BACKGROUND
[0001] The present disclosure relates to battery cell balancing using duty ratio control,
and more particularly, to a battery cell balancing method and system with improved
accuracy and efficiency by detecting a temperature of a resistance caused by a current
flowing in a battery cell during battery cell balancing, calculating a duty ratio
of the battery cell balancing according thereto, and detecting a voltage of the battery
cell when a predetermined time elapses after the cell balancing operation.
[0002] A battery pack, which is generally mounted in a device requiring a rechargeable electric
storage device, such as an energy storage device, an electric vehicle, a portable
electronic device, etc., includes a plurality of battery cells connected in series
or in parallel. When the battery pack including the plurality of battery cells is
discharged, a difference in the charging state of each cell occurs over time due to
the difference in the self-discharge rate of each cell. If the discharging of the
battery pack continues in such an unbalanced charging state, a specific cell with
a low charging state is overdischarged, so that a stable operation of the battery
pack becomes difficult. Also, when a specific battery cell is overcharged during a
charging process, this interferes with the stable operation of the battery pack.
[0003] Overcharging or overdischarging of a specific battery cell occurring in such a way
reduces the capacity of the battery pack and also deteriorates the battery pack and
shortens the service life.
[0004] Therefore, as a method for efficiently managing the battery pack, battery cell balancing,
which adjusts a voltage difference between each of battery cells constituting the
battery pack to be within or identical to a predetermined allowable range, should
be essentially performed.
[0005] Conventionally, balancing between battery cells has been performed through a method
of selecting a balancing target cell and balancing it for a predetermined time when
a change in the open voltage of the battery cell with respect to the charging state
of the battery cell is equal to or greater than a reference value, a method of determining
completion of the balancing operation by monitoring the voltage of each battery cell
in real time during the balancing control operation of the battery cell, and a method
of measuring the voltage of each battery cell and setting one of the measured voltages
as a balancing reference voltage to perform balancing by charging/discharging according
to a reference voltage.
[0006] However, in the conventional methods, there is a problem of resistance heat due to
the continuous current flowing during battery cell balancing, and since the time required
until the voltage detection time after the battery cell balancing is constant regardless
of the size of the current flowing during cell balancing, the accuracy and efficiency
of cell balancing are reduced.
SUMMARY
[0007] The present disclosure provides a battery cell balancing method for minimizing a
heat generation issue due to a resistance, which is caused by a current flowing during
cell balancing and controlling a time to a voltage detection time point after the
cell balancing in order to improve efficiency.
[0008] In accordance with an exemplary embodiment, provided is a battery cell balancing
system for balancing a voltage of at least two battery cells included in a battery
pack, the system includes: a battery pack including two or more battery cells; and
a battery management unit configured to control battery cell balancing, wherein the
battery management unit includes: a cell balancing operation control unit configured
to determine whether a battery cell balancing operation condition is satisfied and
apply an on/off signal to a cell balancing control FET to control a cell balancing
operation; a cell balancing current calculation unit configured to measure the size
of a cell balancing current during the cell balancing operation; a cell balancing
resistance temperature calculation unit configured to calculate a temperature of a
cell balancing resistance generated by the cell balancing current flowing during the
cell balancing operation; a duty ratio calculation unit configured to calculate a
duty ratio with respect to an on/off period of the cell balancing control FET according
to the calculated temperature value of the cell balancing resistance; and a voltage
detection unit configured to detect a voltage of the battery cells.
[0009] The duty ratio calculation unit may detect a temperature section to which the temperature
value of the resistance calculated by the cell balancing resistance temperature calculation
unit belongs and calculate a duty ratio with respect to an on/off signal of the cell
balancing control FET corresponding to the detected temperature section to provide
the duty ratio to the cell balancing operation control unit.
[0010] The voltage detection unit may include: a cell detection unit configured to calculate
a deviation of the voltage of the battery cells and determine that battery cell balancing
is required when at least one of the voltage deviations of each of the battery cells
is equal to or greater than a predetermined reference value to detect a cell that
requires balancing; and a cell balancing voltage detection unit configured to detect
a voltage of a cell to which the cell balancing is applied after the cell balancing
control FET is turned off, and compare the voltage with a predetermined reference
value to determine whether the cell balancing is successful or not.
