

(11) EP 3 415 624 A1

(12)

EUROPEAN PATENT APPLICATION

(43) Date of publication:

19.12.2018 Bulletin 2018/51

(21) Application number: 18182098.6

(22) Date of filing: 21.01.2015

(51) Int Cl.: C12N 9/44 (2006.01) C12P 19/16 (2006.01)

C12P 19/02 (2006.01) C12P 7/06 (2006.01)

(84) Designated Contracting States:

AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

(30) Priority: **22.01.2014 EP 14152110 01.12.2014 EP 14195691**

(62) Document number(s) of the earlier application(s) in accordance with Art. 76 EPC: 15703235.0 / 3 097 192

(71) Applicant: Novozymes A/S 2880 Bagsvaerd (DK)

(72) Inventors:

 MATSUI, Tomoko Chiba-shi, 261-8501 (JP)

 YAMAGISHI, Akihiko Tokyo, 179-0074 (JP)

(74) Representative: NZ EPO Representatives
Krogshoejvej 36
2880 Bagsvaerd (DK)

Remarks:

This application was filed on 06-07-2018 as a divisional application to the application mentioned under INID code 62.

(54) PULLULANASE VARIANTS AND POLYNUCLEOTIDES ENCODING SAME

(57) The present invention relates to pullulanase variants comprising substitutions of the parent pullulanase at one or more positions corresponding to positions 393, 143, 150, 243, 244, 345, 346, 368, 370, 373, 381, 382, 385, 387, 402, 429, 430, 431, 432, 456, 486, 492, 610,

624, 631, 632, 665 and 699 of the polypeptide of SEQ ID NO: 3. The present invention also relates to polynucleotides encoding the variants; nucleic acid constructs, vectors, and host cells comprising the polynucleotides; and methods of using the variants.

EP 3 415 624 A1

Description

Reference to a Sequence Listing

5 [0001] This application contains a Sequence Listing in computer readable form, which is incorporated herein by reference.

Background of the Invention

10 Field of the Invention

15

20

30

35

40

45

50

55

[0002] The present invention relates to pullulanase variants, polynucleotides encoding the variants, methods of producing the variants, and methods of using the variants. Also described is the use of pullulanase of the invention for starch conversion to produce fermentation products. The invention also relates to a composition comprising a pullulanase of the invention.

Description of the Related Art

[0003] Starch usually consists of about 80% amylopectin and 20% amylose. Amylopectin is a branched polysaccharide in which linear chains alpha-1,4 D-glucose residues are joined by alpha-1,6 glucosidic linkages. Amylopectin is partially degraded by alpha-amylase, which hydrolyzes the 1,4-alpha-glucosidic linkages to produce branched and linear oligosaccharides. Prolonged degradation of amylopectin by alpha-amylase results in the formation of so-called alpha-limit dextrins that are not susceptible to further hydrolysis by the alpha-amylase. Branched oligosaccharides can be hydrolyzed into linear oligosaccharides by a debranching enzyme. The remaining branched oligosaccharides can be depolymerized to D-glucose by glucoamylase, which hydrolyzes linear oligosaccharides into D-glucose.

[0004] Debranching enzymes which can attack amylopectin are divided into two classes: isoamylases (E.C. 3.2.1.68) and pullulanases (E.C. 3.2.1.41), respectively. Isoamylase hydrolyses alpha-1,6-D-glucosidic branch linkages in amylopectin and beta-limit dextrins and can be distinguished from pullulanases by the inability of isoamylase to attack pullulan, and by their limited action on alpha-limit dextrins.

[0005] It is well-known in the art to add isoamylases or pullulanases in starch conversion processes. Pullulanase is a starch debranching enzyme having pullulan 6-glucano-hydrolase activity (EC3.2.1.41) that catalyzes the hydrolyses the α -1,6-glycosidic bonds in pullulan, releasing maltotriose with reducing carbohydrate ends. Usually pullulanase is used in combination with an alpha amylase and/or a glucoamylase.

[0006] Pullulanases are known in the art. US 6,074,854 and US 5,817,498 disclose a pullulanase from *Bacillus deramificans*. WO2009/075682 disclose a pullulanase derived from *Bacillus acidopullulyticus*.

[0007] The present invention provides pullulanase variants with improved properties compared to its parent.

Summary of the Invention

[0008] The present invention relates to a pullulanase variant comprising a substitution at one or more positions corresponding to positions 393, 143, 150, 243, 244, 346, 368, 370, 373, 381, 385, 387, 402, 429, 430, 456, 486, 492, 610, 631, 632, 665 and 699 of the polypeptide of SEQ ID NO: 3 wherein the variant has pullulanase activity; and a) wherein the variant has at least 85%, at least 90%, at least 95%, at least 96%, at least 97%, at least 98%, or at least 99%, but less than 100% sequence identity to the polypeptide of SEQ ID NO: 3 and wherein the variant has increased thermoactivity compared to the pullulanase of SEQ ID NO: 3, particularly the variant has at least 60% relative activity when measured at 70°C relative to activity at 65°C, more particularly at least 65%, more particularly at least 70%, more particularly at least 60%, more particularly at least 75%, more particularly at least 80%, more particularly at least 90%, more particularly at least 100%; or b) wherein the variant has at least 85%, at least 90%, at least 95%, at least 96%, at least 97%, at least 98%, or at least 99%, but less than 100% sequence identity to the polypeptide of SEQ ID NO: 6 and wherein the variant has increased thermoactivity compared to the pullulanase of SEQ ID NO: 6, particularly the variant has at least 30% relative activity when measured at 70°C relative to activity at 65°C, more particularly at least 40%, more particularly at least 50%, more particularly at least 60%, more particularly at least 70%, more particularly at least 80%, more particularly at least 90%, more particularly at least 100%; or c) wherein the variant has at least 85%, at least 90%, at least 95%, at least 96%, at least 97%, at least 98%, or at least 99%, but less than 100% sequence identity to the polypeptide of SEQ ID NO: 9 and wherein the variant has increased thermoactivity compared to the pullulanase of SEQ ID NO: 9, particularly the variant has at least 30% relative activity when measured at 70°C relative to activity at 65°C, more particularly at least 40%, more particularly at least 50%, more particularly at least 60%, more particularly at least 70%, more particularly at least 80%, more particularly at least 90%, more particularly at least 100%; or d) wherein the variant has at least 85%,

at least 90%, at least 95%, at least 96%, at least 97%, at least 98%, or at least 99%, but less than 100% sequence identity to the polypeptide of SEQ ID NO: 16 and wherein the variant has increased thermoactivity compared to the pullulanase of SEQ ID NO: 16, particularly the variant has at least 30% relative activity when measured at 70°C relative to activity at 65°C, more particularly at least 40%, more particularly at least 50%, more particularly at least 60%, more particularly at least 70%, more particularly at least 80%, more particularly at least 90%, at least 90%, at least 97%, at least 98%, or at least 99%, but less than 100% sequence identity to the polypeptide of SEQ ID NO: 17 and wherein the variant has increased thermoactivity compared to the pullulanase of SEQ ID NO: 17, particularly the variant has at least 30% relative activity when measured at 70°C relative to activity at 65°C, more particularly at least 40%, more particularly at least 50%, more particularly at least 50%, more particularly at least 80%, more particularly at least 90%, more particularly at

[0009] In a further aspect the present invention relates to a variant catalytic domain, wherein the variant catalytic domain comprises a substitution at one or more positions corresponding to positions 393, 346, 368, 370, 373, 381, 385, 387, 402, 429, 430, 456, 486, 492, 610, 631, 632, 665 and 699 of the polypeptide of SEQ ID NO: 3; and a) wherein the variant catalytic domain has at least 85%, at least 90%, at least 95%, at least 96%, at least 97%, at least 98%, or at least 99%, but less than 100% sequence identity to amino acids 330 to 828 of SEQ ID NO: 3; or b) wherein the variant catalytic domain has at least 85%, at least 90%, at least 95%, at least 96%, at least 97%, at least 98%, or at least 99%, but less than 100% sequence identity to amino acids 430 to 928 of SEQ ID NO: 6; or c) wherein the variant catalytic domain has at least 85%, at least 90%, at least 95%, at least 96%, at least 97%, at least 98%, or at least 99%, but less than 100% sequence identity to amino acids 330 to 829 of SEQ ID NO: 9; or d) wherein the variant has at least 85%, at least 90%, at least 95%, at least 96%, at least 97%, at least 98%, or at least 99%, but less than 100% sequence identity to the polypeptide of SEQ ID NO: 16 and wherein the variant has increased thermoactivity compared to the pullulanase of SEQ ID NO: 16, particularly the variant has at least 30% relative activity when measured at 70°C relative to activity at 65°C, more particularly at least 40%, more particularly at least 50%, more particularly at least 60%, more particularly at least 70%, more particularly at least 80%, more particularly at least 90%, more particularly at least 100%; or e) wherein the variant has at least 85%, at least 90%, at least 95%, at least 96%, at least 97%, at least 98%, or at least 99%, but less than 100% sequence identity to the polypeptide of SEQ ID NO: 17 and wherein the variant has increased thermoactivity compared to the pullulanase of SEQ ID NO: 17, particularly the variant has at least 30% relative activity when measured at 70°C relative to activity at 65°C, more particularly at least 40%, more particularly at least 50%, more particularly at least 60%, more particularly at least 70%, more particularly at least 80%, more particularly at least 90%, more particularly at least 100%.

[0010] The present invention further relates to a pullulanase variant comprising the variant catalytic domain of the invention, wherein the pullulanase variant has pullulanase activity and increased thermoactivity compared to the parent pullulanase, and the variant has at least 60% relative activity when measured at 70°C relative to activity at 65°C, more particularly at least 65%, more particularly at least 70%, more particularly at least 75%, more particularly at least 80%, more particularly at least 100%.

[0011] In a still further aspect the invention relates to compositions comprising the pullulanase variants of the invention.
[0012] The present invention also relates to polynucleotides encoding the variants; nucleic acid constructs, vectors, and host cells comprising the polynucleotides; and methods of producing the variants.

[0013] The present invention also relates to methods of producing a fermentation product from a starch containing material.

Definitions

30

35

40

55

[0014] Pullulanase: The term "pullulanase" means a starch debranching enzyme having pullulan 6-glucano-hydrolase activity (EC 3.2.1.41) that catalyzes the hydrolysis the α-1,6-glycosidic bonds in pullulan, releasing maltotriose with reducing carbohydrate ends. For purposes of the present invention, pullulanase activity can be determined according to the procedure described in the Examples. In the context of the present invention the variant pullulanases have improved thermoactivity. Increased thermoactivity was determined as relative activity when measured at 70°C relative to activity at 65°C using the PHADEBAS assay as described in the examples.

[0015] In particular the pullulanase variants of the invention have at least 60% relative activity when measured at 70°C relative to activity at 65°C, more particularly at least 70%, more particularly at least 80%, more particularly at least 90%, more particularly at least 100% when comparing variants of SEQ ID NO: 3.

[0016] In particular the pullulanase variants of the invention have at least 30% relative activity when measured at 70°C relative to activity at 65°C, more particularly at least 40%, more particularly at least 50%, more particularly at least 60%, more particularly at least 70%, more particularly at least 80%, more particularly at least 90%, more particularly at least 100% when comparing variants of SEQ ID NO: 6.

[0017] In particular the pullulanase variants of the invention have at least 30% relative activity when measured at 70°C

relative to activity at 65°C, more particularly at least 40%, more particularly at least 50%, more particularly at least 60%, more particularly at least 70%, more particularly at least 80%, more particularly at least 90%, more particularly at least 100% when comparing variants of SEQ ID NO: 9.

Pullulanase domains, CBM41, X45, X25: According to NCBI's CDD (conserved domain database, Marchler-Bauer et a/., Nucleic acids research 2011, vol. 39, D225-229), X25, X45 and CBM41 domains in pullulanases are described as follows:

X25 domain of Bacillus acidopullulyticus pullulanase and similar proteins.

[0018] Pullulanase (EC 3.2.1.41) cleaves 1.6-alpha-glucosidic linkages in pullulan, amylopectin, and glycogen, and in alpha-and beta-amylase limit-dextrins of amylopectin and glycogen. Bacillus acidopullulyticus pullulanase is used industrially in the production of high fructose corn syrup, high maltose content syrups and low calorie and "light" beers. Pullulanases, in addition to the catalytic domain, include several carbohydrate-binding domains (CBMs) as well as domains of unknown function (termed "X" modules). X25 was identified in Bacillus acidopullulyticus pullulanase, and splits another domain of unknown function (X45). X25 is present in multiple copies in some pullulanases. It has been suggested that X25 and X45 are CBMs which target mixed alpha-1.6/alpha-1.4 linked D-glucan polysaccharides.

X45 domain of *Bacillus acidopullulyticus* pullulanase and similar proteins.

[0019] Pullulanase (EC 3.2.1.41) cleaves 1.6-alpha-glucosidic linkages in pullulan, amylopectin, and glycogen, and in alpha-and beta-amylase limit-dextrins of amylopectin and glycogen. Bacillus acidopullulyticus pullulanase is used industrially in the production of high fructose corn syrup, high maltose content syrups and low calorie and "light" beers. Pullulanases, in addition to the catalytic domain, include several carbohydrate-binding domains (CBMs) as well as domains of unknown function (termed "X" modules). X45 was identified in Bacillus acidopullulyticus pullulanase; it is interrupted by another domain of unknown function (X25). It has been suggested that X25 and X45 are CBMs which target mixed alpha-1.6/alpha-1.4 linked D-glucan polysaccharides.

