(11) **EP 3 392 854 A1**

(12) EUROPÄISCHE PATENTANMELDUNG

(43) Veröffentlichungstag:

24.10.2018 Patentblatt 2018/43

(51) Int Cl.:

G08B 17/00 (2006.01)

G08B 29/24 (2006.01)

(21) Anmeldenummer: 17199862.8

(22) Anmeldetag: 03.11.2017

(84) Benannte Vertragsstaaten:

AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

Benannte Erstreckungsstaaten:

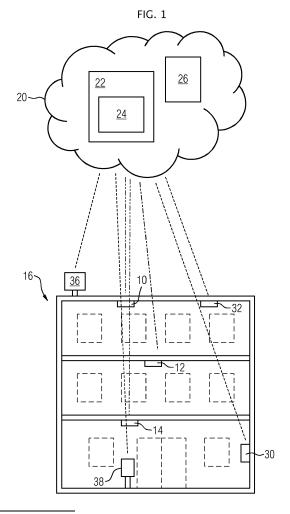
BA ME

Benannte Validierungsstaaten:

MA MD

(71) Anmelder: Siemens Schweiz AG

8047 Zürich (CH)


(72) Erfinder:

- Langenscheid, Joachim 8055 Zürich (CH)
- Schenkel, Roland 8608 Bubikon (CH)
- (74) Vertreter: Maier, Daniel Oliver

Siemens AG Postfach 22 16 34 80506 München (DE)

- (54) VERFAHREN ZUR AUTOMATISCHEN EINSTELLUNG EINES BRANDMELDERS, SYSTEM MIT EINEM AUTOMATISCH EINSTELLBAREN BRANDMELDER UND COMPUTERPROGRAMM MIT EINER IMPLEMENTATION DES VERFAHRENS
- (57) Verfahren zur automatischen Einstellung eines Brandmelders, System mit einem automatisch einstellbaren Brandmelder und Computerprogramm mit einer Implementation des Verfahrens

Die Erfindung ist ein Verfahren zur automatischen Einstellung eines Brandmelders (10-14), wobei der Brandmelder (10-14) ein zumindest netzwerkfähiger Brandmelder (10-14), insbesondere ein IoT-Brandmelder (10-14) ist, wobei für die automatische Einstellung relevante Daten (26) von zumindest einem netzwerkfähigen Sensor (30-38), insbesondere zumindest einem IoT-Sensor (30-38), erfasst werden und wobei die Daten (26) von einem Cloud-Dienst (24) verarbeitet werden und der Cloud-Dienst (24) auf Basis der Daten (26) ein Steuersignal zur Anpassung der Sensitivität des Brandmelders (10-14) an die Umgebungsbedingungen generiert und an den Brandmelder (10-14) ausgibt sowie ein System mit einem automatisch einstellbaren Brandmelder (10-14) und schließlich auch ein Computerprogramm mit einer Implementation des Verfahrens.

EP 3 392 854 A1

Beschreibung

[0001] Verfahren zur automatischen Einstellung eines Brandmelders, System mit einem automatisch einstellbaren Brandmelder und Computerprogramm mit einer Implementation des Verfahrens

1

[0002] Die Erfindung betrifft ein Verfahren zur automatischen Einstellung eines Brandmelders und im Weiteren ein System, in dem nach dem Verfahren eine automatische Einstellung des Brandmelders erfolgt sowie ein Computerprogramm mit einer Implementation des Verfahrens.

[0003] Eine sinnvolle Sensitivität und ein sinnvolles zeitliches Auslöseverhalten eines Brandmelders sind vom jeweiligen Einsatzgebiet abhängig. Für einen in einem Büro platzierten Brandmelder ist eine andere Einstellung sinnvoll als für einen zum Beispiel in einer Schweißerei platzierten Brandmelder. Eine insoweit erforderliche Anpassung erfolgt bisher zum Beispiel über eine Brandmeldezentrale. Generell stehen mehrere "robuste" bis "sensible" Profile sowie auch mehrere, sich an der verfügbaren Sensorik im Brandmelder orientierende Betriebsarten zur Auswahl. Typischerweise werden von der Brandmeldezentrale zwei Profile in den Brandmelder geladen, zwischen denen - initiiert durch die Brandmeldezentrale - umgeschaltet werden kann. Die Umschaltung erfolgt zum Beispiel in Abhängigkeit davon, ob sich Personen im Umfeld des Brandmelders befinden ("manned Betrieb" bzw. "unmanned Betrieb").

[0004] Diese bisher bekannte Möglichkeit zur Einstellung eines Brandmelders hat sich in der Praxis bewährt, ist allerdings vergleichsweise starr.

[0005] Eine Aufgabe der vorliegenden Erfindung besteht entsprechend darin, ein Verfahren zur automatischen Einstellung eines Brandmelders anzugeben, das sich durch eine besondere Flexibilität auszeichnet und auch eine dynamische Anpassung der Einstellung eines Brandmelders erlaubt.

