(11) EP 3 403 961 A1

(12)

EUROPEAN PATENT APPLICATION

(43) Date of publication:

21.11.2018 Bulletin 2018/47

(51) Int Cl.:

B65H 63/028 (2006.01)

D04B 35/14 (2006.01)

(21) Application number: 18167173.6

(22) Date of filing: 13.04.2018

(84) Designated Contracting States:

AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

Designated Extension States:

BA ME

Designated Validation States:

KH MA MD TN

(30) Priority: 17.05.2017 IT 201700053150

(71) Applicant: L.G.L. Electronics S.p.A. 24024 Gandino (Bergamo) (IT)

(72) Inventors:

- BERTOCCHI, Giorgio 24026 LEFFE BG (IT)
- ZENONI, Pietro 24026 LEFFE BG (IT)
- (74) Representative: Modiano, Micaela Nadia et al Modiano & Partners Via Meravigli, 16 20123 Milano (IT)

(54) YARN BREAKAGE SENSOR FOR TEXTILE APPARATUSES

- (57) A yarn breakage sensor for textile apparatuses, which comprises:
- a body (20),
- a rod (24) which is adapted to engage the yarn (Y) with a portion (24a) thereof and is pivoted to the body (20) about an axis (A) in order to rotate from a first position to a second position following yarn breakage,
- detection means, comprising a first detection element (30) which is integral with the rod (24) and a second de-

tection element (32) which is integral with the body (20) and is arranged substantially along the trajectory of the first detection element (30) in order to face it, with the rod (24) in said second position, and generate a corresponding breakage signal, either said first detection element (30) or said second detection element (32) is supported in a position that can be adjusted substantially along the trajectory of the first detection element (30) by adjustable support means (36).

15

20

25

40

[0001] The present invention relates to a yarn breakage sensor for textile apparatuses.

1

[0002] As is known, in textile processes the yarn can be fed to a downstream textile machine, particularly a knitting machine, by an "accumulator" yarn feeder.

[0003] An accumulator yarn feeder is generally provided with a drum that supports, wound thereon, a plurality of yarn loops that are adapted to be unwound on request of the downstream machine. As the yarn is unwound from the drum, it can be reloaded by a motorized arm which rotates like a swivel about an axis that is coaxial to the axis of the drum, or, in other types of feeders, by rotating the drum itself.

[0004] Accumulator yarn feeders can be provided with a sensor that is adapted to detect the accidental breakage of the yarn. The sensor is typically arranged immediately downstream of the drum, and can comprise a rod that is pivoted at an intermediate point about an axis that is transverse to the advancement direction of the yarn. One end of the rod carries a magnet, while the opposite end is pressed to slideably engage the yarn in output from the drum by a spring which is functionally connected to the rod.

[0005] In the event of yarn breakage, the rod is freed and rotates upon pressing from the spring, thus bringing the magnet in front of a Hall effect sensor which is installed on a printed circuit that is integral with the body of the sensor. The Hall effect sensor as a consequence generates a yarn breakage signal which is sent to the feeder control unit.

[0006] As is well known to the person skilled in the art, it is essential that the yarn breakage signal arrive in the shortest time possible. In fact, the promptness of intervention of the sensor is a determining factor in order to prevent drawbacks on the machine downstream, such as the breakage of needles, the loss of yarn from needles, etc.; drawbacks that, obviously, limit productivity in that they lead to downtimes to restore the correct operating conditions of the machine.

[0007] The only way currently known to make the sensor more reactive is to adjust the force exerted by the spring, by increasing the preloading.

[0008] However, as is known, the preloading cannot be increased beyond certain limits, especially when the operating tension, i.e. the tension at which the yarn is fed to the machine, is relatively low, since it would subject the yarn to excessive disturbances that could be harmful both to the operation of the machine, and to the quality of the knitting produced.

[0009] Moreover, the intervention time of the sensor varies according to the yarn count and yarn type being processed.

[0010] Therefore, the aim of the present invention is to provide a yarn breakage sensor for textile apparatuses that overcomes the above mentioned drawbacks of conventional systems, and in particular makes it possible to

adjust the reactivity of the sensor, including on the basis of the yarn count and yarn type being processed, without modifying the return force of the spring.