Family 41 Carbohydrate-Binding Module from pullulanase-like enzymes

- [0020] Pullulanases (EC 3.2.1.41) are a group of starch-debranching enzymes, catalyzing the hydrolysis of the alpha-1.6-glucosidic linkages of alpha-glucans, preferentially pullulan. Pullulan is a polysaccharide in which alpha-1.4 linked maltotriosyl units are combined via an alpha-1.6 linkage. These enzymes are of importance in the starch industry, where they are used to hydrolyze amylopectin starch. Pullulanases consist of multiple distinct domains, including a catalytic domain belonging to the glycoside hydrolase (GH) family 13 and carbohydrate-binding modules (CBM), including CBM41.
 Carbohydrate-Binding Module family 41, are modules of approx. 100 residues found primarily in bacterial pullulanases. CBM41 alias PUD (Bacterial pullulanase-associated domain) modules, may be identified in a query protein sequence, by using the Pfam database 'Sequence Search' tool available at http://pfam.xfam.org/search, using Pfam version 26.0 or higher. The Pfam database is a large collection of protein families, each represented by multiple sequence alignments and hidden Markov models (HMMs). Pfam is freely available under the Creative Commons Zero ("CC0") license (see http://creativecommons.org/publicdomain/zero/1.0/).
 - **[0021]** The query protein sequence in FASTA format is entered into the search field of the Pfam database Sequence Search tool available via the internet at http://pfam.xfam.org/search, and the Submit button is pressed, after which the Sequence Search results are displayed in a table showing Significant Pfam-A Matches, hereafter Table.
- [0022] The presence of Table rows containing the Family name PUD are positive identifications of the presence of CBM41 *alias* PUD modules in the query protein sequence. The PUD Family name may also be referred to as PF03714 without loss of ambiguity.
 - **[0023]** Additional columns in the Table show Envelope Start and End coordinates, which define respectively start and end coordinates of the CBM41 *alias* PUD module in the query sequence, hereafter sequence Region which encompasses sequence start to end inclusive.
- [0024] An additional column in the Table shows E-value, which refers to the statistical significance of the CBM41 alias PUD module identification. Lower E-values are statistically more significant than higher E-values. Significant CBM41 alias PUD module identifications are defined as those having as having an E-value less than 1.0, preferably an E-value less than 1e-2 (0.01), more preferably an E-value less than 1e-4 (0.0001), even more preferably an E-value less than 1e-6 (0.000001).
- ⁵⁵ **[0025]** Some pullulanases contain all these domains at their N-terminal and some lack either one or two or all of these domains.
 - **[0026]** Allelic variant: The term "allelic variant" means any of two or more alternative forms of a gene occupying the same chromosomal locus. Allelic variation arises naturally through mutation, and may result in polymorphism within

populations. Gene mutations can be silent (no change in the encoded polypeptide) or may encode polypeptides having altered amino acid sequences. An allelic variant of a polypeptide is a polypeptide encoded by an allelic variant of a gene. [0027] cDNA: The term "cDNA" means a DNA molecule that can be prepared by reverse transcription from a mature, spliced, mRNA molecule obtained from a eukaryotic or prokaryotic cell. cDNA lacks intron sequences that may be present in the corresponding genomic DNA. The initial, primary RNA transcript is a precursor to mRNA that is processed through a series of steps, including splicing, before appearing as mature spliced mRNA.

[0028] Coding sequence: The term "coding sequence" means a polynucleotide, which directly specifies the amino acid sequence of a variant. The boundaries of the coding sequence are generally determined by an open reading frame, which begins with a start codon such as ATG, GTG or TTG and ends with a stop codon such as TAA, TAG, or TGA. The coding sequence may be a genomic DNA, cDNA, synthetic DNA, or a combination thereof.

10

20

30

35

40

45

50

55

[0029] Control sequences: The term "control sequences" means nucleic acid sequences necessary for expression of a polynucleotide encoding a variant of the present invention. Each control sequence may be native (*i.e.*, from the same gene) or foreign (*i.e.*, from a different gene) to the polynucleotide encoding the variant or native or foreign to each other. Such control sequences include, but are not limited to, a leader, polyadenylation sequence, propeptide sequence, promoter, signal peptide sequence, and transcription terminator. At a minimum, the control sequences include a promoter, and transcriptional and translational stop signals. The control sequences may be provided with linkers for the purpose of introducing specific restriction sites facilitating ligation of the control sequences with the coding region of the polynucleotide encoding a variant.

[0030] Expression: The term "expression" includes any step involved in the production of a variant including, but not limited to, transcription, post-transcriptional modification, translation, post-translational modification, and secretion.

[0031] Expression vector: The term "expression vector" means a linear or circular DNA molecule that comprises a polynucleotide encoding a variant and is operably linked to control sequences that provide for its expression.

[0032] Fragment: The term "fragment" means a polypeptide having one or more (e.g., several) amino acids absent from the amino and/or carboxyl terminus of a mature polypeptide; wherein the fragment has pullulanase activity.

[0033] Hybrid pullulanase: Hybrid pullulanases according to the invention are obtained by combining an N-terminal fragment of one pullulanase fused to a C-terminal fragment of another pullulanase. Preferably the fusion is taking place within the catalytic domain where at least part of the catalytic domain in the hybrid pullulanase should be derived from the catalytic domain comprised in Promozyme D2 (SEQ ID NO: 5), however, other fusion points are also possible. The fusion could be a simple fusion between two fragments origination from the two parent pullulanases, however, the fusion could in some embodiments give rise to a shuffled amino acid sequence in the interface between the two parent fragments. Fusion should preferably be performed in a region homology between the parent pullulanases. The homologous region should at least be 4 amino acids.

[0034] High stringency conditions: The term "high stringency conditions" means for probes of at least 100 nucleotides in length, prehybridization and hybridization at 42°C in 5X SSPE, 0.3% SDS, 200 micrograms/ml sheared and denatured salmon sperm DNA, and 50% formamide, following standard Southern blotting procedures for 12 to 24 hours. The carrier material is finally washed three times each for 15 minutes using 2X SSC, 0.2% SDS at 65°C.

[0035] Host cell: The term "host cell" means any cell type that is susceptible to transformation, transfection, transduction, or the like with a nucleic acid construct or expression vector comprising a polynucleotide of the present invention. The term "host cell" encompasses any progeny of a parent cell that is not identical to the parent cell due to mutations that occur during replication.

[0036] Improved property: The term "improved property" means a characteristic associated with a variant that is improved compared to the parent. Such improved properties include, but are not limited to, specific activity, thermostability and thermo-activity. In a particular embodiment the improved property is increased thermoactivity. In another particular embodiment the improved property is increased specific activity.

[0037] Isolated: The term "isolated" means a substance in a form or environment which does not occur in nature. Non-limiting examples of isolated substances include (1) any non-naturally occurring substance, (2) any substance including, but not limited to, any enzyme, variant, nucleic acid, protein, peptide or cofactor, that is at least partially removed from one or more or all of the naturally occurring constituents with which it is associated in nature; (3) any substance modified by the hand of man relative to that substance found in nature; or (4) any substance modified by increasing the amount of the substance relative to other components with which it is naturally associated (e.g., multiple copies of a gene encoding the substance; use of a stronger promoter than the promoter naturally associated with the gene encoding the substance). An isolated substance may be present in a fermentation broth sample.

[0038] Isoamylase: The term "isoamylase" means a starch debranching enzyme activity (E.C. 3.2.1.68) that hydrolyses alpha-1,6-D-glucosidic branch linkages in amylopectin and beta-limit dextrins and can be distinguished from pullulanases by the inability of isoamylase to attack pullulan, and by the limited action on alpha-limit dextrins. Isoamylase may be added in effective amounts well known to the person skilled in the art. Isoamylase may be added alone or together with a pullulanase.

[0039] Low stringency conditions: The term "low stringency conditions" means for probes of at least 100 nucleotides in length, prehybridization and hybridization at 42°C in 5X SSPE, 0.3% SDS, 200 micrograms/ml sheared and denatured salmon sperm DNA, and 25% formamide, following standard Southern blotting procedures for 12 to 24 hours. The carrier material is finally washed three times each for 15 minutes using 2X SSC, 0.2% SDS at 50°C.

[0040] Mature polypeptide: The term "mature polypeptide" means a polypeptide in its final form following translation and any post-translational modifications, such as N-terminal processing, C-terminal truncation, glycosylation, phosphorylation, etc. In one aspect, the mature polypeptide is amino acids 34 to 861 of SEQ ID NO: 2 and amino acids 1 to 33 of SEQ ID NO: 2 are a signal peptide. In another aspect, the mature polypeptide is amino acids 30 to 957 of SEQ ID NO: 5 and amino acids 1 to 29 of SEQ ID NO: 5 are a signal peptide. In another aspect, the mature polypeptide is amino acids 34 to 862 of SEQ ID NO: 8 and amino acids 1 to 33 of SEQ ID NO: 8 are a signal peptide. It is known in the art that a host cell may produce a mixture of two of more different mature polypeptides (*i.e.*, with a different C-terminal and/or N-terminal amino acid) expressed by the same polynucleotide.

[0041] Mature polypeptide coding sequence: The term "mature polypeptide coding sequence" means a polynucle-otide that encodes a mature polypeptide having pullulanase activity. In one aspect, the mature polypeptide coding sequence is nucleotides 100 to 2583 of SEQ ID NO: 1 .Nucleotides 1 to 99 of SEQ ID NO: 1 encode a signal peptide. In another aspect, the mature polypeptide coding sequence is nucleotides 88 to 2871 of SEQ ID NO: 4 .Nucleotides 1 to 87 of SEQ ID NO: 4 encode a signal peptide. In another aspect, the mature polypeptide coding sequence is nucleotides 100 to 2586 of SEQ ID NO: 7 .Nucleotides 1 to 99 of SEQ ID NO: 7 encode a signal peptide.

[0042] Medium stringency conditions: The term "medium stringency conditions" means for probes of at least 100 nucleotides in length, prehybridization and hybridization at 42°C in 5X SSPE, 0.3% SDS, 200 micrograms/ml sheared and denatured salmon sperm DNA, and 35% formamide, following standard Southern blotting procedures for 12 to 24 hours. The carrier material is finally washed three times each for 15 minutes using 2X SSC, 0.2% SDS at 55°C.

[0043] Medium-high stringency conditions: The term "medium-high stringency conditions" means for probes of at least 100 nucleotides in length, prehybridization and hybridization at 42°C in 5X SSPE, 0.3% SDS, 200 micrograms/ml sheared and denatured salmon sperm DNA, and 35% formamide, following standard Southern blotting procedures for 12 to 24 hours. The carrier material is finally washed three times each for 15 minutes using 2X SSC, 0.2% SDS at 60°C. [0044] Mutant: The term "mutant" means a polynucleotide encoding a variant.

[0045] Nucleic acid construct: The term "nucleic acid construct" means a nucleic acid molecule, either single- or double-stranded, which is isolated from a naturally occurring gene or is modified to contain segments of nucleic acids in a manner that would not otherwise exist in nature or which is synthetic, which comprises one or more control sequences.

30

35

40

45

50

55

[0046] Operably linked: The term "operably linked" means a configuration in which a control sequence is placed at an appropriate position relative to the coding sequence of a polynucleotide such that the control sequence directs expression of the coding sequence.

[0047] Parent or parent pullulanase: The term "parent" or "parent pullulanase or chimera pullulanase means a pullulanase to which an alteration is made to produce the enzyme variants of the present invention. The parent may be a naturally occurring (wild-type) polypeptide or a variant or fragment thereof.

[0048] Sequence identity: The relatedness between two amino acid sequences or between two nucleotide sequences is described by the parameter "sequence identity".

[0049] For purposes of the present invention, the sequence identity between two amino acid sequences is determined using the Needleman-Wunsch algorithm (Needleman and Wunsch, 1970, J. Mol. Biol. 48: 443-453) as implemented in the Needle program of the EMBOSS package (EMBOSS: The European Molecular Biology Open Software Suite, Rice et al., 2000, Trends Genet. 16: 276-277), preferably version 5.0.0 or later. The parameters used are gap open penalty of 10, gap extension penalty of 0.5, and the EBLOSUM62 (EMBOSS version of BLOSUM62) substitution matrix. The output of Needle labeled "longest identity" (obtained using the -nobrief option) is used as the percent identity and is calculated as follows:

(Identical Residues x 100)/(Length of Alignment – Total Number of Gaps in Alignment)

[0050] For purposes of the present invention, the sequence identity between two deoxyribonucleotide sequences is determined using the Needleman-Wunsch algorithm (Needleman and Wunsch, 1970, *supra*) as implemented in the Needle program of the EMBOSS package (EMBOSS: The European Molecular Biology Open Software Suite, Rice et al., 2000, supra), preferably version 5.0.0 or later. The parameters used are gap open penalty of 10, gap extension penalty of 0.5, and the EDNAFULL (EMBOSS version of NCBI NUC4.4) substitution matrix. The output of Needle labeled "longest identity" (obtained using the -nobrief option) is used as the percent identity and is calculated as follows:

(Identical Deoxyribonucleotides x 100)/(Length of Alignment – Total Number of Gaps in Alignment)

[0051] Subsequence: The term "subsequence" means a polynucleotide having one or more (e.g., several) nucleotides absent from the 5' and/or 3' end of a mature polypeptide coding sequence; wherein the subsequence encodes a fragment having pullulanase activity.

[0052] Variant: The term "variant" means a polypeptide having pullulanase activity comprising an alteration, *i.e.*, a substitution, insertion, and/or deletion, at one or more (e.g., several) positions. A substitution means replacement of the amino acid occupying a position with a different amino acid; a deletion means removal of the amino acid occupying a position; and an insertion means adding an amino acid adjacent to and immediately following the amino acid occupying a position. The variants of the present invention have increased thermo-activity compared to the parent enzyme.

[0053] In particular the pullulanase variants of the invention have at least 60% relative activity when measured at 70°C relative to activity at 65°C, more particularly at least 70%, more particularly at least 80%, more particularly at least 90%, more particularly at least 100% when comparing variants of SEQ ID NO: 3.

[0054] In particular the pullulanase variants of the invention have at least 30% relative activity when measured at 70°C relative to activity at 65°C, more particularly at least 40%, more particularly at least 50%, more particularly at least 60%, more particularly at least 70%, more particularly at least 90%, more particularly at least 100% when comparing variants of SEQ ID NO: 6.

[0055] In particular the pullulanase variants of the invention have at least 30% relative activity when measured at 70°C relative to activity at 65°C, more particularly at least 40%, more particularly at least 50%, more particularly at least 60%, more particularly at least 70%, more particularly at least 80%, more particularly at least 90%, more particularly at least 100% when comparing variants of SEQ ID NO: 9.

[0056] In particular the pullulanase variants of the invention have at least 30% relative activity when measured at 70°C relative to activity at 65°C, more particularly at least 40%, more particularly at least 50%, more particularly at least 60%, more particularly at least 70%, more particularly at least 80%, more particularly at least 90%, more particularly at least 100% when comparing variants of SEQ ID NO: 16.

[0057] In particular the pullulanase variants of the invention have at least 30% relative activity when measured at 70°C relative to activity at 65°C, more particularly at least 40%, more particularly at least 50%, more particularly at least 60%, more particularly at least 70%, more particularly at least 80%, more particularly at least 90%, more particularly at least 100% when comparing variants of SEQ ID NO: 17.

[0058] Very high stringency conditions: The term "very high stringency conditions" means for probes of at least 100 nucleotides in length, prehybridization and hybridization at 42°C in 5X SSPE, 0.3% SDS, 200 micrograms/ml sheared and denatured salmon sperm DNA, and 50% formamide, following standard Southern blotting procedures for 12 to 24 hours. The carrier material is finally washed three times each for 15 minutes using 2X SSC, 0.2% SDS at 70°C.

[0059] Very low stringency conditions: The term "very low stringency conditions" means for probes of at least 100 nucleotides in length, prehybridization and hybridization at 42°C in 5X SSPE, 0.3% SDS, 200 micrograms/ml sheared and denatured salmon sperm DNA, and 25% formamide, following standard Southern blotting procedures for 12 to 24 hours. The carrier material is finally washed three times each for 15 minutes using 2X SSC, 0.2% SDS at 45°C.

