FIELD OF THE INVENTION
[0001] The present invention relates to a system for heating objects. More particularly,
it relates to a hybrid modular microwave heating system with separable cavities.
BACKGROUND OF THE INVENTION
[0002] Heating is one of the basic industrial food processes. Methods of heating includes
contact heating (heating sources include fire, sheathed heaters, and ceramic heaters),
microwave heating, electromagnetic induction heating and more. Contact heating is
a conventional heating method. It requires a longer period of heating time since the
temperature of a heat-receiving object rises from its exterior and the heat is gradually
transmitted to its interior. Microwave is a kind of electromagnetic wave. Microwaves
with specific frequencies enable the polar molecules of the heat-receiving object
(for example, water) to resonate, so that the heating begins from the internal of
the objects rapidly. When the microwaves start heating the object, however, its intensity
distribution thereof will vary according to factors such as the interactions between
the microwave power generator, resonant cavity, the heat-receiving object and so on,
thereby leading to uneven heating in certain parts.
[0003] In order to achieve heating uniformity in microwave heating and for the purpose of
continuous production, sterilization and/or pasteurization, many patents employ hot
fluids (such as hot water or hot steam) as additional heating mediums (
US7119313B2,
US4962298). The heat-receiving object is packed inside a sealed container in advance, then
sent into a microwave resonant cavity filled with high-pressure fluids. The object
in the sealed container is heated by the microwaves and the fluids. As the temperature
of the heat-receiving object in the sealed box rises, it would expand due to internal
steam or vapor, exerting an outward pressure on the sealed container, therefore causing
damage. As a result, the microwave resonant cavity must be pressurized internally
so that the pressure inside the microwave resonant cavity counteracts the outward
expansion pressure of the sealed container. However, at the initial stage of heating,
there is no expansion pressure inside the sealed container, thus excessive pressure
in the microwave resonant cavity may cause the unheated sealed container to collapse,
while insufficient pressure in the microwave resonant cavity will not be able to resist
the outward expansion pressure of the sealed container after it is heated, thereby
causing a leakage of the sealed container. Since the maximum heating temperature is
in proportion with the exerted pressure, this significantly limits the designing of
the heating process. Meanwhile, such a system requires a large-scale microwave resonant
cavity and the said microwave resonant cavity must be able to withstand the high pressure
of the fluids. Moreover, when the sealed container is fed into and out of the microwave
resonant cavity, accurate pressurization and decompression processes are necessary.
For this reason, it is impossible for the sealed container to leave the microwave
resonant cavity for temperature measurement and monitoring during the process. During
heating, the objects are immersed in high-pressure hot water or hot steam and exposed
to microwave electromagnetic field, making it difficult to track the temperature and
quality of the heat-receiving objects by the usual apparatus and methods. This shows
that conventional heating processes lack flexibility. Also such a system easily produces
waste heat because of the hot water and hot steam used, which means unnecessary power
loss.
[0004] One operation prerequisite of contact heating is that the heat-receiving object must
be in tight contact with the heat source, so that the heat can be transmitted to the
object efficiently. Meanwhile microwave heating requires a suitable resonant cavity
to accommodate the heat-receiving object during heating. Although many patents have
combined the applications of the two heating methods (
US4900884,
US6864468 B2,
US5548101,
US5177333) mentioned above, the cavities in the applications thereof are all fixed structures,
wherein the heat-receiving object is merely placed in a heating plate or pan, without
any means of keeping the object in tight contact with the heating source.
[0005] There are many published techniques applying microwaves to continuous heating systems
(
US2009/0230124 A1,
US2012/0103976 A1). Such systems propagates microwaves into several heating spaces while the heat-receiving
objects are continuously delivered into and out of the heating system. However, the
cavities in the applications are fixed, the object is not sealed in advance and no
conductive heating is introduced therein.
[0006] In summary, the existing microwave heating systems have the following technical disadvantages:
- 1. The cavities are fixed structures that cannot be adjusted modularly.
- 2. Without the use of additional heating mediums, the sealed container is not in contact
with the conductive heating source, thereby leading to a lower heating efficiency.
- 3. When additional heating mediums are employed, the cavities need to be pressurized
as well. However, the scale of this applied pressure, the heating temperature and
the pressure-resisting strength of the sealed container are mutually dependent, thereby
narrowing the processing condition window down to only a few choices.
