be, for example, a touchscreen display,
pointer device, keyboard, etc. The network interface de-
vices 237 can include any transceiver device configured
to send and receive data via a network communication
link, such as systems communication bus 241.

[0021] Additionally, the physical hardware system 105
can include one or more communication channels 245
(e.g., a data bus) through which the processors 225,
memory devices 231, storage devices 233, input/output
(I/0) devices 235, and network interface devices 237 can
communicate. Further, the physical hardware system
105 caninclude an interrupt controller 249 which can be
a programmable device used to manage communica-
tions of the processors 225, the memory devices 231,
the storage devices 233, the input/output (1/O) devices
235, and/or the network interface devices 237 on to the
communication channel 245, including allowing priority
levels to be assigned to its interrupts.

[0022] The processor 225 executes computer program
instructions (e.g., an operating system and/or application
programs), which can be stored in the memory device
231 and/or storage devices 233. For example, the proc-
essor 225 can execute program instructions of a boot

7 EP 3 382 536 A1 8

loader 255 and application software 259. The boot loader
255 can comprise program instructions that initiate op-
eration of the physical hardware system 105 by loading
its operating system. The application software 259 can
application-specific program instructions (e.g., avionics
software).

[0023] FIG. 3 shows a system block diagram illustrat-
ing an example of a virtualization system 110, which can
be the same or similar to that described above (e.g., vir-
tualization system 110). The virtualization system 110
includes hardware and software that perform the proc-
esses and functions disclosed herein. The virtualization
system 110 can comprise any type of computing system
including a combination of general and/or specific pur-
pose hardware capable of executing computer program
instructions installed thereon.

[0024] The virtualization system 110 includes a com-
puting device 303, an input/output (I/O) device 313, and
a storage device 315. The I/O device 313 can include
any device that enables an individual to interact with the
computing device 303 (e.g., a user interface) and/or any
device that enables the computing device 303 to com-
municate with one or more other computing devices us-
ing any type of communications link. The I/O device 313
can be, for example, a touchscreen display, pointer de-
vice, keyboard, etc.

[0025] The storage device 315 can comprise a com-
puter-readable, non-volatile hardware storage device
that stores information and program instructions. For ex-
ample, the storage device 315 can be one or more flash
drives and/or hard disk drives. In accordance with as-
pects of the present disclosure, the storage device 315
can store hardware system program code (e.g. program
code 143), one or more memory maps of the hardware
system 319, interrupt logic 321, and a device library 323.
The program code 317 can be application software of a
physical hardware system (e.g., physical hardware sys-
tem 105). In implementations, the program code sub-
stantially mirrors that of the physical hardware system.
The memory map 319 describes connections between
components of the physical hardware systems from a
memory interface perspective. In implementations, the
memory map 319 comprises information defining loca-
tions of memory blocks of the hardware components in
the memory 231 of the hardware system 105. For exam-
ple, the memory map 319 can represent locations of in-
formation for memory registers of hardware components
of the physical hardware system as an offset from a start-
ing memory address. The interrupt logic 321 can be in-
formation describing the interrupt functionality of the
physical hardware system, as detailed below. The device
library 323 can be a repository of computer-readable in-
formation and instructions describing emulations of one
or more physical hardware systems (e.g., physical hard-
ware system 105), which may have been previously been
created and stored for future use.

[0026] In embodiments, the computing device 303 in-
cludes one or more processors 339 (e.g., microproces-

10

15

20

25

30

35

40

45

50

55

sor, microchip, or application-specific integrated circuit),
one or more memory devices 341 (e.g., RAM, read-only
memory (ROM)), one or more /O interfaces 343, and
one or more network interface devices 345. The memory
devices 341 can include a local memory (e.g., a random
access memory and a cache memory) employed during
execution of program instructions. Additionally, the com-
puting device 303 includes at least one communication
channel 344 (e.g., a data bus) by which it communicates
with the 1/O device 313 and the storage device 315. The
processor 339 executes computer program instructions
(e.g., an operating system and/or application programs),
which can be stored in the memory device 341 and/or
storage device 315.

[0027] The processor 339 can also execute computer
program instructions of a virtualization application 351
(e.g., QEMU) and test and/or evaluation software 355.
The virtualization application 351 can be the same or
similar to that previously described. For example, the vir-
tualization application 351 can include a hypervisor or
virtual machine monitor software. In accordance with as-
pects of the present disclosure, the virtualization appli-
cation 351 can provide a virtual machine (e.g., virtual
machine 130) using the program code 317, the memory
map 319, the interrupt logic 321, and/or the device library
323.