[0060] Wild-type Pullulanase: The term "wild-type" pullulanase means a pullulanase expressed by a naturally occurring microorganism, such as a bacterium, yeast, or filamentous fungus found in nature.

Conventions for Designation of Variants

5

10

20

30

35

40

45

50

55

[0061] For purposes of the present invention, the mature polypeptide comprised in SEQ ID NO: 2 is used to determine the corresponding amino acid residue in another pullulnase. In one embodiment, the mature polypeptide is disclosed as SED ID NO: 3. The amino acid sequence of another pullulnase is aligned with the mature polypeptide disclosed as SEQ ID NO: 3, and based on the alignment, the amino acid position number corresponding to any amino acid residue in the mature polypeptide disclosed as SEQ ID NO: 3 is determined using the Needleman-Wunsch algorithm (Needleman and Wunsch, 1970, J. Mol. Biol. 48: 443-453) as implemented in the Needle program of the EMBOSS package (EMBOSS: The European Molecular Biology Open Software Suite, Rice et al., 2000, Trends Genet. 16: 276-277), preferably version 5.0.0 or later. The parameters used are gap open penalty of 10, gap extension penalty of 0.5, and the EBLOSUM62 (EMBOSS version of BLOSUM62) substitution matrix.

[0062] Identification of the corresponding amino acid residue in another pullulanase can be determined by an alignment of multiple polypeptide sequences using several computer programs including, but not limited to, MUSCLE (multiple sequence comparison by log-expectation; version 3.5 or later; Edgar, 2004, Nucleic Acids Research 32: 1792-1797), MAFFT (version 6.857 or later; Katoh and Kuma, 2002, Nucleic Acids Research 30: 3059-3066; Katoh et al., 2005,

Nucleic Acids Research 33: 511-518; Katoh and Toh, 2007, Bioinformatics 23: 372-374; Katoh et al., 2009, Methods in Molecular Biology 537:_39-64; Katoh and Toh, 2010, Bioinformatics 26: 1899-1900), and EMBOSS EMMA employing ClustalW (1.83 or later; Thompson et al., 1994, Nucleic Acids Research 22: 4673-4680), using their respective default parameters.

[0063] When the other enzyme has diverged from the mature polypeptide of SEQ ID NO: 2 such that traditional sequence-based comparison fails to detect their relationship (Lindahl and Elofsson, 2000, J. Mol. Biol. 295: 613-615), other pairwise sequence comparison algorithms can be used. Greater sensitivity in sequence-based searching can be attained using search programs that utilize probabilistic representations of polypeptide families (profiles) to search databases. For example, the PSI-BLAST program generates profiles through an iterative database search process and is capable of detecting remote homologs (Atschul et al., 1997, Nucleic Acids Res. 25: 3389-3402). Even greater sensitivity can be achieved if the family or superfamily for the polypeptide has one or more representatives in the protein structure databases. Programs such as GenTHREADER (Jones, 1999, J. Mol. Biol. 287: 797-815; McGuffin and Jones, 2003, Bioinformatics 19: 874-881) utilize information from a variety of sources (PSI-BLAST, secondary structure prediction, structural alignment profiles, and solvation potentials) as input to a neural network that predicts the structural fold for a query sequence. Similarly, the method of Gough et al., 2000, J. Mol. Biol. 313: 903-919, can be used to align a sequence of unknown structure with the superfamily models present in the SCOP database. These alignments can in turn be used to generate homology models for the polypeptide, and such models can be assessed for accuracy using a variety of tools developed for that purpose.

10

30

35

40

45

50

55

[0064] For proteins of known structure, several tools and resources are available for retrieving and generating structural alignments. For example the SCOP superfamilies of proteins have been structurally aligned, and those alignments are accessible and downloadable. Two or more protein structures can be aligned using a variety of algorithms such as the distance alignment matrix (Holm and Sander, 1998, Proteins 33: 88-96) or combinatorial extension (Shindyalov and Bourne, 1998, Protein Engineering 11: 739-747), and implementation of these algorithms can additionally be utilized to query structure databases with a structure of interest in order to discover possible structural homologs (*e.g.*, Holm and Park, 2000, Bioinformatics 16: 566-567).

[0065] In describing the variants of the present invention, the nomenclature described below is adapted for ease of reference. The accepted IUPAC single letter or three letter amino acid abbreviations are employed.

[0066] Substitutions. For an amino acid substitution, the following nomenclature is used: Original amino acid, position, substituted amino acid. Accordingly, the substitution of threonine at position 226 with alanine is designated as "Thr226Ala" or "T226A". Multiple mutations are separated by addition marks ("+"), e.g., "Gly205Arg + Ser411Phe" or "G205R + S411F", representing substitutions at positions 205 and 411 of glycine (G) with arginine (R) and serine (S) with phenylalanine (F), respectively.

[0067] Deletions. For an amino acid deletion, the following nomenclature is used: Original amino acid, position, *. Accordingly, the deletion of glycine at position 195 is designated as "Gly195*" or "G195*". Multiple deletions are separated by addition marks ("+"), e.g., "Gly195* + Ser411*" or "G195* + S411*".

[0068] Insertions. For an amino acid insertion, the following nomenclature is used: Original amino acid, position, original amino acid, inserted amino acid. Accordingly the insertion of lysine after glycine at position 195 is designated "Gly195GlyLys" or "G195GK". An insertion of multiple amino acids is designated [Original amino acid, position, original amino acid, inserted amino acid #1, inserted amino acid #2; etc.]. For example, the insertion of lysine and alanine after glycine at position 195 is indicated as "Gly195GlyLysAla" or "G195GKA".

[0069] In such cases the inserted amino acid residue(s) are numbered by the addition of lower case letters to the position number of the amino acid residue preceding the inserted amino acid residue(s). In the above example, the sequence would thus be:

Parent:	Variant:
195	195 195a 195b
G	G - K - A

[0070] Multiple alterations. Variants comprising multiple alterations are separated by addition marks ("+"), e.g., "Arg170Tyr+Gly195Glu" or "R170Y+G195E" representing a substitution of arginine and glycine at positions 170 and 195 with tyrosine and glutamic acid, respectively.

[0071] Different alterations. Where different alterations can be introduced at a position, the different alterations are separated by a comma, *e.g.*, "Arg170Tyr,Glu" represents a substitution of arginine at position 170 with tyrosine or glutamic acid. Thus, "Tyr167Gly,Ala + Arg170Gly,Ala" designates the following variants: "Tyr167Gly+Arg170Gly", "Tyr167Gly+Arg170Ala", "Tyr167Ala+Arg170Gly", and "Tyr167Ala+Arg170Ala".

Detailed Description of the Invention

10

15

30

35

40

45

50

55

[0072] The present invention relates to variant pullulanases derived from a hybrid parent pullulanase. The hybrid parent pullulanase is the subject of the copending EP patent application 13176791.5 filed on July 17, 2013. The parent pullulanase, denoted P8, is a hybrid enzyme obtained by combining an N-terminal fragment of the pullulanase derived from *Bacillus acidopullullyticus* described in WO 2009/075682 (SEQ ID NO: 4 in WO2009/075682; GENESEQP: AXB71624), fused to a C-terminal fragment of a pullulanase derived from a *Bacillus deramificans* strain isolated from a humus sample collected in Denmark (a homologous pullulanase from *Bacillus deramificans* was disclosed in US 6,074,854 and US 5,817,498). The resulting hybrid parent pullulanase is disclosed herein as SEQ ID NO: 2, and the mature pullulanase as SEQ ID NO: 3.

[0073] The variants according to the present invention have improved properties compared to the parent. The improved properties are selected from increased thermo-activity or increased specific activity on maltodextrin. In one embodiment the variants of the invention have increased thermo-activity. The positions to be substituted in order to obtain increased thermo-activity will be described in detail below. In addition to the effect observed when substituting any of the disclosed positions in the parent pullulanase (the hybrid enzyme denoted as P8 or P008, and disclosed herein as SEQ ID NO: 3) some positions have also been tested for alternative hybrids or wild type pullulanases. Two such alternative hybrid pullulanases are disclosed herein as SEQ ID NO: 16 and SEQ ID NO: 17. For more details on these specific constructs see the example section herein. The results support the finding that the in particular substitutions performed in the catalytic domain can be introduced at the corresponding positions in other pullulanases, wild type as well as hybrid, and the result will be variant pullulanases having increased thermo-activity. When a specific substitution is tested in a different parent enzyme the starting amino acid present in the parent may be different from the first tested parent. This does not have any effect on the resulting variant. As a general rule the essential feature is the amino acid that will be introduced at a specific position not what was there before the substitution. Thus throughout the specification in many embodiments only the amino acid present after substitution has been given. E.g., 393A means that whatever amino acid present in position 393 should be substituted to A (Ala).

[0074] The variants according to the invention comprises one or more substitutions numbered according to the mature polypeptide of SEQ ID NO: 2, disclosed herein as SEQ ID NO: 3. Unless otherwise indicated the position numbers referred to for variants disclosed herein refer to numbering in SEQ ID NO: 3.

The present invention relates to pullulanase variant comprising a substitution at one or more positions corresponding to positions 393, 143, 150, 243, 244, 346, 368, 370, 373, 381, 385, 387, 402, 429, 430, 456, 486, 492, 610, 631, 632, 665 and 699 of the polypeptide of SEQ ID NO: 3 wherein the variant has pullulanase activity; and

- a) wherein the variant has at least 85%, at least 90%, at least 95%, at least 96%, at least 97%, at least 98%, or at least 99%, but less than 100% sequence identity to the polypeptide of SEQ ID NO: 3 and wherein the variant has increased thermoactivity compared to the pullulanase of SEQ ID NO: 3, particularly the variant has at least 60% relative activity when measured at 70°C relative to activity at 65°C, more particularly at least 65%, more particularly at least 70%, more particularly at least 80%, more particularly at least 90%, more particularly at least 100%; or
- b) wherein the variant has at least 85%, at least 90%, at least 95%, at least 96%, at least 97%, at least 98%, or at least 99%, but less than 100% sequence identity to the polypeptide of SEQ ID NO: 6 and wherein the variant has increased thermoactivity compared to the pullulanase of SEQ ID NO: 6, particularly the variant has at least 30% relative activity when measured at 70°C relative to activity at 65°C, more particularly at least 40%, more particularly at least 50%, more particularly at least 50%, more particularly at least 80%, more particularly at least 90%, more particularly at least 100%; or
- c) wherein the variant has at least 85%, at least 90%, at least 95%, at least 96%, at least 97%, at least 98%, or at least 99%, but less than 100% sequence identity to the polypeptide of SEQ ID NO: 9 and wherein the variant has increased thermoactivity compared to the pullulanase of SEQ ID NO: 9, particularly the variant has at least 30% relative activity when measured at 70°C relative to activity at 65°C, more particularly at least 40%, more particularly at least 50%, more particularly at least 60%, more particularly at least 70%, more particularly at least 80%, more particularly at least 90%, more particularly at least 100%; or
- d) wherein the variant has at least 85%, at least 90%, at least 95%, at least 96%, at least 97%, at least 98%, or at least 99%, but less than 100% sequence identity to the polypeptide of SEQ ID NO: 16 and wherein the variant has increased thermoactivity compared to the pullulanase of SEQ ID NO: 16, particularly the variant has at least 30% relative activity when measured at 70°C relative to activity at 65°C, more particularly at least 40%, more particularly at least 50%, more particularly at least 60%, more particularly at least 70%, more particularly at least 80%, more particularly at least 90%, more particularly at least 100%; or
- e) wherein the variant has at least 85%, at least 90%, at least 95%, at least 96%, at least 97%, at least 98%, or at least 99%, but less than 100% sequence identity to the polypeptide of SEQ ID NO: 17 and wherein the variant has

increased thermoactivity compared to the pullulanase of SEQ ID NO: 17, particularly the variant has at least 30% relative activity when measured at 70°C relative to activity at 65°C, more particularly at least 40%, more particularly at least 50%, more particularly at least 60%, more particularly at least 80%, more particularly at least 90%, more particularly at least 100%.

Variants

5

25

30

35

40

45

50

55

[0075] The present invention provides pullulanase variants, comprising a substitution at one or more positions corresponding to positions 393, 143, 150, 243, 244, 345, 346, 368, 370, 373, 381, 382, 385, 387, 402, 429, 430, 431, 432, 456, 486, 492, 610, 624, 631, 632, 665 and 699 of SEQ ID NO: 3 wherein the variant has pullulanase activity and increased thermo-activity.

[0076] The variants may further comprise one or more additional alteration at one or more other positions. Such additional alterations may not significantly affect the properties of the variants according to the invention but may change the % identity of the variant compared to SEQ ID NO: 3.

[0077] In an embodiment, the variant has sequence identity of at least 75%, at least 80%, at least 85%, at least 90%, at least 91%, at least 92%, at least 93%, at least 94%, at least 95%, at least 96%, at least 97%, at least 98%, or at least 99%, but less than 100%, to the amino acid sequence of the parent pullulanase.

[0078] In another embodiment, the variant has at least at least 85%, at least 90%, at least 91%, at least 92%, at least 93%, at least 94%, at least 95%, such as at least 96%, at least 97%, at least 98%, or at least 99%, but less than 100%, sequence identity to the polypeptide of SEQ ID NO: 3. In one aspect, the number of alterations in the variants of the present invention is 1-20, *e.g.*, 1-10 and 1-5 such as 1, 2, 3, 4, 5, 6, 7, 8, 9 or 10 alterations.

[0079] In another embodiment, the variant has at least at least 85%, at least 90%, at least 91%, at least 92%, at least 93%, at least 94%, at least 95%, such as at least 96%, at least 97%, at least 98%, or at least 99%, but less than 100%, sequence identity to the polypeptide of SEQ ID NO: 6. In one aspect, the number of alterations in the variants of the present invention is 1-20, *e.g.*, 1-10 and 1-5 such as 1, 2, 3, 4, 5, 6, 7, 8, 9 or 10 alterations.

[0080] In another embodiment, the variant has at least at least 85%, at least 90%, at least 91%, at least 92%, at least 93%, at least 94%, at least 95%, such as at least 96%, at least 97%, at least 98%, or at least 99%, but less than 100%, sequence identity to the polypeptide of SEQ ID NO: 9. In one aspect, the number of alterations in the variants of the present invention is 1-20, e.g., 1-10 and 1-5 such as 1, 2, 3, 4, 5, 6, 7, 8, 9 or 10 alterations.

[0081] In another embodiment, the variant has at least at least 85%, at least 90%, at least 91%, at least 92%, at least 93%, at least 94%, at least 95%, such as at least 96%, at least 97%, at least 98%, or at least 99%, but less than 100%, sequence identity to the polypeptide of SEQ ID NO: 16. In one aspect, the number of alterations in the variants of the present invention is 1-20, *e.g.*, 1-10 and 1-5 such as 1, 2, 3, 4, 5, 6, 7, 8, 9 or 10 alterations.