[0011] After the cell balancing control FET is turned off, when a predetermined time elapses,
the cell balancing voltage detection unit may operate.
[0012] The cell balancing operation control unit may control the cell balancing control
FET with an on/off control signal having a predetermined duty ratio at the start of
the cell balancing and then control the on/off of the cell balancing control FET with
a duty ratio calculated according to a temperature of a resistance generated when
the cell balancing operates.
[0013] In accordance with another exemplary embodiment, provided is a battery cell balancing
method for balancing a voltage of at least two battery cells included in a battery
pack. The method includes: a cell balancing operation determination operation of determining
whether a battery cell balancing operation condition is satisfied and controlling
a cell balancing operation by applying an on/off signal to the cell balancing control
FET according to the determination result; a cell balancing current calculating operation
of measuring and calculating the size of a cell balancing current during the cell
balancing operation; a cell balancing resistance temperature calculation operation
of calculating a temperature of a cell balancing resistance generated by the cell
balancing current during the cell balancing operation; a duty ratio calculation operation
of calculating a duty ratio with respect to an on/off period of the cell balancing
control FET according to the calculated temperature value of the cell balancing resistance;
a cell balancing operation of applying an on/off signal to the cell balancing control
FET according to the calculated duty ratio to operate cell balancing; and a voltage
detection operation of detecting a voltage of the battery cells.
[0014] The duty ratio calculation operation may detect a temperature section to which the
temperature value of the resistance calculated in the cell balancing resistance temperature
calculation operation and calculate a duty ratio with respect to an on/off period
of the cell balancing control FET corresponding to the detected temperature section.
[0015] The voltage detection operation may detect a voltage of a cell to which the balancing
is applied when a predetermined time elapses after the cell balancing control FET
is turned off, and compare the voltage with a predetermined reference value to determine
whether the cell balancing is successful or not.
[0016] The cell balancing operation determination operation may control the on/off the cell
balancing control FET with an on/off control signal having a predetermined duty ratio
at the start of the cell balancing operation and then apply an on/off signal according
to an on/off duty ratio calculated in the duty ratio calculation operation.
BRIEF DESCRIPTION OF THE DRAWINGS
[0017] Exemplary embodiments can be understood in more detail from the following description
taken in conjunction with the accompanying drawings, in which:
FIG. 1 is a circuit diagram illustrating a an embodiment of a configuration of the
present invention;
FIG. 2 is an overall system block diagram of the present invention;
FIG. 3 is a diagram illustrating operations according to the present invention; and
FIG. 4 is a comparative example according to overall operations of cell balancing.
DETAILED DESCRIPTION OF EMBODIMENTS
[0018] Hereinafter, embodiments of the present invention will be described in detail with
reference to the accompanying drawings so that those skilled in the art can easily
carry out the present invention. The present invention may, however, be embodied in
different forms and should not be constructed as limited to the embodiments set forth
herein. Parts not relating to description are omitted in the drawings in order to
clearly describe the present invention and like reference numerals refer to like elements
throughout.
[0019] Throughout the specification, when a portion is referred to as being "connected"
to another portion, it includes not only "directly connected" but also "electrically
connected" with another element therebetween. Furthermore, when it is described that
one comprises (or includes or has) some elements, it should be understood that it
may comprise (or include or has) only those elements, or it may comprise (or include
or have) other elements as well as those elements if there is no specific limitation.
The term "∼ing operation" or "operation of ∼ing" used throughout the specification
does not mean "operation for ∼ing".
[0020] A battery cell balancing method for balancing a voltage of at least two battery cells
included in a battery pack includes: a cell balancing operation determination operation
of determining whether a battery cell balancing operation condition is satisfied and
controlling a cell balancing operation by applying an on/off signal to the cell balancing
control FET according to the determination result; a cell balancing current calculating
operation of measuring and calculating the size of a cell balancing current during
the cell balancing operation; a cell balancing resistance temperature calculation
operation of calculating a temperature of a cell balancing resistance generated by
the cell balancing current during the cell balancing operation; a duty ratio calculation
operation of calculating a duty ratio with respect to an on/off period of the cell
balancing control FET according to the calculated temperature value of the cell balancing
resistance; a cell balancing operation of applying an on/off signal to the cell balancing
control FET according to the calculated duty ratio to operate cell balancing; and
a voltage detection operation of detecting a voltage of the battery cells.