[0028] The testand evaluation software 355 can be an
application or program including computer-readable in-
structions and information configured to test, evaluate,
and/or validate software. For example, test and evalua-
tion software 355 can execute test routines that verify
program code of a hardware device behaves as expected
in response to a predetermined scenario. Additionally,
the test and evaluation software 355 can execute cyber-
security routines that test attack vectors of malicious soft-
ware. For example, the test and evaluation software 355
can record complete state (registers, memory, hardware
states, etc.) of a virtual machine as instructions execute
to allow observation and analysis of a compromised sys-
tem.

[0029] Itis noted that the computing device 303 is rep-
resentative of various possible equivalent-computing de-
vices that can perform the processes described herein.
Tothis extent, in embodiments, the functionality provided
by the computing device 303 can be any combination of
general and/or specific purpose hardware and/or com-
puter program instructions. In the disclosed embodi-
ments, the program instructions and hardware can be
created using standard programming and engineering
techniques, respectively.

[0030] FIG. 4 illustrates an example of a memory map
401 and an address space 402 of a virtualization system
in accordance with implementations of the present dis-
closure. The memory map 401 associates hardware
components 403 of a physical hardware system (e.g.,
physical hardware system 105) and memory locations
405 (e.g., memory blocks of memory device 231) of the
virtualization system (e.g., virtualization system 110).

9 EP 3 382 536 A1 10

The information comprising the memory map 401 can be
exacted from documentation (e.g., documentation 147)
of the physical hardware system. The address space 402
for the virtualization machine (e.g., virtualization machine
130) can be memory construct generated based on the
memory map 401. For example, the address space 402
can include register memory addresses and ranges cor-
responding to locations of the emulated components
(e.g., components of physical hardware system 105)
within the virtualization system. In implementations,
there may be three kinds of memory typically found in a
memory map: volatile (e.g., RAM), non-volatile (e.g.
flash), and memory mapped 1/0O. The volatile memory
can be used, for example, to retrieve and store informa-
tion during software execution. The non-volatile memory
can be used, for example, to store software instructions
for execution and configuration information. The memory
mapped I/O can be used to exchange information be-
tween hardware components, which can illicit behaviors
and responses of the hardware components.

[0031] The flow diagrams in FIGS. 5-7 illustrate exam-
ples of the functionality and operation of possible imple-
mentations of systems, methods, and computer program
products according to various implementations consist-
ent with the present disclosure. Each block in the flow
diagrams of FIGS. 5-7 can representa module, segment,
or portion of program instructions, which includes one or
more computer executable instructions for implementing
the illustrated functions and operations. In some alterna-
tive implementations, the functions and/or operations il-
lustrated in a particular block of the flow diagram can
occur out of the order shown in FIGS. 5-7. For example,
two blocks shown in succession can be executed sub-
stantially concurrently, or the blocks can sometimes be
executed in the reverse order, depending upon the func-
tionality involved. It will also be noted that each block of
the flow diagram and combinations of blocks in the block
can be implemented by special purpose hardware-based
systems that perform the specified functions or acts, or
combinations of special purpose hardware and computer
instructions.

[0032] FIG. 5illustrates a process flow diagram of an
exemplary process 500 including operations performed
in accordance an embodiment of the present disclosure.
At 503, a virtual machine (e.g., virtual machine 130) is
constructed from a physical hardware system (e.g., phys-
ical hardware system 105) using a virtualization system
(e.g., computing device 303 executing virtualization soft-
ware (virtualization application 351). For example, a user
(e.g., developer) can execute program code (e.g., pro-
gram code 143) from the physical hardware system on
the virtualization system 110. At 505, the hardware com-
ponents are emulated in the virtual machine constructed
at 503, as detailed below with regard to FIG. 7. At 507,
the virtual machine constructed at 503 and/or the hard-
ware components emulated at 505 can be stored (in,
e.g., device library 323) for future reference and use in
other implementations (e.g., other virtual machines in-

10

15

20

25

30

35

40

45

50

55

cluding one or more of the hardware components).
[0033] At 509, the virtualization system emulates the
operation of the physical hardware system using the vir-
tual machine constructed at 503 and the hardware com-
ponents emulated at 505. The emulating can include, at
511, configuring the address space of a virtualization ma-
chine (e.g., virtualization machine 130) using a memory
map (e.g., memory map 401) to match the address space
of the physical hardware system and/or the emulated
hardware components. The emulating of 509 can also
include, at 513, exchanging information among the virtual
machine and/or the emulated hardware components via
registering memory locations configured at 511 using the
memory map. For example, the memory addresses and
ranges for memory registers of the physical hardware
system and hardware components can be registered with
the virtual machine, and used to implement the function-
ality of each memory register found for the virtual ma-
chine and the emulated hardware components. By doing
so, the virtual machine and the emulated hardware com-
ponents can communicate via the memory constructs of
the virtualization machine by reading and writing infor-
mation in the same manner as the hardware components
of the physical hardware system. This provides a level
of fidelity to the virtualization system that is greater than
that which can achieved by communicating via an API
modified for software rehosted on a DTE.

