TECHNICAL FIELD
[0001] The technology disclosed herein relates to a paper sheet handling device and a paper
sheet handling method.
BACKGROUND ART
[0002] Patent Document 1 describes a banknote teller machine provided with a plurality of
winding storage units. Each winding storage unit stores banknotes by winding banknotes
around a drum together with tapes drawn from tape reels.
[0003] Patent Document 2 describes a banknote teller machine provided with a plurality of
stacking storage units. Each stacking storage unit stores banknotes by stacking banknotes
on a stage.
[0004] Both types of storage units described in Patent Documents 1 and 2 are configured
to be able to feed stored banknotes.
CITATION LIST
PATENT DOCUMENT
[0005]
PATENT DOCUMENT 1: Japanese Patent No. 5650317
PATENT DOCUMENT 2: Japanese Unexamined Patent Publication No. 2014-109797
SUMMARY OF THE INVENTION
TECHNICAL PROBLEM
[0006] The present inventor has found that, irrespective of the winding storage units or
the stacking storage units, various troubles occur when storage and feeding of banknotes
into and from a storage unit is repeated. In particular, the troubles occur prominently
in a state where the stored amount of the storage unit is within a predetermined range.
The state where the stored amount of the storage unit is within a predetermined range
is a state where the storage unit is near full, for example.
[0007] Repetition of storage and feeding of banknotes in a state where a storage unit is
near full can occur for the following reason. In a banknote teller machine, when there
are a plurality of storage units storing the same kind of banknotes, use priorities
are assigned to the plurality of storage units. That is, in storing a banknote, the
banknote is stored into the storage unit of highest use priority. When this storage
unit becomes full, i.e., when no more banknote can be stored in the storage unit of
highest use priority, a banknote is stored into a storage unit of second highest use
priority. In this configuration, since the storage unit of highest use priority stores
banknotes preferentially, it tends to become full. Here, consider the state where
the storage unit of highest use priority is full and no banknote available for feeding
is stored in any other storage unit. If storage of a banknote into the storage unit
of highest use priority becomes possible by feeding of a banknote from the full-state
storage unit, a banknote to be stored next will be stored into the storage unit of
highest use priority. This storage unit will become full again. In this state, no
banknote can be stored into this storage unit, but once storage of a banknote into
this storage unit becomes possible by feeding a banknote from this storage unit, a
banknote to be stored next will be stored into the storage unit of highest use priority.
In this way, with assignment of use priorities, storage and feeding of banknotes into
and from the storage unit of highest use priority will be repeated in a near-full
state.
[0008] In the winding storage unit, banknotes are wound around a drum together with tapes
drawn from tape reels. Therefore, in a near-full state of the winding storage unit,
the outer diameter of the drum with tapes and banknotes wound thereon has become large.
Note that the "outer diameter of the drum" as used herein refers to the outer diameter
including the portion constituted by the tapes and banknotes wound around the drum
body. In the following description, the "drum" sometimes includes the drum body and
the tapes and banknotes wound around the drum body.
[0009] When the drum is rotated in the winding direction to store banknotes in a state where
the outer diameter of the drum has become large, portions of the tapes closer to the
drum body (i.e., radially inner portions) are wound in the winding direction following
the rotation of the drum body. However, portions of the tapes away from the drum body
(i.e., radially outer portions) have difficulty in following the rotation of the drum
body under the influence of inertia. This causes slippage between the inner and outer
portions of the tapes.
[0010] Also, during rotation of the drum in the winding direction, portions of the tapes
in the outermost-diameter part of the drum are stably tightened with some degree of
force because tension is imparted to the tapes. As a result, when the drum with an
increased outer diameter is rotated in the winding direction, while the radially inner
portions of the tapes are strongly tightened, radially intermediate portions of the
tapes between the inner portions and outermost-diameter portions of the tapes become
weak in tightening as the inner portions of the tapes are wound in the winding direction.
[0011] Moreover, in feeding of a banknote, the drum is rotated in the feeding direction
opposite to the winding direction. After completion of the feeding of the banknote,
however, the drum is rotated in the winding direction to adjust the position of the
drum. During feeding of a banknote, therefore, the radially inner portions of the
tapes are also strongly tightened when the drum is rotated in the winding direction.
[0012] For the above reasons, when storage and feeding of banknotes is repeated in a state
where the winding storage unit is near full, tightening of the radially inner portions
of the tapes become gradually strong, and with this, tightening of the radially intermediate
portions of the tapes become gradually weak. As a result, a trouble that banknotes
wound around the drum are displaced at a place where tightening of the tapes has become
weak may occur.
[0013] This trouble is prominent especially when a banknote having a nonuniform thickness
is stored. An example of a banknote having a nonuniform thickness is a banknote made
of a combination of a paper material and a polymer material (a so-called composite
banknote). Among such composite banknotes, there is a banknote of which the polymer
portion has a depression/projection where the banknote is projected on one surface
and depressed on the other surface. A banknote having a nonuniform thickness has difficulty
in bending along the surface of the drum when being wound around the drum, whereby
a gap may appear between the banknote and the tapes. With a gap present between the
banknote wound around the drum and the radially inner portions of the tapes, when
the drum is rotated in the winding direction, the tapes are wound so as to remove
the gap between the tapes and the banknote in the radially inner part, further strengthening
the tightening of the tapes. With this stronger tightening of the radially inner portions
of the tapes, tightening of the radially intermediate portions of the tapes becomes
further weak. As a result, in storing composite banknotes, a trouble that a banknote
wound around the drum is displaced easily occurs. Note that, not only the composite
banknotes, but also banknotes having braille characters partly on their surfaces and
banknotes having an anticounterfeit thread or hologram are nonuniform in thickness,
and thus, like the composite banknotes, a banknote wound around the drum is easily
displaced.
[0014] Meanwhile, in the stacking storage unit, a number of banknotes are stacked on the
stage in a state where the stored amount is near full, whereby the stacked banknotes
are unstable. Therefore, when a new banknote is to be stacked, the storage quality
degrades. Also, in feeding of a banknote from the stacking storage unit, the uppermost
banknote is fed out while the stacked banknotes are being compressed in the stacking
direction. In a near-full state of the stacking storage unit, the uppermost banknote
is unstable when the stacked banknotes are compressed downward. As a result, the banknote
feeding quality degrades (e.g., the banknote is skewed).
[0015] Note that, not only in the storage of vertically stacking banknotes, but also in
the storage of horizontally placing banknotes in a line, the storage quality and the
feeding quality degrade when storage and feeding of banknotes is repeated in a near-full
state.
[0016] Moreover, when banknotes having a nonuniform thickness are stacked in the stacking
storage unit, the stacked banknotes tend to tilt, making the stacked banknotes further
unstable. Therefore, the banknote storage quality and feeding quality further degrade.
[0017] As described above, in a state where the storage unit, whether it is of a winding
type or a stacking type, is near full, repetition of storage and feeding of banknotes
should be avoided.
[0018] Note that the above-described troubles are not limited to storage and feeding of
banknotes. Similar troubles can also occur for paper sheets in general including securities
such as exchange coupons and checks as the object to be stored in the storage unit.
[0019] The technology disclosed herein has been created in consideration of the above problems,
and the objective thereof is reducing the troubles occurring when the storage unit
stores and feeds paper sheets in a paper sheet handling device, and in particular,
preventing the troubles by controlling storage and feeding of paper sheets.
SOLUTION TO THE PROBLEM
[0020] The technology disclosed herein is related to a paper sheet handling device, which
includes: at least one storage unit configured to store paper sheets therein and feed
stored paper sheets therefrom; and a control unit configured to control storage and
feeding of paper sheets into and from the at least one storage unit.
[0021] When a stored amount of a respective storage unit is within a preset range, the control
unit prohibits one of storage of paper sheets into the respective storage unit and
feeding of paper sheets from the respective storage unit and permits the other of
storage of paper sheets into the respective storage unit and feeding of paper sheets
from the respective storage unit.
[0022] According to the above configuration, storage and feeding of paper sheets is controlled
by prohibiting either storage of paper sheets into the storage unit or feeding of
paper sheets from the storage unit.
[0023] The control unit may prohibit storage of paper sheets into the respective storage
unit and permit feeding of paper sheets from the respective storage unit when the
stored amount of the respective storage unit reaches a predetermined first stored
amount, until the stored amount reaches a predetermined second stored amount, wherein
the second stored amount is smaller than the predetermined first stored amount, and
permit storage of paper sheets within the respective storage unit when the stored
amount of the respective storage unit reaches the predetermined second stored amount
by way of feeding of paper sheets from the respective storage unit.
[0024] According to the above configuration, when the stored amount of the storage unit
reaches the first stored amount, storage of paper sheets into the storage unit is
prohibited. This prohibition of storage continues until the stored amount of the storage
unit reaches the second stored amount. That is, the storage unit performs only feeding
of paper sheets, not performing storage of paper sheets, until the stored amount of
the storage unit reaches the second stored amount.