[0011] Another object of the invention is to provide a yarn breakage sensor that is relatively simple and low cost to manufacture.

[0012] This aim and these and other objects, which will become better apparent from the description that follows, are achieved by a yarn breakage detection sensor having the characteristics recited in the appended claim 1, while the appended dependent claims define other characteristics of the invention which are advantageous, although secondary.

[0013] Now the invention will be described in more detail, with reference to some preferred, but not exclusive, embodiments thereof, which are illustrated for the purposes of non-limiting example in the accompanying drawings, wherein:

Figure 1 is a schematic side view of a generic textile apparatus that includes a yarn breakage detection sensor;

Figure 2 is a side view of a yarn breakage detection sensor according to the invention, in a first active position;

Figure 3 is a similar view to Figure 2, showing the sensor in a second active position;

Figure 4 is an enlarged view of a detail of Figure 2; Figure 5 is an enlarged view of a detail of Figure 3.

[0014] Figure 1 schematically illustrates a yarn breakage sensor 10 which is installed on an accumulator yarn feeder 12. The feeder 12 is provided with a drum 14 that carries a yarn Y wound on it. The yarn Y is adapted to be unwound on demand by a textile machine downstream, particularly a knitting machine 16.

[0015] The sensor 10 is fixed to an arm 18 that protrudes longitudinally from the body of the feeder 12, and intercepts the yarn immediately downstream of a weft braking device 19 applied to the output of the drum 14.

[0016] The feeder 12 and the knitting machine 16 can be conventional and therefore they will not be described here in detail.

[0017] With particular reference now to Figures 2-5, the sensor 10 comprises a body 20 that supports a yarn-guiding entry bush 22 and a yarn-guiding exit bush 23, which are mutually coaxial.

[0018] A rod 24 is pivoted at an intermediate point to the body 20 between the two yarn-guiding bushes 22, 23, about an axis A that is spaced apart from, and substantially transverse to, the axis of the yarn-guiding bushes

[0019] A first end 24a of the rod 24 is pressed to slideably engage the yarn Y downstream of the yarn-guiding exit bush 22 by a spring 26 (shown only schematically in Figures 2 and 3) which is functionally connected to the rod 24. The opposite end 24b integrally supports a holder 28 which incorporates a magnet 30. The preloading of

the spring 26 is adjustable, in a conventional manner, by way of a knob 31.

3

[0020] In a conventional manner, in the event of yarn breakage, the rod 24 is freed and rotates when the spring 26 returns, thus bringing the magnet 30 in front of a Hall effect sensor 32 which is mounted on a circuit board 34 accommodated in the body 20. The Hall effect sensor 32 as a consequence generates a yarn breakage signal which is sent to the control unit (not shown) of the feeder

[0021] According to the invention, in order to adjust the delay in the response of the sensor, the Hall effect sensor 32 is supported in a position that can be adjusted substantially along the trajectory of the magnet 28 by a slider 36 on which the circuit board 34 is fixed.

[0022] The slider 36 can slide with respect to the body 20 in a direction parallel to the axis of the yarn-guiding bushes 22, 23, between a low-sensitivity position, shown in Figures 2 and 4, and a high-sensitivity position, shown in Figures 3 and 5. In the low-sensitivity position, the rod 24 has to trace an angle α (e.g., 70°-80° approximately) in order to bring the magnet 30 in front of the Hall effect sensor 32. In the high-sensitivity position, the rod 24 has to trace a smaller angle β (e.g., 35°-45° approximately), thus significantly reducing the intervention time of the sensor after the yarn breakage.

[0023] The yarn breakage detection sensor according to the invention operates in a manner similar to traditional sensors, but according to the set aims it makes it possible to adjust the reactivity of the sensor, even on the basis of the yarn count and yarn type being processed, without modifying the preloading of the spring but simply by varying the position of the slider.

[0024] In the embodiment described herein it is still possible to vary the preloading of the spring for greater

[0025] Some preferred embodiments of the invention have been described, but obviously the person skilled in the art may make various modifications and variations within the scope of protection of the claims.

