(19)
(11) EP 3 415 399 A1

(12) EUROPÄISCHE PATENTANMELDUNG

(43) Veröffentlichungstag:
19.12.2018  Patentblatt  2018/51

(21) Anmeldenummer: 17176338.6

(22) Anmeldetag:  16.06.2017
(51) Internationale Patentklassifikation (IPC): 
B61L 19/08(2006.01)
B61L 19/06(2006.01)
B61L 27/00(2006.01)
(84) Benannte Vertragsstaaten:
AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR
Benannte Erstreckungsstaaten:
BA ME
Benannte Validierungsstaaten:
MA MD

(71) Anmelder: Siemens Schweiz AG
8047 Zürich (CH)

(72) Erfinder:
  • SIGG, Daniel
    8400 Winterthur (CH)

(74) Vertreter: Maier, Daniel Oliver et al
Siemens AG Postfach 22 16 34
80506 München
80506 München (DE)

   


(54) SYSTEM ZUR AUSFALLSICHEREN VERSORGUNG EINES ELEKTRISCHEN VERBRAUCHERS MIT EINEM REDUNDANT AUSGEFÜHRTEN ENERGIEBUS


(57) Erfindungsgemäss ist ein System (Sys) zur ausfallsicheren Versorgung eines elektrischen Verbrauchers (E) mit einem redundant ausgeführten Energiebus (EB), über den in einer industriellen Anlage angeordnete dezentrale als elektrische Verbraucher charakterisierbare Funktionseinheiten (E, S, W, Bue, AC) mit elektrischer Energie versorgt werden, wobei:
a) ein übergeordnetes Steuerungssystem (STW) vorgesehen ist, das mit den dezentralen Funktionseinheiten (E) mittels Datentelegrammen Informationen über einen Datenbus (CB) austauscht,
b) Netzknoteneinheiten (SND) sequentiell zwischen zwei Speisepunkten (PS1, PS2) eines ringartig aufgebauten Energiebusses (EB) angeordnet sind, die den dezentralen Funktionseinheiten (E) den Zugang zu dem Energiebus (E) und optional auch zum Datenbus (CB) bereitstellen,
c) die Netzknoteneinheiten (SND) über ein von einer Steuereinheit (CPU) steuerbares Schaltmodul (S) verfügen, das einen ersten Schalter (S1) und einen zweiten Schalter (S2) umfasst, wobei mit den beiden Schaltern (S1, S2) ein Zugang zu den beiden Speisepunkten (PS1, PS2) schaltbar ist,
d) auf jeder Seite der dezentralen Funktionseinheit (E) je eine zwischen der positven Ader (Bus+) und der negativen Ader (Bus-) des Energiebusses (EB) angeordnete Widerstandsbaugruppe (RG1, RG2) vorgesehen ist, deren Ausgang (A1, A2) an je einen Eingang einer Schaltgruppe (S3, S4) gelegt ist, die eine der beiden Adern (Bus+, Bus-) des Energiebusses (EB) mit der dezentralen Funktionseinheit (E) verbindet, wobei die Widerstandsbaugruppe (RG1, RG2) so eingestellt ist, dass die Schaltgruppe (S3, S4) bei Vorhandensein der Busspannung durchschaltet; und
e) je ein auf den Ausgang der Widerstandsbaugruppe (RG1, RG2) geschalteter Steuerausgang (ST1, ST2), mit dem die von der Widerstandsbaugruppe (RG1, RG2) bereitsgestellte Ausgangsspannung manipulierbar ist.




Beschreibung


[0001] Die vorliegende Erfindung bezieht sich auf ein System zur ausfallsicheren Versorgung eines elektrischen Verbrauchers mit einem redundant ausgeführten Energiebus.