[0025] Note that the first stored amount may be the maximum capacity (capacity set as a
so-called full capacity) of the storage unit or a capacity near the maximum capacity
(capacity set as a so-called near-full capacity). Setting the first stored amount
at a large value increases the number of paper sheets that can be stored in the storage
unit.
[0026] The second stored amount can be appropriately set at a value smaller than the first
stored amount. If it is intended to prevent repetition of storage and feeding of paper
sheets in a state where the storage unit is near full, the second stored amount should
preferably be comparatively small. The second stored amount may be zero (i.e., the
storage unit being empty) or an amount near zero (i.e., an amount set as near empty).
When the second stored amount is set at zero or an amount near zero, the storage unit
performs only feeding until stored paper sheets are no more left or hardly left, without
performing storage of paper sheets. Therefore, repetition of storage and delivery
of paper sheets in a state where the storage unit is near full is prevented reliably.
[0027] Thus, in the configuration described above, it is possible to avoid the troubles
caused by repetition of storage and delivery of paper sheets in a state where the
stored amount of the storage unit is near full.
[0028] The control unit may prohibit feeding of paper sheets from the respective storage
unit and permit storage of paper sheets within the respective storage unit when the
stored amount of the respective storage unit reaches a predetermined third stored
amount, until the stored amount reaches a predetermined fourth stored amount, wherein
the predetermined fourth stored amount is larger than the predetermined third stored
amount; and permit feeding of paper sheets from the respective storage unit when the
stored amount of the respective storage unit reaches the predetermined fourth stored
amount by way of storage of paper sheets into the respective storage unit.
[0029] Note that the third storage amount may be zero or an amount near zero. The third
storage amount may be the same as the second stored amount. The fourth storage amount
can be appropriately set at a value larger than the third storage amount. The fourth
storage amount may be the same as the first stored amount.
[0030] According the above configuration, when the stored amount of the storage unit reaches
the third storage amount, the storage unit performs only storage of paper sheets,
not performing feeding of paper sheets, until the stored amount reaches the fourth
storage amount. Therefore, repetition of storage and delivery of paper sheets in a
state where the storage unit is near full is prevented.
[0031] The at least one storage unit may include a plurality of storage units, and when
storage of paper sheets is permitted for any of the plurality of storage units, the
control unit may store paper sheets into a storage unit having a lower stored amount.
[0032] By doing so, paper sheets are stored into a plurality of storage units as equally
as possible, and thus the situation that the storage units become full or near full
is prevented or reduced.
[0033] The at least one storage unit may include at least a first storage unit and a second
storage unit, and when the stored amount of either one of the first storage unit and
the second storage unit reaches the predetermined first stored amount, the control
unit may designate the storage unit in question as a feeding-dedicated storage unit
that performs only feeding of paper sheets and designate the other storage unit as
a storage-dedicated storage unit that performs only storage of paper sheets.
[0034] When any of the storage units reaches the first stored amount, the storage unit in
question is made feeding-dedicated, whereby repetition of storage and feeding of paper
sheets in a state where the stored amount of the storage unit is close to the first
stored amount (i.e., in a state where the storage unit is near full) is prevented.
Although the storage unit in question is set as feeding-dedicated, the other storage
unit can be set as storage-dedicated, permitting storage of paper sheets. Thus, the
paper sheet handling device having this configuration can perform both storage and
feeding of paper sheets at all times using a plurality of storage units. Also, this
configuration, unlike the conventional configuration where use priorities are assigned,
a plurality of storage units can be used equally.
[0035] When the stored amount of the feeding-dedicated storage unit reaches the predetermined
second stored amount, the control unit may designate the storage unit in question
as a storage-dedicated storage unit and designate the other storage unit as a feeding-dedicated
storage unit.
[0036] When the feeding-dedicated storage unit reaches the second stored amount, the stored
amount of the storage unit in question should have sufficiently decreased to permit
storage of paper sheets. So, the storage unit in question is switched from the feeding-dedicated
storage unit to a storage-dedicated storage unit. Meanwhile, the other storage unit
is set as a feeding-dedicated storage unit, to permit feeding of paper sheets. The
paper sheet handling device having this configuration can perform both storage and
feeding of paper sheets at all times.
[0037] The at least one storage unit may be a winding-type storage unit, in which paper
sheets are wound around a drum together with a tape.
[0038] As described earlier, in a winding storage unit, repetition of storage and feeding
of paper sheets in a near-full state may cause displacement of paper sheets wound
around a drum. However, by avoiding repetition of storage and feeding of paper sheets
in a state where the storage unit is near full as described above, occurrence of displacement
of paper sheets in the storage unit is prevented.
[0039] The at least one storage unit may be a stacking-type storage unit, in which paper
sheets are placed in contact with each other.
[0040] As described earlier, in a stacking storage unit, repetition of storage and feeding
of paper sheets in a near-full state may degrade the storage quality and/or the feeding
quality. However, by avoiding repetition of storage and feeding of paper sheets in
a state where the storage unit is near full as described above, degradation in storage
quality and/or feeding quality is prevented.
[0041] The paper sheet handling method disclosed herein includes the steps of: storing paper
sheets into at least one storage unit; feeding paper sheets from the at least one
storage unit; and prohibiting either storage of paper sheets into a respective storage
unit or feeding of paper sheets from the respective storage unit when a stored amount
of the respective storage unit is within a preset range.
[0042] Since either storage of paper sheets into the storage unit or feeding of paper sheets
from the storage unit is prohibited, repetition of storage and feeding of paper sheets
in a state where the storage unit is near full is prevented.
[0043] The paper sheet handling method disclosed herein also includes the steps of: when
a stored amount of a storage unit configured to store paper sheets and feed stored
paper sheets reaches a predetermined first stored amount, prohibiting storage of paper
sheets into the storage unit and permitting feeding of paper sheets from the storage
unit, until the stored amount reaches a predetermined second stored amount, wherein
the predetermined second stored amount is smaller than the predetermined first stored
amount; and permitting storage of paper sheets into the storage unit when the stored
amount of the storage unit reaches the predetermined second stored amount by way of
feeding of paper sheets from the storage unit.
[0044] According to the above, repetition of storage and feeding of paper sheets in a state
where the storage unit is near full is prevented.
[0045] The paper sheet handling method described above may include the steps of: prohibiting
feeding of paper sheets from the storage unit and permitting storage of paper sheets
into the storage unit when the stored amount of the storage unit reaches a predetermined
third stored amount, until the stored amount reaches a predetermined fourth stored
amount, wherein the predetermined fourth stored amount is larger than the predetermined
third stored amount; and permitting feeding of paper sheets from the storage unit
when the stored amount of the storage unit reaches the predetermined fourth stored
amount by way of storage of paper sheets into the storage unit.
[0046] According to the above, repetition of storage and feeding of paper sheets in a state
where the storage unit is near full is prevented.
[0047] The step of storing paper sheets into the storage unit may include winding paper
sheets around a drum together with a tape, and the step of feeding paper sheets from
the storage unit may include sending out paper sheets from the drum together with
the tape. That is, the storage unit may be a winding storage unit.
ADVANTAGES OF THE INVENTION
[0048] As described above, according to the paper sheet handling device and the paper sheet
handling method described above, occurrence of the troubles is prevented by controlling
storage and feeding of paper sheets.
BRIEF DESCRIPTION OF THE DRAWINGS
[0049]
[FIG. 1] FIG. 1 is a view showing the appearance of a banknote depositing and dispensing
machine.
[FIG. 2] FIG. 2 is a view showing the internal structure of a banknote depositing
and dispensing machine provided with a winding storage unit.
[FIG. 3] FIG. 3 is a view showing the configuration of a winding storage module.
[FIG. 4] FIG. 4 is a block diagram showing a configuration related to operation control
of a banknote depositing and dispensing machine.
[FIG. 5] FIG. 5 is a view explaining the relationship between the front/back and orientation
of a banknote having a depression/projection and easiness of winding of the banknote
around a drum.
[FIG. 6] FIG. 6 is a view exemplifying a state where tapes and banknotes wound around
a drum form a truncated cone shape.
[FIG. 7] FIG. 7 is a view explaining a tightened state of a tape wound around a drum.
[FIG. 8] FIG. 8 is a transition diagram exemplifying states of storage units observed
when banknotes are stored into and fed from a plurality of storage units in a conventional
configuration.
[FIG. 9] FIG. 9 is a transition diagram exemplifying states of storage units observed
when banknotes are stored into and fed from a plurality of storage units in the present
configuration.
[FIG. 10] FIG. 10 is a view showing an example of a change in the stored amount of
a storage unit in a conventional configuration and examples of changes in the stored
amounts of two storage units in the present configuration.
[FIG. 11] FIG. 11 is a view exemplifying light-shading seals provided on tapes for
switching between a first mode and a second mode.
[FIG. 12] FIG. 12 is a view for comparison of states of banknotes wound around a drum
forming a truncated cone shape.