[0026] For example, there could be intermediate adjustment positions of the slider in order to further refine the adjustment of the sensitivity.

[0027] Also, the slider could slide along a trajectory that is curved instead of a straight in order to better follow the trajectory of the rod 24, or it could even be substituted by other adjustable support means, e.g., an arm hinged about the axis A which integrally supports the Hall effect sensor at one of its ends.

[0028] Furthermore, in the embodiment described the position of the magnet with respect to the arm 24 is fixed, while the position of the Hall effect sensor with respect to the body 20 is adjustable. However, a reverse solution would also be possible, with the Hall effect sensor fixed and the magnet mounted on the rod in a position that can be adjusted along the trajectory of the magnet proper.

[0029] Moreover, it goes without saying that the positions of the magnet 30 and of the Hall effect sensor 32 could be inverted; that is to say, the magnet 30 could be integral with the slider 36 and the Hall effect sensor 32 could be integral with the rod 24.

[0030] Furthermore, the rod could be pivoted at an end instead of at an intermediate point, and the magnet can be fixed to an intermediate point of the rod.

[0031] The spring 26, although useful to ensure the precision of operation of the sensor, may not be essential if the weight force of the rod 24 ensures sufficient repeatability.

[0032] Also, the oscillation axis of the rod does not necessarily have to be perpendicular to the advancement direction of the yarn, but could even be parallel, as long as the rod is arranged so as to engage the varn with one of its portions (not necessarily an end portion), and is pressed so as to rotate in the event of yarn breakage.

[0033] Last but not least, it is possible to use detection means other than the magnetic sensor described herein, as long as such means are made up of two detection elements that are capable of generating a signal when they approach each other. For example, an optical sensor could be used, made up of an emitter of light and a photocell, or a contact sensor made up of a mechanical switch and a locator, and the like.

[0034] The disclosures in Italian Patent Application No. 102017000053150 from which this application claims priority are incorporated herein by reference.

[0035] Where technical features mentioned in any claim are followed by reference signs, those reference signs have been included for the sole purpose of increasing the intelligibility of the claims and accordingly, such reference signs do not have any limiting effect on the interpretation of each element identified by way of example by such reference signs.

Claims

40

45

- 1. A yarn breakage sensor for textile apparatuses, which comprises:
 - a body (20),
 - a rod (24) which is adapted to engage the yarn (Y) with a portion (24a) thereof and is pivoted to the body (20) about an axis (A) in order to rotate from a first position to a second position following yarn breakage,
 - detection means, comprising a first detection element (30) which is integral with the rod (24) and a second detection element (32) which is integral with the body (20) and is arranged substantially along the trajectory of the first detection element (30) in order to face it, with the rod (24) in said second position, and generate a corresponding breakage signal,

characterized in that either said first detection element (30) or said second detection element (32) is

15

20

25

supported in a position that can be adjusted substantially along the trajectory of the first detection element (30) by adjustable support means (36).

5

2. The yarn breakage sensor according to claim 1, characterized in that said adjustable support means (36) comprise a slider (36) which can slide between a low-sensitivity position, in which said rod (24) has to trace a first angle (α) in order to bring said first detection element (30) in front of said second detection element (32), and a high-sensitivity position, in which said rod (24) has to trace a second angle (β) that is smaller than the first angle in order to bring said first detection element (30) in front of said second detection element (32).

3. The yarn breakage sensor according to claim 2, characterized in that said first angle is comprised between 70° and 80° and said second angle is comprised between 35° and 45°.

4. The yarn breakage sensor according to claim 2 or 3, **characterized in that** said slider (36) supports said second detection element (32) integrally and is slideably mounted with respect to the body (20).

5. The yarn breakage sensor according to claim 4, characterized in that it comprises a yarn-guiding entry bush (22) and a yarn-guiding exit bush (23), which are mutually coaxial and are integral with the body (20), said slider (36) being able to slide in a straight direction that is substantially parallel to the axis of said yarn-guiding bushes.

