(12) CORRECTED EUROPEAN PATENT APPLICATION

(15) Correction information:

Corrected version no 1 (W1 A1)

Corrections, see

Bibliography INID code(s) 72

(48) Corrigendum issued on:

19.12.2018 Bulletin 2018/51

(43) Date of publication:

17.10.2018 Bulletin 2018/42

(21) Application number: 18020125.3

(22) Date of filing: 28.03.2018

(84) Designated Contracting States:

AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

Designated Extension States:

BA ME

Designated Validation States:

KH MA MD TN

(30) Priority: 28.03.2017 EP 17163225

(71) Applicants:

• IMEC VZW 3001 Leuven (BE) (51) Int Cl.:

A61B 5/024 (2006.01)

A61B 5/11 (2006.01)

3000 Leuven (BE)

· Katholieke Universiteit Leuven

(72) Inventors:

 Pamula, Venkata Rajesh 3001 Leuven (BE)

 Verhelst, Marian 3001 Leuven (BE)

(74) Representative: Patent Department IMEC

IMEC vzw
Patent Department
Kapeldreef 75
3001 Leuven (BE)

(54) SYSTEM AND METHOD FOR HEART RATE DETECTION WITH MOTION ARTIFACT REDUCTION

(57) An electronic system (100) for heart rate detection comprising: a random sampling sensor module (10) including a first sensor circuit configured for providing nonuniform random samples below Nyquist rate of a PPG signal (S1), a second sensor circuit configured for providing nonuniform random samples below Nyquist rate of a motion signal (S3), said motion signal being sampled with the same nonuniform pattern as the PPG signal; a heart rate detection module (30) configured for receiving a plurality of said PPG signal nonuniform random samples (S1) and calculating a power spectral density value set based on a Lomb-Scargle periodogram of said PPG signal samples; receiving a plurality of said motion signal nonuniform random samples (S3) and calculating a power

er spectral density value set based on a Lomb-Scargle periodogram of said motion signal samples; normalizing the calculated PPG and motion signal power spectral density value sets; subtracting the normalized motion signal power spectral density values from the normalized PPG signal power spectral density values; renormalizing the PPG signal power spectral density value set; and calculating a heart rate value (S2) based on the frequency corresponding to a highest power peak of the calculated PPG signal power spectral density value set in a frequency range of interest.

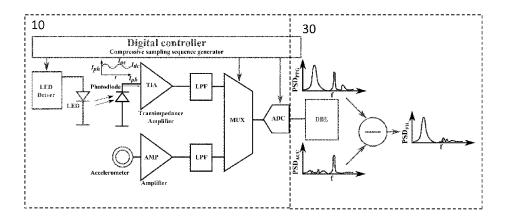


Figure 3