[0034] At 519, the virtualization system performs test-
ing (e.g., test and evaluation) of the physical hardware
system and/or the hardware components via operation
of the virtual machine. The test and evaluation can in-
clude software debugging, operational testing, integra-
tion testing, cybersecurity testing, and so on. At 523, the
developer can modify at least one of the software and/or
hardware of the physical hardware system based on the
test and evaluation performed at 519. At 527, the devel-
oper can deploy the modifications of 523 the physical
hardware system. For example, modified software can
be deployed to fielded production units of the physical
hardware system. Additionally, modifications to hard-
ware and/or software can be fed back into the design of
simulations, pre-production units, or prototypes of the
physical hardware.

[0035] FIG. 6 illustrates a process flow diagram of an
exemplary process 600 for constructing a virtual machine
in accordance an embodiment of the present disclosure.
At 603, a developer collects information regarding a
physical hardware system to be emulated (e.g., physical
hardware system 105). The information collected at 603
can include specifications of hardware components and
functional descriptions describing the configuration of
memory registers, hardware block diagrams, system ar-
chitecture of the physical hardware system, memory
maps, interrupt connections, board support packages,
and the like. Additionally, the developer can collect infor-
mation regarding the software of the physical hardware
system. In some implementations, collecting the soft-
ware information includes decompiling or disassembling

11 EP 3 382 536 A1 12

code stored on the physical hardware system.

[0036] At 607, the developer determines components
of the physical hardware system to emulate based on
the information collected at 603. In implementations, the
developer identifies hardware components of the physi-
cal hardware system that are not visible on the system
memory map and thus are not directly accessible to soft-
ware and are not necessarily required for emulation. For
example, cache memory or a bridge that is not visible via
a memory map of the physical hardware system (e.g.,
memory map 401) may not be emulated.

[0037] At 611, the developer determines the memory
map of the components determined at 607 using the in-
formation collected at 603, in a same or similar manner
to that described previously herein (e.g., FIG. 4). The
memory map indicates the components of the physical
hardware system and their corresponding locations in
the memory of the physical hardware system. Analyzing
the memory map can include identifying memory devices
and/or storage devices of the physical hardware system,
hardware devices of the physical hardware system (e.g.,
I/O controllers, timers, bridges, interrupt controllers,
block devices, control registers, etc.)

[0038] At 615, the developer generates emulations of
the components determined at 607 using virtualization
software (e.g., virtualization application 351). At 619, the
developerregisters the emulated components generated
at 615 in the memory of the virtualization system based
on the memory map determined at 611. For example,
the developer can apportion a region (e.g., memory
space 405) to the virtual machine (e.g., virtual machine
130) representing the physical hardware system, and as-
sign the emulated components to blocks (e.g., in address
space 402) within the region, as previously described
herein with regard to FIG. 4.

[0039] At 623, the developer determines the interrupt
design of the physical hardware system using the infor-
mation collected at 603. For example, the developeriden-
tifies hardware components that use interrupts and de-
termines interrupt connections between hardware com-
ponents and the interrupt controller. Additionally, hard-
ware schematics showing wiring between 1/O controllers
and interrupt controller can be used to establish interrupt
connectivity for the virtual machine by tracing interrupt
lines traced in a schematic to other hardware compo-
nents. Alternatively, the software in aboard support pack-
age or device driver for the hardware system 105 can be
used to determine interrupt connectivity. Doing so allows
identification of interrupts for different components of the
physical hardware device. At 627, the developer can link
the 1/O of the components emulated at 615 to emulated
/0O controllers. As an example, Ethernet controllers in
the virtual machine can be connected to virtual network
interface cards (NIC) (e.g., TAP Devices, etc.).

[0040] FIG. 7 illustrates a process flow diagram of an
exemplary process 700 for emulating a physical hard-
ware device inaccordance an embodiment of the present
disclosure. At 701, a developer collects information re-

10

15

20

25

30

35

40

45

50

55

garding a physical hardware system to be emulated (e.g.,
physical hardware system 105). The information can be
the same or similar to that previously described herein
(e.g., FIG. 6, 603). At 703, the developer analyzes hard-
ware device functionality based on the information col-
lected at 701. For example, the developer can analyze
documentation (e.g., documentation 147) and identify
hardware registers, interrupt functionality, delayed re-
sponses (e.g., using virtual machine virtual timers), and
external virtual machine connectivity (virtual NICs, virtual
ARINC 429, etc.).