[0006] Diese Aufgabe wird erfindungsgemäß mittels eines Verfahrens zur automatischen Einstellung eines Brandmelders mit den Merkmalen des Anspruchs 1 gelöst. Dazu ist bei einem Verfahren zur automatischen Einstellung eines Brandmelders, nämlich zur automatischen Einstellung einer Sensitivität und/oder eines Auslöseverhaltens des Brandmelders, Folgendes vorgesehen: Der Brandmelder ist unmittelbar oder mittelbar kommunikativ mit der Cloud verbunden, so dass zumindest eine Datenübermittlung aus der Cloud und zum Brandmelder möglich ist. Mittels zumindest eines in der Cloud ausgeführten Diensts (Cloud-Dienst) werden für eine automatische Einstellung eines Brandmelders relevante Daten erfasst. Durch Abfrage der von dem zumindest einen Dienst erfassten Daten, zum Beispiel durch denselben Cloud-Dienst, erfolgt die automatische Einstellung des Brandmelders.

[0007] Bei den für die automatische Einstellung des Brandmelders in der Cloud verarbeiteten Daten handelt es sich bevorzugt um Daten, welche der zumindest eine

Cloud-Dienst als für die automatische Einstellung eines Brandmelders relevante Daten bei zumindest einem kommunikativ mit der Cloud verbundenen sowie dem jeweiligen Brandmelder räumlich oder funktional zugeordneten Sensor erfasst. Der zumindest eine Sensor ist bevorzugt ein Zeitgeber, ein Temperatursensor, ein Feuchtigkeitssensor, eine Wetterstation, ein Zugangskontrollsystem oder dergleichen. Räumlich ist der Sensor dem Brandmelder zugeordnet, wenn sich der Sensor im gleichen Raum oder im gleichen Gebäude befindet. Eine räumliche Zuordnung ist aber zum Beispiel - je nach Art des Sensors - auch dann noch gegeben, wenn sich der Brandmelder und der Sensor in einem Gebiet befinden, in dem gleiche oder im Wesentlichen gleiche Verhältnisse herrschen. Dies gilt zum Beispiel für einen Sensor in Form eines Regensensors, einer Wetterstation oder dergleichen. Funktional ist der Sensor dem Brandmelder zugeordnet, wenn die von dem Sensor erfassten Verhältnisse als Basis für eine Einstellung des Brandmelders in Betracht kommen. Die genannte kommunikative Verbindung ermöglicht zumindest eine Datenübermittlung vom jeweiligen Sensor in die Cloud.

[0008] Ein im Rahmen des Verfahrens automatisch einstellbarer Brandmelder ist bevorzugt ein IoT-Brandmelder (IoT = Internet of Things). Ebenso sind die im Rahmen des Verfahrens verwendbaren oder verwendeten Sensoren bevorzugt IoT-Sensoren. Als IoT-Geräte können diese (Brandmelder und Sensoren) über eine Internetverbindung, zum Beispiel nach dem 6LoWPAN-Protokoll oder nach dem LTE-Protokoll, mit der Cloud-Infrastruktur und dort mit zumindest einem als zentrale Funktionseinheit des Verfahrens fungierenden Cloud-Dienst sowie der Hardware, ggf. auch der verteilten Hardware, auf welcher der Cloud-Dienst ausgeführt wird, kommunizieren. Innerhalb der Cloud werden bevorzugt fortwährend, aber gegebenenfalls auch nur auf Anfrage durch den Cloud-Dienst, Sensordaten erfasst und mittels des Cloud-Diensts zur automatischen Einstellung des Brandmelders ausgewertet.

[0009] Es können auch im Rahmen eines "Big Data"-Ansatzes von anderen Cloud-Infrastrukturen Daten übernommen werden, welche eine ähnliche topographische und/oder umwelttechnische Struktur aufweisen, um die Einstellungen der Rauchmelder eines bestehenden 45 Systems für die Rauchmelder eines vergleichbaren Systems zu verwenden.

[0010] Die eingangs genannte Aufgabe wird auch mittels einer Vorrichtung in Form eines nach dem Verfahren arbeitenden Systems gelöst. Das System umfasst zumindest einen nach einem Verfahren der hier und im Folgenden beschriebenen Art automatisch einstellbaren Brandmelder, zumindest einen in der Cloud erreichbaren Computer, in dessen Speicher als Cloud-Dienst ein Computerprogramm mit einer Implementation des hier und im Folgenden beschriebenen Verfahrens geladen ist, sowie zumindest einen Sensor aus der folgenden Gruppe von Sensoren: Zeitgeber, Temperatursensor, Feuchtigkeitssensor, Regensensor, Wetterstation oder Zugangs-

25

40

45

kontrollsystem. Innerhalb des Systems sind der zumindest eine Brandmelder und der zumindest eine Computer zur automatischen Einstellung des Brandmelders durch den Cloud-Dienst kommunikativ miteinander verbunden. Des Weiteren sind der zumindest eine Computer und der zumindest eine Sensor zur Übermittlung eines Sensorsignals vom Sensor an den Computer kommunikativ verbunden. Der Cloud-Dienst generiert anhand des Sensorsignals ein Steuersignal zur automatischen Einstellung der Sensitivität des Brandmelders und übermittelt dieses über die zwischen Brandmelder und Computer bestehende kommunikative Verbindung an den Brandmelder. Insoweit ist der Cloud-Dienst dafür bestimmt und eingerichtet, anhand des Sensorsignals ein Steuersignal zur automatischen Einstellung der Sensitivität des Brandmelders zu generieren und dieses über die zwischen Brandmelder und Computer bestehende kommunikative Verbindung an den Brandmelder zu übermitteln.