 The yarn breakage sensor according to claim 5, characterized in that said yarn-guiding bushes (22, 23) define a path that is substantially perpendicular to said axis (A).

7. The yarn breakage sensor according to one of claims 1-6, **characterized in that** either said first detection element or said second detection element is a Hall effect sensor (32) and the other detection element is a magnet (30).

8. The yarn breakage sensor according to claim 7, **characterized in that** said first detection element (30) is a magnet.

9. The yarn breakage sensor according to one of claims 1-8, **characterized in that** said rod (24) is pivoted to the body (20) at an intermediate point, engages the yarn (Y) with a first end (24a), and supports said first detection element (30) integrally at a second, opposite end (24b).

10. The yarn breakage sensor according to one of claims 1-9, **characterized in that** said rod (24) is pressed

against the yarn by elastic means (26).

4

45

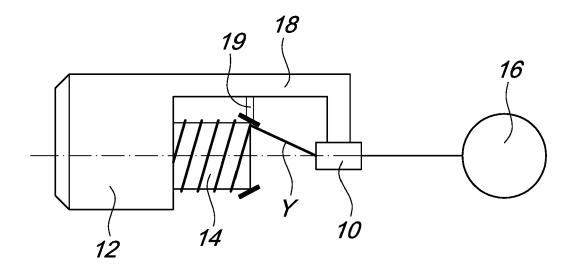
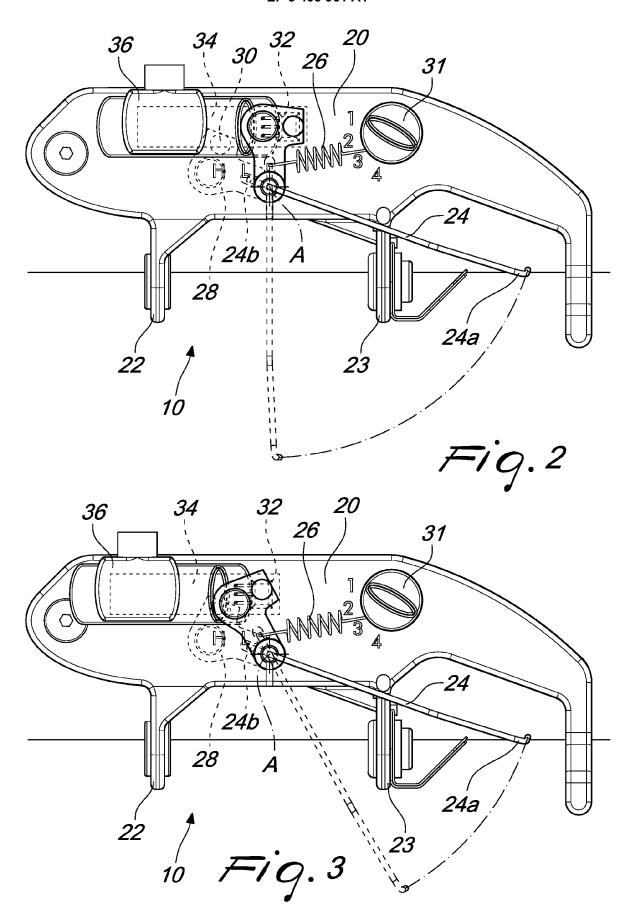
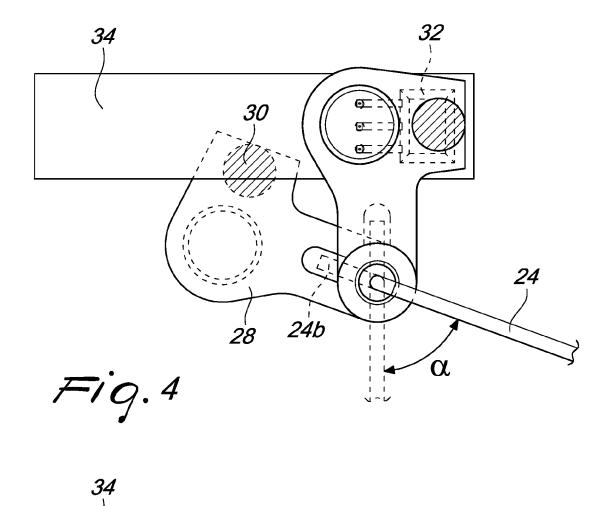
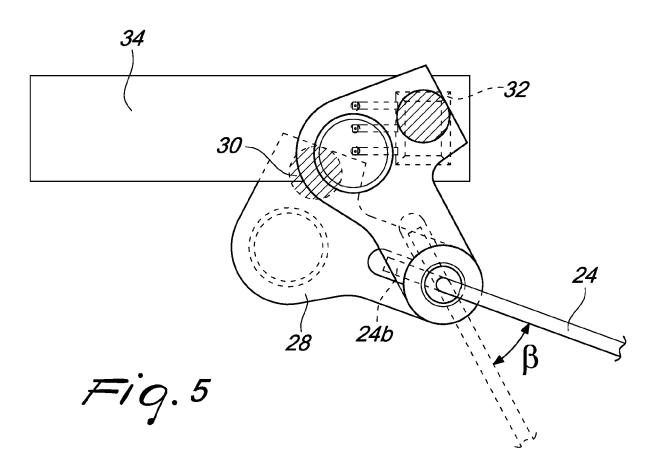





