(11) EP 3 392 859 A1

(12) EUROPÄISCHE PATENTANMELDUNG

(43) Veröffentlichungstag:

24.10.2018 Patentblatt 2018/43

(51) Int Cl.: **G08G** 5/00 (2006.01)

(21) Anmeldenummer: 18165118.3

(22) Anmeldetag: 29.03.2018

(84) Benannte Vertragsstaaten:

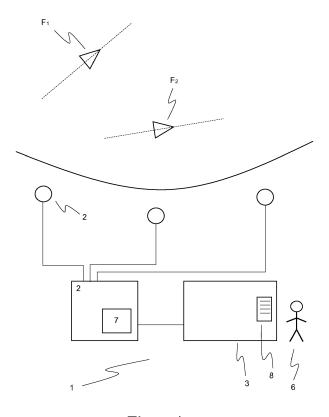
AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

Benannte Erstreckungsstaaten:

BA ME

Benannte Validierungsstaaten:

KH MA MD TN


(30) Priorität: 05.04.2017 DE 102017107324

- (71) Anmelder: Deutsches Zentrum für Luft- und Raumfahrt e.V.51147 Köln (DE)
- (72) Erfinder: Kraemer, Jan 38100 Braunschweig (DE)
- (74) Vertreter: Gramm, Lins & Partner
 Patent- und Rechtsanwälte PartGmbB
 Freundallee 13a
 30173 Hannover (DE)

(54) ASSISTENZSYSTEM UND VERFAHREN ZUR UNTERSTÜTZUNG BEI DER DURCHFÜHRUNG VON AUFGABEN BEZÜGLICH EINER SITUATION

(57) Die Erfindung betrifft ein Assistenzsystem zur Unterstützung einer Person bei der Durchführung einer Kontroll-, Überwachungs-, Steuerungs- und/oder Regelungsaufgabe, wobei mit Hilfe eines Evaluationsmoduls

ein Maß für das Situationsbewusstsein automatisiert ermittelt und dann der Automatisierungsgrad des Assistenzsystems in Abhängigkeit des Maßes für das Situationsbewusstsein eingestellt wird.

Figur 1

:P 3 392 859 A1

Beschreibung

[0001] Die Erfindung betrifft ein Assistenzsystem und ein Verfahren hierzu zur Unterstützung wenigstens einer Person bei der Durchführung einer Kontroll-, Überwachungs-, Steuerungs- und/oder Regelungsaufgabe bezüglich einer Situation, insbesondere einer Verkehrssituation

[0002] Basierend auf den nunmehr weiteren Fortschritt im Bereich der Digitalisierung befinden sich Assistenzsysteme zur Unterstützung von Menschen bei der Ausführung von Kontroll-, Überwachungs-, Steuerungund/oder Regelungsaufgaben mittlerweile in sehr vielen Bereichen. So spielt die Unterstützung von Personen bei solchen Kontrollen, Überwachungs-, Steuerungsund/oder Regelungsaufgaben, kurz Assistenz, durch computergestützte Systeme gerade in der Luft- und Raumfahrt, im Automotive-Bereich sowie im nautischen Bereich aber auch in der Medizin eine große Rolle. So werden beispielsweise mit Hilfe von Lotsenassistenzsystem dem Lotsen Unterstützungsmöglichkeiten gegeben, die in seinem Luftraum vorherrschende Verkehrssituationen bestmöglich zu kontrollieren, zu überwachen, zu steuern und/oder zu regeln.

[0003] Neben der reinen Darstellung der betreffenden Situation, die es durch die Person kurz gesagt zu kontrollieren gilt, werden Assistenzsysteme vermehrt auch dahingehend entwickelt, dass sie zumindest teilweise automatisiert entsprechende Kontroll-, Überwachungs-, Steuerung- und/oder Regelungsaufgaben übernehmen, indem sie Handlungen zur Unterstützung der Person, die für die betreffende Situation verantwortlich ist, ausführen, um so die Person insbesondere von Routineaufgaben freizustellen.

[0004] So ist beispielsweise aus der DE 10 2011 107 934 A1 ein Lotsenassistenzsystem bekannt, welches die zwischen dem Lotsen und einem Piloten gesprochene Sprache und Anweisungen im Hintergrund erfasst und auswertet und dem Lotsen basierend auf diese gesprochenen Anweisungen, die an den Piloten gerichtet sind, entsprechenden Handlungsanweisungen vorschlägt, die der Lotse zur Regelung der Verkehrssituation in seinem Flugraum ausführen kann oder auch nicht. Auch hier übernimmt das Assistenzsystem zumindest einen Teil der Regelungsaufgabe, indem es entsprechende Regelungsvorschläge generiert.

[0005] Der Grad der Automation eines solchen Assistenzsystems ist dabei häufig einstellbar, damit die die Situation zu kontrollierende Person die Automationsweite an seine Bedürfnisse anpassen kann. So ist beispielsweise im Automotive-Bereich bekannt, dass moderne Kraftfahrzeuge neben einem Tempomaten mit Abstandsregelung auch eine Spurhalteassistenz aufweisen, die separat einstellbar sind, wodurch der Fahrer des Kraftfahrzeuges selber entscheiden kann, wie hoch der Automatisierungsgrad für ihn sein soll.