- 4. With a conventional system, it is difficult to measure the temperature changes
of the heat-receiving object during microwave heating, which means the heating program
cannot implement close-loop control. As a result, such systems would not be able to
satisfy the requirements of thermal processing of food.
SUMMARY OF THE INVENTION
[0007] The primary purpose of the present invention is to provide a composite microwave
heating system in which each heating cavity accommodating a package of heat-receiving
object is separable and modularized. The system of the present invention is operated
without the need of heat-transferring fluids and counter-balancing pressure. In addition,
because the cavities are modular and can be separated into two parts, the heat-receiving
object can be taken out for measurement in any part of the heating process. This means
any changes of quality in the heat-receiving object can be detected immediately. Therefore
the heating power, and the length of the heating time, heat holding time and cooling
time can be adjusted at any time of the heating process, making this heating system
flexible enough to meet the needs of various heating processes.
[0008] The present invention comprises a microwave heating semi-cavity, a conductive heating
semi-cavity, a conductive heating unit, a microwave heating unit and a sealed container.
The conductive heating unit provides a conductive heating source, while the microwave
heating unit is used to generate microwaves. The sealed container accommodates a heat-receiving
object. And the microwave heating semi-cavity and the conductive heating semi-cavity
can be assembled to form a microwave resonant cavity. The heat-receiving object is
packed in the sealed container and then placed in the microwave resonant cavity. The
microwave heating semi-cavity includes a microwave guiding device (such as a waveguide,
etc.) that can deliver the microwaves radiated by the microwave heating unit into
the microwave resonant cavity to heat up the object in the sealed container. The conductive
heating semi-cavity has a microwave-transparent lid used to press against the sealed
container inside the conductive heating semi-cavity, thereby making the sealed container
in close contact with the inner wall thereof. The conductive heating semi-cavity is
made of materials with good thermal conductivity and can thus receive heat from the
conductive heating unit, which enables heating up the object in the sealed container
by conduction heating. The hot steam, hot vapor or volume expansion due to the rise
of temperature inside the object will produce an outward expansion pressure on the
sealed container. The conductive heating semi-cavity lid and the conductive heating
semi-cavity of the present invention are configured to have the sufficient mechanical
strengths to resist the structural deformation of the sealed container in order to
prevent leakage.
[0009] The system of the present invention can individually or simultaneously use microwave
and traditional heating methods to heat the objects. Microwave heating can rapidly
increase the temperature of the heat-receiving object in the sealed container therefore
causing it to expand and press the sealed container against the conductive heating
semi-cavity. As a result, it makes the contact heating of the conductive heating unit
to the heat-receiving object more efficient.
[0010] As stated above, the present invention adopts means that are different from conventional
techniques that apply high-pressure water, vapor, steam, etc. to resist the outward
expansion pressure of the sealed container. This allows the system to be operated
under atmospheric environment. Furthermore, because the pressure-resisting design
of the present invention does not exert pressure on the sealed container, it therefore
causes no deformation of the unheated sealed container. In summary, since the resistant
strength comes from the designs of the mechanical structures, the heating temperature
in the present invention can be higher than conventional heating systems could ever
allow, so as to meet the needs of most thermal processes. The conductive heating semi-cavity
and the microwave heating semi-cavity are assembled to form the microwave resonant
cavity during microwave heating. Then they are separated and transferred away from
the microwave environment, with the conductive heating semi-cavity containing the
sealed container. This way the quality (such as temperature, color, etc.) of the object
in the sealed container can be measured by the usual equipment employed in conventional
industrial heating processes, so that the operator will be able to monitor, record
and adjust the entire heating process. With separable conductive heating semi-cavities
and microwave heating semi-cavities, the present invention has the flexibility to
arrange for subsequent processes of heat holding, cooling and so forth in order to
meet processing needs.
BRIEF DESCRIPTION OF THE DRAWINGS
[0011]
Fig. 1 is an exploded view showing the structure of a conductive heating semi-cavity
of the present invention, with a sealed container placed inside;
Fig. 2 is a system schematic diagram of a composite heating module comprising the
conductive heating semi-cavity, the microwave heating cavity, and other components,
before being assembled.;
Fig. 3 is a structural appearance view of the composite heating module mentioned above
after it is assembled; and
Fig. 4 is an illustrative diagram of a preferred embodiment of the composite heating
modules to achieve continuous heating.