[0002] Derartige dezentrale Funktionseinheiten werden im Besonderen in Schienenverkehrsnetzwerken z.B wie die Eisenbahn eingesetzt, wo diese genutzt werden, um Fahrzeug beeinflussende und/oder Fahrzeug überwachende Einheiten zu steuern und bezüglich der Funktionalität zu überwachen und um Prozessdaten aufzunehmen und zurück an eine zentrale Steuerungs- und/oder Überwachungszentrale, wie zum Beispiel eine Leitstelle oder ein Stellwerk, zu melden. Als zugbeeinflussende Einheiten, die also Anweisungen an den Fahrzeugführer geben oder sogar direkt Eingriffe in der Fahrzeugsteuerung vornehmen oder direkt einen sicheren Fahrweg einstellen, können beispielsweise Signale, Weichen, Balisen, Linienleiter, Gleismagnete und dergleichen sowie auch Sensoren zum Erfassen von Prozessgrössen des fahrenden Zuges, wie Leistungsaufnahme, Geschwindigkeit und dergleichen, betrachtet werden. Als Zug- und Gleisabschnitt überwachende Einheiten können ebenfalls Balisen und Linienleiter, aber auch Achszähler und Gleisstromkreise und andere Gleisfreimeldesysteme genannt werden. Grundsätzlich betrifft die vorliegende Erfindung aber alle industriellen Anlagen, in denen funktionale Einheiten über grössere Strecken verteilt sind und dennoch zentral gesteuert werden müssen. Die zentrale Steuerung kann dabei von einer ortsfesten Leitstelle, aber auch durch eine nicht-ortsfeste virtuelle Leitstelle wahrgenommen werden.

[0003] Aus dem Projekt Sinet® der Siemens Schweiz AG und der dazu korrespondierenden europäischen Patentanmeldung EP 2 301 202 A1 sind eine Einrichtung und ein Verfahren zur Steuerung und/oder Überwachung von entlang eines Verkehrsnetzwerks angeordneten dezentralen Funktionseinheiten bekannt, welche folgenden Kernpunkte umfassen:
  1. a) ein übergeordnetes Steuerungssystem, das mit den dezentralen Funktionseinheiten mittels Datentelegrammen Informationen austauscht,
  2. b) ein Datentransportnetzwerk mit einer Anzahl von Netzzugangspunkten, wobei das übergeordnete Steuerungssystem über mindestens einen Netzzugangspunkt an dem Datentransportnetzwerk angekoppelt ist;
  3. c) Kommunikationseinheiten, die jeweils an einem Netzzugangspunkt angeschlossen sind, wobei:
  4. d) die dezentralen Funktionseinheiten zu Untergruppen mit jeweils eigenem Subnetzwerk zusammengefasst sind; und wobei
  5. e) das Subnetzwerk jeder der Untergruppen an jedem seiner beiden Ende jeweils über eine Kommunikationseinheit und über einem Netzzugangspunkt an dem Datentransportnetzwerk angekoppelt ist.


[0004] Auf diese Weise kann für die Ankopplung der dezentralen Funktionseinheiten ein digitales Datentransportnetzwerk genutzt werden, welches in jeder Weise robust gegen ein einfaches Fehlerereignis ist, dennoch eine sehr geschickte Verwendung von sehr breit in der Bahntechnik eingesetzten Cu-Kabeln, zum Beispiel bisher vorhandenen Stellwerkskabeln, erlaubt und schliesslich auch nur eine vergleichsweise geringe Zahl von Netzzugangspunkten benötigt.

[0005] Eine derartige Einrichtung ist dabei in besonders vorteilhafter Weise für ein Schienennetz für den Eisenbahnverkehr einsetzbar. Folglich ist dann zweckmässig, mittels den dezentralen Funktionseinheiten verkehrsüberwachende und verkehrssteuernde Funktionseinheiten, wie insbesondere Signale, Weichen, Achszähler, Gleisstromkreise, punkt- und linienförmige Zugbeeinflussungselemente, an das Datentransportnetzwerk anzukoppeln.