[0006] Es hat sich herausgestellt, dass bei der Durchführung von Kontroll-, Überwachungs-, Steuerung-

und/oder Regelungsaufgaben bzgl. einer Situation das Situationsbewusstsein bzgl. der vorherrschenden Situation durch die betreffende Person relevant ist in Bezug auf den eingestellten Automatisierungsgrad. Das Maß für das Situationsbewusstsein (auch als "situation awareness" bekannt) ist dabei eine Kennzahl die angibt, inwieweit die Person sich seiner Umgebung zutreffend bewusst ist und inwieweit die betreffende Person den Ereignissen, die innerhalb der Situation passieren, rechtzeitig folgen kann.

[0007] Die Korrelation zwischen dem Maß des Situationsbewusstseins und dem Automationsgrad des Assistenzsystems zeigt sich beispielsweise dann, wenn diese beiden auseinanderlaufen. So führt ein niedriges Maß für das Situationsbewusstsein in Verbindung mit einem niedrigen Automationsgrad dazu, dass die Person überfordert ist, was in aller Regel die Wahrscheinlichkeit für Fehlentscheidungen der Person erhöht. Andersherum, bei einem hohen Maß für das Situationsbewusstsein und einem hohen Automationsgrad, ist die betreffende Person schnell unterfordert und langweilt sich, was ebenfalls die Wahrscheinlichkeit für Fehlentscheidungen erhöht. [0008] Ein Problem hierbei ist jedoch, dass das Situationsbewusstsein an sich nicht direkt messbar ist, da es sich in Form eines Modells auf die kognitive Fähigkeit einer Person in Bezug auf eine Situation bezieht. Ein fehlendes oder unzureichendes Situationsbewusstsein äußert sich dabei auch nicht zwangsläufig in sichtbaren Fehlern, Zwischenfällen oder Unfällen. Vielmehr steigt lediglich die Wahrscheinlichkeit, wodurch jedoch anhand der durchgeführten Handlungen einer Person noch nicht zwangsläufig auf ein Maß für das Situationsbewusstsein geschlossen werden kann. Dieser Umstand führt letztendlich dazu, dass das Situationsbewusstsein als ein maßgebender Faktor bei Assistenzsystemen keine Berücksichtigung findet.

[0009] Es ist daher Aufgabe der vorliegenden Erfindung, ein verbessertes Assistenzsystem und ein verbessertes Verfahren hierzu anzugeben, das in der Lage ist, den Automatisierungsgrad optimal an die betreffende Person anzupassen, um so die Wahrscheinlichkeit von Fehlern und Zwischenfällen zu verringern.

[0010] Die Aufgabe wird mit dem Assistenzsystem gemäß Anspruch 1 sowie dem Verfahren gemäß Anspruch 7 erfindungsgemäß gelöst.

[0011] Gemäß Anspruch 1 wird ein Assistenzsystem zur Unterstützung wenigstens einer Person bei der Durchführung einer Kontroll-, Überwachungs-, Steuerung- und/oder Regelungsaufgabe bzgl. einer Situation vorgeschlagen, wobei dem Assistenzsystem mit Hilfe von Sensoren erfasste Zustandsdaten der zu kontrollierenden, zu überwachenden, zu steuernden und/oder zu regelnden Situationen bereitstellbar sind. Derartige Zustandsdaten können beispielsweise mit entfernt angeordneten Sensoren erfasst und dann über eine Schnittstelle an das Assistenzsystem weitergeleitet werden, um so dem Assistenzsystem die entsprechenden Zustandsdaten der Situation bereitstellen zu können. Bei den Sen-

40

25

40

50

55

soren kann es sich dabei um Sensoren handeln, welche den entsprechenden Zustand, insbesondere dem Ist-Zustand der zu kontrollierenden, zu überwachenden, zu steuernden und/oder zu regelnden Situation erfassen können. Dies können beispielsweise radargestützte Sensoren sein, wenn es sich beispielsweise um ein Lotsenassistenzsystem handelt. Denkbar sind aber auch Sensoren, die eine Sprachkommunikation aufnehmen oder anderweitige Aufnahmegeräte beinhalten. Im Sinne der vorliegenden Erfindung sind somit Sensoren all jene technischen Geräte, die den Zustand einer zu kontrollierenden, zu überwachenden, zu steuernden und/oder zu regelnden Situation erfassen können. Der Zustand einer Situation beschreibt dabei einen oder mehrere Eigenschaften der Situation, wie beispielsweise Eigenschaften anderer Verkehrsteilnehmer oder ähnliches.