[FIG. 13] FIG. 13 is a view explaining the relative positions of a depression/projection
of a banknote wound around a drum with respect to tapes.
[FIG. 14] FIG. 14 is a view showing, in a tabular form, combinations of various factors
and whether storage of composite banknotes into a storage unit is permitted or not.
[FIG. 15] FIG. 15 is a view showing the internal structure of a banknote depositing
and dispensing machine provided with a stacking storage unit.
DESCRIPTION OF EMBODIMENTS
[0050] The paper sheet handling device disclosed herein will be described in detail with
reference to the accompanying drawings. Note that the following description is merely
illustrative. FIG. 1 shows the appearance of a banknote depositing and dispensing
machine 1 as a paper sheet handling device. The banknote depositing and dispensing
machine 1 is placed at a teller counter of a bank, for example.
[0051] The banknote depositing and dispensing machine 1 performs at least depositing processing
of storing a banknote put on an inlet 211 into a storage unit 3 and dispensing processing
of paying out a banknote stored in the storage unit 3 to an outlet 231. As will be
described later, the storage unit 3 is configured to be capable of feeding banknotes
stored. The banknote depositing and dispensing machine 1 is a so-called circular banknote
depositing and dispensing machine 1. That is, banknotes paid out during the dispensing
processing include banknotes stored into the storage unit 3 during the depositing
processing.
[0052] As shown in FIGS. 1 and 2, the banknote depositing and dispensing machine 1 is roughly
divided into an upper-side processing section 11 and a lower-side safe section 13.
A housing 111 constituting the processing section 11 accommodates: a depositing unit
21 having the inlet 211; a dispensing unit 23 having the outlet 231; a recognition
unit 25 that recognizes banknotes; a processing section-side transport unit 41 including
a loop transport path 411 that links the depositing unit 21, the dispensing unit 23,
and the recognition unit 25. A housing 131 constituting the safe section 13 accommodates:
a storage unit 3 including a plurality of (eight in the illustrated example) winding
storage modules 31; and a safe section-side transport unit 43 including a transport
path 431 that connects the loop transport path 411 of the processing section-side
transport unit 41 with the storage modules 31. Unlike the housing 111 constituting
the processing section 11, the housing 131 constituting the safe section 13 is a protecting
housing 131 configured to protect the storage unit 3, etc. housed therein at a predetermined
level or higher of security.
[0053] The inlet 211 of the depositing unit 21 is configured to be capable of receiving
a plurality of banknotes at a time. Although detailed illustration is omitted, the
depositing unit 21 is provided with a feeding mechanism that feeds a plurality of
banknotes put on the inlet 211 to the loop transport path 411 one by one. Also, the
outlet 231 of the dispensing unit 23 is configured to be capable of holding a plurality
of banknotes at a time.
[0054] The processing section-side transport unit 41 transports banknotes along the loop
transport path 411 clockwise and counterclockwise as viewed from FIG. 2. The loop
transport path 411 is constituted by a combination of a number of rollers, a plurality
of belts, and a plurality of guides although illustration thereof is omitted. Banknotes
are transported with their long edges facing forward in the transport direction along
the loop transport path 411 with a predetermined spacing between adjacent banknotes.
[0055] The recognition unit 25 is placed on the loop transport path 411. The recognition
unit 25 is configured to recognize at least any of the authenticity, denomination,
and fitness of each of banknotes, one by one, transported along the loop transport
path 411.
[0056] The transport path 431 of the safe section-side transport unit 43 is connected to
the loop transport path 411 via a diverting mechanism 419. At a junction of the transport
paths extending in three different directions, the diverting mechanism 419 operates
to selectively transport a banknote being transported from a given direction to either
of the other two directions. The diverting mechanism 419 performs switching between
selectively sending a banknote being transported along the loop transfer path 411
clockwise or counterclockwise to the transport path 431 of the safe section-side transport
unit 43 to be stored in the storage unit 3, or transporting a banknote fed from the
storage unit 3 and transported along the transport path 431 of the safe section-side
transport unit 43 to the loop transport path 411 clockwise or counterclockwise.
[0057] As described above, the storage unit 3 includes first to eighth winding (i.e., tape-type)
storage modules 31
-1 to 31
-8 in the illustrated example. Note that, in the following description, the character
"31" is assigned when the storage modules are collectively referred to, and the characters
"31
-1, 31
-2, 31
-3, ..." are assigned when the individual storage modules, such as the first, second,
and third storage modules, are separately referred to. The number of storage modules
is not specifically limited, but an appropriate number equal to or more than 1 may
be set. The eight storage modules 31 are arranged to form two vertically-stacked rows
each including four modules lined in the depth direction of the device (horizontally
as viewed from FIG. 2).
[0058] Detailed illustration of the winding storage modules 31 is omitted here because the
basic configuration thereof is well known. In the illustrated example, however, as
shown in FIG. 3, the winding storage module 31 includes, in a roughly rectangular
box-shaped housing, a tape reel 311 around which tapes 310 for guiding banknotes are
wound and a drum 312 around which banknotes are wound together with the tapes 310.
[0059] Two tapes are arranged in parallel with spacing therebetween in the long edge direction
of banknotes. The tapes 310 drawn out from the tape reel 311 are sent to the drum
312 after being guided by a tape regulating guide 313.
[0060] The drum 312 is connected to a rotary drive source of which illustration is omitted.
With driving of the rotary drive source, the drum 312 rotates in the banknote winding
direction (i.e., clockwise in FIG. 3) and the banknote feeding direction (i.e., counterclockwise
in FIG. 3). The tape reel 311 is provided with a torque limiter 314. When the drum
312 rotates in the winding direction to wind banknotes, the tape reel 311 rotates
in the direction of sending of the tapes 310, following the rotation of the drum 312,
with a predetermined tension F imparted to the tapes 310 by the torque limiter 314.
When the drum 312 rotates in the banknote feeding direction, the driving force of
the rotary drive source for the drum 312 is transmitted to the tape reel 311 by a
power transmission mechanism of which illustration is omitted, whereby the tape reel
311 rotates in the direction of winding of the tapes 310.
[0061] Banknotes enter and exit the storage module 31 through a port 315 that connects the
inside and outside of the storage module 31. The winding storage module 31 winds the
two tapes 310 drawn out from the tape reel 311 around the drum 312 together with banknotes
having entered the storage module 31, thereby storing the banknotes. The banknotes
are wound around the drum 312 in the orientation of their long edges extending along
the rotation central axis of the drum 312 with a predetermined spacing between adjacent
ones (see also FIG. 6).
[0062] The configuration of the winding storage module is not limited to that described
above. One tape or two or more tapes may be wound around the drum. Otherwise, two
overlapping tapes with banknotes interposed therebetween may be wound around the drum.
[0063] Like the loop transport path 411 of the processing section-side transport unit 41,
the transport path 431 of the safe section-side transport unit 43 is constituted by
a combination of rollers, belts, and guides. The transport path 431 also transports
banknotes one by one with their long edges facing forward in the transport direction.
The transport path 431 extends downward vertically from the diverting mechanism 419
on the loop transport path 411, then bends backward in the depth direction (to the
left as viewed from FIG. 2), and extends between the two rows of storage modules 31
stacked vertically toward the back of the banknote depositing and dispensing machine
1. Each storage module 31 is connected to the transport path 431 via a sorting mechanism
432. The sorting mechanism 432 switches the transport direction of banknotes transported
along the transport path 431 between the direction along the transport path 431 and
the direction toward the storage module 31. The driving of the sorting mechanism 432
is controlled by a control unit 513 to be described later. In this way, banknotes
are sorted to and stored into a plurality of storage modules 31 depending on the denomination
and/or fitness recognized by the recognition unit 25.
[0064] FIG. 4 shows a configuration related to the operation control of the banknote depositing
and dispensing machine 1. The banknote depositing and dispensing machine 1 includes
the control unit 513 that uses a well-known microcomputer as a base, for example.
To the control unit 513, the depositing unit 21, the dispensing unit 23, the storage
unit 3 including the first to eighth storage modules 31, the processing section-side
transport unit 41, and the safe section-side transport unit 43 described above are
connected so as to be capable of transmitting/receiving signals. These units 21, 23,
3, 41, and 43 include various sensors having functions of detecting a banknote being
transported on the transport path, for example, although illustration of such sensors
is omitted, and detection signals from the sensors are input into the control unit
513. The control unit 513 outputs control signals based on the input detection signals,
etc., and the units 21, 23, 3, 41, and 43 operate according to the control signals.
[0065] The recognition unit 25 is also connected to the control unit 513, and provides recognition
results to the control unit 513. Although detailed illustration is omitted, the following
units are connected to the banknote depositing and dispensing machine 1: a manipulation
unit 55 as a human interface for an operator using the banknote depositing and dispensing
machine 1, a communication unit 57 for allowing the banknote depositing and dispensing
machine 1 to transmit/receive signals to/from a higher-ranking terminal and other
equipment of which illustration is omitted through a LAN and a serial bus, for example,
and a memory unit 59 for storing various types of information, constituted by a general-purpose
storage device such as a hard disk drive and a flash memory.