[0082] In another embodiment, the variant has at least at least 85%, at least 90%, at least 91%, at least 92%, at least 93%, at least 94%, at least 95%, such as at least 96%, at least 97%, at least 98%, or at least 99%, but less than 100%, sequence identity to the polypeptide of SEQ ID NO: 17. In one aspect, the number of alterations in the variants of the present invention is 1-20, e.g., 1-10 and 1-5 such as 1, 2, 3, 4, 5, 6, 7, 8, 9 or 10 alterations.

[0083] In a particular embodiment the present invention relates to pullulanase variant comprising a substitution at one or more positions corresponding to positions 393, 143, 150, 243, 244, 346, 368, 370, 373, 381, 385, 387, 402, 429, 430, 456, 486, 492, 610, 631, 632, 665 and 699 of the polypeptide of SEQ ID NO: 3 wherein the variant has pullulanase activity; and;

a) wherein the variant has at least 85%, at least 90%, at least 95%, at least 96%, at least 97%, at least 98%, or at least 99%, but less than 100% sequence identity to the polypeptide of SEQ ID NO: 3 and wherein the variant has increased thermoactivity compared to the pullulanase of SEQ ID NO: 3, particularly the variant has at least 60% relative activity when measured at 70°C relative to activity at 65°C, more particularly at least 65%, more particularly at least 70%, more particularly at least 80%, more particularly at least 90%, more particularly at least 100%; or

b) wherein the variant has at least 85%, at least 90%, at least 95%, at least 96%, at least 97%, at least 98%, or at least 99%, but less than 100% sequence identity to the polypeptide of SEQ ID NO: 6 and wherein the variant has increased thermoactivity compared to the pullulanase of SEQ ID NO: 6, particularly the variant has at least 30% relative activity when measured at 70°C relative to activity at 65°C, more particularly at least 40%, more particularly at least 50%, more particularly at least 60%, more particularly at least 90%, more particularly at least 100%; or

c) wherein the variant has at least 85%, at least 90%, at least 95%, at least 96%, at least 97%, at least 98%, or at least 99%, but less than 100% sequence identity to the polypeptide of SEQ ID NO: 9 and wherein the variant has increased thermoactivity compared to the pullulanase of SEQ ID NO: 9, particularly the variant has at least 30% relative activity when measured at 70°C relative to activity at 65°C, more particularly at least 40%, more particularly

at least 50%, more particularly at least 60%, more particularly at least 70%, more particularly at least 80%, more particularly at least 90%, more particularly at least 100%; or

d) wherein the variant has at least 85%, at least 90%, at least 95%, at least 96%, at least 97%, at least 98%, or at least 99%, but less than 100% sequence identity to the polypeptide of SEQ ID NO: 16 and wherein the variant has increased thermoactivity compared to the pullulanase of SEQ ID NO: 16, particularly the variant has at least 30% relative activity when measured at 70°C relative to activity at 65°C, more particularly at least 40%, more particularly at least 50%, more particularly at least 60%, more particularly at least 90%, more particularly at least 100%; or

5

10

15

20

25

30

35

40

45

50

55

e) wherein the variant has at least 85%, at least 90%, at least 95%, at least 96%, at least 97%, at least 98%, or at least 99%, but less than 100% sequence identity to the polypeptide of SEQ ID NO: 17 and wherein the variant has increased thermoactivity compared to the pullulanase of SEQ ID NO: 17, particularly the variant has at least 30% relative activity when measured at 70°C relative to activity at 65°C, more particularly at least 40%, more particularly at least 50%, more particularly at least 80%, more particularly at least 90%, more particularly at least 100%.

[0084] In another aspect, a variant comprises a substitution at two or more positions corresponding to positions 393, 143, 150, 243, 244, 346, 368, 370, 373, 381, 385, 387, 402, 429, 430, 456, 486, 492, 610, 624, 631, 632, 665 and 699 of the polypeptide of SEQ ID NO: 3 wherein the variant has pullulanase activity; and

- a) wherein the variant has at least 85%, at least 90%, at least 95%, at least 96%, at least 97%, at least 98%, or at least 99%, but less than 100% sequence identity to the polypeptide of SEQ ID NO: 3 and wherein the variant has increased thermoactivity compared to the pullulanase of SEQ ID NO: 3, particularly the variant has at least 60% relative activity when measured at 70°C relative to activity at 65°C, more particularly at least 65%, more particularly at least 70%, more particularly at least 80%, more particularly at least 90%, more particularly at least 100%; or
- b) wherein the variant has at least 85%, at least 90%, at least 95%, at least 96%, at least 97%, at least 98%, or at least 99%, but less than 100% sequence identity to the polypeptide of SEQ ID NO: 6 and wherein the variant has increased thermoactivity compared to the pullulanase of SEQ ID NO: 6, particularly the variant has at least 30% relative activity when measured at 70°C relative to activity at 65°C, more particularly at least 40%, more particularly at least 50%, more particularly at least 80%, more particularly at least 90%, more particularly at least 100%; or
- c) wherein the variant has at least 85%, at least 90%, at least 95%, at least 96%, at least 97%, at least 98%, or at least 99%, but less than 100% sequence identity to the polypeptide of SEQ ID NO: 9 and wherein the variant has increased thermoactivity compared to the pullulanase of SEQ ID NO: 9, particularly the variant has at least 30% relative activity when measured at 70°C relative to activity at 65°C, more particularly at least 40%, more particularly at least 50%, more particularly at least 50%, more particularly at least 80%, more particularly at least 90%, more particularly at least 100%; or
- d) wherein the variant has at least 85%, at least 90%, at least 95%, at least 96%, at least 97%, at least 98%, or at least 99%, but less than 100% sequence identity to the polypeptide of SEQ ID NO: 16 and wherein the variant has increased thermoactivity compared to the pullulanase of SEQ ID NO: 16, particularly the variant has at least 30% relative activity when measured at 70°C relative to activity at 65°C, more particularly at least 40%, more particularly at least 50%, more particularly at least 80%, more particularly at least 90%, more particularly at least 100%; or
- e) wherein the variant has at least 85%, at least 90%, at least 95%, at least 96%, at least 97%, at least 98%, or at least 99%, but less than 100% sequence identity to the polypeptide of SEQ ID NO: 17 and wherein the variant has increased thermoactivity compared to the pullulanase of SEQ ID NO: 17, particularly the variant has at least 30% relative activity when measured at 70°C relative to activity at 65°C, more particularly at least 40%, more particularly at least 50%, more particularly at least 60%, more particularly at least 90%, more particularly at least 100%.

[0085] In another aspect, a variant comprises a substitution at three or more positions corresponding to positions 393, 143, 150, 243, 244, 346, 368, 370, 373, 381, 385, 387, 402, 429, 430, 431, 456, 486, 492, 610, 624, 631, 632, 665 and 699 of the polypeptide of SEQ ID NO: 3 wherein the variant has pullulanase activity; and

a) wherein the variant has at least 85%, at least 90%, at least 95%, at least 96%, at least 97%, at least 98%, or at least 99%, but less than 100% sequence identity to the polypeptide of SEQ ID NO: 3 and wherein the variant has increased thermoactivity compared to the pullulanase of SEQ ID NO: 3, particularly the variant has at least 60% relative activity when measured at 70°C relative to activity at 65°C, more particularly at least 65%, more particularly

- at least 70%, more particularly at least 60%, more particularly at least 75%, more particularly at least 80%, more particularly at least 90%, more particularly at least 100%; or
- b) wherein the variant has at least 85%, at least 90%, at least 95%, at least 96%, at least 97%, at least 98%, or at least 99%, but less than 100% sequence identity to the polypeptide of SEQ ID NO: 6 and wherein the variant has increased thermoactivity compared to the pullulanase of SEQ ID NO: 6, particularly the variant has at least 30% relative activity when measured at 70°C relative to activity at 65°C, more particularly at least 40%, more particularly at least 50%, more particularly at least 80%, more particularly at least 90%, more particularly at least 100%; or

5

10

15

20

25

30

35

40

45

50

- c) wherein the variant has at least 85%, at least 90%, at least 95%, at least 96%, at least 97%, at least 98%, or at least 99%, but less than 100% sequence identity to the polypeptide of SEQ ID NO: 9 and wherein the variant has increased thermoactivity compared to the pullulanase of SEQ ID NO: 9, particularly the variant has at least 30% relative activity when measured at 70°C relative to activity at 65°C, more particularly at least 40%, more particularly at least 50%, more particularly at least 60%, more particularly at least 90%, more particularly at least 100%; or
- d) wherein the variant has at least 85%, at least 90%, at least 95%, at least 96%, at least 97%, at least 98%, or at least 99%, but less than 100% sequence identity to the polypeptide of SEQ ID NO: 16 and wherein the variant has increased thermoactivity compared to the pullulanase of SEQ ID NO: 16, particularly the variant has at least 30% relative activity when measured at 70°C relative to activity at 65°C, more particularly at least 40%, more particularly at least 50%, more particularly at least 80%, more particularly at least 90%, more particularly at least 100%; or
- e) wherein the variant has at least 85%, at least 90%, at least 95%, at least 96%, at least 97%, at least 98%, or at least 99%, but less than 100% sequence identity to the polypeptide of SEQ ID NO: 17 and wherein the variant has increased thermoactivity compared to the pullulanase of SEQ ID NO: 17, particularly the variant has at least 30% relative activity when measured at 70°C relative to activity at 65°C, more particularly at least 40%, more particularly at least 50%, more particularly at least 80%, more particularly at least 90%, more particularly at least 100%.
- **[0086]** In another aspect, a variant comprises a substitution at four or more positions corresponding to positions 393, 143, 150, 243, 244, 346, 368, 370, 373, 381, 385, 387, 402, 429, 430, 431, 432, 456, 486, 492, 610, 624, 631, 632, 665 and 699 of the polypeptide of SEQ ID NO: 3 wherein the variant has pullulanase activity; and
 - a) wherein the variant has at least 85%, at least 90%, at least 95%, at least 96%, at least 97%, at least 98%, or at least 99%, but less than 100% sequence identity to the polypeptide of SEQ ID NO: 3 and wherein the variant has increased thermoactivity compared to the pullulanase of SEQ ID NO: 3, particularly the variant has at least 60% relative activity when measured at 70°C relative to activity at 65°C, more particularly at least 65%, more particularly at least 70%, more particularly at least 80%, more particularly at least 90%, more particularly at least 100%; or
 - b) wherein the variant has at least 85%, at least 90%, at least 95%, at least 96%, at least 97%, at least 98%, or at least 99%, but less than 100% sequence identity to the polypeptide of SEQ ID NO: 6 and wherein the variant has increased thermoactivity compared to the pullulanase of SEQ ID NO: 6, particularly the variant has at least 30% relative activity when measured at 70°C relative to activity at 65°C, more particularly at least 40%, more particularly at least 50%, more particularly at least 80%, more particularly at least 90%, more particularly at least 100%; or
 - c) wherein the variant has at least 85%, at least 90%, at least 95%, at least 96%, at least 97%, at least 98%, or at least 99%, but less than 100% sequence identity to the polypeptide of SEQ ID NO: 9 and wherein the variant has increased thermoactivity compared to the pullulanase of SEQ ID NO: 9, particularly the variant has at least 30% relative activity when measured at 70°C relative to activity at 65°C, more particularly at least 40%, more particularly at least 50%, more particularly at least 60%, more particularly at least 90%, more particularly at least 100%; or
 - d) wherein the variant has at least 85%, at least 90%, at least 95%, at least 96%, at least 97%, at least 98%, or at least 99%, but less than 100% sequence identity to the polypeptide of SEQ ID NO: 16 and wherein the variant has increased thermoactivity compared to the pullulanase of SEQ ID NO: 16, particularly the variant has at least 30% relative activity when measured at 70°C relative to activity at 65°C, more particularly at least 40%, more particularly at least 50%, more particularly at least 80%, more particularly at least 90%, more particularly at least 100%; or
 - e) wherein the variant has at least 85%, at least 90%, at least 95%, at least 96%, at least 97%, at least 98%, or at least 99%, but less than 100% sequence identity to the polypeptide of SEQ ID NO: 17 and wherein the variant has increased thermoactivity compared to the pullulanase of SEQ ID NO: 17, particularly the variant has at least 30%

relative activity when measured at 70°C relative to activity at 65°C, more particularly at least 40%, more particularly at least 50%, more particularly at least 60%, more particularly at least 70%, more particularly at least 80%, more particularly at least 90%, more particularly at least 100%.

[0087] In another aspect, a variant comprises a substitution at five or more positions corresponding to positions 393, 143, 150, 243, 244, 345, 346, 368, 370, 373, 381, 385, 387, 402, 429, 430, 431, 432, 456, 486, 492, 610, 624, 631, 632, 665 and 699 of the polypeptide of SEQ ID NO: 3 wherein the variant has pullulanase activity, and

10

15

20

25

30

35

45

50

- a) wherein the variant has at least 85%, at least 90%, at least 95%, at least 96%, at least 97%, at least 98%, or at least 99%, but less than 100% sequence identity to the polypeptide of SEQ ID NO: 3 and wherein the variant has increased thermoactivity compared to the pullulanase of SEQ ID NO: 3, particularly the variant has at least 60% relative activity when measured at 70°C relative to activity at 65°C, more particularly at least 65%, more particularly at least 70%, more particularly at least 80%, more particularly at least 90%, more particularly at least 100%; or
 - b) wherein the variant has at least 85%, at least 90%, at least 95%, at least 96%, at least 97%, at least 98%, or at least 99%, but less than 100% sequence identity to the polypeptide of SEQ ID NO: 6 and wherein the variant has increased thermoactivity compared to the pullulanase of SEQ ID NO: 6, particularly the variant has at least 30% relative activity when measured at 70°C relative to activity at 65°C, more particularly at least 40%, more particularly at least 50%, more particularly at least 60%, more particularly at least 70%, more particularly at least 80%, more particularly at least 90%, more particularly at least 100%; or
 - c) wherein the variant has at least 85%, at least 90%, at least 95%, at least 96%, at least 97%, at least 98%, or at least 99%, but less than 100% sequence identity to the polypeptide of SEQ ID NO: 9 and wherein the variant has increased thermoactivity compared to the pullulanase of SEQ ID NO: 9, particularly the variant has at least 30% relative activity when measured at 70°C relative to activity at 65°C, more particularly at least 40%, more particularly at least 50%, more particularly at least 80%, more particularly at least 90%, more particularly at least 100%; or
 - d) wherein the variant has at least 85%, at least 90%, at least 95%, at least 96%, at least 97%, at least 98%, or at least 99%, but less than 100% sequence identity to the polypeptide of SEQ ID NO: 16 and wherein the variant has increased thermoactivity compared to the pullulanase of SEQ ID NO: 16, particularly the variant has at least 30% relative activity when measured at 70°C relative to activity at 65°C, more particularly at least 40%, more particularly at least 50%, more particularly at least 60%, more particularly at least 70%, more particularly at least 80%, more particularly at least 90%, more particularly at least 100%; or
 - e) wherein the variant has at least 85%, at least 90%, at least 95%, at least 96%, at least 97%, at least 98%, or at least 99%, but less than 100% sequence identity to the polypeptide of SEQ ID NO: 17 and wherein the variant has increased thermoactivity compared to the pullulanase of SEQ ID NO: 17, particularly the variant has at least 30% relative activity when measured at 70°C relative to activity at 65°C, more particularly at least 40%, more particularly at least 50%, more particularly at least 80%, more particularly at least 90%, more particularly at least 100%.
- **[0088]** In another aspect, a variant comprises a substitution at six or more positions corresponding to positions 393, 143, 150, 243, 244, 345, 346, 368, 370, 373, 381, 382, 385, 387, 402, 429, 430, 431, 432, 456, 486, 492, 610, 624, 631, 632, 665 and 699.
 - [0089] In another aspect, a variant comprises a substitution at one position corresponding to positions 393, 143, 150, 243, 244, 346, 368, 456, 492, 610, 624, or 699 of the polypeptide of SEQ ID NO: 3 wherein the variant has pullulanase activity, and
 - a) wherein the variant has at least 85%, at least 90%, at least 95%, at least 96%, at least 97%, at least 98%, or at least 99%, but less than 100% sequence identity to the polypeptide of SEQ ID NO: 3 and wherein the variant has increased thermoactivity compared to the pullulanase of SEQ ID NO: 3, particularly the variant has at least 60% relative activity when measured at 70°C relative to activity at 65°C, more particularly at least 65%, more particularly at least 70%, more particularly at least 80%, more particularly at least 90%, more particularly at least 100%; or
 - b) wherein the variant has at least 85%, at least 90%, at least 95%, at least 96%, at least 97%, at least 98%, or at least 99%, but less than 100% sequence identity to the polypeptide of SEQ ID NO: 6 and wherein the variant has increased thermoactivity compared to the pullulanase of SEQ ID NO: 6, particularly the variant has at least 30% relative activity when measured at 70°C relative to activity at 65°C, more particularly at least 40%, more particularly at least 50%, more particularly at least 60%, more particularly at least 70%, more particularly at least 80%, more particularly at least 90%, more particularly at least 100%; or