[0041] At 707, the developer emulates, in the virtual
machine, behaviors of the hardware components in re-
sponse to memory accesses. At, 711, the developer em-
ulates, in the virtual machine, interrupt behaviors of the
hardware components. And, at 715, behaviors of delayed
responses of hardware components can also be emulat-
ed. For example, memory access to a hardware compo-
nent register may cause a device register to be modified
to cause a specified behavior or an interrupt can be sig-
naled to a hardware component to cause an activity to
occur. In some cases of transmission by an Ethernet con-
troller, a packet for transmission over Ethernet may be
queued for transmission by writing it to a memory loca-
tion. Doing so may trigger an interrupt to the Ethernet
Controller by the system software to cause the Ethernet
packet to be sent from the virtual machine. In the some
cases of an Ethernet reception, the packet will arrive at
the virtual machine from an external device, e.g. a virtual
NIC, this packet will be stored in an internal queue and
then in some instances this packet will be transferred to
system RAM using a DMA engine to transfer the Ethernet
packet from the Ethernet Controller internal memory to
system RAM, after the transfer is complete an interrupt
will be signaled from the Ethernet Controller to let the
system software know that an Ethernet packet has ar-
rived and is available in system memory. For example,
the delayed responses may emulate a given baud rate
on an interface by varying the speed of serial data. At
719, the developer links the virtual machine to one or
more emulated devices external to the physical hardware
system. For example, a link may be created between
external 1/0 of the emulated devices and an emulation
of a network device with which the hardware components
may communicate with in the physical hardware system.
[0042] Further, the disclosure comprises examples ac-
cording to the following clauses:

Clause 1. A method (500, 600, 700) for emulating a
physical hardware system (105) in a virtual machine
(130), the method comprising: constructing (503),
using a virtualization system (110), the virtual ma-
chine from the physical hardware system; emulating
(505), using the virtualization system, hardware
components (225, 231, 233, 235, 237, 245, 249) of
the physical hardware system in the virtual machine;
emulating (509), by the virtualization system, oper-
ation of the physical hardware system using the vir-

13 EP 3 382 536 A1 14

tual machine based on a memory map (401) that
reproduces memory locations (405) used by the
physical hardware system to exchange information;
and performing (519), using the virtualization sys-
tem, testing of the physical hardware system via op-
eration of the virtual machine.

Clause 2. The method of clause 1, further compris-
ing: modifying (523) physical hardware system
based on the testing; and deploying (527) modifica-
tion of physical hardware system.

Clause 3. The method of clause 2, wherein emulating
operation of the physical hardware system compris-
es configuring (511) memory locations of the virtu-
alization system using the memory map.

Clause 4. The method of clause 3, wherein emulating
operation of the physical hardware system further
comprise exchanging (513) information among the
emulated hardware components via the memory
constructs of the virtual machine.

Clause 5. The method of clause 1, wherein con-
structing the virtual machine from the physical hard-
ware system comprises: determining (611) the mem-
ory map based on a configuration of a memory of
the physical hardware system; and storing informa-
tion of the emulated hardware components in the
memory locations of the virtualization machine
based on the memory map.

Clause 6. The method of clause 1, wherein con-
structing the virtual machine from the physical hard-
ware system comprises determining (623) an inter-
rupt design of the physical hardware system by iden-
tifying one or more of the emulated hardware com-
ponents that use interrupts and determining interrupt
connections between the one or more hardware
components and an interrupt controller of the phys-
ical hardware system.

Clause 7. The method of clause 1, wherein emulating
the hardware components of the physical hardware
system comprises emulating (707), in the virtual ma-
chine, behaviors of the hardware components in re-
sponse to memory accesses.

Clause 8. The method of clause 1, wherein emulating
the hardware components of the physical hardware
system comprises emulating (711), in the virtual ma-
chine, interrupt behaviors of the hardware compo-
nents.