[0006] Der Aufbau von technischen Anlagen, besonders auch in der Bahninfrastruktur, ist aufgrund der über 100 jährigen Geschichte des Industrieanlagenbaus und des Eisenbahnwesens auf Robustheit und Zuverlässigkeit ausgelegt. In der damaligen Konzeption wurden besonders die Aussenelemente der Bahnsicherungsanlagen über relativ kräftige Kabeladern angeschlossen, um die Schaltzustände über die definierten Distanzen sicher detektieren zu können, d.h. die Auslegung erfolgt entsprechend der Spitzenbelastungen mit ausreichender Reserve. Mit dem Schaltvorgang der Aussenelemente wird über die Energiezuführung auch die Information übermittelt. Daraus folgt aber in naheliegender Weise auch, dass die möglichen Distanzen durch den detektierbaren Energiefluss begrenzt sind. Unter heutigen Flexibilitäts-, Kosten- und ressourcenpolitischen Aspekten sind diese etablierten Konzepte neben der durch die EP 2 301 202 A1 offenbarten Kommunikationsstruktur dringend auch im Bereich der Energiezuführung zu innovieren und so die bisherige Kopplung von Information und Energie aufzulösen.

[0007] Hierzu offenbart die internationalen Patentanmeldung WO 2013/013908 A1 eine Lösung. Diese Lösung sieht eine Einrichtung und ein Verfahren zum Betreiben von in einer industriellen Anlage angeordneten dezentralen Funktionseinheiten vor, umfassend:
  1. a) ein übergeordnetes Steuerungssystem, das mit den dezentralen Funktionseinheiten mittels Datentelegrammen Informationen austauscht,
  2. b) ein Datentransportnetzwerk mit einer Anzahl von Netzzugangspunkten, wobei das übergeordnete Steuerungssystem über mindestens einen Netzzugangspunkt an dem Datentransportnetzwerk angekoppelt ist;
  3. c) Kommunikationseinheiten, die an einem Netzzugangspunkt angeschlossen sind und den dezentralen Funktionseinheiten den Zugang zu dem Datentransportnetzwerk bereitstellen, und
  4. d) ein Energietransportnetz, an das die dezentralen Funktionseinheiten angeschlossen sind und das die dezentralen Funktionseinheiten mit elektrischer Energie versorgt. Auf diese Weise ist nun auch das Energietransportnetz vollkommen von einem Stellwerk entkoppelt.


[0008] Ausgehend von der heutigen Stellwerkarchitektur mit dezentralen Stationen, aber Punkt-zu-Punkt-Energiezuführung, wird hiermit ein neuer, innovativer Ansatz beschritten, der von der Siemens Schweiz AG unter dem Namen Sigrid® vertrieben. Die heutigen kabel- und arbeitsintensiven Punkt- zu Punkt-Verbindungen für die Stromversorgung bzw. die Energieversorgung der peripheren Elemente entlang dem Gleis (Element Controller oder auch dezentrale Funktionseinheit genannt) werden ersetzt durch adernsparende und einfach zu montierende Bus- oder Ringleitungen.

[0009] Die in der WO 2013/013908 A1 offenbarte Lösung beschränkt sich aber längst nicht nur auf den beschriebenen Anwendungsfall der Stellwerksarchitektur von Bahnanlagen, sondern geht weit darüber hinaus. Als zukünftige Beispiele werden das Energiemanagement für Gebäude oder für Grossanlagen in der produzierenden oder verarbeitenden Industrie auf der Basis dezentraler Energieversorgung gesehen.

[0010] Wenn der Energiebus zwischen zwei Stellwerken oder sonstigen Einrichtungen mit Anschluss zu den Energieversorgungsnetzen verlegt wird, so kann die Versorgung der angeschlossenen Verbraucher (dezentrale Funktionseinheiten) von beiden Speiseseiten erfolgen. Dadurch wird eine bisher noch nicht verfügbare Redundanz der Energieversorgung geschaffen. Die dezentralen Funktionseinheiten - auch Element Controller oder kurz EC genannt) werden dabei durch Netzknoteneinheiten - auch Buskoppler oder kurz SND - Smart Node Device genannt - an den Datenbus und den Energiebus angeschlossen, die Steuerungs-, Überwachungs- und Diagnosefunktionen übernehmen können. Die SND können beispielsweise den Energiebus unterbrechen bzw. durchschalten, sowie Ströme und Spannungen im Energiebus messen.