c) wherein the variant has at least 85%, at least 90%, at least 95%, at least 96%, at least 97%, at least 98%, or at least 99%, but less than 100% sequence identity to the polypeptide of SEQ ID NO: 9 and wherein the variant has increased thermoactivity compared to the pullulanase of SEQ ID NO: 9, particularly the variant has at least 30% relative activity when measured at 70°C relative to activity at 65°C, more particularly at least 40%, more particularly at least 50%, more particularly at least 60%, more particularly at least 90%, more particularly at least 100%; or

5

10

15

30

35

45

50

- d) wherein the variant has at least 85%, at least 90%, at least 95%, at least 96%, at least 97%, at least 98%, or at least 99%, but less than 100% sequence identity to the polypeptide of SEQ ID NO: 16 and wherein the variant has increased thermoactivity compared to the pullulanase of SEQ ID NO: 16, particularly the variant has at least 30% relative activity when measured at 70°C relative to activity at 65°C, more particularly at least 40%, more particularly at least 50%, more particularly at least 60%, more particularly at least 90%, more particularly at least 100%; or
- e) wherein the variant has at least 85%, at least 90%, at least 95%, at least 96%, at least 97%, at least 98%, or at least 99%, but less than 100% sequence identity to the polypeptide of SEQ ID NO: 17 and wherein the variant has increased thermoactivity compared to the pullulanase of SEQ ID NO: 17, particularly the variant has at least 30% relative activity when measured at 70°C relative to activity at 65°C, more particularly at least 40%, more particularly at least 50%, more particularly at least 60%, more particularly at least 90%, more particularly at least 100%.
- [0090] In another aspect, the variant comprises or consists of a substitution at a position corresponding to position 393. In another aspect, the amino acid at a position corresponding to position 393 is substituted with Ala, Arg, Asp, Cyt, Glu, Gln, Gly, His, Ile, Leu, Lys, Met, Phe, Pro, Ser, Thr, Trp, Tyr or Val, preferably with Ala. In another aspect, the variant comprise or consist of the substitution N393A of the polypeptide of SEQ ID NO: 3.
 - [0091] In another aspect, the variant comprises or consists of a substitution at a position corresponding to position 143. In another aspect, the amino acid at a position corresponding to position 143 is substituted with Ala, Arg, Asn, Asp, Cys, Glu, Gln, Gly, His, Ile, Leu, Lys, Met, Phe, Pro, Ser, Thr, Trp or Tyr, preferably with Gly. In another aspect, the variant comprise or consist of the substitution V143G of the polypeptide of SEQ ID NO: 3.
 - **[0092]** In another aspect, the variant comprises or consists of a substitution at a position corresponding to position 150. In another aspect, the amino acid at a position corresponding to position 150 is substituted with Ala, Arg, Asn, Asp, Cys, Gln, Gly, His, Ile, Leu, Lys, Met, Phe, Pro, Ser, Thr, Trp, Tyr or Val, preferably with Arg. In another aspect, the variant comprise or consist of the substitution E150R of the polypeptide of SEQ ID NO: 3.
 - [0093] In another aspect, the variant comprises or consists of a substitution at a position corresponding to position 243. In another aspect, the amino acid at a position corresponding to position 243 is substituted with Ala, Arg, Asp, Cys, Glu, Gln, Gly, His, Ile, Leu, Lys, Met, Phe, Pro, Ser, Thr, Trp, Tyr or Val, preferably with Glu. In another aspect, the variant comprise or consist of the substitution N243E of the polypeptide of SEQ ID NO: 3.
 - [0094] In another aspect, the variant comprises or consists of a substitution at a position corresponding to position 244. In another aspect, the amino acid at a position corresponding to position 244 is substituted with Ala, Arg, Asn, Asp, Cys, Glu, Gln, Gly, His, Ile, Leu, Lys, Met, Phe, Pro, Thr, Trp, Tyr or Val, preferably with Lys. In another aspect, the variant comprise or consist of the substitution S244K of the polypeptide of SEQ ID NO: 3.
- [0095] In another aspect, the variant comprises or consists of a substitution at a position corresponding to position 345. In another aspect, the amino acid at a position corresponding to position 346 is substituted with Arg, Asn, Asp, Cys, Glu, Gln, Gly, His, Ile, Leu, Lys, Met, Phe, Pro, Ser, Thr, Trp, Tyr or Val, preferably with Pro. In another aspect, the variant comprise or consist of the substitution A345P of the polypeptide of SEQ ID NO: 3.
 - [0096] In another aspect, the variant comprises or consists of a substitution at a position corresponding to position 346. In another aspect, the amino acid at a position corresponding to position 346 is substituted with Ala, Arg, Asp, Cys, Glu, Gln, Gly, His, Ile, Leu, Lys, Met, Phe, Pro, Ser, Thr, Trp, Tyr or Val, preferably with Ser. In another aspect, the variant comprise or consist of the substitution N346S of the polypeptide of SEQ ID NO: 3.
 - [0097] In another aspect, the variant comprises or consists of a substitution at a position corresponding to position 368. In another aspect, the amino acid at a position corresponding to position 368 is substituted with Ala, Arg, Asp, Cys, Glu, Gln, Gly, His, Ile, Leu, Lys, Met, Phe, Pro, Ser, Thr, Trp, Tyr or Val, preferably with Glu. In another aspect, the variant comprise or consist of the substitution N368G of the polypeptide of SEQ ID NO: 3.
 - [0098] In another aspect, the variant comprises or consists of a substitution at a position corresponding to position 370. In another aspect, the amino acid at a position corresponding to position 370 is substituted with Ala, Arg, Asn, Asp, Cys, Glu, Gln, Gly, His, Ile, Leu, Met, Phe, Pro, Ser, Thr, Trp, Tyr or Val, preferably with Ser. In another aspect, the variant comprise or consist of the substitution K370S of the polypeptide of SEQ ID NO: 3.
 - **[0099]** In another aspect, the variant comprises or consists of a substitution at a position corresponding to position 373. In another aspect, the amino acid at a position corresponding to position 373 is substituted with Ala, Arg, Asn, Asp, Cys, Glu, Gln, Gly, His, Leu, Lys, Met, Phe, Pro, Ser, Thr, Trp, Tyr or Val, preferably with Leu. In another aspect, the

variant comprise or consist of the substitution I373L of the polypeptide of SEQ ID NO: 3.

[0100] In another aspect, the variant comprises or consists of a substitution at a position corresponding to position 381. In another aspect, the amino acid at a position corresponding to position 381 is substituted with Ala, Arg, Asn, Asp, Cys, Glu, Gln, Gly, His, Leu, Lys, Met, Phe, Pro, Ser, Thr, Trp, Tyr or Val, preferably with Val. In another aspect, the variant comprise or consist of the substitution I381V of the polypeptide of SEQ ID NO: 3.

[0101] In another aspect, the variant comprises or consists of a substitution at a position corresponding to position 382. In another aspect, the amino acid at a position corresponding to position 382 is substituted with Ala, Arg, Asp, Cys, Glu, Gln, Gly, His, Ile, Leu, Lys, Met, Phe, Pro, Ser, Thr, Trp, Tyr or Val, preferably with Thr. In another aspect, the variant comprise or consist of the substitution N382T of the polypeptide of SEQ ID NO: 3.

[0102] In another aspect, the variant comprises or consists of a substitution at a position corresponding to position 385. In another aspect, the amino acid at a position corresponding to position 385 is substituted with Ala, Arg, Asn, Asp, Cys, Glu, Gly, His, Ile, Leu, Lys, Met, Phe, Pro, Ser, Thr, Trp, Tyr or Val, preferably with Glu. In another aspect, the variant comprise or consist of the substitution Q385E of the polypeptide of SEQ ID NO: 3.

[0103] In another aspect, the variant comprises or consists of a substitution at a position corresponding to position 387. In another aspect, the amino acid at a position corresponding to position 387 is substituted with Ala, Arg, Asn, Asp, Cys, Glu, Gly, His, Ile, Leu, Lys, Met, Phe, Pro, Ser, Thr, Trp, Tyr or Val, preferably with Leu. In another aspect, the variant comprise or consist of the substitution Q387L of the polypeptide of SEQ ID NO: 3.

[0104] In another aspect, the variant comprises or consists of a substitution at a position corresponding to position 402. In another aspect, the amino acid at a position corresponding to position 402 is substituted with Ala, Arg, Asn, Asp, Cys, Glu, Gln, Gly, His, Ile, Leu, Lys, Phe, Pro, Ser, Thr, Trp, Tyr or Val, preferably with Thr. In another aspect, the variant comprise or consist of the substitution M402T of the polypeptide of SEQ ID NO: 3.

[0105] In another aspect, the variant comprises or consists of a substitution at a position corresponding to position 429. In another aspect, the amino acid at a position corresponding to position 429 is substituted with Ala, Arg, Asn, Asp, Cys, Glu, Gln, Gly, His, Leu, Lys, Met, Phe, Pro, Ser, Thr, Trp, Tyr or Val, preferably with Val. In another aspect, the variant comprise or consist of the substitution I429V of the polypeptide of SEQ ID NO: 3.

[0106] In another aspect, the variant comprises or consists of a substitution at a position corresponding to position 430. In another aspect, the amino acid at a position corresponding to position 430 is substituted with Ala, Arg, Asn, Asp, Cys, Glu, Gln, Gly, His, Ile, Leu, Lys, Met, Phe, Pro, Ser, Trp, Tyr or Val, preferably with Arg. In another aspect, the variant comprise or consist of the substitution T430R of the polypeptide of SEQ ID NO: 3.

[0107] In another aspect, the variant comprises or consists of a substitution at a position corresponding to position 431. In another aspect, the amino acid at a position corresponding to position 431 is substituted with Ala, Arg, Asn, Asp, Cys, Glu, Gly, His, Ile, Leu, Lys, Met, Phe, Pro, Ser, Thr, Trp, Tyr or Val, preferably with Glutamic Acid. In another aspect, the variant comprise or consist of the substitution Q431E of the polypeptide of SEQ ID NO: 3.

30

35

40

45

50

[0108] In another aspect, the variant comprises or consists of a substitution at a position corresponding to position 432. In another aspect, the amino acid at a position corresponding to position 432 is substituted with Ala, Arg, Asn, Asp, Cys, Glu, Gln, Gly, His, Ile, Lys, Met, Phe, Pro, Ser, Thr, Trp, Tyr or Val, preferably with Phe. In another aspect, the variant comprise or consist of the substitution L432F of the polypeptide of SEQ ID NO: 3.

[0109] In another aspect, the variant comprises or consists of a substitution at a position corresponding to position 456. In another aspect, the amino acid at a position corresponding to position 456 is substituted with Ala, Arg, Asn, Asp, Cys, Glu, Gln, Gly, His, Ile, Leu, Lys, Met, Pro, Ser, Thr, Trp, Tyr or Val, preferably with Ala. In another aspect, the variant comprise or consist of the substitution F456A of the polypeptide of SEQ ID NO: 3.

[0110] In another aspect, the variant comprises or consists of a substitution at a position corresponding to position 486. In another aspect, the amino acid at a position corresponding to position 486 is substituted with Ala, Arg, Asn, Asp, Cys, Glu, Gln, Gly, His, Ile, Leu, Lys, Met, Phe, Pro, Ser, Thr, Trp or Tyr, preferably with Cys. In another aspect, the variant comprise or consist of the substitution V486C of the polypeptide of SEQ ID NO: 3.

[0111] In another aspect, the variant comprises or consists of a substitution at a position corresponding to position 492. In another aspect, the amino acid at a position corresponding to position 492 is substituted with Ala, Arg, Asn, Asp, Cys, Glu, Gln, Gly, His, Ile, Leu, Lys, Met, Phe, Pro, Ser, Trp, Tyr or Val, preferably with Ser or Ala. In another aspect, the variant comprise or consist of the substitution T492S,A of the polypeptide of SEQ ID NO: 3.

[0112] In another aspect, the variant comprises or consists of a substitution at a position corresponding to position 610. In another aspect, the amino acid at a position corresponding to position 610 is substituted with Ala, Arg, Asp, Cys, Glu, Gln, Gly, His, Ile, Leu, Lys, Met, Phe, Pro, Ser, Thr, Trp, Tyr or Val, preferably with Leu or Arginine. In another aspect, the variant comprise or consist of the substitution N610L or N610R of the polypeptide of SEQ ID NO: 3.

[0113] In another aspect, the variant comprises or consists of a substitution at a position corresponding to position 624. In another aspect, the amino acid at a position corresponding to position 624 is substituted with Ala, Arg, Asn, Asp, Cys, Glu, Gln, His, Ile, Leu, Lys, Met, Phe, Pro, Ser, Thr, Trp, Tyr or Val, preferably with Ser. In another aspect, the variant comprise or consist of the substitution G624S of the polypeptide of SEQ ID NO: 3.