[0066] The memory unit 59 at least stores the inventory amount that is the number of banknotes
per denomination, or the amount of banknotes, stored in the banknote depositing and
dispensing machine 1. The memory unit 59 also stores the inventory amount of each
storage module 3.
[0067] The control unit 513 controls the operations of the units 21, 23, 25, 3, 41, 43,
55, 57, and 59 according to a command received from a higher-ranking terminal through
the communication unit 57 and/or various commands received through the manipulation
unit 55. In this way, the banknote depositing and dispensing machine 1 performs various
types of processing including depositing processing and dispensing processing described
below.
<Depositing processing>
[0068] The depositing processing is a type of processing of depositing (storing) a banknote
into the banknote depositing and dispensing machine 1, in which the banknote put on
the inlet 211 is basically stored into any of the storage modules 31 according to
the recognition result from the recognition unit 25 and preset storage allocation.
More specifically, the banknote depositing and dispensing machine 1 operates as follows
at the depositing processing.
[0069] That is, a command of starting the depositing processing is input into the banknote
depositing and dispensing machine 1 by manipulation of a higher-ranking terminal and/or
the manipulation unit 55, for example, in a state where banknotes to be deposited
are put on the inlet 211. The feeding mechanism of the depositing unit 21 feeds the
banknotes on the inlet 211 one by one to the processing section-side transport unit
41, which transports the banknotes to the recognition unit 25. The recognition unit
25 recognizes the banknotes and also counts them. The processing section-side transport
unit 41 also transports a banknote recognized normally (called a normal banknote as
opposed to a rejected banknote) along the loop transport path 411 through the diverting
mechanism 419 to the safe section-side transport unit 43. The safe section-side transport
unit 43 stores the normal banknote in a predetermined storage module 31 by controlling
the sorting mechanism 432 according to the recognition result from the recognition
unit 25 and the preset storage allocation. The normal banknote is stored in any of
the storage modules 31 depending on the denomination and the fitness.
[0070] Meanwhile, the processing section-side transport unit 41 pays out a rejected banknote
that cannot be accepted by the banknote depositing and dispensing machine 1 as it
is, such as a banknote of which the authenticity cannot be recognized by the recognition
unit 25, to the outlet 231. Also, a banknote having failed to be stored because the
storage modules 31 are full at the time of depositing processing (i.e., an overflow
banknote) is paid out to the outlet 231. After termination of the depositing processing,
the inventory amounts stored in the memory unit 59 are updated.
<Dispensing processing>
[0071] The dispensing processing is a type of processing of paying out a banknote stored
in the banknote depositing and dispensing machine 1. Specifically, the dispensing
processing is started by predetermined dispensing manipulation of designating at least
the denomination and the number of banknotes performed by a higher-ranking terminal
and/or the manipulation unit 55. The storage unit 3 feeds the designated number of
banknotes of the designated denomination from the storage modules 31 to the safe section-side
transport unit 43, which transports the fed banknotes along the transport path 431
to the loop transport path 411 of the processing section-side transport unit 41. The
processing section-side transport unit 41 transports the banknotes to the recognition
unit 25. After recognition by the recognition unit 25, the banknotes are paid out
to the outlet 231. After termination of the dispensing processing, the inventory amounts
stored in the memory unit 59 are updated.
(Description of banknotes to be handled by banknote depositing and dispensing machine)
[0072] Next, banknotes to be handled by the banknote depositing and dispensing machine 1
will be described. In recent years, so-called composite banknotes made of a combination
of a paper material and a polymer material have been issued. A composite banknote
has a depression/projection formed by a polymer material in a portion of the banknote,
e.g., in a 20-euro banknote shown in FIG. 5, at a position closer to one side from
the center in the long-edge direction of the banknote. The depression/projection is
depressed on one face (the front in FIG. 5) of the banknote and projected on the other
face (the back in FIG. 5). Such a composite banknote having a depression/projection
is asymmetric in shape in the long-edge direction.
[0073] Banknotes put on the inlet 211 are not uniform in front/back and in orientation.
Therefore, the banknotes transported along the loop transport path 411 and the transport
path 431 have any of four positions, A to D as shown in FIG. 5. That is, in position
A, a banknote is face-up and oriented in the transport direction (upward direction
as viewed from FIG. 5, shown by the arrow). In position B, a banknote is face-up and
oriented in a direction adverse to the transport direction. In position C, a banknote
is face-down and oriented in the direction adverse to the transport direction. In
position D, a banknote is face-down and oriented in the transport direction.
[0074] As described earlier, the banknote depositing and dispensing machine 1 is configured
to transport banknotes with their long edges facing forward in the transport direction.
Also, as shown in FIG. 6, the storage module 31 winds banknotes BN around the drum
312 so that the long edges of the banknotes are along the central axis of the drum
312. Therefore, when a banknote is in position A or position B, among the four positions
described above, the projection of the depression/projection faces inward in the radial
direction of the drum 312, located on the side contracting when the banknote is bended,
whereby the banknote has difficulty in bending along the surface of the drum 312.
In such a case, even if the banknote is tightened with the tapes 310, a gap may appear
between the tapes 310 and the banknote BN especially in the portion of the depression/projection.
[0075] On the contrary, when a banknote is in position C or position D, the projection of
the depression/projection faces outward in the radial direction of the drum 312, located
on the side expanding when the banknote is bended, whereby the banknote bends comparatively
easily along the surface of the drum 312.
[0076] Also, a banknote having a depression/projection is nonuniform in thickness. Therefore,
when banknotes having a depression/projection are stacked in the radial direction
of the drum 312, the banknotes may tilt.
[0077] When the difficulty in bending caused by the position of banknotes and the nonuniformity
in thickness due to depression/projection described above are combined, the tapes
310 and the banknotes BN wound around the drum 312 may have a shape of, not a cylinder,
but a truncated cone where the radius on one side in the central axis direction of
the drum 312 is large while the radius on the other side is relatively small, as exaggeratedly
illustrated in FIG. 6, for example.
[0078] Note that banknotes to be handled by the banknote depositing and dispensing machine
1 include, not only composite banknotes, but also conventional banknotes made of a
paper material, i.e., banknotes that are uniform in thickness and easily bend along
the surface of the drum 312 irrespective of the position of the banknotes.
[0079] It is also possible to include, as banknotes to be handled by the banknote depositing
and dispensing machine 1, a banknote having braille characters in a portion of the
banknote and a banknote having an anticounterfeit thread or hologram in a portion
of the banknote. Such banknotes having braille characters and a thread or a hologram
are not necessarily uniform in thickness, and may change in easiness in bending along
the surface of the drum 312 depending on the position of the banknotes. Therefore,
as shown in FIG. 6, the tapes 310 and the banknotes BN wound around the drum 312 may
have a shape of a truncated cone.
(Trouble that may occur in winding storage unit)
[0080] As described earlier, in the winding storage module 31, banknotes are wound around
the drum 312 together with the tapes 310. As the stored amount of banknotes in the
storage module 31 is larger, the outer diameter of the drum 312 becomes larger with
the tapes 310 and the banknotes wound around the drum 312. When the drum 312 is rotated
in the winding direction to store banknotes in a state where the outer diameter of
the drum 312 has increased, portions of the tapes 310 closer to the drum 312 are wound
in the winding direction following the rotation of the drum 312, as conceptually shown
in FIG. 7. This strengthens the tightening of the portions of the tapes 310 closer
to the drum 312. On the contrary, portions of the tapes 310 away from the drum 312
have difficulty in following the rotation of the drum 312 due to inertia. This causes
slippage between the inner and outer portions of the tapes 310.
[0081] When the drum 312 is rotated in the winding direction, a predetermined tension F
is imparted, by the torque limiter 314 of the tape reel 311, to portions of the tapes
310 in the outermost-diameter part of the drum 312 as described earlier. For this
reason, the tightened state of the tapes 310 in the outermost-diameter part of the
drum 312 is stable.
[0082] Therefore, when the drum 312 is rotated in the winding direction in a state where
the stored amount of the storage module 31 is large, the force of tightening the tapes
310 varies depending on the position in the radial direction of the drum 312. In particular,
radially intermediate portions of the tapes 310 between the inner portions of the
tapes 310 and the outermost-diameter portions of the tapes 310 become weak in tightening
as the inner portions of the tapes 310 are wound in the winding direction. With the
tightening of the tapes 310 becoming weak, a gap appears between the tapes 310 and
the banknotes, whereby the banknotes being wound around the drum 312 are easily displaced
in the rotation axis direction of the drum 312.
[0083] When banknotes are fed from the winding storage module 31, the drum 312 is rotated
in the direction reverse to the winding direction. After completion of the feeding
of the banknotes, in order to adjust the position of the drum 312, the drum 312 is
rotated a little in the winding direction. Therefore, as in the case of storage of
banknotes, in the case of feeding of banknotes, also, the tightening of the tapes
310 in the inner part of the drum 312 may become strong, and the tightening of the
intermediate portions of the tapes 310 may become weak.