[0021] The duty ratio referred to in the present invention means the ratio of the time when
the on/off signal of the cell balancing control FET is applied
[0022] Prior to the detailed description, the configuration of the present invention will
be described with reference to FIG. 1.
[0023] Referring to the circuit diagram of FIG. 1, the portion denoted by A is a cell balancing
control FET mentioned in the present invention. A current for cell balancing may flow
or be cut off according to on/off of the cell balancing control FET.
[0024] The cell balancing current mentioned in the present invention is the current flowing
during a cell balancing operation. For example, the call balancing current refers
to the current flowing between the a-b terminals after the cell balancing control
FET is turned on.
[0025] In addition, the cell balancing resistance mentioned in the present invention is
a resistance formed in a section where the cell balancing current flows during a cell
balancing operation. For example, it may be R21 and R20 between the a-b terminals
in FIG. 1.
[0026] Therefore, the present invention may control the on/off period of the cell balancing
control FET according to the temperature of the cell balancing resistance generated
by the cell balancing current.
[0027] Hereinafter, the present invention will be described in detail with reference to
the remaining drawings.
[0028] FIG. 2 is a block diagram showing the overall system configuration according to the
present invention.
[0029] Referring to FIG. 2, a system for cell balancing of a battery according to the present
invention includes a battery pack 100 and a battery management unit 200.
[0030] The battery pack 100 may include at least two battery cells 110 connected in series
and in parallel.
[0031] The battery management unit 200 for controlling the balancing of the battery cells
110 constituting the battery pack 100 includes a cell balancing operation control
unit 210, a cell balancing current calculation unit 220, a cell balancing resistance
temperature calculation 230, a duty ratio calculation unit 240, and a voltage detection
unit 250. The voltage detection unit 250 may include a cell detection unit 251 and
a cell balancing voltage detection unit 252.
[0032] The cell balancing operation control unit 210 may determines whether the operation
condition of balancing the battery cell 110 is satisfied and control the cell balancing
operation by applying an on/off signal to the cell balancing control FET according
to the determination result.
[0033] The cell balancing operation control unit 210 may control the cell balancing control
FET to turn on/off with an on/off control signal having a predetermined duty ratio
at the start of the cell balancing operation and then, perform a control by applying
an on/off signal to the cell balancing control FET according to the duty ratio calculated
by the unit 240.
[0034] Determining whether the cell balancing operation condition is satisfied may include
determining whether to operate by using information about a cell that requires balancing
provided by the cell detection unit 251.
[0035] The cell detection unit 251 will be described in detail while describing the voltage
detection unit 250.
[0036] Furthermore, the cell balancing operation control unit 210 may be configured to include
various elements generally used as a cell balancing operation condition, including
a state of a current flowing during a cell balancing operation calculated by the cell
balancing current calculation unit 220 in addition to information provided by the
cell detection unit 251.
[0037] The cell balancing current calculation unit 220 may measure and calculate the size
of the cell balancing current flowing during the cell balancing operation. The method
of calculating the size of the current is calculated by using a generally used formula
of current=voltage/resistance.
[0038] In addition, the cell balancing current calculation unit 220 may detect the state
of a current flowing during the cell balancing operation and provide the detected
state to the cell balancing operation control unit 210.
[0039] A method of calculating a current flowing during the cell balancing operation includes
measuring a potential difference across the cell 110 by connecting a current sensing
resistor connected in series to the battery cell 110. By using the measured potential
difference, a direction in which the current flows in the battery cell 110 may be
obtained to detect current charging or discharging, or a state in which current does
not flow.
[0040] The current sensing resistor is a resistor having an extremely low resistance used
for checking what degree current flows in a specific portion of a circuit and since
the resistance value is very low, the flow of current is not significantly disturbed,
so that the amount of current in the battery cell 110 may be measured.
[0041] The cell balancing resistance temperature calculation unit 230 may calculate the
temperature value of the cell balancing resistance generated by the cell balancing
current flowing during the cell balancing operation.
[0042] The temperature value of the cell balancing resistance is calculated using a thermistor.