[0114] In another aspect, the variant comprises or consists of a substitution at a position corresponding to position

631. In another aspect, the amino acid at a position corresponding to position 631 is substituted with Ala, Arg, Asn, Asp, Cys, Glu, Gln, Gly, His, Ile, Leu, Lys, Met, Phe, Pro, Ser, Trp, Tyr or Val, preferably with Ser. In another aspect, the variant comprise or consist of the substitution T631S of the polypeptide of SEQ ID NO: 3.

[0115] In another aspect, the variant comprises or consists of a substitution at a position corresponding to position 632. In another aspect, the amino acid at a position corresponding to position 632 is substituted with Ala, Arg, Asn, Asp, Cys, Glu, Gln, Gly, His, Ile, Leu, Lys, Met, Phe, Pro, Thr, Trp, Tyr or Val, preferably with Cys. In another aspect, the variant comprise or consist of the substitution S632C of the polypeptide of SEQ ID NO: 3.

[0116] In another aspect, the variant comprises or consists of a substitution at a position corresponding to position 665. In another aspect, the amino acid at a position corresponding to position 665 is substituted with Ala, Arg, Asn, Asp, Cys, Glu, Gln, Gly, His, Ile, Leu, Lys, Met, Phe, Pro, Ser, Thr, Trp or Tyr, preferably with Ile. In another aspect, the variant comprise or consist of the substitution V665I of the polypeptide of SEQ ID NO: 3.

[0117] In another aspect, the variant comprises or consists of a substitution at a position corresponding to position 699. In another aspect, the amino acid at a position corresponding to position 699 is substituted with Ala, Arg, Asn, Asp, Cys, Gln, Gly, His, Ile, Leu, Lys, Met, Phe, Pro, Ser, Thr, Trp, Tyr, Val, preferably with Arg. In another aspect, the variant comprise or consist of the substitution E699R of the polypeptide of SEQ ID NO: 3.

[0118] In another aspect, the variant comprises or consists of one or more substitutions selected from the group consisting of 393A, 143G, 150R, 243E, 244K, 345P, 346S, 368G, 370S, 373L, 381V, 382T, 385F, 387L, 402T, 429V, 430R, 431E, 432F, 456A, 486C, 492S,A, 610R,L, 624S, 631S, 632C, 665I and 699R, wherein position numbering refers to SEQ ID NO: 3. Throughout the present description in many occasions only the specific amino acids that should be present after the substitution is given. This is due to the fact that we have tested and found the substitutions can be introduced in many different parent pullulanase and still result in the same improved effect. The different parent pullulanases will not all have the same amino acid in the same corresponding specific position before substitution. Thus in order to obtain the described effect the essential feature is the specific amino acid present in a specific position after substitution.

[0119] In another aspect, the variant comprises or consists of substitutions at positions corresponding to positions 368G and 393A, wherein the variant has pullulanase activity; and

25

30

35

40

45

50

- a) wherein the variant has at least 85%, at least 90%, at least 95%, at least 96%, at least 97%, at least 98%, or at least 99%, but less than 100% sequence identity to the polypeptide of SEQ ID NO: 3 and wherein the variant has increased thermoactivity compared to the pullulanase of SEQ ID NO: 3, particularly the variant has at least 60% relative activity when measured at 70°C relative to activity at 65°C, more particularly at least 65%, more particularly at least 70%, more particularly at least 80%, more particularly at least 90%, more particularly at least 100%; or
- b) wherein the variant has at least 85%, at least 90%, at least 95%, at least 96%, at least 97%, at least 98%, or at least 99%, but less than 100% sequence identity to the polypeptide of SEQ ID NO: 6 and wherein the variant has increased thermoactivity compared to the pullulanase of SEQ ID NO: 6, particularly the variant has at least 30% relative activity when measured at 70°C relative to activity at 65°C, more particularly at least 40%, more particularly at least 50%, more particularly at least 80%, more particularly at least 90%, more particularly at least 100%; or
- c) wherein the variant has at least 85%, at least 90%, at least 95%, at least 96%, at least 97%, at least 98%, or at least 99%, but less than 100% sequence identity to the polypeptide of SEQ ID NO: 9 and wherein the variant has increased thermoactivity compared to the pullulanase of SEQ ID NO: 9, particularly the variant has at least 30% relative activity when measured at 70°C relative to activity at 65°C, more particularly at least 40%, more particularly at least 50%, more particularly at least 80%, more particularly at least 90%, more particularly at least 100%; or
- d) wherein the variant has at least 85%, at least 90%, at least 95%, at least 96%, at least 97%, at least 98%, or at least 99%, but less than 100% sequence identity to the polypeptide of SEQ ID NO: 16 and wherein the variant has increased thermoactivity compared to the pullulanase of SEQ ID NO: 16, particularly the variant has at least 30% relative activity when measured at 70°C relative to activity at 65°C, more particularly at least 40%, more particularly at least 50%, more particularly at least 60%, more particularly at least 70%, more particularly at least 80%, more particularly at least 90%, more particularly at least 100%; or
- e) wherein the variant has at least 85%, at least 90%, at least 95%, at least 96%, at least 97%, at least 98%, or at least 99%, but less than 100% sequence identity to the polypeptide of SEQ ID NO: 17 and wherein the variant has increased thermoactivity compared to the pullulanase of SEQ ID NO: 17, particularly the variant has at least 30% relative activity when measured at 70°C relative to activity at 65°C, more particularly at least 40%, more particularly at least 50%, more particularly at least 80%, more particularly at least 90%, more particularly at least 100%.

[0120] In another aspect, the variant comprises or consists of substitutions at positions corresponding to positions 368G and 431E, wherein the variant has pullulanase activity, and;

5

10

15

20

25

30

40

45

50

- a) wherein the variant has at least 85%, at least 90%, at least 95%, at least 96%, at least 97%, at least 98%, or at least 99%, but less than 100% sequence identity to the polypeptide of SEQ ID NO: 3 and wherein the variant has increased thermoactivity compared to the pullulanase of SEQ ID NO: 3, particularly the variant has at least 60% relative activity when measured at 70°C relative to activity at 65°C, more particularly at least 65%, more particularly at least 70%, more particularly at least 80%, more particularly at least 90%, more particularly at least 100%; or
- b) wherein the variant has at least 85%, at least 90%, at least 95%, at least 96%, at least 97%, at least 98%, or at least 99%, but less than 100% sequence identity to the polypeptide of SEQ ID NO: 6 and wherein the variant has increased thermoactivity compared to the pullulanase of SEQ ID NO: 6, particularly the variant has at least 30% relative activity when measured at 70°C relative to activity at 65°C, more particularly at least 40%, more particularly at least 50%, more particularly at least 80%, more particularly at least 90%, more particularly at least 100%; or
- c) wherein the variant has at least 85%, at least 90%, at least 95%, at least 96%, at least 97%, at least 98%, or at least 99%, but less than 100% sequence identity to the polypeptide of SEQ ID NO: 9 and wherein the variant has increased thermoactivity compared to the pullulanase of SEQ ID NO: 9, particularly the variant has at least 30% relative activity when measured at 70°C relative to activity at 65°C, more particularly at least 40%, more particularly at least 50%, more particularly at least 60%, more particularly at least 90%, more particularly at least 100%; or
- d) wherein the variant has at least 85%, at least 90%, at least 95%, at least 96%, at least 97%, at least 98%, or at least 99%, but less than 100% sequence identity to the polypeptide of SEQ ID NO: 16 and wherein the variant has increased thermoactivity compared to the pullulanase of SEQ ID NO: 16, particularly the variant has at least 30% relative activity when measured at 70°C relative to activity at 65°C, more particularly at least 40%, more particularly at least 50%, more particularly at least 60%, more particularly at least 70%, more particularly at least 80%, more particularly at least 90%, more particularly at least 100%; or
- e) wherein the variant has at least 85%, at least 90%, at least 95%, at least 96%, at least 97%, at least 98%, or at least 99%, but less than 100% sequence identity to the polypeptide of SEQ ID NO: 17 and wherein the variant has increased thermoactivity compared to the pullulanase of SEQ ID NO: 17, particularly the variant has at least 30% relative activity when measured at 70°C relative to activity at 65°C, more particularly at least 40%, more particularly at least 50%, more particularly at least 80%, more particularly at least 90%, more particularly at least 100%.
- [0121] In another aspect, the variant comprises or consists of substitutions at positions corresponding to positions 368G and 432F, wherein the variant has pullulanase activity, and;
 - a) wherein the variant has at least 85%, at least 90%, at least 95%, at least 96%, at least 97%, at least 98%, or at least 99%, but less than 100% sequence identity to the polypeptide of SEQ ID NO: 3 and wherein the variant has increased thermoactivity compared to the pullulanase of SEQ ID NO: 3, particularly the variant has at least 60% relative activity when measured at 70°C relative to activity at 65°C, more particularly at least 65%, more particularly at least 70%, more particularly at least 80%, more particularly at least 90%, more particularly at least 100%; or
 - b) wherein the variant has at least 85%, at least 90%, at least 95%, at least 96%, at least 97%, at least 98%, or at least 99%, but less than 100% sequence identity to the polypeptide of SEQ ID NO: 6 and wherein the variant has increased thermoactivity compared to the pullulanase of SEQ ID NO: 6, particularly the variant has at least 30% relative activity when measured at 70°C relative to activity at 65°C, more particularly at least 40%, more particularly at least 50%, more particularly at least 60%, more particularly at least 90%, more particularly at least 100%; or
 - c) wherein the variant has at least 85%, at least 90%, at least 95%, at least 96%, at least 97%, at least 98%, or at least 99%, but less than 100% sequence identity to the polypeptide of SEQ ID NO: 9 and wherein the variant has increased thermoactivity compared to the pullulanase of SEQ ID NO: 9, particularly the variant has at least 30% relative activity when measured at 70°C relative to activity at 65°C, more particularly at least 40%, more particularly at least 50%, more particularly at least 60%, more particularly at least 90%, more particularly at least 100%; or
 - d) wherein the variant has at least 85%, at least 90%, at least 95%, at least 96%, at least 97%, at least 98%, or at least 99%, but less than 100% sequence identity to the polypeptide of SEQ ID NO: 16 and wherein the variant has increased thermoactivity compared to the pullulanase of SEQ ID NO: 16, particularly the variant has at least 30%

relative activity when measured at 70°C relative to activity at 65°C, more particularly at least 40%, more particularly at least 50%, more particularly at least 60%, more particularly at least 70%, more particularly at least 80%, more particularly at least 90%, more particularly at least 100%; or

e) wherein the variant has at least 85%, at least 90%, at least 95%, at least 96%, at least 97%, at least 98%, or at least 99%, but less than 100% sequence identity to the polypeptide of SEQ ID NO: 17 and wherein the variant has increased thermoactivity compared to the pullulanase of SEQ ID NO: 17, particularly the variant has at least 30% relative activity when measured at 70°C relative to activity at 65°C, more particularly at least 40%, more particularly at least 50%, more particularly at least 80%, more particularly at least 90%, more particularly at least 100%.

5

10

15

20

25

30

35

40

50

55

[0122] In another aspect, the variant comprises or consists of substitutions at positions corresponding to positions 368G and 610R, wherein the variant has pullulanase activity, and;

- a) wherein the variant has at least 85%, at least 90%, at least 95%, at least 96%, at least 97%, at least 98%, or at least 99%, but less than 100% sequence identity to the polypeptide of SEQ ID NO: 3 and wherein the variant has increased thermoactivity compared to the pullulanase of SEQ ID NO: 3, particularly the variant has at least 60% relative activity when measured at 70°C relative to activity at 65°C, more particularly at least 65%, more particularly at least 70%, more particularly at least 80%, more particularly at least 90%, more particularly at least 100%; or
- b) wherein the variant has at least 85%, at least 90%, at least 95%, at least 96%, at least 97%, at least 98%, or at least 99%, but less than 100% sequence identity to the polypeptide of SEQ ID NO: 6 and wherein the variant has increased thermoactivity compared to the pullulanase of SEQ ID NO: 6, particularly the variant has at least 30% relative activity when measured at 70°C relative to activity at 65°C, more particularly at least 40%, more particularly at least 50%, more particularly at least 60%, more particularly at least 70%, more particularly at least 80%, more particularly at least 90%, more particularly at least 100%; or
- c) wherein the variant has at least 85%, at least 90%, at least 95%, at least 96%, at least 97%, at least 98%, or at least 99%, but less than 100% sequence identity to the polypeptide of SEQ ID NO: 9 and wherein the variant has increased thermoactivity compared to the pullulanase of SEQ ID NO: 9, particularly the variant has at least 30% relative activity when measured at 70°C relative to activity at 65°C, more particularly at least 40%, more particularly at least 50%, more particularly at least 80%, more particularly at least 90%, more particularly at least 100%; or
- d) wherein the variant has at least 85%, at least 90%, at least 95%, at least 96%, at least 97%, at least 98%, or at least 99%, but less than 100% sequence identity to the polypeptide of SEQ ID NO: 16 and wherein the variant has increased thermoactivity compared to the pullulanase of SEQ ID NO: 16, particularly the variant has at least 30% relative activity when measured at 70°C relative to activity at 65°C, more particularly at least 40%, more particularly at least 50%, more particularly at least 60%, more particularly at least 90%, more particularly at least 100%; or
- e) wherein the variant has at least 85%, at least 90%, at least 95%, at least 96%, at least 97%, at least 98%, or at least 99%, but less than 100% sequence identity to the polypeptide of SEQ ID NO: 17 and wherein the variant has increased thermoactivity compared to the pullulanase of SEQ ID NO: 17, particularly the variant has at least 30% relative activity when measured at 70°C relative to activity at 65°C, more particularly at least 40%, more particularly at least 50%, more particularly at least 80%, more particularly at least 90%, more particularly at least 100%.
- [0123] In another aspect, the variant comprises or consists of substitutions at positions corresponding to positions 368G and 624S, wherein the variant has pullulanase activity, and;
 - a) wherein the variant has at least 85%, at least 90%, at least 95%, at least 96%, at least 97%, at least 98%, or at least 99%, but less than 100% sequence identity to the polypeptide of SEQ ID NO: 3 and wherein the variant has increased thermoactivity compared to the pullulanase of SEQ ID NO: 3, particularly the variant has at least 60% relative activity when measured at 70°C relative to activity at 65°C, more particularly at least 65%, more particularly at least 70%, more particularly at least 80%, more particularly at least 90%, more particularly at least 100%; or
 - b) wherein the variant has at least 85%, at least 90%, at least 95%, at least 96%, at least 97%, at least 98%, or at least 99%, but less than 100% sequence identity to the polypeptide of SEQ ID NO: 6 and wherein the variant has increased thermoactivity compared to the pullulanase of SEQ ID NO: 6, particularly the variant has at least 30% relative activity when measured at 70°C relative to activity at 65°C, more particularly at least 40%, more particularly at least 50%, more particularly at least 80%, more

particularly at least 90%, more particularly at least 100%; or

5

10

15

20

25

30

35

40

45

50

- c) wherein the variant has at least 85%, at least 90%, at least 95%, at least 96%, at least 97%, at least 98%, or at least 99%, but less than 100% sequence identity to the polypeptide of SEQ ID NO: 9 and wherein the variant has increased thermoactivity compared to the pullulanase of SEQ ID NO: 9, particularly the variant has at least 30% relative activity when measured at 70°C relative to activity at 65°C, more particularly at least 40%, more particularly at least 50%, more particularly at least 80%, more particularly at least 90%, more particularly at least 100%; or
- d) wherein the variant has at least 85%, at least 90%, at least 95%, at least 96%, at least 97%, at least 98%, or at least 99%, but less than 100% sequence identity to the polypeptide of SEQ ID NO: 16 and wherein the variant has increased thermoactivity compared to the pullulanase of SEQ ID NO: 16, particularly the variant has at least 30% relative activity when measured at 70°C relative to activity at 65°C, more particularly at least 40%, more particularly at least 50%, more particularly at least 60%, more particularly at least 90%, more particularly at least 100%; or
- e) wherein the variant has at least 85%, at least 90%, at least 95%, at least 96%, at least 97%, at least 98%, or at least 99%, but less than 100% sequence identity to the polypeptide of SEQ ID NO: 17 and wherein the variant has increased thermoactivity compared to the pullulanase of SEQ ID NO: 17, particularly the variant has at least 30% relative activity when measured at 70°C relative to activity at 65°C, more particularly at least 40%, more particularly at least 50%, more particularly at least 60%, more particularly at least 70%, more particularly at least 80%, more particularly at least 90%, more particularly at least 100%.