[0011] Einfache Defekte, also beispielsweise Kurzschlüsse oder Unterbrüche, im Energiebus führen bei korrekter Behandlung aufgrund der Redundanz nicht unmittelbar zu einem Ausfall von Elementen. Im Fall einer ausfallenden Speiseseite würde die Versorgung aller dezentralen Funktionselemente von der zweiten Speiseseite übernommen. Ein Verfahren und System zur entsprechende Behandlung und Unterbindung von Kurzschlüssen des Energiebusses sind aus der europäischen Patentanmeldung EP 3 109 128 A1 bekannt. Zentral sind hierbei die Steuerungsmechanismen und die Netzknoteneinheiten, die den Energiebus im Fehlerfall selektiv zu jeder der beiden Einkopplungsseiten auftrennen können.

[0012] Die Auskopplung der Energie aus dem Energiebus zu den zu versorgenden dezentralen Funktionseinheiten hat aber kontrolliert zu erfolgen, um die hohe Verfügbarkeit auch in einem Fehlerfall gewährleisten zu könnnen. Diese Auskopplung mit den notwendigen Abschaltfunktionen wird von den Netzknoteneinheiten übernommen. Um alle möglichen Fehlerfälle (Überlast in einem Segment des Energiebusses oder zu einem Verbraucher) jedoch beherrschen zu können, verfügt die Netzknoteneinheit über steuerbare Schalter um den Energiebus nach links, nach rechts und zum Verbraucher unterbrechen zu können. Eine derartig ausgestattete Netzknoteneinheit ist beispielsweise in der o.g. europäischen Patentanmeldung EP 3 109 128 A1 im Detail beschrieben.

[0013] Kritisch ist nun jedoch, dass diese Netzknoteneinheit ein einzelnes nicht redundant vorhandenes Element in der Energieversorgungskette bis hin zu der dezentralen Funktionseinheit ist. Mit anderen Worten heisst dies, dass ein Ausfall dieser Netzknoteneinheit, wie zum Beispiel ein Ausfall der Steuereinheit der Netzknoteneinheit, sich negativ auf die Gesamtverfügbarkeit der industriellen Anlage auswirkt, obwohl der Energiebus selbst durch seine redundante Ausgestaltung stets verfügbar ist. Eine naheliegende Lösung würde dabei die Einfügung einer zweiten redundanten Netzknoteneinheit vorsehen, was allerdings aus Kosten- und Wartungsgründen eher als nachteilig angesehen wird.

[0014] Der vorliegenden Erfindung liegt daher die Aufgabe zugrunde, ein System zur ausfallsicheren Versorgung eines elektrischen Verbrauchers mit einem redundant ausgeführten Energiebus anzugeben, bei der selbst der Ausfall einer Netzknoteneinheit nicht dazu führt, dass eine dezentrale Funktionseinheiten komplett von der Versorgung mit elektrischer Energie abgekoppelt ist.

[0015] Die Aufgabe wird erfindungsgemäss durch ein System zur ausfallsicheren Versorgung eines elektrischen Verbrauchers mit einem redundant ausgeführten Energiebus, über den in einer industriellen Anlage angeordnete dezentrale als elektrische Verbraucher charakterisierbare Funktionseinheiten mit elektrischer Energie versorgt werden, gelöst, wobei:
  1. a) ein übergeordnetes Steuerungssystem vorgesehen ist, das mit den dezentralen Funktionseinheiten mittels Datentelegrammen Informationen über einen Datenbus austauscht,
  2. b) Netzknoteneinheiten sequentiell zwischen zwei Speisepunkten eines ringartig aufgebauten Energiebusses angeordnet sind, die den dezentralen Funktionseinheiten den Zugang zu dem Energiebus und optional auch zum Datenbus bereitstellen,
  3. c) die Netzknoteneinheiten über ein von einer Steuereinheit steuerbares Schaltmodul verfügen, das einen ersten Schalter und einen zweiten Schalter umfasst, wobei mit den beiden Schaltern je ein Zugang zu den beiden Speisepunkten des Energiebusses schaltbar ist,
  4. d) auf jeder Seite der dezentralen Funktionseinheit je eine zwischen der positven und der negativen Ader des Energiebusses angeordnete Widerstandsbaugruppe vorgesehen ist, deren Ausgang an je einen Eingang einer Schaltgruppe gelegt ist, die eine der beiden Adern des Energiebusses mit der dezentralen Funktionseinheit verbindet, wobei die Widerstandsbaugruppe so eingestellt ist, dass die Schaltgruppe bei Vorhandensein der Busspannung leitend ist; und
  5. e) je ein auf den Ausgang der Widerstandsbaugruppe geschalteter Steuerausgang, mit dem die von der Widerstandsbaugruppe bereitsgestellte Ausgangsspannung manipulierbar ist.