[0011] Für die weitere Beschreibung gilt zur Vermeidung unnötiger Wiederholungen, dass Merkmale und Details, die im Zusammenhang mit dem genannten Verfahren zur automatischen Einstellung eines Brandmelders sowie eventueller Ausgestaltungen beschrieben sind, selbstverständlich auch im Zusammenhang mit und im Hinblick auf das zur Durchführung des Verfahrens eingerichtete System und umgekehrt gelten. Dementsprechend kann das Verfahren auch mittels einzelner oder mehrerer Verfahrensmerkmale fortgebildet sein, die sich auf Verfahrensschritte beziehen, die mittels des Systems ausgeführt werden, und genauso kann das System durch Mittel zur Ausführung von im Rahmen des Verfahrens ausgeführten Verfahrensschritten fortgebildet sein. Folglich gelten Merkmale und Details, die im Zusammenhang mit dem genannten Verfahren zur automatischen Einstellung eines Brandmelders und eventueller Ausgestaltungen beschrieben sind, selbstverständlich auch im Zusammenhang mit und im Hinblick auf das zur Durchführung des Verfahrens bestimmte System und jeweils umgekehrt, so dass bezüglich der Offenbarung zu den einzelnen Aspekten der Erfindung stets wechselseitig Bezug genommen wird bzw. werden kann.

[0012] Der Vorteil der Erfindung besteht darin, dass durch die automatische Einstellung des Brandmelders dieser besser und vor allem dynamisch an jeweils vorherrschende Umgebungsbedingungen angepasst ist. Damit ist ein besseres Auslöseverhalten im Notfall erreichbar. Aufgrund des verbesserten Auslöseverhaltens lassen sich aber auch Fehlalarme vermeiden.

[0013] Vorteilhafte Ausgestaltungen der Erfindung sind Gegenstand der Unteransprüche. Dabei verwendete Rückbeziehungen innerhalb der Ansprüche weisen auf die weitere Ausbildung des Gegenstandes des in Bezug genommenen Anspruchs durch die Merkmale des jeweiligen abhängigen Anspruchs hin. Sie sind nicht als ein Verzicht auf die Erzielung eines selbständigen, gegenständlichen Schutzes für die Merkmale oder Merkmalskombinationen eines abhängigen Anspruchs zu verstehen. Des Weiteren ist im Hinblick auf eine Auslegung

der Ansprüche sowie der Beschreibung bei einer näheren Konkretisierung eines Merkmals in einem abhängigen Anspruch davon auszugehen, dass eine derartige Beschränkung in den jeweils vorangehenden Ansprüchen sowie einer allgemeineren Ausführungsform des gegenständlichen Verfahrens / des nach dem Verfahren arbeitenden Systems nicht vorhanden ist. Jede Bezugnahme in der Beschreibung auf Aspekte abhängiger Ansprüche ist demnach auch ohne speziellen Hinweis ausdrücklich als Beschreibung optionaler Merkmale zu lesen. Schließlich ist darauf hinzuweisen, dass das hier angegebene Verfahren auch entsprechend der abhängigen Vorrichtungsansprüche weitergebildet sein kann und umgekehrt.

[0014] Bei einer Ausführungsform des Verfahrens ist der zumindest eine Sensor ein Zeitgeber, insbesondere eine Uhr, und eine Sensitivität des Brandmelders wird zum Beispiel aufgrund eines von dem Zeitgeber erhältlichen Signals (ein eine Uhrzeit oder eine Uhrzeit und ein Datum kodierendes Signal) nachts und/oder am Wochenende, allgemein während vorgegebener oder vorgebbarer Zeiträume (Tageszeit, wochentagabhängig, kalendarisch), erhöht. Dafür - und entsprechend auch für die im Folgenden beschriebenen weiteren automatischen Einstellungen - führt der Cloud-Dienst einen Algorithmus aus, um die automatische Einstellung des Brandmelders (IoT-Brandmelder) auf Basis der aktuellen Tageszeit individuell und dynamisch anzupassen. Genauso oder zusätzlich kann die automatische Einstellung des Brandmelders aufgrund der von anderen Sensoren erhältlichen Daten erfolgen, sodass zum Beispiel aktuelle oder vorhergesagte Umwelteinflüsse, Wetterdaten, eine aktuelle Raum- oder Gebäudebelegung, eine Umgebungsbelastung mit Feinstaub, Umweltverhältnisse wie Dunst oder Nebel usw. und dergleichen für die automatische Einstellung des zumindest einen Brandmelders berücksichtigt werden.

[0015] Das im Folgenden beschriebene Verfahren ist zur automatischen Ausführung in Form eines Computerprogramms realisiert und das Computerprogramm wird in der Cloud als Cloud-Dienst ausgeführt. Die Erfindung ist damit einerseits auch ein Computerprogramm, nämlich der Cloud-Dienst, mit durch einen Computer ausführbaren Programmcodeanweisungen und andererseits ein Speichermedium mit einem derartigen Computerprogramm, also ein Computerprogrammprodukt mit Programmcodemitteln, sowie schließlich auch das oben genannte System, bei dem in einen Speicher zumindest eines zur Cloud gehörigen Computers als Mittel zur Durchführung des Verfahrens und seiner Ausgestaltungen ein solches Computerprogramm geladen oder ladbar ist.