Fig. 1

EUROPEAN SEARCH REPORT

Application Number EP 18 16 7173

	Citation of document with in			Relevant	CLASSIFICATION OF THE	
Category	of relevant pass		male,	to claim	APPLICATION (IPC)	
Α	CN 102 888 705 A (J TECHNOLOGY CO LTD) 23 January 2013 (20 * abstract; figures	1-10	INV. B65H63/028 D04B35/14			
A	US 3 867 592 A (QUE 18 February 1975 (1 * column 2, line 42 figures 1,2 *	1-10				
A	US 3 689 963 A (FRE 12 September 1972 (* claims 1,10; figu	1972-09-12)		1-10		
A	US 3 438 188 A (BOG 15 April 1969 (1969 * claims 4-8; figur	-04-15)		1-10		
Α	WO 2008/017319 A1 ([DE]; KAUFMANN RICH MICHAEL [DE]; L) 14 February 2008 (2 * claims 1,15; figu	ARD [DE]; MIXI 2008-02-14)		1-10	TECHNICAL FIELDS SEARCHED (IPC) B65H D04B	
A	CN 204 211 930 U (Q ELECTRON CO LTD) 18 March 2015 (2015 * abstract; figures	-03-18)	I PLASTIC	1-10	D03D	
A	GB 2 058 150 A (FREI GMBH & CO GEB) 8 April 1981 (1981-04-08) * page 2, line 59 - page 3, line 4; figure 1 *			1-10		
US 3 896 640 A (PALENCHER JAC 29 July 1975 (1975-07-29) * column 3, lines 5-20; figur		07-29)		1-10		
			-/			
	The present search report has	been drawn up for all ol	aims			
	Place of search	•	tion of the search		Examiner	
	The Hague		ember 2018	Pu	ssemier, Bart	
X : part Y : part docu	ATEGORY OF CITED DOCUMENTS icularly relevant if taken alone icularly relevant if combined with anotument of the same category	T E her D L	: theory or principle : earlier patent docu after the filing date : document cited in : document cited for	underlying the ument, but publ the application other reasons	invention ished on, or	
O : non-written disclosure & :			er of the same patent family, corresponding ent			