[0084] Incidentally, in a conventionally configured banknote depositing and dispensing machine,
when banknotes of the same kind were stored in a plurality of storage modules (e.g.,
when fit notes of the same denomination were allowed to be stored in either of two
storage modules), use priorities were assigned to such storage modules.
[0085] The above conventional configuration will be described in detail with reference to
FIG. 8. FIG. 8 shows two storage modules 31L and 31R on the left and on the right.
The left-side and right-side storage modules 31L and 31R shown in FIG. 8 do not indicate
storage modules adjacent to each other in the banknote depositing and dispensing machine,
but indicate two storage modules for storing banknotes of the same kind. Assume that
the left-side storage module 31L is relatively high in use priority and the right-side
storage module 31R is relatively low in use priority.
[0086] In initial state P81 of the banknote depositing and dispensing machine, it is assumed
that the two storage modules 31L and 31R are both empty. In storing banknotes in initial
state P81, banknotes are stored in the left-side storage module 31L high in use priority.
Also, in feeding banknotes, banknotes are fed from the left-side storage module where
banknotes are stored (see the arrows in FIG. 8).
[0087] When the stored amount of the left-side storage module 31L becomes too large to allow
further storage of banknotes in the left-side storage module 31L (to state correctly,
when the left-side storage module 31L has reached the state of a preset full capacity
or a near-full capacity close to the full capacity), banknotes are to be stored in
the right-side storage module 31R low in use priority as shown in P82 of FIG. 8. The
preset full capacity is the maximum value of the stored amount of the storage module
31L, which may be defined by the number of banknotes, by the maximum radius of the
drum with banknotes wound around, or by the weight of banknotes stored. When the maximum
value of the stored amount is set by the number of banknotes, the maximum radius of
the drum will vary with the difference in thickness between new and old banknotes
stored. Note that the full capacity may also be called being full in some cases.
[0088] In feeding banknotes, banknotes are fed from the left-side storage module 31L high
in use priority. As a result of the feeding of banknotes from the left-side storage
module 31L, the left-side storage module 31L becomes again the state where storage
of banknotes is permissible. Once the left-side storage module 31L resumes the state
where storage of banknotes is permissible, banknotes will be stored in the left-side
storage module 31L high in use priority, and also banknotes will be fed from the left-side
storage module 31L (see P83).
[0089] FIG. 10 is a view illustrating a change in the stored amount of a storage module.
As shown by the broken line in FIG. 10, in the conventional configuration where use
priorities are assigned to a plurality of storage modules, the storage module high
in use priority repeats storage and feeding of banknotes in a near-full state.
[0090] As described earlier, when storage of banknotes or feeding of banknotes is performed
in a state where the stored amount of the storage module 31 is large, the tightening
of the tapes 310 becomes weak in a radially intermediate part of the drum 312. Therefore,
in the conventional configuration, the tightening of the tapes 310 will become further
weak in the radially intermediate part of the drum 312.
[0091] In particular, when a composite banknote is included in banknotes being stored into
the storage module 31, a gap may appear between the tapes 310 and the banknote due
to the difficulty in bending of the composite banknote described earlier. Having such
a gap is equivalent to having a space for tightening of the tapes 310 in the radially
inner part of the drum 312. Therefore, there arises the following trouble: in rotation
of the drum 312 in the winding direction, while the wound amount of the inner portions
of the tapes 310 further increases, the tightening of the tapes 310 becomes further
weak in the radially intermediate part of the drum 312. This further increases the
gap between the tapes 310 and the banknotes, and thus displacement of banknotes wound
around the drum 312 easily occurs.
[0092] The banknote depositing and dispensing machine 1 is configured to solve the above
trouble by adopting configurations 1 to 4 described below. Note that the banknote
depositing and dispensing machine 1 may adopt all of the configurations 1 to 4 or
may appropriately select one or some of these configurations.
(Configuration 1: Configuration of preventing repetition of storage and feeding of
banknotes in state where storage module is near full)
[0093] As described above, repetition of storage and feeding of banknotes in a state where
the winding storage module 31 is near full causes displacement of banknotes. In consideration
of this, the banknote depositing and dispensing machine 1 is configured so as to prevent
the repetition of storage and feeding of banknotes in a state where the storage module
31 is near full itself.
[0094] Specifically, in the banknote depositing and dispensing machine 1, no use priorities
are assigned to the storage modules 31. When the stored amount of a storage module
31 is within a preset range, the control unit 513 of the banknote depositing and dispensing
machine 1 prohibits either storage of a banknote into the storage module 31 or feeding
of a banknote from the storage module 31 while permitting the other. To state in more
detail, once the stored amount of a storage module 31 reaches a preset first stored
amount, the control unit 513 prohibits storage of a banknote into this storage module
31, while permitting only feeding of a banknote from the storage module 31, until
the stored amount reaches a preset second stored amount.
[0095] The first stored amount is set based on the maximum capacity (i.e., the full capacity)
of the storage module 31 or an amount near the maximum capacity (i.e., a near-full
capacity). The first stored amount may be the full capacity or a near-full capacity.
[0096] The second stored amount is an amount smaller than the first stored amount, set appropriately.
In order to ensure not to repeat storage and feeding of banknotes in a state where
the storage module 31 is near full, the second stored amount is preferably largely
away from the first stored amount. The second stored amount may be zero (i.e., the
storage module being empty) or an amount near zero (i.e., the storage module being
near empty).
[0097] Next, referring to FIG. 9, an example of changes in the stored amounts of a plurality
of storage modules 31L and 31R will be described.
[0098] Initial state P91 is the same as P81 in FIG. 8. In storing banknotes in initial state
P91, banknotes can be stored in either of the left-side and right-side storage modules
31L and 31R. In the illustrated example, banknotes are being stored in the left-side
storage module 31L. In feeding banknotes, banknotes are fed from the left-side storage
module 31L in which banknotes are stored (see the arrows in FIG. 9).
[0099] When the stored amount of the left-side storage module 31L becomes large reaching
the above first stored amount, the control unit 513 prohibits storage of banknotes
into the left-side storage module 31L as described above, although it permits feeding
of banknotes from the left-side storage module 31L. At this time, the control unit
513 permits storage of banknotes into the right-side storage module 31R (see P92 in
FIG. 9).
[0100] Even when the stored amount of the left-side storage module 31L falls below the first
stored amount by the feeding of banknotes from the left-side storage module 31L, the
control unit 513 continues prohibiting storage of banknotes into the left-side storage
module 31L until the stored amount reaches the second stored amount. Therefore, the
left-side storage module 31L serves as a feeding-dedicated storage module until the
stored amount reaches the second stored amount. During this time, banknotes are stored
in the right-side storage module 31R. The control unit 513 prohibits feeding of banknotes
from the right-side storage module 31R, using the right-side storage module 31R as
a storage-dedicated storage module.
[0101] When the stored amount of the left-side storage modules 31L reaches the second stored
amount with the feeding of banknotes from the left-side storage modules 31L, the control
unit 513 uses the left-side storage modules 31L as a storage-dedicated storage module,
permitting storage of banknotes into the left-side storage modules 31L. On the contrary,
the control unit 513 uses the right-side storage modules 31R as a feeding-dedicated
storage module, prohibiting storage of banknotes into the right-side storage modules
31R. In other words, once the stored amount of the left-side storage modules 31L reaches
the second stored amount, the storage-dedicated storage module and the feeding-dedicated
storage module are interchanged (see P93 in FIG. 9).
[0102] As shown by the solid line in FIG. 10, the left-side storage modules 31L becomes
a dispensing-dedicated storage module once its stored amount reaches the first stored
amount, and storage of banknotes thereinto is prohibited until its stored amount reaches
the second stored amount. In the left-side storage modules 31L, therefore, repetition
of storage and feeding of banknotes in its near-full state is prevented.
[0103] Also, as shown in the dashed-dotted line in FIG. 10, the right-side storage modules
31R becomes a storage-dedicated storage module when the left-side storage modules
31L becomes a feeding-dedicated storage module, and becomes a feeding-dedicated storage
module when the left-side storage modules 31L becomes a storage-dedicated storage
module. Therefore, in the right-side storage modules 31R, also, repetition of storage
and feeding of banknotes in its near-full state is prevented.
[0104] As a result, displacement of banknotes wound around the drum 312 inside the storage
module 31 due to weakened tightening of the tapes 310 is prevented.
[0105] Also, in this configuration, where one of a plurality of storage modules 31 is set
as a storage-dedicated storage module 31 and the other is set as a feeding-dedicated
storage module 31, storage and feeding of banknotes can be performed at all times.
Moreover, unlike the conventional configuration where use priorities are assigned,
a plurality of storage modules 31 can be used equally.