An analog-to-digital converter (ADC) may be used to measure the voltage across the
thermistor, and thorough this, a resistance value may be reversely calculated to calculate
a temperature value.
[0043] The connecting method of the thermistor includes a wire method and a chip resistance
method, and in the present invention, may be generally configured including a chip
resistance method for designing a chip around a resistor constituting a cell balancing
circuit.
[0044] The duty ratio calculation unit 240 may detect a temperature section to which the
temperature value of the cell balancing resistance calculated by the cell balancing
resistance temperature calculation unit 230 belongs and may calculate a duty ratio
with respect to an on/off period of the cell balancing control FET corresponding to
the detected temperature section.
[Table 1]
Temperature |
Cell balancing operation On |
Cell balancing operation Off |
T ≤ 30°C |
100% |
0% |
30 < T ≤ 40°C |
80% |
20% |
40 < T ≤ 50°C |
60% |
40% |
50 < T ≤ 60°C |
40% |
60% |
60 < T ≤ 65°C |
20% |
80% |
65°C < T |
0% |
100%(cell balancing stop) |
[0045] In addition, the duty ratio calculation unit 240 may provide the duty ratio with
respect to the on/off of the calculated cell balancing control FET to the cell balancing
operation control unit 210.
[0046] The voltage detection unit 250 may include a cell detection unit 251 and a cell balancing
voltage detection unit 252.
[0047] The cell detection unit 251 may calculate the deviation of the voltage of the battery
cells 110 and compare the voltage deviation of each of the battery cells 110 with
a predetermined reference value to detect the battery cell 110 that requires balancing.
When at least one of the voltage deviations of each of the calculated battery cells
is equal to or greater than a predetermined reference value, it is determined that
battery cell balancing is necessary so that the cell 110 requiring balancing may be
detected. In addition, information on the detected cell may be provided to the cell
balancing operation control unit 210.
[0048] After the cell balancing control FET is turned off, the cell balancing voltage detection
unit 252 may detect the voltage of the cell to which the balancing is applied and
compare it with a predetermined reference value to determine whether cell balancing
is successful or not. In addition, the voltage detection of the battery cell 110 may
operate after a predetermined time.
[0049] The predetermined time is set differently depending on the performance or characteristics
of the system for measuring the voltage of the battery cell 110.
[0050] FIG. 3 is a block diagram illustrating an operation of balancing a battery cell according
to the present invention.
[0051] Referring to FIG. 3, the operation may include a cell balancing operation determination
operation S10 of determining whether the battery cell balancing operation condition
is satisfied and controlling a cell balancing operation by applying an on/off signal
to the cell balancing control FET according to the determination result; a cell balancing
current calculating operation S20 of measuring and calculating the size of the cell
balancing current during the cell balancing operation; a resistance temperature calculation
operation S30 of calculating a temperature of a cell balancing resistance generated
by the cell balancing current while the cell balancing operation is performed; a duty
ratio calculation operation S40 of calculating a duty ratio with respect to an on/off
period of the cell balancing control FET according to the calculated temperature value
of the cell balancing resistance; a cell balancing operation S50 of applying an on/off
signal to the cell balancing control FET according to the calculated duty ratio to
operate cell balancing; and a voltage detection operation S60 of detecting a voltage
of the battery cell.
[0052] The cell balancing operation determination operation S10 determines whether the balancing
operation condition of the battery cell 110 is satisfied and controls the cell balancing
operation by applying an on/off signal to the cell balancing control FET according
to the determination result.
[0053] The cell balancing operation determination operation S10 may control the cell balancing
control FET to turn on/off with an on/off control signal having a predetermined duty
ratio at the start of the cell balancing operation and after the cell balancing operation,
perform a control by applying an on/off signal to the cell balancing control FET according
to the duty ratio calculated in duty ratio calculation operation S40.
[0054] The method for determining the cell balancing operation condition includes calculating
a deviation of the voltage of each battery cell 110 and comparing the calculated voltage
deviation with a predetermined reference value to determine whether the balancing
operation of the battery cell 110 is satisfied.
[0055] When at least one of the calculated voltage deviations is equal to or greater than
a predetermined reference value, it may be determined that the battery cell balancing
is necessary.