[0016] Wenn im Folgenden Verfahrensschritte oder Verfahrensschrittfolgen beschrieben werden, bezieht sich dies auf Aktionen, die aufgrund des Cloud-Diensts (Computerprogramm) oder unter Kontrolle des Cloud-Diensts erfolgen. Zumindest bedeutet jede Verwendung des Begriffs "automatisch", dass die betreffende Aktion

20

35

40

aufgrund des Cloud-Diensts oder unter Kontrolle des Cloud-Diensts erfolgt.

[0017] Nachfolgend wird ein Ausführungsbeispiel der Erfindung anhand der Zeichnung näher erläutert. Einander entsprechende Gegenstände oder Elemente sind in allen Figuren mit den gleichen Bezugszeichen versehen. [0018] Das Ausführungsbeispiel ist nicht als Einschränkung der Erfindung zu verstehen. Vielmehr sind im Rahmen der vorliegenden Offenbarung durchaus auch Ergänzungen und Modifikationen möglich, insbesondere solche, die zum Beispiel durch Kombination oder Abwandlung von einzelnen in Verbindung mit den im allgemeinen oder speziellen Beschreibungsteil beschriebenen sowie in den Ansprüchen und/oder der Zeichnung enthaltenen Merkmalen oder Verfahrensschritten für den Fachmann im Hinblick auf die Lösung der Aufgabe entnehmbar sind und durch kombinierbare Merkmale zu einem neuen Gegenstand oder zu neuen Verfahrensschritten bzw. Verfahrensschrittfolgen führen.

[0019] Die FIGUR zeigt

ein Gebäude mit einem Brandmelder sowie Sensoren, deren Sensorsignale bei einer automatischen Einstellung des Brandmelders Berücksichtigung finden.

[0020] Die Darstellung in der FIGUR zeigt in schematisch vereinfachter Form einen Brandmelder 10 und weitere Brandmelder 12, 14 in einem Gebäude 16. Auf die Art, die Anzahl und die Position der Brandmelder 10-14 kommt es im Folgenden nicht an. Bei den Brandmeldern 10-14 handelt es sich um grundsätzlich an sich bekannte, aber zumindest netzwerkfähige Brandmelder 10-14. Ein Brandmelder 10-14 kann zur elektrischen Versorgung auch an eine PoE-Leitung angeschlossen sein. Die Beschreibung wird im Interesse einer besseren Lesbarkeit für genau einen Brandmelder 10 fortgesetzt, wobei dessen Position, Sensorik und Auswertungsprinzip beliebig ist, eine Mehrzahl von Brandmeldern 10-14 ist bei der Erwähnung des einen Brandmelders 10 stets mitzulesen und gilt als von der hier vorgelegten Beschreibung umfasst.

[0021] Nach dem hier vorgeschlagenen Ansatz ist eine automatische Einstellung (Einstellung in Bezug auf eine Sensitivität und/oder ein Auslöseverhalten) des Brandmelders 10 vorgesehen. Dafür ist der netzwerkfähige Brandmelder 10 unmittelbar oder mittelbar kommunikativ mit der Cloud 20 verbunden. In der Cloud 20 wird auf zumindest einem Computer 22 ein Cloud-Dienst 24 ausgeführt. Der Cloud-Dienst 24 erfasst Daten 26 für eine automatische Einstellung des Brandmelders 10 und bewirkt eine automatische Einstellung des Brandmelders 10. Dafür sind der Brandmelder 10 und der Cloud-Dienst 24 in grundsätzlich an sich bekannter Art und Weise unmittelbar oder mittelbar kommunikativ verbunden, zum Beispiel über eine Internetverbindung. Des Weiteren ist der Cloud-Dienst 24 in ebenfalls grundsätzlich an sich bekannter Art und Weise kommunikativ mit zumindest einem Sensor 30-38 verbunden. Bei dem zumindest einen Sensor 30-38 handelt es sich zum Beispiel um einen

Sensor aus der Gruppe folgender Sensoren: Zeitgeber 30, Temperatursensor 32, Regen- oder Feuchtigkeitssensor 34, Wetterstation 36, Zugangskontrollsystem 38. Weitere ähnliche oder gleichartige Sensoren, zum Beispiel ein Helligkeitssensor, sind ebenso verwendbar und sollen als von der hier vorgelegten Beschreibung mit umfasst gelten.

[0022] Zunächst wird der hier vorgeschlagene Ansatz am Beispiel eines Zeitgebers 30 als Sensor 30-38 erläutert. Von einem Zeitgeber 30 ist ein eine Zeitinformation, zum Beispiel eine Uhrzeit oder eine Uhrzeit und ein Datum, kodierendes Sensorsignal erhältlich. Anhand eines eine Uhrzeit kodierenden Sensorsignals kann der Cloud-Dienst 24 zum Beispiel ermitteln, ob die Wahrscheinlichkeit, dass sich in dem Gebäude 16 Personen befinden oder nicht, groß oder gering ist (tagsüber ist die Wahrscheinlichkeit groß; nachts ist die Wahrscheinlichkeit gering). In Abhängigkeit von dem Sensorsignal erfolgt eine Einstellung des Brandmelders 10 dahingehend, dass dieser nachts und/oder am Wochenende empfindlicher eingestellt ist und wochentags unempfindlicher.