[0016] Auf diese Weise ist sichergestellt, dass die dezentralen Funktionseinheiten auch dann mit dem Energiebus verbunden bleiben, wenn die Schaltfunktionen bzw. deren Steuerungsmechanismen/logik ausfallen sollten. Durch die über der Widerstandsbaugruppe abfallende Spannung zwischen der positiven und negativen Ader des Energiebusses steht bei Vorhandensein der Busspannung auf zumindest einer der beiden Speiseseiten somit immer eine Spannung zur Verfügung, die die Schaltgruppe durchschaltet und somit die dezentrale Funktionseinheit immer mit den beiden Adern des Speisebusses verbindet.

[0017] Ein Ausfall der Netzknoteneinheit hat somit keinen negativen Einfluss mehr auf die Verfügbarkeit der an ihr ankoppelnden dezentralen Funktionseinheit.

[0018] In einer vorteilhaften Ausgestaltung der Erfindung können der erste Schalter und der zweite Schalter jeweils zwei in die jeweiligen Busader gegengerichtet geschaltete Feldeffekttransistoren umfassen, deren Gateelektroden von der Steuereinheit steuerbar sind. Ein zwischen den Feldeffekttransistoren vorgesehener Abzweig von der jeweiligen Busader zu der dezentralen Funktionseinheit kann somit durch die entsprechende Beschaltung der jeweiligen Gateelektrode(n) zu jeder der beiden Speiseseiten verbunden und auch selektiv aufgetrennt werden.

[0019] Weiter können auch die Schaltgruppen je einen Feldeffekttransistor umfassen, dessen Gateelektrode auf dem Potenzial des Steuerausgangs liegt. Damit ist es über die Einstellung des am Steuerausgang anliegenden Potenzials möglich die dezentrale Funktionseinheit bewusst von einer der beiden oder beider Speiseseiten einer der Busadern abzutrennen.

[0020] Hinsichtlich der Steuerung des Steuerausgang kann eine besonders einfach konfigurierbare und auch kostengünstige Lösung bereitgestellt werden, wenn der Steuerausgang von einem FPGA, das vorzugsweise ein Bestandteil der Steuereinheit ist, ansteuerbar ist.

[0021] Weitere vorteilhafte Ausgestaltungen der vorliegenden Erfindung sind den übrigen Unteransprüchen zu entnehmen.

[0022] Vorteilhafte Ausführungsbeispiele der vorliegenden Erfindung werden anhand der Zeichnung näher erläutert. Dabei zeigen:
Figur 1
in schematischer Ansicht eine Stellwerkarchitektur mit einem Datenbus und einem Energiebus;
Figur 2
in schematischer Ansicht eine Netzknoteneinheit zur Verbindung einer dezentralen Funktionseinheit mit dem Datenbus und Energiebus; und
Figur 3
in schematischer Ansicht eine Ausführungsvariante für die Beschaltung eines Schaltmoduls einer Netzknoteneinheit.