[0056] Furthermore, the method of determining the cell balancing operation condition may
include various elements generally used as a cell balancing operation condition, including
information on the current state flowing in the battery cell in addition to the voltage
deviation of the battery cells.
[0057] The cell balancing current calculation operation S20 may be an operation of measuring
and calculating the size of the cell balancing current during the cell balancing operation.
The method of calculating the size of the current is calculated by using a generally
used formula of current=voltage/resistance.
[0058] The cell balancing resistance temperature calculation operation S30 may be an operation
of calculating the temperature of the cell balancing resistance generated by the cell
balancing current flowing during the cell balancing operation.
[0059] The method of calculating the temperature value of the cell balancing resistance
may use a thermistor. An analog-to-digital converter (ADC) may be used to measure
the voltage across the thermistor, and thorough this, a resistance value may be reversely
calculated to calculate a temperature value.
[0060] The connecting method of the thermistor includes a wire method and a chip resistance
method, and in the present invention, may be generally configured including a chip
resistance method for designing a chip around a resistor constituting a cell balancing
circuit.
[0061] The duty ratio calculation operation S40 may be an operation of detecting a predetermined
temperature section to which the temperature value of the cell balancing resistance
calculated in the cell balancing resistance temperature calculation operation S30
belongs and calculating a duty ratio with respect to an on/off signal of the predetermined
cell balancing control FET corresponding to the detected temperature section.
[0062] The method of calculating a predetermined duty ratio according to the temperature
value of the cell balancing resistance may perform calculation by referring to Table
1 as described in FIG. 2.
[0063] The cell balancing operation S50 may be an operation of applying an on/off signal
to the cell balancing control FET according to the duty ratio calculated in the duty
ratio calculating operation S40 in order to perform the cell balancing operation.
[0064] The voltage detection operation S60 may detect the voltage of the cell to which balancing
is applied when a predetermined time elapses after the cell balancing control FET
is turned off in the cell balancing operation S50. The predetermined time may be determined
depending on the performance or characteristics of the system for measuring the voltage
of the battery cell 110.
[0065] FIG. 4 is a diagram illustrating a comparative example of overall cell balancing
operations according to the prior art and the present invention.
- (a) of FIG. 4 is a diagram illustrating an operation to which a conventional cell
balancing control method is applied. As shown in (a) of FIG. 4, it may be confirmed
that on/off operates at a predetermined ratio in the cell balancing control FET. Also,
it may be confirmed that the time point for detecting the voltage of the cell is constant
after the cell balancing control FET is turned off. However, in such a case, cell
balancing is performed at a constant time ratio irrespective of the heating problem
of the cell balancing resistance due to the cell balancing current flowing during
the cell balancing operation. Accordingly, damage to the battery cell 110 due to the
heat generation problem of the cell balancing resistance, and degradation of the accuracy
and efficiency of the cell balancing operation may occur.
[0066] Also, after the cell balancing control FET is turned off in general, the cell voltage
is restored to the original OCV voltage after a sufficient time elapses. However,
after the conventional cell balancing control FET is turned off, the cell voltage
is detected at a predetermined time point without considering the time when the OCV
voltage is restored, so that this may degrade the accuracy of the cell voltage detection.
[0067] On the other hand, referring to (b) of FIG. 4 to which the present invention is applied,
the duty ratio with respect to the on/off period of the cell balancing control FET
may be detected according to the temperature of the cell balancing resistance generated
by the cell balancing current flowing during the cell balancing operation and accordingly
thereto, it may be confirmed that cell balancing operates. Also, the time point when
the voltage of the cell 110 is detected after the cell balancing control FET is turned
off is flexibly controlled according to the cell feature or the system feature, and
measured after the cell voltage is restored to the OCV, so that the cell balancing
operation with improved accuracy and efficiency may be achieved.
[0068] The present invention performs cell balancing by using a cell balancing duty ratio
calculated according to a temperature of a resistance generated by a current flowing
during a cell balancing operation of a battery to improve the accuracy of the voltage
measurement by detecting the voltage after a predetermined time, and to effectively
control the heat generation of the resistance caused by the current flowing during
the cell balancing operation, so that balancing between battery cells with improved
efficiency may be achieved.