[0106] Note that in the above description, when the stored amount of the left-side storage
module 31L set as feeding-dedicated reaches the second stored amount, the left-side
storage module 31L is set as a storage-dedicated storage module and the right-side
storage module 31R as a feeding-dedicated storage module. Alternatively, if the stored
amount of the right-side storage module 31R set as storage-dedicated reaches the first
stored amount before the stored amount of the left-side storage module 31L reaches
the second stored amount, the right-side storage module 31R may be set as a feeding-dedicated
storage module and the left-side storage module 31L as a storage-dedicated storage
module at this timing.
[0107] Otherwise, while either storage or feeding of banknotes is prohibited between the
first stored amount and the second stored amount for the left-side storage module
31L, either storage or feeding of banknotes may be prohibited between a third stored
amount and a fourth stored amount for the right-side storage module 31R.
[0108] In the above configuration, when the stored amount is between the first stored amount
and the second stored amount, one storage module 31 is storage-dedicated while the
other storage module 31 is feeding-dedicated. Alternatively, each of the plurality
of storage modules 31 may be configured to be available for both storage and feeding
of banknotes. Once the stored amount of any one of the storage modules 31 reaches
the first stored amount, storage of banknotes may be prohibited while feeding of banknotes
being permitted for this storage module 31 until the stored amount reaches the second
stored amount. For the other storage module, both storage and feeding of banknotes
may be permitted.
[0109] That is, as described above, the trouble of displacement of banknotes occurs due
to repetition of storage and feeding of banknotes in a state where the storage module
31 is near full. Such displacement of banknotes does not easily occur even if storage
and feeding of banknotes is repeated in a state where the stored amount of the storage
module 31 is small. Therefore, without setting of one storage module 31 as storage-dedicated
and the other storage module 31 as feeding-dedicated, both storage and feeding of
banknotes may be permitted for a plurality of storage modules 31 in the case that
the stored amounts of the storage modules 31 are comparatively small.
[0110] In the above case, in storage of banknotes, banknotes may be stored into a storage
module 31 small in stored amount among the plurality of storage modules 31, and in
feeding of banknotes, banknotes may be fed from a storage module 31 large in stored
amount among the plurality of storage modules 31. By doing this, it is possible to
store banknotes into the plurality of storage modules 31 as equally as possible.
[0111] In the configuration where storage and feeding of banknotes are permitted for each
of a plurality of storage modules 31, once the stored amount of any of the storage
modules 31 reaches the first stored amount, storage of banknotes may be prohibited
while feeding of banknotes being permitted for this storage module 31 until the stored
amount reaches the second stored amount. By this, it is possible to prevent repetition
of storage and feeding of banknotes in a state where the storage module 31 is near
full.
(Configuration 2: Configuration of adjusting starting current for drum)
[0112] As described earlier, in the winding storage module 31, the drum 312 is connected
to the rotary drive source. With the rotation of the drum 312 in the winding direction
by the driving force of the rotary drive source, banknotes are wound around the drum
312 together with the tapes 310. In a state where the radius of the drum 312 has increased
(i.e., the stored amount of the storage module 31 is large), if the drum 312 starts
rotating vigorously at the start of winding of banknotes and the tapes 310, the tightening
of the radially inner portions of the tapes 310 closer to the drum 312 will become
strong. On the contrary, if the rotation of the drum 312 is initiated mildly, the
tightening of the radially inner portions of the tapes 310 can be reduced. As a result,
the situation that the tightening of the tapes 310 may become weak in the radially
intermediate part of the drum 312 is prevented, and thus displacement of banknotes
can be prevented.
[0113] The control unit 513 therefore changes the starting current at the start of rotation
of the drum 312 depending on the stored amount of the storage module 31. Specifically,
when the stored amount of the storage module 31 is smaller than a predetermined amount
(i.e., when the radius of the drum 312 is comparatively small), the starting current
is set at a first current value. The first current value is a relatively high current
value, and the drum 312 starts rotating vigorously. However, since the radius of the
drum 312 is small, allowing the tapes 310 wound around the drum 312 to follow the
rotation of the drum 312, the situation that the tightening of the radially inner
portions of the tapes 310 may become strong is avoided. Therefore, the situation that
the tightening of the tapes 310 may become weak in the radially intermediate part
of the drum 312 is prevented.
[0114] The control unit 513 sets the starting current at a second current value when the
stored amount of the storage module 31 is equal to or more than the predetermined
amount (i.e., when the radius of the drum 312 is comparatively large). The second
current value is a current value lower than the first current value. With this, the
drum 312 starts rotating mildly. As a result, even when the radius of the drum 312
is comparatively large, the situation that the tightening of the radially inner portions
of the tapes 310 on the drum 312 may become strong is prevented, and thus the situation
that the tightening of the tapes 310 may become weak in the radially intermediate
part is prevented.
[0115] Note that, when the stored amount of the storage module 31 is equal to or more than
a predetermined amount, the control unit 513 may reduce the starting current from
the second current value as the stored amount increases. For example, the starting
current may be reduced by 0.1 A as the stored amount (the number of banknotes stored)
increases by 10. With this, it is possible to optimize the starting current depending
on the magnitude of the radius of the drum 312, and thus prevent more reliably the
situation that the tightening of the tapes 310 may become strong in the radially inner
part of the drum 312.
(Configuration 3: Configuration of switching between operation modes of storage module)
[0116] One reason why the tightening of the radially inner portions of the tapes 310 on
the drum 312 becomes strong when the drum 312 is rotated in the winding direction
is that the tightening of the tapes 310 wound around the drum 312 is originally weak.
[0117] As described earlier, even with composite banknotes having difficulty in bending
along the surface of the drum 312, if the tension of the tapes 310 is sufficiently
high when the banknotes are wound around the drum 312, it is possible to wind the
composite banknotes around the drum 312 while bending the banknotes sufficiently along
the surface of the drum 312. As a result, the tightening of the tapes 310 wound around
the drum 312 is sufficiently strong with no gap between the tapes 310 and the banknotes.
It is therefore possible to prevent the situation that the tightening of the radially
inner portions of the tapes 310 may become relatively strong when the drum 312 is
rotated in the winding direction.
[0118] As described earlier, in winding banknotes around the drum 312, the tape reel 311
rotates following the rotation of the drum 312. Therefore, as shown in FIG. 3, the
tension F of the tapes 310 is determined by F = T / R where T is the limit torque
of the torque limiter 314 attached to the tape reel 311 and R is the radius of the
tape reel 311. When the radius of the tape reel 311 is large (i.e., at the time of
start of winding of the tapes 310 around the drum 312), the tension F of the tapes
310 is relatively small, and thus the tightening of the radially inner portions of
the tapes 310 on the drum 312 becomes weak.
[0119] If increase in the tension F of the tapes 310 is intended, it is considered to increase
the limit torque T of the torque limiter 314. However, a torque limiter 314 having
a great limit torque T generally costs high. Therefore, in the banknote depositing
and dispensing machine 1 provided with a plurality of storage modules 31, using high-cost
torque limiters 314 for all storage modules 31 will considerably increase the cost.
[0120] Since displacement of banknotes is especially prominent in storage modules 31 for
storing composite banknotes, it is considered to use high-cost torque limiters 314
only for some storage modules 31 for storing composite banknotes. However, if this
resolution is adopted, two types of storage modules 31 are to be included in one banknote
depositing and dispensing machine 1. This is not preferable from the standpoints of
production management and maintenance management. Also, the storage modules 31 capable
of storing composite banknotes are limited to specific storage modules 31. This is
not preferable, either, from the standpoint of the usability of the banknote depositing
and dispensing machine 1.
[0121] Also, even if the limit torque T of the torque limiter 314 is made great, it is presumed
that, with future emergence of new banknotes having a structure that may have further
difficulty in bending, a further great limit torque T will be required.
[0122] The configuration disclosed herein enhances the tension F of the tapes 310 without
increasing the limit torque T of the torque limiter 314. As described above, the tension
F of the tapes 310 is determined by F = T / R, in which as the radius R of the tape
reel 311 is smaller, the tension F of the tapes 310 is greater. Therefore, only the
tapes 310 may be previously wound around the drum 312, thereby reducing the radius
of the tape reel 311 from the initial state shown by the dashed-dotted line in FIG.
3. Then, it is possible to start winding banknotes around the drum 312 with the tension
F of the tapes 310 having been enhanced.
[0123] With the previous winding of only the tapes 310 around the drum 312, however, the
maximum capacity of the storage module 31 decreases by this winding.
[0124] In consideration of the above, the banknote depositing and dispensing machine 1 sets
two modes as the operation modes for the storage modules 31, and switches between
the two modes for each storage module 31.
[0125] One of the two operation modes is a first mode where the tension of the tapes 310
is enhanced as described above. In the first mode, only the tapes 310 are previously
wound around the drum 312. The maximum capacity of the storage module 31 decreases
in the first mode.
[0126] The other operation mode, a second mode, is a mode that does not involve winding
of only the tapes 310 around the drum 312. In the second mode, while the tension of
the tapes 310 is not enhanced, the maximum capacity is relatively large.