Clause 9. The method of clause 1, further comprising
linking (719), in the virtual machine, inputs and out-
puts of the hardware components to one or more
emulated systems external to the virtual machine.
Clause 10. The method of clause 1, wherein the
physical hardware system is an avionics unit.
Clause 11. A virtualization system (110) for emulat-
ing a physical hardware system (105), the virtualiza-
tion system comprising: a processor (339), a data
storage device (315), and program instructions (351)
stored on the data storage device that, when exe-
cuted by the processor, control the virtualization sys-

10

15

20

25

30

35

40

45

50

55

[0043]

tem to perform operations comprising emulating
(509) operation of the physical hardware system us-
ing a virtual machine (130) based on a memory map
(401), whereinthe memory map reproduces memory
locations (405) used by the physical hardware sys-
tem to exchange information.

Clause 12. The virtualization system of clause 11,
wherein the operations further comprise testing
(519) the physical hardware system via operation of
the virtual machine.

Clause 13. The virtualization system of clause 12,
wherein the operations further comprise: modifying
(523) software of the physical hardware system
based on the testing; and deploying (527) the mod-
ified software in the physical hardware system.
Clause 14. The virtualization system of clause 11,
wherein emulating operation of the physical hard-
ware system comprises configuring (511) memory
locations of the virtualization machine using the
memory map.

Clause 15. The virtualization system of clause 11,
wherein emulating operation of the physical hard-
ware system further comprises exchanging informa-
tion (513) among emulated components of the phys-
ical hardware system via the memory locations of
the virtualization machine.

Clause 16. The virtualization system of clause 11,
wherein the memory map defines locations of mem-
ory blocks of the physical hardware system in the
memory constructs of the virtual machine.

Clause 17. The virtualization system of clause 11,
wherein the virtualization system stores emulated
components of the physical hardware system in the
memory of the virtualization system based on the
memory map.

Clause 18. The virtualization system of clause 11,
wherein the operations further comprise emulating
(707) behaviors of the physical hardware system in
response to memory accesses.

Clause 19. The virtualization system of clause 11,
wherein the operations further comprise emulating
(711) interrupt behaviors of the physical hardware
system.

Clause 20. A virtualization system (110) configured
to perform operations comprising: providing a plu-
rality of emulated components (403) emulating a plu-
rality of hardware components (225, 231, 233, 235,
237,245,249) to be tested; storing memory locations
(405) of a physical hardware system corresponding
to the plurality of hardware components; sending in-
formation from the plurality of hardware components
via the memory locations corresponding to the plu-
rality of hardware components; and receiving infor-
mation sent to the plurality of hardware components
via the memory locations corresponding to the plu-
rality of hardware components.

The present disclosure is not to be limited in

15 EP 3 382 536 A1 16

terms of the particular embodiments described in this ap-
plication, which are intended as illustrations of various
aspects. Many modifications and variations can be made
without departing from its spirit and scope, as will be ap-
parent to those skilled in the art. Functionally equivalent
methods and apparatuses within the scope of the disclo-
sure, in addition to those enumerated herein, will be ap-
parent to those skilled in the art from the foregoing de-
scriptions. Such modifications and variations are intend-
ed to fall within the scope of the appended claims. The
present disclosure is to be limited only by the terms of
the appended claims, along with the full scope of equiv-
alents to which such claims are entitled. It is also to be
understood that the terminology used herein is for the
purpose of describing particular embodiments only, and
is not intended to be limiting.

[0044] With respect to the use of substantially any plu-
ral and/or singular terms herein, those having skill in the
art can translate from the plural to the singular and/or
from the singular to the plural as is appropriate to the
context and/or application. The various singular/plural
permutations may be expressly set forth herein for sake
of clarity.

[0045] It will be understood by those within the art that,
in general, terms used herein, and especially in the ap-
pended claims (e.g., bodies of the appended claims) are
generally intended as "open" terms (e.g., the term "in-
cluding" should be interpreted as "including but not lim-
ited to," the term "having" should be interpreted as "hav-
ing at least," the term "includes" should be interpreted as
"includes but is not limited to," etc.). It will be further un-
derstood by those within the art that if a specific number
of an introduced claim recitation is intended, such an in-
tent will be explicitly recited in the claim, and in the ab-
sence of such recitation no such intent is present. For
example, as an aid to understanding, the following ap-
pended claims may contain usage of the introductory
phrases "at least one" and "one or more" to introduce
claim recitations. However, the use of such phrases
should not be construed to imply that the introduction of
a claimrecitation by the indefinite articles "a" or "an" limits
any particular claim containing such introduced claim rec-
itation to embodiments containing only one such recita-
tion, even when the same claim includes the introductory
phrases "one or more" or "at least one" and indefinite
articles such as "a" or "an" (e.g., "a" and/or "an" should
be interpreted to mean "at least one" or "one or more");
the same holds true for the use of definite articles used
to introduce claim recitations. In addition, even if a spe-
cific number of an introduced claim recitation is explicitly
recited, those skilled in the art will recognize that such
recitation should be interpreted to mean at least the re-
cited number (e.g., the bare recitation of "two recitations,"
without other modifiers, means at least two recitations,
ortwo or more recitations). Furthermore, inthose instanc-
es where a convention analogous to "at least one of A,
B, and C, etc." is used, in general such a construction is
intended in the sense one having skill in the art would