[0023] Figur 1 zeigt schematisch eine Stellwerkarchitektur mit einem System Sys, das u.a. ein Stellwerk STW, einen redunant aufgebauten Datenbackbone NB1, NB2, einen Datenbus CB und einen Energiebus EB mit zwei Speisestellen PS1 und PS2 aufweist. Das Stellwerk STW steuert einen Zugverkehr auf einem Gleisabschnitt G, in welchem Signale S, Weichen W, ein Bahnübergang Bue und Achszähler AC angeordnet sind. Diese Zugsicherungs- und Zugbeeinflussungskomponenten koppeln jeweils mit einer dezentralen Funktionseinheit - auch Element Controller Unit E genannt - an dem Datenbus CB und dem Energiebus EB an. Die dezentralen Funktionseinheiten E sind dabei so an den ringförmigen Datenbus CB angeschlossen, dass über jede Seite des ringförmigen Datenbusses CB entweder der Zugriff auf den Datenbackbone NB1 bzw. NB2 gegeben ist. Der Datenbus CB koppelt dabei mit entsprechenden Routern/Switches SW an dem jeweiligen Datenbackbone NB1, NB2 an. Zudem gewährleistet der sequentielle Anschluss der Element Controller Unit E an dem ringförmigen Energiebus, dass jede Element Controller Unit E von beiden Seiten her und damit redundant mit elektrischer Energie versorgt werden kann.

[0024] Figur 2 zeigt nun schematisch die daten- und energieversorungstechnische Anschaltung der Element Controller Unit E einer Zugbeeinflussungskomponente, hier zum Beispiel einer Weiche W, an den Datenbus CB und den Energiebus EB. Ein derartiger Anschaltpunkt umfasst eine Netzknoteneinheit SND und den eigentlichen Element Controller EC. Die Netzknoteneinheit SND umfasst eine Kommunikationseinheit SCU zum Datenaustausch über beide Äste des Datenbusses CB. Energieseitig ist die Netzknoteneinheit SND so ausgestaltet, dass sie an beiden Ästen des Energiebusses EB ankoppelt und damit immer, ggfs. über andere Netzknoteneinheiten SND hinweg - ein Zugang zu beiden Einspeisepunkten PS1 und PS2 besteht (wie in Figur 1 gezeigt). Die Netzknoteneinheit SND verfügt weiter über eine Steuer- und Auswertelogik SL, die zum Beispiel in das Schaltmodul S integriert sein kann, und steuert und überwacht damit den Energiebus EB. Im Besonderen detektiert die Steuer-und Auswertelogik Stromüberschreitungen und/oder Spannungseinbrüche innerhalb des Energiebusses EB und/oder beim angeschlossenen Verbraucher (SPU mit EC) und wertet diese Daten auf einen möglicherweise vorliegenden Kurzschluss aus.

[0025] Somit wird die Netzknoteneinheit immer in redundanter Weise von zwei Seiten her mit elektrischer Energie versorgt und verfügt daher im Rahmen eines Schaltmoduls S über einen linken Schalter S1 und einen rechten Schalter S2 sowie über einen Lastschalter S3 zur Versorgungseinheit SPU des Element Controllers EC.

[0026] Die Netzknoteneinheit SND versorgt auch die Kommunikationseinheit SCU mit Spannung und kann mit dieser auch über eine Ethernet-Verbindung Daten austauschen und ist damit in den Datenbus CB eingebunden (z.B. Aktivieren des Handbetriebs des SND über Fernzugriff und Betätigen der Schalter S1 bis S3, Abgabe von Diagnosedaten an das Stellwerk oder ein übergeordnetes Service- und Diagnosesytem, Abfrage der aktuellen Spannungen, Ströme, Energie- und Leistungswerte, Parametrierung des SND, Daten für Aufladung eines hier nicht weiter dargestellten Energiespeichers oder die Anmeldung eines zukünftigen Leistungsbedarfs). In die Netzknoteneinheit SND ist hier über den Schalter S3 die Versorgungseinheit SPU integriert, die die Spannung des Energiebusses EB auf die für den Element Controller EC erforderliche Eingangsspannung konvertiert. Zudem ist eine Datenverbindung zwischen dem Schaltmodul S der Netzknoteneinheit SND und der Versorgungseinheit SPU, z.B. in Form einer serielle RS 422 oder Ethernet, vorgesehen. Energietechnisch typisch ist hier zum Beispiel eine dreiphasige Verbindung mit 400 VAC. Der Element Controller EC steuert und versorgt in Figur 2 vorliegend die Weiche W. Dabei empfängt der Element Controller EC Datentelegramme von einem übergeordneten Stellwerksrechner CPU via einer Ethernet-Verbindung von der Kommunikationseinheit SCU und gibt über diese Kommunikationseinheit SCU die Rückmeldungen an den Stellwerksrechner CPU. Der Stellwerksrechner CPU kann auch ein entsprechendes Auswertemodul repräsentieren, dass die empfangenen Daten bestimmungsgemäss auswertet. Alternativ ist auch möglich auf der Netzknoteneinheit eine Steuereinheit vorzusehen, die intelligenter ausgestaltet ist und daher einen Grossteil der weiter o.g. genannten Aufgaben direkt auf der Netzknoteneinheit SND wahrnehmen kann.