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS
[0012] Detailed descriptions and technical contents of the present invention will be described
with reference to the accompanying drawings shown below.
[0013] Referring to Fig. 1 to Fig. 3, the present invention provides a hybrid modular microwave
heating system with separable cavities used to heat objects (heat-receiving objects
are not shown in the drawings). The claimed system comprises a microwave heating semi-cavity
30, a conductive heating semi-cavity 40 a conductive heating unit 20, a microwave
heating unit 70 and a sealed container 10. The sealed container 10 accommodates the
heat-receiving object. The conductive heating unit 20 can be an electromagnetic heater,
a gas heater, an infrared lamp, a heater strip, or any other heating source that is
able to transmit heat to the conductive heating semi-cavity 40. Among the options
of heating sources, the most preferable is an electromagnetic induction heater which
generates heat into a conductive heating semi-cavity body 41 through high-frequency
electromagnetic waves. The heating power of the conductive heating unit 20 can be
adjusted by a conductive heating power controller 80.
[0014] The conductive heating semi-cavity 40 comprised of the conductive heating semi-cavity
body 41 as mentioned and also a conductive heating semi-cavity lid 42. The conductive
heating semi-cavity body 41 includes a conductive heating semi-cavity inner wall 411,
a receiving space 412 formed by the conductive heating semi-cavity inner wall 411,
and a conductive heating semi-cavity outer wall 413. The conductive heating semi-cavity
lid 42 is made of microwave-transparent materials. The conductive heating semi-cavity
lid 42 and the conductive heating semi-cavity body 41 each possesses a fastening mean
so that they can be locked together as one or opened into two.
[0015] The sealed container 10 is accommodated in the receiving space 412. When the conductive
heating semi-cavity lid 42 is locked to the conductive heating semi-cavity body 41,
the conductive heating semi-cavity lid 42 presses tightly against the sealed container
10. And as the object expands in volume or produces steam or vapor after being heated,
the sealed container 10 will expand, pressing more tightly against the conductive
heating semi-cavity inner wall 411. The expansion pressure of the sealed container
10 is sustained and counteracted by the mechanical strength of the conductive heating
semi-cavity lid 42 and the conductive heating semi-cavity body 41 with no risk of
leakage or damage. Thus, the heating temperature can be greatly increased.
[0016] The material of the conductive heating semi-cavity body 41 is preferably ferromagnetic
and not microwave-penetrable (microwaves at such frequencies as 2.45GHz or 915MHz,
etc.) so that when it is exposed to high-frequency electromagnetic waves (at frequencies
such as 10KHz∼200KHz), eddy current can be induced to generate heat. The conductive
heating semi-cavity 40 is placed on top of the conductive heating unit 20 to receive
heat from the heating source, to heat the conductive heating semi-cavity body 41.
[0017] The microwave heating semi-cavity 30 includes a wave guiding channel 31, a microwave
heating semi-cavity sleeve 32 and a microwave heating semi-cavity body 33. When a
composite heating module 60 is assembled, the microwave heating semi-cavity sleeve
32 presses down against the conductive heating semi-cavity outer wall 413 as illustrated
in Fig. 3. After being assembled, the interior of the microwave heating semi-cavity
body 33 and the receiving space 412 inside the conductive heating semi-cavity 40 will
form an integrated microwave resonant cavity. In this way, the sealed container 10,
with the heat-receiving object, and the conductive heating semi-cavity lid 42 are
accommodated inside the microwave resonant cavity. Since the conductive heating semi-cavity
lid 42 and the sealed container 10 are both made of microwave-transparent materials,
the heat-receiving object placed inside the sealed container 10 thus becomes the only
receiver of microwaves in the microwave resonant cavity. In addition, to effectively
avoid microwave leakages, the conventional microwave leak-proof devices or structures,
such as choke isolation metal rings or microwave damping structures, can be further
arranged in the interfaces of the microwave heating semi-cavity sleeve 32 and the
conductive heating semi-cavity outer wall 413.
[0018] The microwave heating unit 70 generates microwaves as a microwave heating source.
The microwaves are propagated into the microwave resonant cavity via the wave guiding
channel 31. In a preferred embodiment, the microwave heating unit 70 is further equipped
with a microwave intensity adjusting function. This allows the operator to adjust
the intensity of the microwave heating power, and control the length of the heating
time during the process.