10

15

20

25

30

35

40

45

50

55

10

understand the convention (e.g., " a system having at
least one of A, B, and C" would include but not be limited
to systems that have A alone, B alone, C alone, A and B
together, A and C together, B and C together, and/or A,
B, and C together, etc.). In those instances where a con-
vention analogous to "at least one of A, B, or C, etc." is
used, in general such a construction is intended in the
sense one having skill in the art would understand the
convention (e.g., " a system having at least one of A, B,
or C" would include but not be limited to systems that
have A alone, B alone, C alone, A and B together, A and
Ctogether, B and C together, and/or A, B, and C together,
etc.). It will be further understood by those within the art
that virtually any disjunctive word and/or phrase present-
ing two or more alternative terms, whether in the descrip-
tion, claims, or drawings, should be understood to con-
template the possibilities of including one of the terms,
either of the terms, or both terms. For example, the
phrase "A or B" will be understood to include the possi-
bilities of "A" or "B" or "A and B." In addition, where fea-
tures or aspects of the disclosure are described in terms
of Markush groups, those skilled in the art will recognize
that the disclosure is also thereby described in terms of
any individual member or subgroup of members of the
Markush group.

[0046] While various aspects and embodiments have
been disclosed herein, other aspects and embodiments
will be apparent to those skilled in the art. The various
aspects and embodiments disclosed herein are for pur-
poses of illustration and are not intended to be limiting,
with the true scope and spirit being indicated by the fol-
lowing claims.

Claims

1. A method (500, 600, 700) for emulating a physical
hardware system (105) in a virtual machine (130),
the method comprising:

constructing (503), using a virtualization system
(110), the virtual machine from the physical
hardware system;

emulating (505), using the virtualization system,
hardware components (225,231,233, 235, 237,
245, 249) of the physical hardware system in
the virtual machine;

emulating (509), by the virtualization system,
operation of the physical hardware system using
the virtual machine based on a memory map
(401) that reproduces memory locations (405)
used by the physical hardware system to ex-
change information; and

performing (519), using the virtualization sys-
tem, testing of the physical hardware system via
operation of the virtual machine.

2. The method of claim 1, further comprising:

17 EP 3 382 536 A1 18

modifying (523) physical hardware system
based on the testing; and

deploying (527) maodification of physical hard-
ware system.

The method of claim 1 or 2, wherein emulating op-
eration of the physical hardware system comprises
configuring (511) memory locations of the virtualiza-
tion system using the memory map.

The method of any preceding claim, wherein emu-
lating operation of the physical hardware system fur-
ther comprise exchanging (513) information among
the emulated hardware components via the memory
constructs of the virtual machine.

The method of any preceding claim, wherein con-
structing the virtual machine from the physical hard-
ware system comprises:

determining (611) the memory map based on a
configuration of a memory of the physical hard-
ware system; and

storing information of the emulated hardware
components in the memory locations of the vir-
tualization machine based on the memory map.

6. The method of any preceding claim, wherein at least

one of:

constructing the virtual machine from the phys-
ical hardware system comprises determining
(623) an interrupt design of the physical hard-
ware system by identifying one or more of the
emulated hardware components that use inter-
rupts and determining interrupt connections be-
tween the one or more hardware components
and an interrupt controller of the physical hard-
ware system;

emulating the hardware components of the
physical hardware system comprises emulating
(707), in the virtual machine, behaviors of the
hardware components in response to memory
accesses; and

emulating the hardware components of the
physical hardware system comprises emulating
(711), in the virtual machine, interrupt behaviors
of the hardware components.

The method of any preceding claim, further compris-
ing linking (719), in the virtual machine, inputs and
outputs of the hardware components to one or more
emulated systems external to the virtual machine.

The method of any preceding claim, wherein the
physical hardware system is an avionics unit.

Avirtualization system (110) for emulating a physical

10

15

20

25

30

35

40

45

50

55

1"

10.

1.

12.

13.

hardware system (105), the virtualization system
comprising:

a processor (339),

a data storage device (315), and

program instructions (351) stored on the data
storage device that, when executed by the proc-
essor, control the virtualization system to per-
form operations comprising emulating (509) op-
eration of the physical hardware system using
a virtual machine (130) based on a memory map
(401), wherein the memory map reproduces
memory locations (405) used by the physical
hardware system to exchange information.