[0027] Figur 3 zeigt schematisch eine Ausführungsvariante für die Beschaltung des Schaltmoduls S einer beliebigen Netzknoteneinheit SND. Das Schaltmodul S umfasst den ersten Schalter S1 und den zweiten Schalter S2, die hier vorliegend jeweils zwei in die jeweiligen Busader Bus+, Bus- gegengerichtet geschaltete Feldeffekttransistoren T1, T2, T3, T4 umfassen, deren Gateelektroden von der hier nicht weiter dargestellten Steuereinheit steuerbar ist, was durch Pfeile 30 angedeutet ist. Mit diesen Schaltern S1 und S2 lässt sich der Energeibus selektiv unterbrechen (z.B. zur Isolation / Abschaltung defekter Abschnitte). Zur Blockierung nicht erlaubter Strompfade sind zudem Dioden D1 bis D4 vorgesehen. Der in Figur 3 dargestellte Schalter S3 ist nun in zwei an der negative Busader Bus- angekoppelnde Schalter S3 und S4 aufgeteilt worden, mit denen sich die Funktionseinheit E selektiv nur an den Energiebus EB links oder rechts anschalten lässt, wenn dieser mittels Schalter S1 und Schalter S2 aufgetrennt ist. Auch bei diesen Schaltern handelt es sich Feldeffekttransistoren T5, T6. Auf jeder Seite der dezentralen Funktionseinheit E ist nun je eine zwischen der positven Ader Bus+ und der negativen Ader Bus- des Energiebusses EB vorgesehene Widerstandsbaugruppe RG1, RG2 angeordnet. Der Ausgang A1, A2 dieser Widerstandsgruppe RG1, RG2 ist jeweils an die Gateelektrode der Schalter S3, S4 gelegt. Dabei die Widerstandsbaugruppe RG1, RG2 hier vorliegend so dimensioniert/eingestellt, dass die Schalter S3, S4 bei Vorhandensein der Busspannung leitend sind. Zudem ist auf jede Gateelektrode der Schalter S3, S4 ein Steuerausgang ST1, ST2 (zum Beispiel von einem FPGA der Steuereinheit kommend) geschaltet, mit dem die von der Widerstandsbaugruppe RG1, RG2 bereitsgestellte Ausgangsspannung manipuliert werden kann, um beispielsweise die Schalter S3 und S4 zu öffnen. Der Steuerausgang ST1, ST2 ändert dabei nicht zwangsläufig die Parametrierung der Widerstandsgruppe RG1, RG2 (man könnte die Vorrichtung jedoch auch so einrichten, dass dies möglich wäre), sondern zieht beispielsweise die von der Widerstandsgruppe bereitgestellte Ausgangsspannung auf den Wert NULL.

[0028] Auf diese Weise bleiben die dezentralen Funktionseinheiten E auch dann mit dem Energiebus EB verbunden, wenn die Schaltfunktionen der Schalter S1 und S2 bzw. die Steuerungsmechanismen/logik ausfallen sollten. Durch die über die Widerstandsbaugruppen RG1, RG2 abfallende Spannung zwischen der positiven Ader Bus+ und der negativen Ader Bus- des Energiebusses EB steht bei Vorhandensein der Busspannung auf zumindest einer der beiden Speiseseiten somit immer eine Spannung zur Verfügung, die die Schalter S3, S4 durchschaltet und somit die dezentrale Funktionseinheit E immer mit den beiden Adern Bus+, Bus- des Speisebusses EB verbindet. Ein Ausfall der Netzknoteneinheit SND hat somit keinen negativen Einfluss mehr auf die Verfügbarkeit der an ihr ankoppelnden dezentralen Funktionseinheit E.