[0012] Außerdem ist das Assistenzsystem ausgebildet, in Abhängigkeit von einem einstellbaren Automatisierungsgrad des Assistenzsystems zum automatisierten Ausführen von Handlungen zur Unterstützung der Person bei der Durchführung der Kontroll-, Überwachungs-, Steuerung- und/oder Regelungsaufgabe bzgl. der Situation auszuführen, um so die betreffende Person bei ihrer allgemein gesagten Kontrollaufgabe entsprechend assistieren zu können. Je höher der Automatisierungsgrad ist, der aktuell eingestellt ist, desto mehr Handlungen zur Unterstützung der Person bei der Durchführung der Kontroll-, Überwachungs-, Steuerungund/oder Regelungsaufgabe werden von dem Assistenzsystem automatisiert ausgeführt. Bei einem sehr geringem Automatisierungsgrad kann sich das automatisierte Ausführen von Handlungen beispielsweise darin erschöpfen, dass lediglich Vorschläge für Handlungen angezeigt oder kritische Situationen dargestellt werden. Bei einem mittleren Automatisierungsgrad werden dann zumindest teilweise entsprechende Handlungen ausgeführt, die sich direkt auf die Situation beziehen und die Veränderungen an der momentanen Situation bewirken können. Bei einem hohen Automatisierungsgrad bis einschließlich zur Vollautomatisierung werden dann nahezu alle Kontroll-, Überwachungs-, Steuerung- und/oder Regelungsaufgaben von dem Assistenzsystem unternommen, wodurch es dann von der betreffenden Person keine manuellen Eingriffe mehr bedarf.

[0013] Erfindungsgemäß ist nun vorgesehen, dass das Assistenzsystem ein Evaluationsmodul hat, mit dem ein Maß für das Situationsbewusstsein ermittelt werden kann. Das Maß für das Situationsbewusstsein ist dabei eine Kennzahl, die sich auf das Situationsbewusstsein bezieht und die sich aus Handlungen der betreffenden Person ableiten lässt. Im einfachsten Fall kann das Maß für das Situationsbewusstsein zwei- oder dreistufig sein, wobei bei einem dreistufigen System ein niedriges Maß, ein mittleres Maß und ein hohes Maß für das Situationsbewusstsein angehbar ist.

[0014] Das Maß für das Situationsbewusstsein wird dabei anhand von automatisch generierten Fragen, die der betreffenden Person präsentiert und beantwortet

werden, automatisch ermittelt, wobei die von der Person eingegebenen Antworten mit korrekten Antworten verglichen und basierend aus diesem Vergleich dann das Maß für das Situationsbewusstsein abgeleitet wird.

[0015] Hierfür ist das Evaluationsmodul eingerichtet, eine oder mehrere Fragen bezogen auf die durch die Person zu kontrollierende, zu überwachende, zu steuernde und/oder zu regelnde Situation in Abhängigkeit von zumindest einem Teil der bereitgestellten Zustandsdaten der Situation zu generieren und der Person optisch und/oder akustisch zu präsentieren. Die generierten und präsentierten Fragen werden dabei basierend auf den aktuellen Zustandsdaten der Situation erzeugt, sodass die Fragen einen direkten Bezug zu dem aktuellen Zustand der Situation haben. Die Beantwortung der Fragen bezieht sich somit direkt auf den Zustand der Situation, sodass aus der Beantwortung der Fragen abgeleitet werden kann, wie hoch der Zustand des Situationsbewusstseins bei der betreffenden Person ist.

[0016] Da die Fragen automatisch basierend auf dem aktuellen Zustand bzw. den Zustandsdaten der Situation generiert werden, müssen auch die Antworten, die sich auf diese Fragen beziehen, aus den aktuellen Zustandsdaten der Situation abgeleitet werden. Auch dies geschieht mit Hilfe des Evaluationsmoduls, sodass basierend auf jeder generierten Frage die entsprechend korrekte Antwort vorliegt.

[0017] Nachdem nun die betreffende Person die präsentierten Antworten in Form einer Eingabe in das Assistenzsystem beantwortet hat, können die Antworten der Person mit den automatisch generierten Antworten des Systems verglichen werden, wobei dann in Abhängigkeit ab des Vergleiches ein Maß für das Situationsbewusstsein ermittelt werden kann.

[0018] Im einfachsten Fall kann dies beispielsweise dadurch geschehen, dass der Person drei automatisch generierte Fragen präsentiert werden, die von ihr beantwortet werden müssen. Werden alle drei Fragen richtig beantwortet, so kann von einem hohen Situationsbewusstsein ausgegangen werden. Das Maß für das Situationsbewusstsein, d.h. die Kennzahl, wird dann auf den höchsten Wert gesetzt. Werden indes jedoch nur Fragen richtig beantwortet, so wird von einem mittleren Situationsbewusstsein ausgegangen. Auch hier wird die Kennzahl entsprechend für das mittlere Maß des Situationsbewusstseins festgelegt. Wird nur eine oder gar keine Frage richtig beantwortet, so muss von einem schwachen Situationsbewusstsein ausgegangen werden.