The virtualization system of claim 9, wherein the op-
erations further comprise testing (519) the physical
hardware system via operation of the virtual ma-
chine.

The virtualization system of claim 10, wherein the
operations further comprise:

modifying (523) software of the physical hard-
ware system based on the testing; and
deploying (527) the modified software in the
physical hardware system.

The virtualization system of any of claims 9 to 11,
wherein at least one of:

emulating operation of the physical hardware
system comprises configuring (511) memory lo-
cations of the virtualization machine using the
memory map;

emulating operation of the physical hardware
system further comprises exchanging informa-
tion (513) among emulated components of the
physical hardware system via the memory loca-
tions of the virtualization machine.

The virtualization system of any of claims 9 to 11,
wherein at least one of:

the memory map defines locations of memory
blocks of the physical hardware system in the
memory constructs of the virtual machine;

the virtualization system stores emulated com-
ponents of the physical hardware system in the
memory of the virtualization system based on
the memory map;

the operations further comprise emulating (707)
behaviors of the physical hardware system in
response to memory accesses; and

the operations further comprise emulating (711)
interrupt behaviors of the physical hardware
system.

EP 3 382 536 A1

W, 100
VIRTUALIZATION
SYSTEM
10
PHYSICAL PROG%’;" CODE
H/W T ’ VIRTUAL
SYSTEM 1 hocuMENTATION MACHINE
105 130
— 147
UPDATED PROGRAM
CODE & DESCRIPTIONS 151

FIG. 1

12

EP 3 382 536 A1

PHYSICAL HW SYSTEM
105
MEMORY 045
DEVICE(S) ~
231
INTERRUPT
CONTROLLER
249
PROCESSOR
225
/O DEVICE(S)
235
APPLICATION STORAGE
SOFTWARE DEVICES
259 233
NETWORK
N INTERFACE(S)
BOOT 237
LOADER
255

241

FIG. 2

13

EP 3 382 536 A1

VIRTUALIZATION SYSTEM
110
STORAGE DEVICE
315
4) 4)
PROGRAM CODE MEMORY MAP
2 -
213 . J J
INTERRUPT (h
DEVICE LIBRARY
LOGIC
321 323

. J y,
4 N\

/O INTERFACE(S) PROCESSOR(S) VIRTUALIZATION

343 339 APP 351
_ J
4 N
NETWORK MEMORY TEST AND EVAL S/\W
INTERFACE(S) DEVICE(S) 355
345 341 . J
344
COMPUTING DEVICE 303

FIG. 3

14

EP 3 382 536 A1

A\ 4

43avoT

1009
¥0SS3D0Yd Y "Old
934 THLD
W3 SAS
0001 44444444 | 0000 0444 ¥3avo1.1004
30VdS o/l 9 44444434 | 0000 4434 H0SSIO0Ud
SYALSIOIY
¥9 44448434 | 0000 8434 TALD MO NALSAS
0079 44444484 | 0000 0084 30VdS Ol
AHYOWIW AN 009 44444424 | 0000 00%4 AYOWIW AN
0000007 | d4444d44e4 | Wvdd doOL AYOW3W o1l
000000v | Wv¥d doLl | 0000 0000 AMOWIIN WALSAS
AMOW3W O/l iy LUV1S
_ : (ay)3zis | ss3yaav ¥0SSIO0Ud ININOdWOD
Loy mov\,\ mg\/\
AHOWIN
W3LSAS

15

EP 3 382 536 A1

503 | CONSTRUCT VIRTUAL MACHINE FROM PHYSICAL HARDWARE
SYSTEM (PHS)
505.__, |
EMULATE COMPONENTS OF PHS IN VIRTUAL MACHINE
507 :
d STORE PHS AND/OR EMULATED COMPONENTS OF PHS IN
DEVICE LIBRARY
|
509 | EMULATE OPERATION OF PHS USING VIRTUAL MACHINE AND
EMULATED COMPONENTS
511
~ CONFIGURE MEMORY LOCATIONS OF VIRTUALIZATION
SYSTEM USING MEMORY MAP
513.__
~ EXCHANGE INFORMATION AMONG VIRTUAL MACHINE AND
EMULATED COMPONENTS VIA CORRESPONDING MEMORY
LOCATIONS
519,]
TEST THE PHS USING THE VIRTUAL MACHINE
523 !
™~ MODIFY PHS
527, Il
DEPLOY MODIFIED SW IN PHS