Ansprüche

1. System (Sys) zur ausfallsicheren Versorgung eines elektrischen Verbrauchers (E) mit einem redundant ausgeführten Energiebus (EB), über den in einer industriellen Anlage angeordnete dezentrale als elektrische Verbraucher charakterisierbare Funktionseinheiten (E, S, W, Bue, AC) mit elektrischer Energie versorgt werden, wobei:

a) ein übergeordnetes Steuerungssystem (STW) vorgesehen ist, das mit den dezentralen Funktionseinheiten (E) mittels Datentelegrammen Informationen über einen Datenbus (CB) austauscht,

b) Netzknoteneinheiten (SND) sequentiell zwischen zwei Speisepunkten (PS1, PS2) eines ringartig aufgebauten Energiebusses (EB) angeordnet sind, die den dezentralen Funktionseinheiten (E) den Zugang zu dem Energiebus (E) und optional auch zum Datenbus (CB) bereitstellen,

c) die Netzknoteneinheiten (SND) über ein von einer Steuereinheit (CPU) steuerbares Schaltmodul (S) verfügen, das einen ersten Schalter (S1) und einen zweiten Schalter (S2) umfasst, wobei mit den beiden Schaltern (S1, S2) ein Zugang zu den beiden Speisepunkten (PS1, PS2) schaltbar ist,

d) auf jeder Seite der dezentralen Funktionseinheit (E) je eine zwischen der positven Ader (Bus+) und der negativen Ader (Bus-) des Energiebusses (EB) angeordnete Widerstandsbaugruppe (RG1, RG2) vorgesehen ist, deren Ausgang (A1, A2) an je einen Eingang einer Schaltgruppe (S3, S4) gelegt ist, die eine der beiden Adern (Bus+, Bus-) des Energiebusses (EB) mit der dezentralen Funktionseinheit (E) verbindet, wobei die Widerstandsbaugruppe (RG1, RG2) so eingestellt ist, dass die Schaltgruppe (S3, S4) bei Vorhandensein der Busspannung durchschaltet; und

e) je ein auf den Ausgang der Widerstandsbaugruppe (RG1, RG2) geschalteter Steuerausgang (ST1, ST2), mit dem die von der Widerstandsbaugruppe (RG1, RG2) bereitsgestellte Ausgangsspannung manipulierbar ist.


 
2. System nach Anspruch 1,
dadurch gekennzeichnet, dass
der erste Schalter (S1) und der zweite Schalter (S2) jeweils zwei in die jeweiligen Busader (Bus+, Bus-) gegengerichtet geschaltete Feldeffekttransistoren (T1 bis T4) umfassen, deren Gateelektrode von der Steuereinheit steuerbar ist.
 
3. System nach Anspruch 1 oder 2,
dadurch gekennzeichnet, dass
die Schaltgruppen (S3, S4) je einen Feldeffekttransistor (T5, T6) umfassen, dessen Gateelektrode auf dem Potenzial des Steuerausgangs (ST1, ST2) liegt.
 
4. System nach Anspruch 3,
dadurch gekennzeichnet, dass
der Steuerausgang (ST1, ST2) von einem FPGA, das vorzugsweise ein Bestandteil der Steuereinheit der Netzknoteneinheit (SND) ist, ansteuerbar ist.
 




Zeichnung













Recherchenbericht









Recherchenbericht




Angeführte Verweise

IN DER BESCHREIBUNG AUFGEFÜHRTE DOKUMENTE



Diese Liste der vom Anmelder aufgeführten Dokumente wurde ausschließlich zur Information des Lesers aufgenommen und ist nicht Bestandteil des europäischen Patentdokumentes. Sie wurde mit größter Sorgfalt zusammengestellt; das EPA übernimmt jedoch keinerlei Haftung für etwaige Fehler oder Auslassungen.

In der Beschreibung aufgeführte Patentdokumente