[0019] Das Assistenzsystem ist nun ausgebildet, basierend auf dem Maß für das Situationsbewusstsein, das von dem Evaluationsmodul festgelegt wurde, dann den Automatisierungsgrad des Assistenzsystems einzustellen, um so das Assistenzsystem so einzustellen, dass es die betreffende Person bestmöglich unterstützt.

[0020] Dadurch wird es erstmals möglich, den Automatisierungsgrad eines Assistenzsystems automatisiert an das Situationsbewusstsein zu koppeln, sodass je nach Maß des Situationsbewusstseins der Automatisie-

40

rungsgrad automatisch für das Assistenzsystem eingestellt wird.

[0021] Vorteilhafterweise wird dabei das Generieren und Präsentieren der Fragen zyklisch wiederholt, sodass in vorgegeben definierten Zeitabständen oder in zufällig gewählten Zeitabständen immer wieder der Prozess der Evaluation des Maßes für das Situationsbewusstsein und des daran anschließend automatischen Einstellens des Automatisierungsgrades durchgeführt wird. Dabei ist es besonders vorteilhaft, wenn das Assistenzsystem ausgebildet ist, basieren auf einer Änderung des Zustandes der Situation, die sich aus den Zustandsdaten ableiten lässt, den Prozess der Evaluation des Maßes für das Situationsbewusstsein in Gang zu setzen.

[0022] In einer weiteren vorteilhaften Ausführungsform wird die Zeit zwischen dem Präsentieren der automatisch generierten Fragen und der Beantwortung der Fragen durch die Person gemessen, wobei das Maß für das Situationsbewusstsein weiterhin in Abhängigkeit von der gemessen Zeit ermittelt wird. So ist es beispielweise vorstellbar, dass zwar alle Fragen richtig beantwortet werden, die Beantwortung der Fragen aber längere Zeit in Anspruch nimmt, was darauf schließen lässt, dass das Situationsbewusstsein nicht ganz so hoch ist, wie es auf den ersten Blick scheint. Werden die Fragen jedoch sehr zügig und schnell beantwortet, so ist dies ein Zeichen dafür, dass die betreffende Person über ein hohes Maß an Situationsbewusstsein verfügt, da die Antworten in diesem Fall kognitiv direkt verfügbar sind und die Person weder lange darüber nachdenken noch zunächst dann noch suchen muss.

[0023] Vorteilhafterweise ist das Assistenzsystem eingerichtet, bei einer Verringerung des Maßes für das Situationsbewusstsein gegenüber einem zuvor ermittelten Maß den aktuell eingestellten Automatisierungsgrad zu erhöhen und/oder bei einer Erhöhung des Maßes für das Situationsbewusstsein gegenüber einem zuvor ermittelten Maß den aktuell eingestellten Automatisierungsgrad zu verringern. Dies gilt selbstverständlich nur, wenn nicht bereits der höchste bzw. niedrigste Automatisierungsgrad eingestellt ist, sodass eine Erhöhung bzw. Erniedrigung des Automatisierungsgrades nicht mehr möglich wäre.

[0024] In einer weiteren vorteilhaften Ausführungsform handelt es sich bei den generierten Fragen um Multiple Choice Fragen. Denkbar sind aber auch offene Fragen, die eine direkte Antwort durch Eingabe von Daten erfordern.

[0025] In einer weiteren vorteilhaften Ausführungsform sind in dem Evaluationsmodul eine Mehrzahl von Fragen in generischer Form hinterlegt, die an entsprechenden Stellen Platzhalter aufweisen, die dann mit den entsprechenden Daten aus den Zustandsdaten der Situation befüllt werden. Das Evaluationsmodul ist nun eingerichtet, aus dieser Mehrzahl von vorgegebenen Fragen eine gewissen Anzahl von Fragen auszuwählen und die entsprechenden Platzhalter innerhalb der Fragen mit den entsprechenden Daten aus den Zustandsdaten der

Situation zu befüllen, um die so ausgewählten und mit Daten befüllten Fragen dann der Person zu präsentieren. [0026] In einer weiteren vorteilhaften Ausführungsform handelt es sich bei dem Assistenzsystem um ein Lotsen Assistenzsystem, das einen Lotsen bei seiner Kontroll-, Überwachungs-, Steuerungs- und/oder Regelungsaufgabe unterstützen soll. Hierbei kann es sich beispielsweise um ein Fluglotsenassistenzsystem handeln, das einen Fluglotsen bei seiner Kontroll-, Überwachungs-, Steuerungs- und/oder Regelungsaufgabe zu unterstützen. Denkbar ist aber auch, dass es sich um einen Schiffslotsenassistenzsystem handelt, mit dem Schiffe bei ihrer Fahrt durch den Losten unterstützt werden sollen, beispielweise bei der Einfahrt in einen Hafen. [0027] Die Erfindung wird anhand der beigefügten Figuren beispielhaft erläutert. Es zeigen:

Figur 1 - schematische Darstellung des Assistenzsystems bzgl. einer fiktiven Situation;

Figur 2 - Flussdiagramm eines Ausführungsbeispiels.