[0127] As shown in FIG. 11, the tapes 310 made of a translucent material have light-shading
seals 3111 and 3112 for switching between the first and second modes. The light-shading
seals 3111 and 3112 attached to the tapes 310 are for detecting the positions of the
tapes 310 drawn out from the tape reel 311, and are detected with a translucent-type
tape sensor (illustration omitted) placed on the drawing path for the tapes 310 extending
from the tape reel 311 to the drum 312. The light-shading seals include the first
light-shading seals 3111 for detecting the tape position in the first mode, and the
second light-shading seals 3112 for detecting the tape position in the second mode.
The first light-shading seals 3111 are placed at positions closer to the tape reel
311 than the second light-shading seals 3112.
[0128] When the storage module 31 is operated in the second mode, the control unit 513 draws
out the tapes 310 until detecting the two second light-shading seals 3112 lined along
the length of each tape 310. By this, the amount of the tapes drawn out from the tape
reel 311 is relatively small, and the radius R of the tape reel 311 is large correspondingly.
[0129] When the storage module 31 is operated in the first mode, the control unit 513 draws
out the tapes 310 until further detecting the first light-shading seals 3111 after
detecting the second light-shading seals 3112. By this, the amount of the tapes drawn
out from the tape reel 311 is relatively large, and the radius R of the tape reel
311 becomes small correspondingly.
[0130] The banknote depositing and dispensing machine 1 is configured so that the operator
can set, for each of the first to eighth storage modules 31, whether the storage module
is to be operated in the first mode or the second mode by manipulating the manipulation
unit 55. For example, setting may be made to operate a storage module 31 for storing
composite banknotes in the first mode and a storage module 31 for storing no composite
banknotes in the second mode. With this setting, the tension F of the tapes 310 at
the time of winding banknotes around the drum 312 is enhanced in the storage module
31 for storing composite banknotes where displacement of banknotes easily occurs,
permitting reliable and stable winding of banknotes around the drum 312. As a result,
it is possible to prevent the situation that the tightening of the radially inner
portions of the tapes 310 may become strong and the tightening of the intermediate
portions of the tapes 310 may become relatively weak when the drum 312 is rotated
in the winding direction, causing displacement of banknotes. On the contrary, in the
storage module 31 for storing no composite banknotes, where displacement of banknotes
does not occur easily in the first place, there is little necessity to enhance the
tension of the tapes 310. Therefore, by operating such a storage module 31 in the
second mode, it is possible to avoid decrease in the maximum capacity of the storage
module 31 while storing banknotes stably.
[0131] Note that the banknote depositing and dispensing machine 1 may be configured so that
the operator sets, for each of the first to eighth storage modules 31, whether the
storage module is to be operated in the first mode or the second mode, as described
above. Otherwise, upon determination of the kind of banknotes to be stored in the
first to eighth storage modules 31, setting may be made automatically to operate the
storage module 31 for storing composite banknotes in the first mode and the storage
module 31 for storing no composite banknotes in the second mode.
[0132] Enhancing the tension of the tapes 310 is also advantageous for preventing breaking
of the tapes 310. That is, the tapes 310 drawn out from the tape reel 311 pass through
the tape regulating guide 313 up to the drum 312 as shown in FIG. 3. When the tension
of the tapes 310 is high, flopping of the tapes 310 is prevented or reduced. If the
tapes 310 is floppy, the tapes 310 may interfere with the tape regulating guide 313,
causing cutting of the tapes 310. By enhancing the tension of the tapes 310 thereby
preventing or reducing flopping of the tapes 310, cutting of the tapes 310 can be
prevented. Also, enhancing the tension F of the tapes 310 can prevent the trouble
that the tightening of the tapes 310 with the rotation of the drum 312 in the winding
direction may become excessively strong, and thus is effective in preventing breakage
of the tapes 310 due to this trouble.
(Configuration 4: Control configuration of regulating storage of composite banknotes
into storage module)
[0133] As described earlier, displacement of banknotes in the storage module 31 is caused
by the rotation of the drum 312 in the winding direction in a state where the outer
diameter of the drum 312 is large. When there are many composite banknotes wound around
the drum 312, the tightening of the tapes 310 may become weak in the radially intermediate
part. Given these situations, it is considered that, when the number of composite
banknotes stored in the storage module 31 becomes large, the maximum capacity of this
storage module 31 may be reduced, whereby increase in the outer diameter of the drum
312 may be prevented.
[0134] However, the above configuration will decrease the stored amount of the storage module
31 causing degradation in the performance (specifications) of the banknote depositing
and dispensing machine 1, and therefore is not a preferable countermeasure. Since
banknotes that cannot be stored in the storage modules 31 are paid out to the outlet
231 as rejected banknotes, the number of rejected banknotes will increase if the maximum
capacity of the storage modules 31 is small. This worsens the usability of the banknote
depositing and dispensing machine 1.
[0135] Incidentally, as shown in FIG. 5, the difficulty in bending along the surface of
the drum 312 varies depending on the front/back and orientation of a composite banknote
to be stored into the storage module 31. This is also a cause of the tightening of
the tapes 310 becoming weak resulting in displacement of banknotes. As a result of
examinations by the present inventor, however, it has been found that displacement
of banknotes occurs due to, not only the number of composite banknotes stored and
the front/back and orientation of the composite banknotes simply, but also other various
factors in combination.
[0136] In the configuration 4 disclosed herein, considering the combination of various factors,
only composite banknotes having a high possibility of really causing displacement
of banknotes are not stored in the storage modules 31, and the other banknotes are
stored in the storage modules 31, thereby preventing reduction in the stored amount
of the storage modules 31. Various factors that may cause displacement of banknotes
will be described hereinafter in order. Thereafter, control of regulating storage
of composite banknotes into the storage modules 31 will be described.
<Radial position of composite banknote on drum with banknotes wound around>
[0137] As shown in FIG. 6, when composite banknotes are wound around the drum 312, the tapes
310 and the banknotes wound around the drum 312 may have a truncated cone shape. In
relation to this, the present inventor has found that, although the numbers of composite
banknotes wound around the drum 312 are the same and the tapes 310 and banknotes wound
around the drum 312 are similarly in a truncated cone shape, displacement of banknotes
occurs easily in some cases, but it does not occur easily in other cases.
[0138] That is, the left-side view of FIG. 12 illustrates a case where many composite banknotes
are wound in a radially inner part of the drum 312 and non-composite normal banknotes
are wound in a radially outer part thereof. In this state, the banknotes wound around
the drum 312 tend to tilt as a whole. Therefore, when the tightening of the tapes
310 becomes weak, displacement of banknotes easily occur. On the contrary, the right-side
view of FIG. 12 illustrates a case where many non-composite normal banknotes are wound
in a radially inner part of the drum 312 and composite banknotes are wound in a radially
outer part of the drum 312. In this state, while the outer circumference of the drum
312 is tilted, with the tapes 310 and the banknotes wound around the drum 312 being
in a truncated cone shape, banknotes are not tilted in a radially intermediate part.
Therefore, even when the tightening of the tapes 310 becomes weak in a radially intermediate
part of the drum 312, displacement of banknotes does not occur easily. In this way,
not only the magnitude of the number of composite banknotes wound around the drum
312, but also the radial position of the composite banknotes wound around the drum
312 affect occurrence of displacement of banknotes.
[0139] Therefore, by ensuring not to store composite banknotes into the storage module 31
when the composite banknotes are to be located radially inside, rather than limiting
the maximum capacity of the storage module 31 based on only the number of composite
banknotes stored in the storage module 31, it is possible to increase the maximum
capacity of the storage module 31 while preventing or reducing occurrence of displacement
of banknotes.
<Relative position between depression/projection of composite banknotes and tapes>
[0140] As shown in FIG. 5, the difficulty in bending of a composite banknote along the surface
of the drum 312 varies depending on the front/back and the orientation of the composite
banknote. When the composite banknote is in position A and position B, the composite
banknote have difficulty in bending along the surface of the drum 312, and thus a
gap easily appears between the composite banknote and the tapes 310 when the composite
banknote is wound around the drum 312. However, the present inventor has found that,
depending on the relative position between the depression/projection of the composite
banknote and the tapes 310, it will be possible to bend the composite banknote sufficiently
along the surface of the drum 312, whereby a gap will not easily appear between the
composite banknote and the tapes 310. That is, when the depression/projection of the
composite banknote is located near either of the tapes 310, it will be possible to
press the banknote by the tension of the tape 310, though the depression/projection
has difficulty in bending, whereby a gap will not easily appear between the composite
banknote and the tapes 310.
[0141] FIG. 13 illustrates the relative positions between a depression/projection of a composite
banknote and the tapes 310. The banknote depositing and dispensing machine 1 is configured
to accept displacements of banknotes in the direction perpendicular to the transport
direction (i.e., center alignment, left alignment, and right alignment) for acceptance
of various sizes of different currencies and denominations.