[0124] In another aspect, the variant comprises or consists of substitutions at positions corresponding to positions and 393A and 431E, wherein the variant has pullulanase activity, and;

- a) wherein the variant has at least 85%, at least 90%, at least 95%, at least 96%, at least 97%, at least 98%, or at least 99%, but less than 100% sequence identity to the polypeptide of SEQ ID NO: 3 and wherein the variant has increased thermoactivity compared to the pullulanase of SEQ ID NO: 3, particularly the variant has at least 60% relative activity when measured at 70°C relative to activity at 65°C, more particularly at least 65%, more particularly at least 70%, more particularly at least 80%, more particularly at least 90%, more particularly at least 100%; or
- b) wherein the variant has at least 85%, at least 90%, at least 95%, at least 96%, at least 97%, at least 98%, or at least 99%, but less than 100% sequence identity to the polypeptide of SEQ ID NO: 6 and wherein the variant has increased thermoactivity compared to the pullulanase of SEQ ID NO: 6, particularly the variant has at least 30% relative activity when measured at 70°C relative to activity at 65°C, more particularly at least 40%, more particularly at least 50%, more particularly at least 60%, more particularly at least 90%, more particularly at least 100%; or
- c) wherein the variant has at least 85%, at least 90%, at least 95%, at least 96%, at least 97%, at least 98%, or at least 99%, but less than 100% sequence identity to the polypeptide of SEQ ID NO: 9 and wherein the variant has increased thermoactivity compared to the pullulanase of SEQ ID NO: 9, particularly the variant has at least 30% relative activity when measured at 70°C relative to activity at 65°C, more particularly at least 40%, more particularly at least 50%, more particularly at least 60%, more particularly at least 70%, more particularly at least 80%, more particularly at least 90%, more particularly at least 100%; or
- d) wherein the variant has at least 85%, at least 90%, at least 95%, at least 96%, at least 97%, at least 98%, or at least 99%, but less than 100% sequence identity to the polypeptide of SEQ ID NO: 16 and wherein the variant has increased thermoactivity compared to the pullulanase of SEQ ID NO: 16, particularly the variant has at least 30% relative activity when measured at 70°C relative to activity at 65°C, more particularly at least 40%, more particularly at least 50%, more particularly at least 60%, more particularly at least 90%, more particularly at least 100%; or
- e) wherein the variant has at least 85%, at least 90%, at least 95%, at least 96%, at least 97%, at least 98%, or at least 99%, but less than 100% sequence identity to the polypeptide of SEQ ID NO: 17 and wherein the variant has increased thermoactivity compared to the pullulanase of SEQ ID NO: 17, particularly the variant has at least 30% relative activity when measured at 70°C relative to activity at 65°C, more particularly at least 40%, more particularly at least 50%, more particularly at least 60%, more particularly at least 70%, more particularly at least 80%, more particularly at least 90%, more particularly at least 100%.
- [0125] In another aspect, the variant comprises or consists of substitutions at positions corresponding to positions 393A and 432F, wherein the variant has pullulanase activity, and;
 - a) wherein the variant has at least 85%, at least 90%, at least 95%, at least 96%, at least 97%, at least 98%, or at

least 99%, but less than 100% sequence identity to the polypeptide of SEQ ID NO: 3 and wherein the variant has increased thermoactivity compared to the pullulanase of SEQ ID NO: 3, particularly the variant has at least 60% relative activity when measured at 70°C relative to activity at 65°C, more particularly at least 65%, more particularly at least 70%, more particularly at least 80%, more particularly at least 90%, more particularly at least 100%; or

5

10

15

20

25

30

35

40

45

50

55

- b) wherein the variant has at least 85%, at least 90%, at least 95%, at least 96%, at least 97%, at least 98%, or at least 99%, but less than 100% sequence identity to the polypeptide of SEQ ID NO: 6 and wherein the variant has increased thermoactivity compared to the pullulanase of SEQ ID NO: 6, particularly the variant has at least 30% relative activity when measured at 70°C relative to activity at 65°C, more particularly at least 40%, more particularly at least 50%, more particularly at least 50%, more particularly at least 80%, more particularly at least 90%, more particularly at least 100%; or
- c) wherein the variant has at least 85%, at least 90%, at least 95%, at least 96%, at least 97%, at least 98%, or at least 99%, but less than 100% sequence identity to the polypeptide of SEQ ID NO: 9 and wherein the variant has increased thermoactivity compared to the pullulanase of SEQ ID NO: 9, particularly the variant has at least 30% relative activity when measured at 70°C relative to activity at 65°C, more particularly at least 40%, more particularly at least 50%, more particularly at least 50%, more particularly at least 80%, more particularly at least 90%, more particularly at least 100%; or
- d) wherein the variant has at least 85%, at least 90%, at least 95%, at least 96%, at least 97%, at least 98%, or at least 99%, but less than 100% sequence identity to the polypeptide of SEQ ID NO: 16 and wherein the variant has increased thermoactivity compared to the pullulanase of SEQ ID NO: 16, particularly the variant has at least 30% relative activity when measured at 70°C relative to activity at 65°C, more particularly at least 40%, more particularly at least 50%, more particularly at least 60%, more particularly at least 70%, more particularly at least 80%, more particularly at least 90%, more particularly at least 100%; or
- e) wherein the variant has at least 85%, at least 90%, at least 95%, at least 96%, at least 97%, at least 98%, or at least 99%, but less than 100% sequence identity to the polypeptide of SEQ ID NO: 17 and wherein the variant has increased thermoactivity compared to the pullulanase of SEQ ID NO: 17, particularly the variant has at least 30% relative activity when measured at 70°C relative to activity at 65°C, more particularly at least 40%, more particularly at least 50%, more particularly at least 60%, more particularly at least 90%, more particularly at least 100%.

[0126] In another aspect, the variant comprises or consists of substitutions at positions corresponding to positions 393A and 610R, wherein the variant has pullulanase activity, and;

- a) wherein the variant has at least 85%, at least 90%, at least 95%, at least 96%, at least 97%, at least 98%, or at least 99%, but less than 100% sequence identity to the polypeptide of SEQ ID NO: 3 and wherein the variant has increased thermoactivity compared to the pullulanase of SEQ ID NO: 3, particularly the variant has at least 60% relative activity when measured at 70°C relative to activity at 65°C, more particularly at least 65%, more particularly at least 70%, more particularly at least 80%, more particularly at least 90%, more particularly at least 100%; or
- b) wherein the variant has at least 85%, at least 90%, at least 95%, at least 96%, at least 97%, at least 98%, or at least 99%, but less than 100% sequence identity to the polypeptide of SEQ ID NO: 6 and wherein the variant has increased thermoactivity compared to the pullulanase of SEQ ID NO: 6, particularly the variant has at least 30% relative activity when measured at 70°C relative to activity at 65°C, more particularly at least 40%, more particularly at least 50%, more particularly at least 60%, more particularly at least 90%, more particularly at least 100%; or
- c) wherein the variant has at least 85%, at least 90%, at least 95%, at least 96%, at least 97%, at least 98%, or at least 99%, but less than 100% sequence identity to the polypeptide of SEQ ID NO: 9 and wherein the variant has increased thermoactivity compared to the pullulanase of SEQ ID NO: 9, particularly the variant has at least 30% relative activity when measured at 70°C relative to activity at 65°C, more particularly at least 40%, more particularly at least 50%, more particularly at least 60%, more particularly at least 90%, more particularly at least 100%; or
- d) wherein the variant has at least 85%, at least 90%, at least 95%, at least 96%, at least 97%, at least 98%, or at least 99%, but less than 100% sequence identity to the polypeptide of SEQ ID NO: 16 and wherein the variant has increased thermoactivity compared to the pullulanase of SEQ ID NO: 16, particularly the variant has at least 30% relative activity when measured at 70°C relative to activity at 65°C, more particularly at least 40%, more particularly at least 50%, more particularly at least 80%, more particularly at least 90%, more particularly at least 100%; or
- e) wherein the variant has at least 85%, at least 90%, at least 95%, at least 96%, at least 97%, at least 98%, or at

least 99%, but less than 100% sequence identity to the polypeptide of SEQ ID NO: 17 and wherein the variant has increased thermoactivity compared to the pullulanase of SEQ ID NO: 17, particularly the variant has at least 30% relative activity when measured at 70°C relative to activity at 65°C, more particularly at least 40%, more particularly at least 50%, more particularly at least 80%, more particularly at least 90%, more particularly at least 100%.

[0127] In another aspect, the variant comprises or consists of substitutions at positions corresponding to positions 393A and 624S, wherein the variant has pullulanase activity, and;

5

10

15

20

25

30

35

40

45

50

55

- a) wherein the variant has at least 85%, at least 90%, at least 95%, at least 96%, at least 97%, at least 98%, or at least 99%, but less than 100% sequence identity to the polypeptide of SEQ ID NO: 3 and wherein the variant has increased thermoactivity compared to the pullulanase of SEQ ID NO: 3, particularly the variant has at least 60% relative activity when measured at 70°C relative to activity at 65°C, more particularly at least 65%, more particularly at least 70%, more particularly at least 80%, more particularly at least 90%, more particularly at least 100%; or
- b) wherein the variant has at least 85%, at least 90%, at least 95%, at least 96%, at least 97%, at least 98%, or at least 99%, but less than 100% sequence identity to the polypeptide of SEQ ID NO: 6 and wherein the variant has increased thermoactivity compared to the pullulanase of SEQ ID NO: 6, particularly the variant has at least 30% relative activity when measured at 70°C relative to activity at 65°C, more particularly at least 40%, more particularly at least 50%, more particularly at least 80%, more particularly at least 90%, more particularly at least 100%; or
- c) wherein the variant has at least 85%, at least 90%, at least 95%, at least 96%, at least 97%, at least 98%, or at least 99%, but less than 100% sequence identity to the polypeptide of SEQ ID NO: 9 and wherein the variant has increased thermoactivity compared to the pullulanase of SEQ ID NO: 9, particularly the variant has at least 30% relative activity when measured at 70°C relative to activity at 65°C, more particularly at least 40%, more particularly at least 50%, more particularly at least 60%, more particularly at least 70%, more particularly at least 80%, more particularly at least 90%, more particularly at least 100%; or
- d) wherein the variant has at least 85%, at least 90%, at least 95%, at least 96%, at least 97%, at least 98%, or at least 99%, but less than 100% sequence identity to the polypeptide of SEQ ID NO: 16 and wherein the variant has increased thermoactivity compared to the pullulanase of SEQ ID NO: 16, particularly the variant has at least 30% relative activity when measured at 70°C relative to activity at 65°C, more particularly at least 40%, more particularly at least 50%, more particularly at least 60%, more particularly at least 70%, more particularly at least 80%, more particularly at least 90%, more particularly at least 100%; or
- e) wherein the variant has at least 85%, at least 90%, at least 95%, at least 96%, at least 97%, at least 98%, or at least 99%, but less than 100% sequence identity to the polypeptide of SEQ ID NO: 17 and wherein the variant has increased thermoactivity compared to the pullulanase of SEQ ID NO: 17, particularly the variant has at least 30% relative activity when measured at 70°C relative to activity at 65°C, more particularly at least 40%, more particularly at least 50%, more particularly at least 80%, more particularly at least 90%, more particularly at least 100%.

[0128] In another aspect, the variant comprises or consists of substitutions at positions corresponding to positions 431E and 432F, wherein the variant has pullulanase activity, and;

- a) wherein the variant has at least 85%, at least 90%, at least 95%, at least 96%, at least 97%, at least 98%, or at least 99%, but less than 100% sequence identity to the polypeptide of SEQ ID NO: 3 and wherein the variant has increased thermoactivity compared to the pullulanase of SEQ ID NO: 3, particularly the variant has at least 60% relative activity when measured at 70°C relative to activity at 65°C, more particularly at least 65%, more particularly at least 70%, more particularly at least 80%, more particularly at least 90%, more particularly at least 100%; or
- b) wherein the variant has at least 85%, at least 90%, at least 95%, at least 96%, at least 97%, at least 98%, or at least 99%, but less than 100% sequence identity to the polypeptide of SEQ ID NO: 6 and wherein the variant has increased thermoactivity compared to the pullulanase of SEQ ID NO: 6, particularly the variant has at least 30% relative activity when measured at 70°C relative to activity at 65°C, more particularly at least 40%, more particularly at least 50%, more particularly at least 60%, more particularly at least 70%, more particularly at least 80%, more particularly at least 90%, more particularly at least 100%; or
- c) wherein the variant has at least 85%, at least 90%, at least 95%, at least 96%, at least 97%, at least 98%, or at least 99%, but less than 100% sequence identity to the polypeptide of SEQ ID NO: 9 and wherein the variant has increased thermoactivity compared to the pullulanase of SEQ ID NO: 9, particularly the variant has at least 30%

relative activity when measured at 70°C relative to activity at 65°C, more particularly at least 40%, more particularly at least 50%, more particularly at least 60%, more particularly at least 70%, more particularly at least 80%, more particularly at least 90%, more particularly at least 100%; or

d) wherein the variant has at least 85%, at least 90%, at least 95%, at least 96%, at least 97%, at least 98%, or at least 99%, but less than 100% sequence identity to the polypeptide of SEQ ID NO: 16 and wherein the variant has increased thermoactivity compared to the pullulanase of SEQ ID NO: 16, particularly the variant has at least 30% relative activity when measured at 70°C relative to activity at 65°C, more particularly at least 40%, more particularly at least 50%, more particularly at least 80%, more particularly at least 90%, more particularly at least 100%; or

5

10

15

20

25

30

35

40

45

50

55

e) wherein the variant has at least 85%, at least 90%, at least 95%, at least 96%, at least 97%, at least 98%, or at least 99%, but less than 100% sequence identity to the polypeptide of SEQ ID NO: 17 and wherein the variant has increased thermoactivity compared to the pullulanase of SEQ ID NO: 17, particularly the variant has at least 30% relative activity when measured at 70°C relative to activity at 65°C, more particularly at least 40%, more particularly at least 50%, more particularly at least 80%, more particularly at least 90%, more particularly at least 100%.