[0028] Figur 1 zeigt schematisch in einem Ausführungsbeispiel das Assistenzsystems 1, das eine Recheneinheit 2 sowie ein Präsentationsmittel in Form eines Bildschirms 3 aufweist. Der Bildschirm 3 ist im Ausführungsbeispiel der Figur 1 nur beispielhaft näher gezeigt und kann durch verschiedenste Formen der Präsentation ersetzt werden.

[0029] Die Recheneinheit 2 des Assistenzsystems 1 steht dabei mit einer Mehrzahl von Sensoren mittelbar oder unmittelbar in Verbindung, um so Zustandsdaten des Zustandes einer zu kontrollierenden, zu überwachenden, zu steuernden und/oder zu regelnden Situation 5 erfassen zu können.

[0030] Im Ausführungsbeispiel der Figur 1 handelt es sich bei der Situation 5 um eine Luftverkehrssituation, die durch eine Person 6 in Form eines Lotsen kontrolliert, überwacht, gesteuert und geregelt werden soll. Innerhalb der Situation 5 befinden sich im Ausführungsbeispiel der Figur 1 zwei Verkehrsflugzeuge F₁, F₂, die sich in dem vom Lotsen 6 zu kontrollierenden Luftraum befinden und somit Bestandteil der Situation 5 sind. Mit Hilfe der Sensoren 4 lassen sich dabei Zustandsdaten der Situation 5 erfassen, wie beispielsweise Flughöhe, Flugrichtung aber auch Wetterinformationen und dergleichen. Bei den Sensoren 4 kann es sich somit um aktive oder passive Radarsysteme handeln, um Funksysteme zum Mithören des Funks und ähnlichem.

[0031] Die Recheneinheit 2 weist des Weiteren ein Evaluationsmodul 7 auf, um ein Maß für das Situationsbewusstsein des Lotsen 6 ermitteln zu können. Hierfür werden automatisch Fragen bzgl. der Situation 5 generiert und auf dem Bildschirm 3 dem Lotsen 6 präsentiert.
 [0032] Im Ausführungsbeispiel der Figur 1 in Bezug auf einen Fluglotsen kann es sich bei den Fragen beispielsweise um Fragen in Bezug zu den beiden Flugzeugen F₁ und F₂ handeln, wie beispielsweise: "Welche Hö-

35

40

45

50

he hat Flugzeug F_1 ?" oder "Welche Orientierung (heading) hat Flugzeug F_2 ?".

[0033] Diese Fragen werden nun dem Lotsen 6 auf dem Bildschirm 3 in Form eines Fragenkataloges 8 bereitgestellt, sodass der Lotse 6 die Fragen des Fragenkataloges 8 visuell wahrnehmen kann. Durch entsprechende Eingabe mittels eines Eingabegerätes (Tastatur, Sprache) kann der Lotse 6 nun diese Fragen des Fragenkataloges 8 beantworten, was dann zurück an das Evaluationsmodul 7 gesendet wird.

[0034] Das Evaluationsmodul 7 kann nun die von dem Lotsen 6 eingegebenen Antworten mit seinen bzgl. der präsentierten Fragen 8 automatisch generierten Antworten vergleichen und feststellen, ob der Lotse 6 die Fragen richtig oder falsch beantwortet hat. Je nach Ausgang des Vergleiches erzeugt das Evaluationsmodul ein Maß für das Situationsbewusstsein des Lotsen 6 bzgl. der Situation 5, sodass das Assistenzsystem 1 dann den Automatisierungsgrad basierend auf dem festgestellten Maß für das Situationsbewusstsein einstellt.

[0035] In Figur 2 ist hierzu ein Flussdiagramm dargestellt. Zu Anfang wird die laufende Situation in Schritt S_1 erfasst und analysiert. Basierend darauf wird dann im Schritt S_2 ein Fragenkatalog generiert und der entsprechenden Person angezeigt, sodass diese entsprechende Antworten eingeben kann.

[0036] Die Antworten der Person werden dann im Schritt S_3 mit den automatisch generierten Antworten basierend auf den Zustandsdaten des Systems verglichen und ein Maß für das Situationsbewusstsein der Person generiert. Anschließend wird im Schritt S_4 das Maß des Situationsbewusstseins mit einem vorher ermittelten Maß des Situationsbewusstseins verglichen und in Abhängigkeit des Vergleiches dann der Automatisierungsgrad des Assistenzsystems eingestellt.

[0037] Ist das Maß des Situationsbewusstseins im Vergleich zu einem vorhergehenden Maß für das Situationsbewusstsein gleichbleibend, so wird nichts an der Einstellung des Assistenzsystems verändert und der Prozess kann nach einer Weile erneut beginnen. Ist das Maß für das Situationsbewusstsein niedriger als im Verhältnis zu einem vorhergehenden Maß des Situationsbewusstseins, so wird ausgehend von Schritt \mathbf{S}_4 zum Schritt \mathbf{S}_5 verzweigt und der Automatisierungsgrad des Assistenzsystems erhöht.