[0019] In order to enhance the uniformity of the heating process, the present invention
further comprises a spinning plate 50 that rotates, on which the conductive heating
semi-cavity 40 is loaded, and a motor 51. The spinning plate 50 is equipped with a
driven gear 501, preferably an outer ring gear as shown in Fig. 2 and Fig. 3, while
the motor 51 is equipped with a gear 52. The power of the motor 51 is transmitted
via the gear 52 in contact with the driven gear 501 to rotate the spinning plate 50.
Rotation of the conductive heating semi-cavity 40 on the spinning plate 50, as well
as the sealed container 10 inside the conductive heating semi-cavity 40 improves heating
uniformity. As a result, problems of uneven heating in the past are reduced significantly.
[0020] A practical system application of the present invention is illustrated in Fig. 4.
Turning back to Fig. 3, the microwave heating unit 70, the microwave heating semi-cavity
30, the conductive heating unit 20, the conductive heating power controller 80, the
spinning plate 50 and the motor 51 are grouped in view to constitute the composite
heating module 60. As illustrated in Fig. 4, one preferred embodiment includes several
composite heating modules 60 in annular arrangement on a rotating device 61. The rotating
device 61 can be a rotating circular disk or a conveyor belt arranged in a circle.
The heat-receiving object is placed in the sealed container 10, and the sealed container
10 is further placed and locked inside the conductive heating semi-cavity 40. In Fig.
4, the loaded conductive heating semi-cavity 40 is fed into at one side of the rotating
device 61 and then assembled with the microwave heating semi-cavity 30, forming the
composite heating module 60 with a microwave resonant cavity. As the composite heating
module 60 is rotating and moving forward annularly with the rotating device 61, the
microwave heating unit 70 and the conductive heating unit 20 of the composite heating
module 60 heat up the object inside each of the conductive heating semi-cavity 40.
In one preferred embodiment, the conductive heating unit 20 is equipped with the conductive
heating power controller 80 in order to adjust the heating power. As the heating is
completed, the conductive heating semi-cavity 40 is separated from the microwave heating
semi-cavity 30 at another side of the rotating device 61. Since the conductive heating
semi-cavity 40 have already left microwave influence, the measurements of the heated
object are conducted without the influences of the microwave interference or effect.
The accuracy of the measurements (such as temperature or color) can be accordingly
achieved. The conductive heating semi-cavity 40 carrying the sealed container 10 can
be transferred to additional heating, holding or cooling processes. As a result, the
present invention can be adjusted to fit in any production line, such as foodstuff
cooking, sterilization or bactericidal processing, to meet specific needs of different
heating processes.
[0021] As stated in the above descriptions, compared to the conventional techniques, the
present invention has the following advantages:
- 1. Higher heating temperature: Since the sealed container is pressed and locked inside
the conductive heating semi-cavity by the mechanical strength, it can resist a higher
expansion pressure, which means that the heat-receiving object can be heated to a
higher temperature.
- 2. High-efficiency conduction heating: In conventional heating systems, the conductive
heating is inefficient without the use of high-pressure hot water, hot steam, or other
fluids as additional heating sources. In contrast, at the initial stage of heating,
the present invention allows microwaves to directly heat the heat-receiving object
in the sealed container. As the sealed container begin to expand due to the heat,
it will press tightly against the conductive heating semi-cavity inner wall. As a
result, the conductive heating unit can efficiently heat up the object through the
conductive heating semi-cavity body through conduction heating.
- 3. Normal-pressure cavity configuration and low operation cost: Different from the
conventional pressurized cavities with air, with hot water or hot steam providing
the overriding pressure needed to counter-act the expansion of the sealed container,
which also act as additional heating mediums, the present invention is operated at
a higher heating temperature but requires only atmospheric environment. Thus the problem
of heat loss is solved. It is evident that the system building and operation cost
of the present invention can be greatly saved.
- 4. Modular cavity designs, creating a flexible production line: In view of the conventional
fixed-cavity microwave heating system, the scale of production often depends on the
cavity volume. Once the scale of capacity needs to be changed, the microwave resonant
distribution and parameters must be correspondingly re-tested; and the heating cavities
re-designed. On the contrary, the present invention is modular with the composite
heating modules, which means each module is independent and has no influence on each
other. Consequently, the number of the composite heating modules can be randomly added
onto or taken off the production line to meet the needs of industrial production without
affecting the microwave heating semi-cavity designs of the system.