page 1 of 2

EUROPEAN SEARCH REPORT

Application Number EP 18 16 7173

ategory	Citation of document with indication		Relevant	CLASSIFICATION OF THE
	of relevant passages		to claim	APPLICATION (IPC)
4	EP 0 224 797 A1 (IRO AB		-10	
	10 June 1987 (1987-06-1	^Θ)		
	* figure 1 *			
4	CN 2 825 677 Y (ZHANG R	USHAN [CN]) 1.	-10	
	11 October 2006 (2006-1			
	* abstract; figures 1,2	*		
4	CN 201 186 989 Y (RUSHA	N ZHANG [CN]) 1-	-10	
	28 January 2009 (2009-0	1-28)		
	* abstract; figures 1,2	*		
				TECHNICAL FIELDS SEARCHED (IPC)
	The present search report has been dr	awn up for all claims		
	Place of search	Date of completion of the search	Τ	Examiner
	The Hague	7 September 2018	Pus	semier, Bart
C	ATEGORY OF CITED DOCUMENTS	T : theory or principle und E : earlier patent docume	derlying the in	nvention
	cularly relevant if taken alone cularly relevant if combined with another	after the filing date D : document cited in the	•	nea on, or
docu	ment of the same category	L : document cited for oth	ner reasons	
A : tech	nological background -written disclosure	& : member of the same		

page 2 of 2

EP 3 403 961 A1

ANNEX TO THE EUROPEAN SEARCH REPORT ON EUROPEAN PATENT APPLICATION NO.

EP 18 16 7173

This annex lists the patent family members relating to the patent documents cited in the above-mentioned European search report. The members are as contained in the European Patent Office EDP file on The European Patent Office is in no way liable for these particulars which are merely given for the purpose of information. 5

07-09-2018

	Patent document ted in search report		Publication date		Patent family member(s)	Publication date
CN	102888705	Α	23-01-2013	NONE		
US	3867592	A	18-02-1975	CH DE ES FR GB IT JP US	571452 A5 2361731 A1 409991 A1 2214298 A5 1408107 A 999493 B S4994936 A 3867592 A	15-01-1976 20-06-1974 01-12-1975 09-08-1974 01-10-1975 20-02-1976 09-09-1974 18-02-1975
US	3689963	A	12-09-1972	CH ES FR GB JP US	498770 A 374891 A1 2028923 A1 1296441 A S5020179 B1 3689963 A	15-11-1970 16-02-1972 16-10-1970 15-11-1972 12-07-1975 12-09-1972
US	3438188	A .	15-04-1969	NONE		
WO	2008017319	A1	14-02-2008	BR CN EP TW WO	PI0621827 A2 101506421 A 2049718 A1 200809028 A 2008017319 A1	20-12-2011 12-08-2009 22-04-2009 16-02-2008 14-02-2008
CN	204211930	U	18-03-2015	NONE		
GB	2058150	A	08-04-1981	CH DE ES FR GB IT JP US	642328 A5 2936581 A1 486420 A1 2464911 A1 2058150 A 1129764 B S5643163 A 4331008 A	13-04-1984 19-03-1981 16-06-1980 20-03-1981 08-04-1981 11-06-1986 21-04-1981 25-05-1982
US	3896640	Α	29-07-1975	NONE		
	0224797	A1	10-06-1987	DE EP JP US WO	3664494 D1 0224797 A1 S63501964 A 4768729 A 8703019 A1	24-08-1989 10-06-1987 04-08-1988 06-09-1988 21-05-1987
CN CN	2825677	Υ	11-10-2006	NONE		

© For more details about this annex : see Official Journal of the European Patent Office, No. 12/82

55

10

15

20

25

30

35

40

45

50

page 1 of 2

EP 3 403 961 A1

ANNEX TO THE EUROPEAN SEARCH REPORT ON EUROPEAN PATENT APPLICATION NO.

EP 18 16 7173

This annex lists the patent family members relating to the patent documents cited in the above-mentioned European search report. The members are as contained in the European Patent Office EDP file on The European Patent Office is in no way liable for these particulars which are merely given for the purpose of information. 5

07-09-2018

	Patent document cited in search report		Publication date	Patent family member(s)	Publication date
	CN 201186989	Y	28-01-2009	NONE	
0458					
20 CUM P0450					

For more details about this annex : see Official Journal of the European Patent Office, No. 12/82

55

10

15

20

25

30

35

40

45

50

page 2 of 2

EP 3 403 961 A1

REFERENCES CITED IN THE DESCRIPTION

This list of references cited by the applicant is for the reader's convenience only. It does not form part of the European patent document. Even though great care has been taken in compiling the references, errors or omissions cannot be excluded and the EPO disclaims all liability in this regard.

Patent documents cited in the description

• IT 102017000053150 [0034]