[0038] Ist hingegen das Maß des Situationsbewusstseins höher als zu einem vorhergehenden Maß, so wird zu einem Schritt S_6 verzweigt, wo der Automatisierungsgrad des Assistenzsystems verringert wird. In beiden Fällen, S_5 und S_6 wird wieder zum Ausgang S_1 verzweigt, sodass der Prozess nach einer gewissen Zeit erneut beginnen kann.

[0039] Somit wird es möglich, das Assistenzsystem immer optimal an die kognitive Leistungsfähigkeit der Person anzupassen und so die Person bestmöglich zu unterstützen.

Bezugszeichenliste:

[0040]

- Assistenzsystem
 - 2 Recheneinheit
- 3 Bildschirm
- 4 Sensoren
- 5 Situation
- 15 6 Person
 - 7 Evaluationsmodul
 - 8 Fragen bzw. Fragenkatalog
 - F₁ erstes Flugzeug
 - F₂ zweites Flugzeug
- ²⁵ S₁ bis S₆ Verfahrensschritte

Patentansprüche

Assistenzsystem (1) zur Unterstützung wenigstens einer Person (6) bei der Durchführung einer Kontroll-, Überwachungs-, Steuerungs- und/oder Regelungsaufgabe bzgl. einer Situation (5), wobei dem Assistenzsystem (1) mit Hilfe von Sensoren (4) erfasste Zustandsdaten der zu kontrollierenden, zu überwachenden, zu steuernden und/oder zu regelnden Situation (5) bereitstellbar sind und das Assistenzsystem (1) in Abhängigkeit von einem einstellbaren Automatisierungsgrad des Assistenzsystems (1) zum automatisierten Ausführen von Handlungen zur Unterstützung der Person (6) bei der Durchführung der Kontroll-, Überwachungs-, Steuerungsund/oder Regelungsaufgabe bzgl. der Situation (5) eingerichtet ist, dadurch gekennzeichnet, dass das Assistenzsystem (1) ein Evaluationsmodul (7) hat, das eingerichtet ist, eine oder mehrere Fragen (8) bezogen auf die durch die Person (6) zu kontrollierende, zu überwachende, zu steuernde und/oder zu regelnde Situation (5) in Abhängigkeit von zumindest einem Teil der bereitgestellten Zustandsdaten der Situation (5) zu generieren und der Person (6) optisch und/oder akustisch zu präsentieren, wobei Antworten auf die präsentierte Frage (8) oder Fragen (8) durch die Person (6) mittels des Assistenzsystems (1) durch die Person (6) eingebbar sind und das Evaluationsmodul (7) weiterhin eingerichtet ist, automatisch in Abhängigkeit von den bereitgestellten Zustandsdaten der Situation (5) die korrekten