[0142] When a composite banknote being transported in position A is center-aligned or left-aligned,
the depression/projection of the composite banknote is close to either of the tapes
310. The depression/projection is thus bent by the tape 310, whereby a gap does not
easily appear between the composite banknote and the tape 310. Therefore, even when
this composite banknote is stored in the storage module 31, displacement of banknotes
will not easily occur. On the contrary, when a composite banknote being transported
in position A is right-aligned, the depression/projection of the composite banknote
is away from the tapes 310. The composite banknote thus has difficulty in bending,
whereby a gap easily appear between the composite banknote and the tapes 310. Therefore,
storing this composite banknote in the storage module 31 may cause displacement of
banknotes. Similarly, when a composite banknote being transported in position B is
left-aligned, the depression/projection of the composite banknote is away from the
tapes 310. The composite banknote thus has difficulty in bending, whereby a gap easily
appear between the composite banknote and the tapes 310. In this case, also, storing
this composite banknote in the storage module 31 may cause displacement of banknotes.
[0143] If any banknote that is simply in position A or position B is prohibited from being
stored into the storage module 31, a number of banknotes will not be stored into the
storage module 31. This increases rejected banknotes, worsening the usability of the
banknote depositing and dispensing machine 1. By prohibiting storage of a composite
banknote into the storage module 31 only when the composite banknote is in position
A and right-aligned and when it is in position B and left-aligned as described above,
it is possible to prevent increase in the number of rejected banknotes and yet avoid
the situation that the tapes 310 and banknotes wound around the drum 312 may have
a truncated cone shape as shown in FIG. 6. As a result, it is possible to effectively
prevent displacement of banknotes and also avoid worsening of the usability of the
banknote depositing and dispensing machine 1.
<Storage control based on combination of various factors>
[0144] The control unit 513 of the banknote depositing and dispensing machine 1 determines
whether storage of a composite banknote into the storage module 31 is permitted or
not based on the combination of various factors described above. By doing this, it
is possible to prevent displacement of banknotes wound around the drum 312 while storing
as many composite banknotes as possible into the storage module 312. Specifically,
the control unit 513 determines whether storage of a composite banknote is permitted
or not based on the combination shown in FIG. 14. When the number of banknotes stored
in the storage module 31 is equal to or less than a predetermined value (e.g., 100)
and a composite banknote in position A is right-aligned, and when the number of banknotes
stored in the storage module 31 is equal to or less than the predetermined value and
a composite banknote in position B is left-aligned, the composite banknote will not
be stored in the storage module 31. This composite banknote is paid out to the outlet
213 as a rejected banknote.
[0145] When the stored amount of the storage module 31 is small, a composite banknote will
be located in a radially inner part of the drum 312 when wound around the drum 312
(see the left-side view of FIG. 12). Also, when a composite banknote in position A
is right-aligned or when a composite banknote in position B is left-aligned, the depression/projection
of the composite banknote will have difficulty in bending and thus a gap will easily
appear between the tapes 310 and the banknote (see FIG. 13). Consequently, storage
of a composite banknote is prohibited only when these plural factors are combined.
[0146] By doing as described above, it is possible to prevent the situation that the tapes
310 and banknotes wound around the drum 312 may have a truncated cone shape and also
prevent occurrence of displacement of banknotes, in the storage module 31, while reducing
banknotes paid out to the outlet 213 as rejected banknotes.
[0147] Note that a composite banknote paid out as a rejected banknote due to the above factors
can be stored into the storage module 31 by placing the banknote again on the inlet
211 after adjusting the orientation, position, and location thereof.
(Banknote depositing and dispensing machine provided with stacking storage unit)
[0148] The technology disclosed herein is applicable, not only to the banknote depositing
and dispensing machine 1 provided with a winding storage unit, but also to a banknote
depositing and dispensing machine provided with a stacking storage unit.
[0149] FIG. 15 illustrates a banknote depositing and dispensing machine 10 provided with
a stacking storage unit. This banknote depositing and dispensing machine 10 has a
plurality (in the illustrated example, first to fourth) stacking storage cassettes
33
-1 to 33
-4. Each of the stacking storage cassettes 33 has a vertically movable stage 331 inside.
Banknotes are vertically stacked on the stage 331. These stacking storage cassettes
33 are configured to allow feeding of stored banknotes. The configuration of the stacking
storage cassettes 33 is known, and thus detailed description thereof is omitted.
[0150] In the stacking storage cassettes 33, also, it is not preferable to repeat storage
and feeding of banknotes in a near-full state. That is, during feeding, the topmost
banknote is to be fed by pressing stacked banknotes in the stacking direction. In
a near-full state, where banknotes are stacked high, the pressing becomes unstable.
Also, feeding of banknotes cannot be performed stably. In particular, when composite
banknotes are stacked, the stacked banknotes tend to tilt on the stage 331 because
composite banknotes are nonuniform in thickness, increasing the instability described
above. Moreover, storage of banknotes can become unstable when the stacking storage
cassette 33 is in a near-full state.
[0151] In consideration of the above, in the banknote depositing and dispensing machine
10 provided with stacking storage cassettes 33, also, the above-described configuration
1 is adopted. That is, to avoid repetition of storage and feeding of banknotes in
a state where the stored amount of the storage cassette 33 is near full, when the
stored amount of the storage cassette (e.g., the first storage cassette 33
-1) reaches a preset first stored amount, the control unit 513 prohibits storage of
banknotes into the first storage cassette 33
-1 until the stored amount reaches a preset second stored amount. Feeding of banknotes
from the first storage cassette 33
-1 is permitted. The first storage cassette 33
-1 is set as a feeding-dedicated storage cassette.
[0152] At this time, the control unit 513 sets the second storage cassette 33
-2 that stores the same kind of banknotes as the first storage cassette 33
-1 as a storage-dedicated storage cassette. That is, for the second storage cassette
33
-2, while storage of banknotes is permitted, feeding of banknotes is prohibited.
[0153] When the stored amount of the first storage cassette 33
-1 reaches the second stored amount as banknotes are fed from this storage cassette,
the control unit 513 switches the first storage cassette 33
-1 from a feeding-dedicated storage cassette to a storage-dedicated storage cassette.
The control unit 513 also switches the second storage cassette 33
-2 from a storage-dedicated storage cassette to a feeding-dedicated storage cassette.
In the first storage cassette 33
-1, storage of banknotes is permitted and feeding of banknotes is prohibited. In the
second storage cassette 33
-2, feeding of banknotes is permitted and storage of banknotes is prohibited. In this
way, in the banknote depositing and dispensing machine 10 provided with stacking storage
cassettes 33, also, repetition of storage and feeding of banknotes in a state where
the storage cassette 33 is near full is prevented.
[0154] Note that, as described earlier, when the second storage cassette 33
-2 set as storage-dedicated reaches the first stored amount before the first storage
cassette 33
-1 set as feeding-dedicated reaches the second stored amount, it is possible to switch
the first storage cassette 33
-1 to a storage-dedicated storage cassette and the second storage cassette 33
-2 to a feeding-dedicated storage cassette at this timing.
[0155] Otherwise, each of the plurality of storage cassettes 33 may be configured to be
available for both storage and feeding of banknotes. Once any one of the storage cassettes
33 reaches the first stored amount, storage of banknotes may be prohibited, while
feeding of banknotes is permitted, for this storage cassette 33. For the other storage
cassette 33, both storage and feeding of banknotes may be permitted.
[0156] The banknote depositing and dispensing machine 10 provided with stacking storage
cassettes 33 may also adopt the above-described configuration 4. In the stacking storage
cassette 33, when many composite banknotes are included in a lower part of the stack
of banknotes, the tilt of the stacked banknotes will be great, easily becoming unstable.
Also, when depressions/projections of composite banknotes overlap at the same position,
the tilt of the stacked banknotes will become further great. In consideration of this,
in the banknote depositing and dispensing machine 10 provided with stacking storage
cassettes 33, also, the control unit 513 may determine not to store a composite banknote
depending on the number of banknotes stored in the storage cassette 33, the front/back
and orientation of the composite banknote, and the location of the composite banknote.
[0157] Note that, while the storage cassettes 33 that store banknotes by vertically stacking
banknotes are illustrated, storage cassettes that store banknotes by horizontally
placing banknotes in a line may be used.
[0158] The technology disclosed herein is not necessarily applied only to the banknote depositing
and dispensing machines described above, but is widely applicable to banknote handling
devices that include a winding storage unit and/or a stacking storage unit for storing
banknotes and perform storage and feeding of banknotes.
[0159] The object stored into and fed from the storage unit is not limited to banknotes,
but covers paper sheets in general including securities such as checks and exchange
coupons, and the technology disclosed herein is applicable to paper sheet handling
devices.
DESCRIPTION OF REFERENCE CHARACTERS
[0160]
- 1, 10
- Banknote depositing and dispensing machine (paper sheet handling device)
- 31
- Storage module (storage unit)
- 33
- Storage cassette (storage unit)
- 513
- Control unit