[0023] Der Ort des Zeitgebers 30 ist im Grunde beliebig. Der Zeitgeber 30 kann sich - wie gezeigt - in dem Gebäude 16 befinden, entfernt von dem Gebäude 16 installiert sein oder sich ebenfalls in der Cloud 20 befinden, zum Beispiel als Uhr des Computers 22.

[0024] Bei einem Temperatursensor 32 als mittels des Cloud-Diensts 24 abgefragtem Sensor 30-38 wird aufgrund eines von dem Temperatursensor 32 erhältlichen Sensorsignals als automatische Einstellung des Brandmelders 10 zum Beispiel proportional zur sensierten Temperatur die thermische Empfindlichkeit des Brandmelders 10 reduziert. Für einen unterhalb eines Fabrikflachdachs oder dergleichen befindlichen Brandmelder 10 kann damit zum Beispiel mittels des Cloud-Diensts 24 bei einem heißen Sommertag die Höhe eines Wärmepolsters in dem Fabrikgebäude errechnet und der Brandmelder 10 optisch empfindlicher und thermisch unempfindlicher eingestellt werden. Der Temperatursensor 32 kann ein eigenständiger Temperatursensor 32 sein oder zum Beispiel Bestandteil eines Komfortsystems (Heizung, Lüftung, Klima) des Gebäudes 16 sein.

[0025] Mittels eines Feuchtigkeitssensors 34 als mittels des Cloud-Diensts 24 abgefragtem Sensor 30-38 wird zum Beispiel die Luftfeuchtigkeit in der Umgebung des Brandmelders 10 oder im Innern des Gebäudes 16 berücksichtigt und als automatische Einstellung des Brandmelders 10 zum Beispiel bei einer geringen Luftfeuchtigkeit die Sensitivität des Brandmelders 10 erhöht. [0026] Mittels einer zum Beispiel auf dem Dach des Gebäudes 16 montierten oder auch entfernt von dem Gebäude 16 befindlichen Wetterstation 36 als mittels des Cloud-Diensts 24 abgefragtem Sensor 30-38 werden zum Beispiel aktuelle Wetterdaten oder Wetterprognosedaten für eine Anpassung der Sensitivität des Brandmelders 10 verwendet, zum Beispiel derart, dass bei einem heißen Sommertag der Brandmelder 10 optisch empfindlicher und thermisch unempfindlicher eingestellt wird und/oder dass die Sensitivität des Brandmelders 10 bei einem vorhergesagten Gewitter erhöht wird. Zusätzlich oder alternativ kann beispielsweise auch in Abhängigkeit von einem von der Wetterstation 36 erhältlichen Sensorsignal eine in einem vorgegebenen oder vorgebbaren Zeithorizont zu erwartende Temperatur am Ort des Brandmelders 10 ermittelt werden und die Sensitivität des Brandmelders 10 in Abhängigkeit von der ermittelten, erwarteten Temperatur angepasst werden (erhöhte Sensitivität bei hohen Temperaturen; reduzierte Sensitivität bei geringen Temperaturen).

[0027] Mittels eines zum Beispiel im Bereich einer Eingangstür oder jeder Eingangstür des Gebäudes 16 befindlichen Zugangskontrollsystems 38 als mittels des Cloud-Diensts 24 abgefragtem Sensor 30-38 erhält der Cloud-Dienst 24 automatisch verarbeitbare Informationen darüber, wie viele Personen sich in dem Gebäude 16 befinden. Eine Person in einem Gebäude 16 erzeugt Störgrößen, die von der Sensorik des Brandmelders 10 aufgenommen werden. Bei einer hohen Personenanzahl in dem Gebäude 16 kann die Anpassung der Sensitivität des Brandmelders 10 mittels des Cloud-Diensts 24 zum Beispiel derart erfolgen, dass die Sensitivität reduziert wird.

[0028] Die Übermittlung von Sensorsignalen von einem Sensor 30-38 in die Cloud 20 ist in der Darstellung in der FIGUR in Form gestrichelter Linien zwischen dem jeweiligen Sensor 30-38 und der Cloud 20 gezeigt. Die Übermittlung der Sensorsignale kann leitungsgebunden oder leitungslos oder auch abschnittsweise leitungsgebunden oder leitungslos erfolgen. Die Anpassung der Sensitivität des Brandmelders 10 erfolgt mittels zumindest eines Steuersignals aus der Cloud 20 an den Brandmelder 10, nämlich mittels zumindest eines durch den Cloud-Dienst 24 erzeugten Steuersignals. Die Übermittlung eines Steuersignals aus der Cloud 20 zum jeweiligen Brandmelder 10 ist in der Darstellung in der FIGUR ebenfalls in Form gestrichelter Linien zwischen der Cloud 20 und dem jeweiligen Brandmelder 10 gezeigt. Auch hier kann die Übermittlung eines Steuersignals oder der Steuersignale leitungsgebunden oder leitungslos oder auch abschnittsweise leitungsgebunden oder leitungslos erfolgen.