- 5. Suitable for a continuous production without batch operations: Loaded onto the
rotating device in the production line, the composite heating modules with the sealed
containers continuously move in and out one by one during the process. Thus, the present
invention can function continuously without batch operations.
- 6. Measuring parameters of the heat-receiving object in a non-microwave environment
during processing: The majority of the electronic measuring equipment are easily burned,
destroyed or disabled due to microwave influence. For this reason, it is difficult
to apply the usual equipment to measure the quality of the heat-receiving object in
the microwave heating semi-cavities. In contrast, the present invention feed the conductive
heating semi-cavity with the sealed containers into and out of the production line
for several times, so the heating process can be arranged in multiple sections. Between
two heating sections, since the conductive heating semi-cavity is away from the microwave
resonant cavity, the measurements can be performed to ensure the quality of the object.
The operator can also adjust the heating power in the subsequent heating sections
accordingly, simply with the use of the usual equipment. As a result, the final processing
quality of the object can be guaranteed.
- 7. The flexibility to combine microwave heating and conductive heating into a hybrid
heating process: Conventional microwave heating methods easily result in partial temperature
differences; or the so-called cold and hot spots; while conventional conductive heating
methods do not have problems with temperature non-uniformity, but has the shortcomings
of poor heating efficiency and longer heating-time. The present invention has the
flexibility to appropriately deploy the use of the microwave heating and conductive
heating according to the characteristics of the heat-receiving object.
- 8. Enhancing temperature uniformity with rotating devices cavities: The present invention
offers devices in which the heat-receiving objects are placed, (such as spinning plates)
that spin or rotate inside the microwave resonant cavity, reducing temperature differences
in the circumferential direction caused by microwave heating.
1. A hybrid modular microwave heating system with separable cavities used to heat an
object, comprising:
a conductive heating unit (20) for providing a contact heat source;
a microwave heating unit (70) for generating microwaves;
a sealed container (10) for accommodating said heat-receiving object;
a conductive heating semi-cavity (40) comprising
a conductive heating semi-cavity body (41) including a conductive heating semi-cavity
inner wall (411);
a receiving space (412) formed by said conduction heating semi-cavity inner wall (411)
for placing said sealed container (10) and
a conductive heating semi-cavity lid (42) made of a microwave-transparent material
for sealing said receiving space (412), wherein said conductive heating semi-cavity
inner wall (411) and said conductive heating semi-cavity lid (42) press against said
sealed container (10), and
said conductive heating semi-cavity body (41) with the side that is across from said
conductive heating semi-cavity lid (42) being in contact with said contact heat source;
and
a microwave heating semi-cavity (30) comprising a wave guiding channel (31), a microwave
heating semi-cavity sleeve (32) and a microwave heating semi-cavity body (33);
wherein said microwave heating semi-cavity (30) and said conductive heating semi-cavity
(40) can be coupled to form a microwave resonant cavity, with microwaves generated
by said microwave heating unit (70) propagated via said wave guiding channel (31)
into said microwave resonant cavity to effect on said heat-receiving object.
2. The system as recited in claim 1, wherein said microwave heating semi-cavity body
(33) is made of ferromagnetic materials.
3. The system as recited in claim 1 or 2, wherein said conductive heating unit (20) can
be an electromagnetic heater, a gas heater or an sheathed heater, or a combination
of any of them.
4. The system as recited in one of the preceding claims further comprising a spinning
plate (50) for carrying said microwave resonant cavity to rotate.
5. The system as recited in claim 4 further comprising a motor (51), wherein said spinning
plate (50) is equipped with a driven gear (501), and said motor (51) is equipped with
a gear (52) to engage with said driven gear (501) to transmit the power of the motor
(51) to rotate said spinning plate (50).
6. The system as recited in claim 5, wherein said conductive heating unit (20) is equipped
with and power-controlled by a conductive heating power controller (80); said microwave
heating unit (70), said microwave heating semi-cavity (30), said conductive heating
unit (20), said conductive heating power controller (80), said spinning plate (50)
and said motor (51) are modularized as a composite heating module (60); and the system
comprises a multiple of said composite heating modules (60) and said conductive heating
semi-cavities (40) so that said composite heating modules (60) are arranged annularly
on a rotating device (61) and said conductive heating semi-cavities are fed into and
out of the corresponding composite heating modules (60) thereof one by one.