20

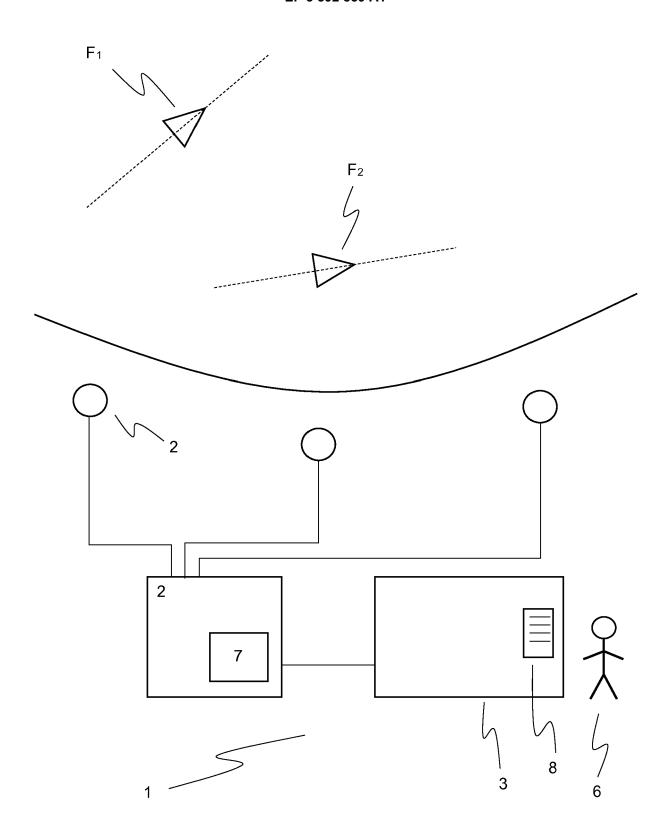
25

30

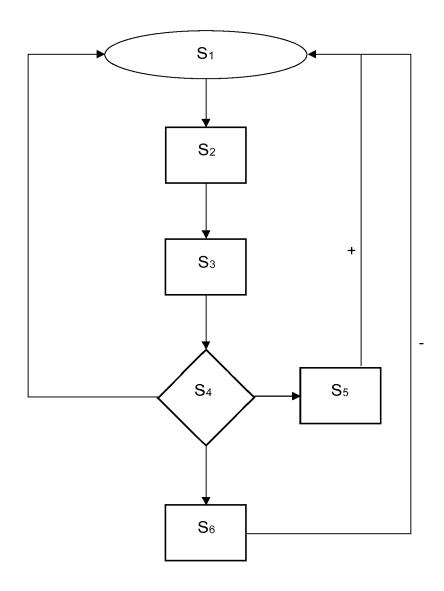
35

40

45


50

Antworten auf die präsentierten Fragen (8) zu ermitteln und die automatisch ermittelten Antworten mit den durch die Person (6) eingegebenen Antworten zu vergleichen und in Abhängigkeit von dem Vergleich dann ein Maß für das Situationsbewusstsein der entsprechenden Person (6) bezüglich der zu kontrollierenden, zu überwachenden, zu steuernden und/oder zu regelnden Situation (5) zu ermitteln, wobei das Assistenzsystem (1) eingerichtet ist, in Abhängigkeit von dem ermittelten Maß für das Situationsbewusstsein den Automatisierungsgrad des Assistenzsystems (1) einzustellen.


- Assistenzsystem (1) nach Anspruch 1, dadurch gekennzeichnet, dass das Evaluationsmodul (7) eingerichtet ist, die Zeit zwischen dem Präsentieren der Frage (8) oder Fragen (8) und der Eingabe der Antwort oder Antworten durch die Person (6) zu messen und das Maß für das Situationsbewusstsein weiterhin in Abhängigkeit von der gemessenen Zeit zu ermitteln.
- 3. Assistenzsystem (1) nach Anspruch 1 oder 2, dadurch gekennzeichnet, dass das Assistenzsystem (1) eingerichtet ist, bei einer Verringerung des Maßes für das Situationsbewusstsein gegenüber einem zuvor ermittelten Maß den aktuell eingestellten Automatisierungsgrad zu erhöhen und/oder bei einer Erhöhung des Maßes für das Situationsbewusstsein gegenüber einem zuvor ermittelten Maß den aktuell eingestellten Automatisierungsgrad zu verringern.
- Assistenzsystem (1) nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass die generierten Fragen (8) Multiple-Choice-Fragen sind.
- 5. Assistenzsystem (1) nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass das Evaluationsmodul (7) eingerichtet ist, die zu präsentierenden Fragen (8) aus einer Mehrzahl von vorgegebenen Fragen (8) auszuwählen und die in den ausgewählten Fragen (8) enthaltenen Platzhalter durch entsprechende Zustandsdaten der Situation (5), die bereitgestellt worden, zu ergänzen.
- Assistenzsystem (1) nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass das Assistenzsystem (1) ein Lotsenassistenzsystem ist.
- 7. Verfahren zur Unterstützung wenigstens einer Person (6) bei der Durchführung einer Kontroll-, Überwachungs-, Steuerungs- und/oder Regelungsaufgabe mittels eines Assistenzsystems (1), wobei mit Hilfe von Sensoren (4) erfasste Zustandsdaten einer zu kontrollierenden, zu überwachenden, zu steuernden und/oder zu regelnden Situation (5) dem Assis-

tenzsystem (1) bereitgestellt werden, und wobei in Abhängigkeit von einem einstellbaren Automatisierungsgrad des Assistenzsystems (1) entsprechende Handlungen zur Unterstützung der Person (6) bei der Durchführung der Kontroll-, Überwachungs-, Steuerungs- und/oder Regelungsaufgabe durch das Assistenzsystem (1) automatisiert ausgeführt werden, dadurch gekennzeichnet, dass mittels eines Evaluationsmoduls des Assistenzsystems (1) eine oder mehrere Fragen (8) bezogen auf die durch die Person (6) zu kontrollierende, zu überwachende, zu steuernde und/oder zu regelnde Situation (5) in Abhängigkeit von zumindest einem Teil der bereitgestellten Zustandsdaten der Situation (5) generiert und der Person (6) optisch und/oder akustisch präsentiert werden, wobei automatisch in Abhängigkeit von den bereitgestellten Zustandsdaten der Situation (5) die korrekten Antworten auf die präsentierten Fragen (8) ermittelt, die automatisch ermittelten Antworten mit den durch die Person (6) eingegebenen Antworten verglichen und in Abhängigkeit von dem Vergleich dann ein Maß für das Situationsbewusstsein der entsprechenden Person (6) bezüglich der zu kontrollierende, zu überwachende, zu steuernde und/oder zu regelnde Situation (5) durch das Evaluationsmodul (7) ermittelt wird, wobei in Abhängigkeit von dem Maß für das Situationsbewusstsein dann der Automatisierungsgrad des Assistenzsystems durch das Assistenzsystem eingestellt wird.