[0029] Bei allen beschriebenen Sensoren 30-38 und den von dort erhältlichen Sensorsignalen kann vorgesehen sein, dass die Sensitivität des Brandmelders 10 kontinuierlich oder quasikontinuierlich anhand des jeweiligen Sensorsignals, zum Beispiel proportional oder umgekehrt proportional zum Sensorsignal, angepasst wird. Genauso kann eine diskontinuierliche Anpassung erfolgen, zum Beispiel eine Erhöhung oder Verringerung der Sensitivität des Brandmelders 10 bei Über- oder Unterschreiten eines Schwell- oder Grenzwerts. Bei einer solchen diskontinuierlichen Anpassung kann eine Berücksichtigung einer Mehrzahl von Schwell- oder Grenzwerten vorgesehen sein. Die jeweilige Abhängigkeit der Anpassung der Sensitivität des Brandmelders 10 von dem jeweiligen Sensorsignal ist in Form von Computerpro-

grammanweisungen als Teil des Cloud-Diensts 24 kodiert

[0030] Bei der Verarbeitung der von einem Sensor 30-38 oder von mehreren Sensoren 30-38 eingehenden Sensorsignalen entstehen in der Cloud 20 Daten 26, die mittels des Cloud-Diensts 24 ausgewertet werden. Bei einem Datum 26 aufgrund eines Temperaturmesswerts (Temperatursensor 32) kann die Anpassung der Sensitivität des Brandmelders 10 zum Beispiel auf Basis einer in dem Cloud-Dienst 24 in Software implementierten mathematischen Beziehung zwischen der Anpassung und dem Temperaturmesswert erfolgen. Dies gilt entsprechend auch für jeden anderen Messwert von einem anderen Sensor/Sensortyp 30-38. Genauso kann eine Vielzahl von Daten 26, zum Beispiel eine zeitliche Abfolge von Temperaturmesswerten, ausgewertet werden, um zum Beispiel anhand eines aktuellen Temperaturmesswerts und einer Tendenz der Temperaturmesswerte eine Anpassung der Sensitivität des Brandmelders 10 vorzunehmen. Auch dies gilt entsprechend genauso für jeden anderen Messwert von einem anderen Sensor/Sensortyp 30-38.

[0031] Die hier beschriebene Einstellung eines Brandmelders 10 gilt entsprechend genauso für eine automatische Einstellung einer Vielzahl von Brandmeldern 10-14. Dabei kann zum Beispiel bei mehreren in einem Gebäude 16 befindlichen Brandmeldern 10-14 jeder Brandmelder 10-14 - wie hier beschrieben - individuell eingestellt werden. Genauso können zum Beispiel alle Brandmelder 10-14 eines Gebäudes 16, eines Gebäudeteils, eines Stockwerks oder eines Raums im Rahmen der automatischen Einstellung gleich eingestellt werden. [0032] Obwohl die Erfindung im Detail durch das Ausführungsbeispiel näher illustriert und beschrieben wurde, so ist die Erfindung nicht durch das oder die offenbarten Beispiele eingeschränkt und andere Variationen können vom Fachmann hieraus abgeleitet werden, ohne den Schutzumfang der Erfindung zu verlassen.

[0033] Einzelne im Vordergrund stehende Aspekte der hier eingereichten Beschreibung lassen sich damit kurz wie folgt zusammenfassen: Angegeben werden ein Verfahren und eine Vorrichtung (System) zur automatischen Einstellung eines Brandmelders 10-14, wobei der Brandmelder 10-14 ein zumindest netzwerkfähiger Brandmelder 10-14, insbesondere ein IoT-Brandmelder 10-14 ist, wobei für die automatische Einstellung relevante Daten 26 von zumindest einem netzwerkfähigen Sensor 30-38, insbesondere zumindest einem IoT-Sensor 30-38, erfasst werden und wobei die Daten 26 von einem Cloud-Dienst 24 verarbeitet werden und der Cloud-Dienst 24 auf Basis der Daten 26 ein Steuersignal zur Einstellung des Brandmelders 10-14 generiert und an den Brandmelder 10-14 ausgibt.

Bezugszeichenliste

[0034]