[0069] Although the battery cell balancing method and system have been described with reference
to the specific embodiments, they are not limited thereto. Therefore, it will be readily
understood by those skilled in the art that various modifications and changes can
be made thereto without departing from the spirit and scope of the present invention
defined by the appended claims.
1. A battery cell balancing system for balancing a voltage of at least two battery cells
included in a battery pack, the system comprising:
a battery pack including two or more battery cells; and
a battery management unit configured to control battery cell balancing,
wherein the battery management unit comprises:
a cell balancing operation control unit configured to determine whether a battery
cell balancing operation condition is satisfied and apply an on/off signal to a cell
balancing control FET to control a cell balancing operation;
a cell balancing current calculation unit configured to measure the size of a cell
balancing current during the cell balancing operation;
a cell balancing resistance temperature calculation unit configured to calculate a
temperature of a cell balancing resistance generated by the cell balancing current
flowing during the cell balancing operation;
a duty ratio calculation unit configured to calculate a duty ratio with respect to
an on/off period of the cell balancing control FET according to the calculated temperature
value of the cell balancing resistance; and
a voltage detection unit configured to detect a voltage of the battery cells.
2. The system of claim 1, wherein the duty ratio calculation unit detects a temperature
section to which the temperature value of the resistance calculated by the cell balancing
resistance temperature calculation unit belongs and calculates a duty ratio with respect
to an on/off signal of the cell balancing control FET corresponding to the detected
temperature section to provide the duty ratio to the cell balancing operation control
unit.
3. The system of claim 1, wherein the voltage detection unit comprises:
a cell detection unit configured to calculate a deviation of the voltage of the battery
cells and determine that battery cell balancing is required when at least one of the
voltage deviations of each of the battery cells is equal to or greater than a predetermined
reference value to detect a cell that requires balancing; and
a cell balancing voltage detection unit configured to detect a voltage of a cell to
which the cell balancing is applied after the cell balancing control FET is turned
off, and compare the voltage with a predetermined reference value to determine whether
the cell balancing is successful or not.
4. The system of claim 3, wherein after the cell balancing control FET is turned off,
when a predetermined time elapses, the cell balancing voltage detection unit operates.
5. The system of claim 1, wherein the cell balancing operation control unit controls
the cell balancing control FET with an on/off control signal having a predetermined
duty ratio at the start of the cell balancing and then controls the on/off of the
cell balancing control FET with a duty ratio calculated according to a temperature
of a resistance generated when the cell balancing operates.
6. A battery cell balancing method for balancing a voltage of at least two battery cells
included in a battery pack, the method comprising:
a cell balancing operation determination operation of determining whether a battery
cell balancing operation condition is satisfied and controlling a cell balancing operation
by applying an on/off signal to the cell balancing control FET according to the determination
result;
a cell balancing current calculating operation of measuring and calculating the size
of a cell balancing current during the cell balancing operation;
a cell balancing resistance temperature calculation operation of calculating a temperature
of a cell balancing resistance generated by the cell balancing current during the
cell balancing operation;
a duty ratio calculation operation of calculating a duty ratio with respect to an
on/off period of the cell balancing control FET according to the calculated temperature
value of the cell balancing resistance;
a cell balancing operation of applying an on/off signal to the cell balancing control
FET according to the calculated duty ratio to operate cell balancing; and
a voltage detection operation of detecting a voltage of the battery cells.
7. The method of claim 6, wherein the duty ratio calculation operation detects a temperature
section to which the temperature value of the resistance calculated in the cell balancing
resistance temperature calculation operation and calculates a duty ratio with respect
to an on/off period of the cell balancing control FET corresponding to the detected
temperature section.
8. The method of claim 6, wherein the voltage detection operation detects a voltage of
a cell to which the balancing is applied when a predetermined time elapses after the
cell balancing control FET is turned off, and compares the voltage with a predetermined
reference value to determine whether the cell balancing is successful or not.
9. The method of claim 6, wherein the cell balancing operation determination operation
controls the on/off the cell balancing control FET with an on/off control signal having
a predetermined duty ratio at the start of the cell balancing operation and then applies
an on/off signal according to an on/off duty ratio calculated in the duty ratio calculation
operation.