- 8. Verfahren nach Anspruch 7, dadurch gekennzeichnet, dass mittels des Evaluationsmoduls (7) die Zeit zwischen dem Präsentieren der Frage (8) oder Fragen (8) und der Eingabe der Antwort oder Antworten durch die Person (6) gemessen und das Maß für das Situationsbewusstsein weiterhin in Abhängigkeit von der gemessenen Zeit ermittelt wird.
- 9. Verfahren nach Anspruch 7 oder 8, dadurch gekennzeichnet, dass mittels des Assistenzsystems (1) bei einer Verringerung des Maßes für das Situationsbewusstsein gegenüber einem zuvor ermittelten Maß der aktuell eingestellte Automatisierungsgrad erhöht und/oder bei einer Erhöhung des Maßes für das Situationsbewusstsein gegenüber einem zuvor ermittelten Maß der aktuell eingestellte Automatisierungsgrad verringert wird.
- 10. Verfahren nach einem der Ansprüche 7 bis 9, dadurch gekennzeichnet, dass mittels des Evaluationsmoduls (7) die zu präsentierende Frage oder Fragen (8) aus einer Mehrzahl von vorgegebenen Fragen (8) ausgewählt und die in der ausgewählten Frage oder Fragen (8) enthaltenen Platzhalter durch entsprechende Zustandsdaten der Situation (5), die bereitgestellt worden, ergänzt werden.

Figur 1

Figur 2

Kategorie

Χ

EUROPÄISCHER RECHERCHENBERICHT

EINSCHLÄGIGE DOKUMENTE

DE 10 2012 215397 A1 (BOSCH GMBH ROBERT

[DE]) 6. März 2014 (2014-03-06)

* Absätze [0001], [0008] - [0013],
[0015], [0029], [0035], [0038] - [0043]

der maßgeblichen Teile

Kennzeichnung des Dokuments mit Angabe, soweit erforderlich,

Nummer der Anmeldung

EP 18 16 5118

KLASSIFIKATION DER ANMELDUNG (IPC)

RECHERCHIERTE SACHGEBIETE (IPC)

G08G B60W

INV.

G08G5/00

1-10

5

10

15

20

25

30

35

40

45

50

55

1	Der vorliegende Recherchenbericht wurde für alle Patentansprüche erstellt				
		Recherchenort	Abschlußdatum der Recherche		
(003)		Den Haag	11. September		

er 2018 Fagundes-Peters, D

Prüfer

T : der Erfindung zugrunde liegende Theorien oder Grundsätze
 E : älteres Patentdokument, das jedoch erst am oder
 nach dem Anmeldedatum veröffentlicht worden ist
 D : in der Anmeldung angeführtes Dokument
 L : aus anderen Gründen angeführtes Dokument

& : Mitglied der gleichen Patentfamilie, übereinstimmendes Dokument

KATEGORIE DER GENANNTEN DOKUMENTE

EPO FORM 1503 03.82 (P04

X : von besonderer Bedeutung allein betrachtet Y : von besonderer Bedeutung in Verbindung mit einer anderen Veröffentlichung derselben Kategorie A : technologischer Hintergrund O : nichtschriftliche Offenbarung P : Zwischenliteratur

EP 3 392 859 A1

ANHANG ZUM EUROPÄISCHEN RECHERCHENBERICHT ÜBER DIE EUROPÄISCHE PATENTANMELDUNG NR.

5

10

15

20

25

30

35

40

45

50

55

EP 18 16 5118

In diesem Anhang sind die Mitglieder der Patentfamilien der im obengenannten europäischen Recherchenbericht angeführten Patentdokumente angegeben.

Patentdokumente angegeben.
Die Angaben über die Familienmitglieder entsprechen dem Stand der Datei des Europäischen Patentamts am Diese Angaben dienen nur zur Unterrichtung und erfolgen ohne Gewähr.

11-09-2018

	lm Recherchenbericht angeführtes Patentdokument	Datum der Veröffentlichung	Mitglied(er) der Patentfamilie	Datum der Veröffentlichung
	DE 102012215397 A1	06-03-2014	CN 103661396 A DE 102012215397 A1 FR 2994926 A1 JP 6315923 B2 JP 2014049138 A US 2014091917 A1	26-03-2014 06-03-2014 07-03-2014 25-04-2018 17-03-2014 03-04-2014
EPO FORM P0461				
岀				

Für nähere Einzelheiten zu diesem Anhang : siehe Amtsblatt des Europäischen Patentamts, Nr.12/82

EP 3 392 859 A1

IN DER BESCHREIBUNG AUFGEFÜHRTE DOKUMENTE

Diese Liste der vom Anmelder aufgeführten Dokumente wurde ausschließlich zur Information des Lesers aufgenommen und ist nicht Bestandteil des europäischen Patentdokumentes. Sie wurde mit größter Sorgfalt zusammengestellt; das EPA übernimmt jedoch keinerlei Haftung für etwaige Fehler oder Auslassungen.

In der Beschreibung aufgeführte Patentdokumente

• DE 102011107934 A1 [0004]