10

25

40

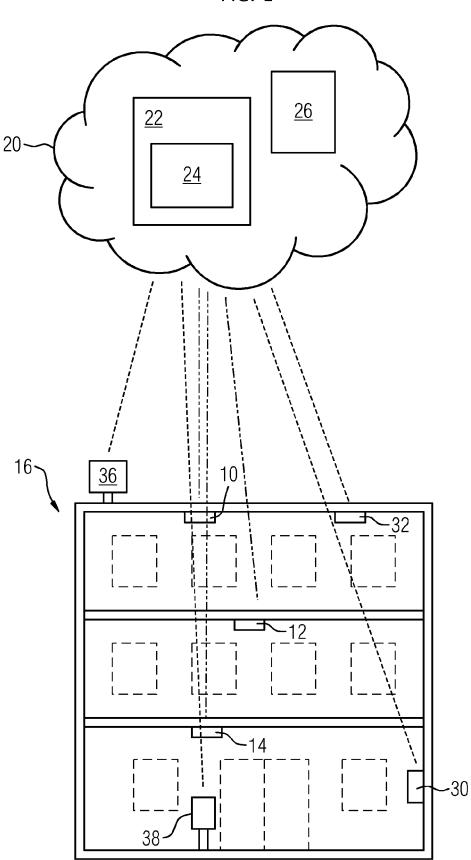
45

50

- 10 Brandmelder
- 12 Brandmelder
- 14 Brandmelder
- 16 Gebäude
- 18 (frei)
- 20 Cloud
- 22 Computer
- 24 Cloud-Dienst
- 26 Daten
- 28 (frei)
- 30 Sensor; Zeitgeber
- 32 Sensor; Temperatursensor
- 34 Sensor; Regen- oder Feuchtigkeitssensor
- 36 Sensor; Wetterstation
- 38 Sensor; Zugangskontrollsystem

Patentansprüche

- Verfahren zur automatischen Einstellung eines Brandmelders (10-14), nämlich zur automatischen Einstellung einer Sensitivität des Brandmelders (10-14),
 - wobei der Brandmelder (10-14) kommunikativ mit der Cloud (20) verbunden ist,
 - wobei zumindest ein Dienst (24) in der Cloud (20) für eine automatische Einstellung eines Brandmelders (10-14) relevante Daten (26) erfasst und
 - wobei die automatische Einstellung des Brandmelders (10-14) auf Basis einer Abfrage der von dem zumindest einen Dienst (24) erfassten Daten (26) erfolgt.
- 2. Verfahren nach Anspruch 1, wobei der zumindest eine Cloud-Dienst (24) relevante Daten (26) für die automatische Einstellung eines Brandmelders (10-14) bei zumindest einem kommunikativ mit der Cloud (20) verbundenen sowie dem jeweiligen Brandmelder (10-14) räumlich oder funktional zugeordneten Sensor (30-38) erfasst.
- 3. Verfahren nach Anspruch 2, wobei der zumindest eine Sensor (30-38) ein Zeitgeber (30), ein Temperatursensor (32), ein Feuchtigkeitssensor (34), eine Wetterstation (36) oder ein Zugangskontrollsystem (38) ist.
- 4. Verfahren nach Anspruch 2 oder 3, wobei der zumindest eine Sensor (30-38) ein Zeitgeber (30) ist und wobei eine Sensitivität des Brandmelders (10-14) aufgrund eines von dem Zeitgeber (30) erhältlichen Signals während zumindest eines vorgegebenen oder vorgebbaren Zeitraums am Wochenende erhöht wird.
- 5. Verfahren nach einem der Ansprüche 2 bis 4, wobei


- der zumindest eine Sensor (30-38) ein Temperatursensor (32) ist und wobei in Abhängigkeit von einem von dem Temperatursensor (32) erhältlichen Signal eine optische Sensitivität des Brandmelders (10-14) erhöht und/oder eine thermische Sensitivität des Brandmelders (10-14) reduziert wird.
- 6. Verfahren nach einem der Ansprüche 2 bis 5, wobei der zumindest eine Sensor (30-38) eine Wetterstation (36) ist und wobei in Abhängigkeit von einem von der Wetterstation (36) erhältlichen Signal die Sensitivität des Brandmelders (10-14) angepasst wird.
- Verfahren nach Anspruch 6, wobei in Abhängigkeit von dem von der Wetterstation (36) erhältlichen Signal eine in einem vorgegebenen oder vorgebbaren Zeithorizont zu erwartende Temperatur am Ort des Brandmelders (10-14) ermittelt und die Sensitivität des Brandmelders (10-14) in Abhängigkeit von der ermittelten, erwarteten Temperatur angepasst wird.
 - 8. Verfahren nach einem der Ansprüche 2 bis 7, wobei der zumindest eine Sensor (30-38) ein Zugangskontrollsystem (38) ist und wobei in Abhängigkeit von einem von dem Zugangskontrollsystem (38) erhältlichen Signal die Sensitivität des Brandmelders (10-14) angepasst wird.
- 30 9. Computerprogramm mit Programmcodemitteln, um alle Schritte von jedem beliebigen der Ansprüche 1 bis 8 durchzuführen, wenn das Computerprogramm als Cloud-Dienst (24) auf einem in der Cloud (20) erreichbaren Computer (22) ausgeführt wird.
 - 10. Computerprogrammprodukt mit Programmcodemitteln, die auf einem computerlesbaren Datenträger gespeichert sind, um das Verfahren nach jedem beliebigen der Ansprüche 1 bis 8 durchzuführen, wenn aufgrund des Computerprogrammprodukts ein Computerprogramm nach Anspruch 9 ausführbar ist oder ausgeführt wird.
 - 11. System mit zumindest einem automatisch nach einem Verfahren nach jedem beliebigen der Ansprüche 1 bis 8 einstellbaren Brandmelder (10-14), zumindest einem in der Cloud (20) erreichbaren Computer (22), in dessen Speicher als Cloud-Dienst (24) ein Computerprogramm nach Anspruch 9 geladen ist und zumindest einem Sensor (30-38) aus der Gruppe Zeitgeber (30), Temperatursensor (32), Feuchtigkeitssensor (34), Wetterstation (36) oder Zugangskontrollsystem (38),
 - wobei der zumindest eine Brandmelder (10-14) und der zumindest eine Computer (22) zur automatischen Einstellung des Brandmelders (10-14) durch den Cloud-Dienst (24) kommuni-

kativ miteinander verbunden sind,

- wobei der zumindest eine Computer (22) und der zumindest eine Sensor (30-38) zur Übermittlung eines Sensorsignals vom Sensor (30-38) an den Computer (22) kommunikativ verbunden sind und