FIG. 5

16

500

EP 3 382 536 A1

600

603
™ COLLECT HW INFO OF PHYSICAL HARDWARE SYSTEM (PHS)
607, !
DETERMINE COMPONENTS OF PHS TO EMULATE
N |
DETERMINE MEMORY MAP OF COMPONENTS
615, !
GENERATE EMULATIONS COMPONENTS USING VIRTUALIZATION
619 .
] REGISTER EMULATED COMPONENTS IN MEMORY LOCATIONS
CORRESPONDING TO MEMORY MAP
628, !
DETERMINE INTERRUPT DESIGN OF THE PHS
627_| LINK I/0 OF THE VIRTUAL MACHINE TO EMULATED l/O

CONTROLLERS.

FIG. 6

17

701

703

707

[k

715

719

EP 3 382 536 A1

COLLECT H/W INFO OF PHS

!

ANALYZE HARDWARE SYSTEM FUNCTIONALITY

!

EMULATE BEHAVIOR OF COMPONENTS IN RESPONSE TO
MEMORY ACCESS

A 4

EMULATE INTERRUPT BEHAVIOR OF COMPONENTS

EMULATE DELAYED RESPONSE BEHAVIOR OF COMPONENTS

A 4

LINK EMULATED COMPONENTS TO EMULATIONS OF EXTERNAL
DEVICES

FIG. 7

18

700

10

15

20

25

30

35

40

45

50

55

Européisches
Patentamt
European
Patent Office
Office européen

des brevets

w

EPO FORM 1503 03.82 (P04C01)

EUROPEAN SEARCH REPORT

EP 3 382 536 A1

Application Number

EP 18 15 4652

DOCUMENTS CONSIDERED TO BE RELEVANT

Categor Citation of document with indication, where appropriate, Relevant CLASSIFICATION OF THE
gory of relevant passages to claim APPLICATION (IPC)
X US 2005/216920 Al (TEWARI VIJAY [US] ET 1-13 INV.
AL) 29 September 2005 (2005-09-29) GO6F9/455
* figure 2 *
* paragraph [0002] * ADD.
* paragraph [0007] * GO6F11/26
* paragraph [0030] - paragraph [0031] * GO6F13/10
A US 7 957 951 B2 (BOSCH GMBH ROBERT [DE]; |1-13
ETAS INC [US]) 7 June 2011 (2011-06-07)
* figure 2 *
* column 1, line 13 - column 2, line 26 *
* column 4, Tine 20 - line 32 *
A Muli Ben-Yehuda ET AL: "Utilizing IOMMUs |[3-5,12,
for Virtualization in Linux and Xen", 13

31 December 2006 (2006-12-31),
XP055484287,

Retrieved from the Internet:
URL:http://citeseerx.ist.psu.edu/viewdoc/d
ownload;jsessionid=C84925C1B30163BOBB6F8B3
003A5F6297doi=10.1.1.183.69078&rep=repl&typ
e=pdf

[retrieved on 2018-06-14]

* page 2, left-hand column, Tine 16 - page
3, right-hand column, line 18 *

The present search report has been drawn up for all claims

TECHNICAL FIELDS
SEARCHED (IPC)

GO6F

Place of search Date of completion of the search

Munich 15 June 2018

Examiner

Eigner, Robert

CATEGORY OF CITED DOCUMENTS

X : particularly relevant if taken alone

Y : particularly relevant if combined with another
document of the same category

A : technological background

O : non-written disclosure

P : intermediate document

T : theory or principle underlying the invention

E : earlier patent document, but published on, or
after the filing date

D : document cited in the application

L : document cited for other reasons

& : member of the same patent family, corresponding
document

19

10

15

20

25

30

35

40

45

50

55

EPO FORM P0459

EP 3 382 536 A1

ANNEX TO THE EUROPEAN SEARCH REPORT
ON EUROPEAN PATENT APPLICATION NO. EP 18 15 4652

This annex lists the patent family members relating to the patent documents cited in the above-mentioned European search report.
The members are as contained in the European Patent Office EDP file on
The European Patent Office is in no way liable for these particulars which are merely given for the purpose of information.

15-06-2018
Patent document Publication Patent family Publication
cited in search report date member(s) date
US 2005216920 Al 29-09-2005 NONE
US 7957951 B2 07-06-2011 EP 2126703 A2 02-12-2009
US 2008229150 Al 18-09-2008
WO 2008113704 A2 25-09-2008

For more details about this annex : see Official Journal of the European Patent Office, No. 12/82

20

	bibliography
	abstract
	description
	claims
	drawings
	search report