- wobei der Cloud-Dienst (24) anhand des Sensorsignals ein Steuersignal zur automatischen Einstellung der Sensitivität des Brandmelders (10-14) generiert und über die zwischen Brandmelder (10-14) und Computer (22) bestehende kommunikative Verbindung an den Brandmelder (10-14) übermittelt.

EUROPÄISCHER RECHERCHENBERICHT

Nummer der Anmeldung EP 17 19 9862

0		

Kategorie	Kennzeichnung des Dokume der maßgeblicher		erforderlich,	Betrifft Anspruch	KLASSIFIKATION DER ANMELDUNG (IPC)
X Y	US 8 620 841 B1 (FII 31. Dezember 2013 (2 * Spalte 5, Zeile 19 Abbildung 1 * * Spalte 8, Zeile 23 22; Abbildungen 2-4 * Spalte 24, Zeile 26; Abbildung 12 * * Spalte 26, Zeile 3	2013-12-31) 9 - Spalte 6, 2 8 - Spalte 14, * 23 - Spalte 26,	Zeile 43; Zeile Zeile	INV. G08B17/00 G08B29/24	
Y	US 2015/187194 A1 (HAL) 2. Juli 2015 (2015 Absätze [0005], [0032], [0033], [0072] - [0068], [0096], [0102], [0103], [0103], [0103]	015-07-02) [0012], [0019] 0058] - [0059], [0073]; Abbilo [0094], [0097]	[0065] lung 1 *	2-7	
Y	3. Dezember 1985 (19 * Spalte 2, Zeilen	AMADA KIYOSHI [JP] ET AL) (1985-12-03) n 41-56 * e 65 - Spalte 12, Zeile		4	RECHERCHIERTE SACHGEBIETE (IPC)
A	EP 2 759 994 A2 (B05 30. Juli 2014 (2014- * Absätze [0001], [0036]; Abbildung 1	-07-30) [15.30], [0033		1-11	
A	US 5 552 763 A (KIRBY RONALD H [US]) 3. September 1996 (1996-09-03) * Spalte 1, Zeile 12 - Spalte 2, Zeile 8 * * Spalte 2, Zeile 46 - Spalte 3, Zeile 36; Abbildung 3 *				
Der vo	rliegende Recherchenbericht wurd	•			Prüfer
			April 2018 Rus		sso, Michela
X : von Y : von ande A : tech O : nich	ATEGORIE DER GENANNTEN DOKUI besonderer Bedeutung allein betrachte besonderer Bedeutung in Verbindung r eren Veröffentlichung derselben Katego nologischer Hintergrund tschriftliche Offenbarung schenliteratur	MENTE Τ: c t n mit einer D: i rie L: ε	der Erfindung zug älteres Patentdok ach dem Anmeld n der Anmeldung us anderen Grün	runde liegende ument, das jedo edatum veröffer angeführtes Do den angeführte	Theorien oder Grundsätze ch erst am oder ntlicht worden ist kument

ANHANG ZUM EUROPÄISCHEN RECHERCHENBERICHT ÜBER DIE EUROPÄISCHE PATENTANMELDUNG NR.

EP 17 19 9862

In diesem Anhang sind die Mitglieder der Patentfamilien der im obengenannten europäischen Recherchenbericht angeführten Patentdokumente angegeben.

Patentdokumente angegeben.
Die Angaben über die Familienmitglieder entsprechen dem Stand der Datei des Europäischen Patentamts am Diese Angaben dienen nur zur Unterrichtung und erfolgen ohne Gewähr.

27-04-2018

	Im Recherchenbericht angeführtes Patentdokumer	nt	Datum der Veröffentlichung	Mitglied(er) der Datum der Patentfamilie Veröffentlichung
	US 8620841	B1	31-12-2013	US 8620841 B1 31-12-2013 US 2014207721 A1 24-07-2014 US 2015213703 A1 30-07-2015 US 2016173963 A1 16-06-2016
	US 2015187194	A1	02-07-2015	KEINE
	US 4556873	Α	03-12-1985	DE 3415786 A1 29-11-1984 JP H0241075 B2 14-09-1990 JP S59201193 A 14-11-1984 SE 457579 B 09-01-1989 US 4556873 A 03-12-1985
	EP 2759994	A2	30-07-2014	DE 102013201049 A1 24-07-2014 EP 2759994 A2 30-07-2014
	US 5552763	Α	03-09-1996	KEINE
EPO FORM P0461				
⊞				

Für nähere Einzelheiten zu diesem Anhang : siehe Amtsblatt des Europäischen Patentamts, Nr.12/82