[0129] In another aspect, the variant comprises or consists of substitutions at positions corresponding to positions 431E and 610R, wherein the variant has pullulanase activity, and;

- a) wherein the variant has at least 85%, at least 90%, at least 95%, at least 96%, at least 97%, at least 98%, or at least 99%, but less than 100% sequence identity to the polypeptide of SEQ ID NO: 3 and wherein the variant has increased thermoactivity compared to the pullulanase of SEQ ID NO: 3, particularly the variant has at least 60% relative activity when measured at 70°C relative to activity at 65°C, more particularly at least 65%, more particularly at least 70%, more particularly at least 80%, more particularly at least 90%, more particularly at least 100%; or
- b) wherein the variant has at least 85%, at least 90%, at least 95%, at least 96%, at least 97%, at least 98%, or at least 99%, but less than 100% sequence identity to the polypeptide of SEQ ID NO: 6 and wherein the variant has increased thermoactivity compared to the pullulanase of SEQ ID NO: 6, particularly the variant has at least 30% relative activity when measured at 70°C relative to activity at 65°C, more particularly at least 40%, more particularly at least 50%, more particularly at least 80%, more particularly at least 90%, more particularly at least 100%; or
- c) wherein the variant has at least 85%, at least 90%, at least 95%, at least 96%, at least 97%, at least 98%, or at least 99%, but less than 100% sequence identity to the polypeptide of SEQ ID NO: 9 and wherein the variant has increased thermoactivity compared to the pullulanase of SEQ ID NO: 9, particularly the variant has at least 30% relative activity when measured at 70°C relative to activity at 65°C, more particularly at least 40%, more particularly at least 50%, more particularly at least 50%, more particularly at least 80%, more particularly at least 90%, more particularly at least 100%; or
- d) wherein the variant has at least 85%, at least 90%, at least 95%, at least 96%, at least 97%, at least 98%, or at least 99%, but less than 100% sequence identity to the polypeptide of SEQ ID NO: 16 and wherein the variant has increased thermoactivity compared to the pullulanase of SEQ ID NO: 16, particularly the variant has at least 30% relative activity when measured at 70°C relative to activity at 65°C, more particularly at least 40%, more particularly at least 50%, more particularly at least 80%, more particularly at least 90%, more particularly at least 100%; or
- e) wherein the variant has at least 85%, at least 90%, at least 95%, at least 96%, at least 97%, at least 98%, or at least 99%, but less than 100% sequence identity to the polypeptide of SEQ ID NO: 17 and wherein the variant has increased thermoactivity compared to the pullulanase of SEQ ID NO: 17, particularly the variant has at least 30% relative activity when measured at 70°C relative to activity at 65°C, more particularly at least 40%, more particularly at least 50%, more particularly at least 80%, more particularly at least 90%, more particularly at least 100%.

[0130] In another aspect, the variant comprises or consists of substitutions at positions corresponding to positions 431E and 624S, wherein the variant has pullulanase activity, and;

a) wherein the variant has at least 85%, at least 90%, at least 95%, at least 96%, at least 97%, at least 98%, or at least 99%, but less than 100% sequence identity to the polypeptide of SEQ ID NO: 3 and wherein the variant has increased thermoactivity compared to the pullulanase of SEQ ID NO: 3, particularly the variant has at least 60% relative activity when measured at 70°C relative to activity at 65°C, more particularly at least 65%, more particularly at least 70%, more particularly at least 80%, more

particularly at least 90%, more particularly at least 100%; or

5

10

15

20

25

40

45

50

55

- b) wherein the variant has at least 85%, at least 90%, at least 95%, at least 96%, at least 97%, at least 98%, or at least 99%, but less than 100% sequence identity to the polypeptide of SEQ ID NO: 6 and wherein the variant has increased thermoactivity compared to the pullulanase of SEQ ID NO: 6, particularly the variant has at least 30% relative activity when measured at 70°C relative to activity at 65°C, more particularly at least 40%, more particularly at least 50%, more particularly at least 80%, more particularly at least 90%, more particularly at least 100%; or
- c) wherein the variant has at least 85%, at least 90%, at least 95%, at least 96%, at least 97%, at least 98%, or at least 99%, but less than 100% sequence identity to the polypeptide of SEQ ID NO: 9 and wherein the variant has increased thermoactivity compared to the pullulanase of SEQ ID NO: 9, particularly the variant has at least 30% relative activity when measured at 70°C relative to activity at 65°C, more particularly at least 40%, more particularly at least 50%, more particularly at least 60%, more particularly at least 90%, more particularly at least 100%; or
- d) wherein the variant has at least 85%, at least 90%, at least 96%, at least 97%, at least 98%, or at least 99%, but less than 100% sequence identity to the polypeptide of SEQ ID NO: 16 and wherein the variant has increased thermoactivity compared to the pullulanase of SEQ ID NO: 16, particularly the variant has at least 30% relative activity when measured at 70°C relative to activity at 65°C, more particularly at least 40%, more particularly at least 50%, more particularly at least 60%, more particularly at least 90%, more particularly at least 100%; or
- e) wherein the variant has at least 85%, at least 90%, at least 95%, at least 96%, at least 97%, at least 98%, or at least 99%, but less than 100% sequence identity to the polypeptide of SEQ ID NO: 17 and wherein the variant has increased thermoactivity compared to the pullulanase of SEQ ID NO: 17, particularly the variant has at least 30% relative activity when measured at 70°C relative to activity at 65°C, more particularly at least 40%, more particularly at least 50%, more particularly at least 80%, more particularly at least 90%, more particularly at least 100%.

[0131] In another aspect, the variant comprises or consists of substitutions at positions corresponding to positions 432F and 610R, wherein the variant has pullulanase activity, and;

- a) wherein the variant has at least 85%, at least 90%, at least 95%, at least 96%, at least 97%, at least 98%, or at least 99%, but less than 100% sequence identity to the polypeptide of SEQ ID NO: 3 and wherein the variant has increased thermoactivity compared to the pullulanase of SEQ ID NO: 3, particularly the variant has at least 60% relative activity when measured at 70°C relative to activity at 65°C, more particularly at least 65%, more particularly at least 70%, more particularly at least 80%, more particularly at least 90%, more particularly at least 100%; or
 - b) wherein the variant has at least 85%, at least 90%, at least 95%, at least 96%, at least 97%, at least 98%, or at least 99%, but less than 100% sequence identity to the polypeptide of SEQ ID NO: 6 and wherein the variant has increased thermoactivity compared to the pullulanase of SEQ ID NO: 6, particularly the variant has at least 30% relative activity when measured at 70°C relative to activity at 65°C, more particularly at least 40%, more particularly at least 50%, more particularly at least 60%, more particularly at least 70%, more particularly at least 80%, more particularly at least 90%, more particularly at least 100%; or
 - c) wherein the variant has at least 85%, at least 90%, at least 95%, at least 96%, at least 97%, at least 98%, or at least 99%, but less than 100% sequence identity to the polypeptide of SEQ ID NO: 9 and wherein the variant has increased thermoactivity compared to the pullulanase of SEQ ID NO: 9, particularly the variant has at least 30% relative activity when measured at 70°C relative to activity at 65°C, more particularly at least 40%, more particularly at least 50%, more particularly at least 60%, more particularly at least 90%, more particularly at least 100%; or
 - d) wherein the variant has at least 85%, at least 90%, at least 95%, at least 96%, at least 97%, at least 98%, or at least 99%, but less than 100% sequence identity to the polypeptide of SEQ ID NO: 16 and wherein the variant has increased thermoactivity compared to the pullulanase of SEQ ID NO: 16, particularly the variant has at least 30% relative activity when measured at 70°C relative to activity at 65°C, more particularly at least 40%, more particularly at least 50%, more particularly at least 60%, more particularly at least 70%, more particularly at least 80%, more particularly at least 90%, more particularly at least 100%; or
 - e) wherein the variant has at least 85%, at least 90%, at least 95%, at least 96%, at least 97%, at least 98%, or at least 99%, but less than 100% sequence identity to the polypeptide of SEQ ID NO: 17 and wherein the variant has increased thermoactivity compared to the pullulanase of SEQ ID NO: 17, particularly the variant has at least 30% relative activity when measured at 70°C relative to activity at 65°C, more particularly at least 40%, more particularly at least 50%, more particularly at least 80%, more

particularly at least 90%, more particularly at least 100%.

5

10

15

20

25

30

35

40

45

50

55

[0132] In another aspect, the variant comprises or consists of substitutions at positions corresponding to positions 432F and 624S, wherein the variant has pullulanase activity, and;

- a) wherein the variant has at least 85%, at least 90%, at least 95%, at least 96%, at least 97%, at least 98%, or at least 99%, but less than 100% sequence identity to the polypeptide of SEQ ID NO: 3 and wherein the variant has increased thermoactivity compared to the pullulanase of SEQ ID NO: 3, particularly the variant has at least 60% relative activity when measured at 70°C relative to activity at 65°C, more particularly at least 65%, more particularly at least 70%, more particularly at least 80%, more particularly at least 90%, more particularly at least 100%; or
- b) wherein the variant has at least 85%, at least 90%, at least 95%, at least 96%, at least 97%, at least 98%, or at least 99%, but less than 100% sequence identity to the polypeptide of SEQ ID NO: 6 and wherein the variant has increased thermoactivity compared to the pullulanase of SEQ ID NO: 6, particularly the variant has at least 30% relative activity when measured at 70°C relative to activity at 65°C, more particularly at least 40%, more particularly at least 50%, more particularly at least 80%, more particularly at least 90%, more particularly at least 100%; or
- c) wherein the variant has at least 85%, at least 90%, at least 95%, at least 96%, at least 97%, at least 98%, or at least 99%, but less than 100% sequence identity to the polypeptide of SEQ ID NO: 9 and wherein the variant has increased thermoactivity compared to the pullulanase of SEQ ID NO: 9, particularly the variant has at least 30% relative activity when measured at 70°C relative to activity at 65°C, more particularly at least 40%, more particularly at least 50%, more particularly at least 60%, more particularly at least 90%, more particularly at least 100%; or
- d) wherein the variant has at least 85%, at least 90%, at least 95%, at least 96%, at least 97%, at least 98%, or at least 99%, but less than 100% sequence identity to the polypeptide of SEQ ID NO: 16 and wherein the variant has increased thermoactivity compared to the pullulanase of SEQ ID NO: 16, particularly the variant has at least 30% relative activity when measured at 70°C relative to activity at 65°C, more particularly at least 40%, more particularly at least 50%, more particularly at least 80%, more particularly at least 90%, more particularly at least 100%; or
- e) wherein the variant has at least 85%, at least 90%, at least 95%, at least 96%, at least 97%, at least 98%, or at least 99%, but less than 100% sequence identity to the polypeptide of SEQ ID NO: 17 and wherein the variant has increased thermoactivity compared to the pullulanase of SEQ ID NO: 17, particularly the variant has at least 30% relative activity when measured at 70°C relative to activity at 65°C, more particularly at least 40%, more particularly at least 50%, more particularly at least 80%, more particularly at least 90%, more particularly at least 100%.

[0133] In another aspect, the variant comprises or consists of substitutions at positions corresponding to positions 610R and 624S, wherein the variant has pullulanase activity, and:

- a) wherein the variant has at least 85%, at least 90%, at least 95%, at least 96%, at least 97%, at least 98%, or at least 99%, but less than 100% sequence identity to the polypeptide of SEQ ID NO: 3 and wherein the variant has increased thermoactivity compared to the pullulanase of SEQ ID NO: 3, particularly the variant has at least 60% relative activity when measured at 70°C relative to activity at 65°C, more particularly at least 65%, more particularly at least 70%, more particularly at least 80%, more particularly at least 90%, more particularly at least 100%; or
 - b) wherein the variant has at least 85%, at least 90%, at least 96%, at least 97%, at least 98%, or at least 99%, but less than 100% sequence identity to the polypeptide of SEQ ID NO: 6 and wherein the variant has increased thermoactivity compared to the pullulanase of SEQ ID NO: 6, particularly the variant has at least 30% relative activity when measured at 70°C relative to activity at 65°C, more particularly at least 40%, more particularly at least 50%, more particularly at least 60%, more particularly at least 70%, more particularly at least 80%, more particularly at least 90%, more particularly at least 100%; or
 - c) wherein the variant has at least 85%, at least 90%, at least 95%, at least 96%, at least 97%, at least 98%, or at least 99%, but less than 100% sequence identity to the polypeptide of SEQ ID NO: 9 and wherein the variant has increased thermoactivity compared to the pullulanase of SEQ ID NO: 9, particularly the variant has at least 30% relative activity when measured at 70°C relative to activity at 65°C, more particularly at least 40%, more particularly at least 50%, more particularly at least 80%, more particularly at least 90%, more particularly at least 100%; or
 - d) wherein the variant has at least 85%, at least 90%, at least 95%, at least 96%, at least 97%, at least 98%, or at

least 99%, but less than 100% sequence identity to the polypeptide of SEQ ID NO: 16 and wherein the variant has increased thermoactivity compared to the pullulanase of SEQ ID NO: 16, particularly the variant has at least 30% relative activity when measured at 70°C relative to activity at 65°C, more particularly at least 40%, more particularly at least 50%, more particularly at least 60%, more particularly at least 70%, more particularly at least 80%, more particularly at least 90%, more particularly at least 100%; or

5

10

15

20

25

30

35

40

45

50

55

e) wherein the variant has at least 85%, at least 90%, at least 95%, at least 96%, at least 97%, at least 98%, or at least 99%, but less than 100% sequence identity to the polypeptide of SEQ ID NO: 17 and wherein the variant has increased thermoactivity compared to the pullulanase of SEQ ID NO: 17, particularly the variant has at least 30% relative activity when measured at 70°C relative to activity at 65°C, more particularly at least 40%, more particularly at least 50%, more particularly at least 60%, more particularly at least 90%, more particularly at least 100%.

[0134] In another aspect, the variant comprises or consists of substitutions at positions corresponding to positions 368G and 393A and 431E, wherein the variant has pullulanase activity, and;

- a) wherein the variant has at least 85%, at least 90%, at least 95%, at least 96%, at least 97%, at least 98%, or at least 99%, but less than 100% sequence identity to the polypeptide of SEQ ID NO: 3 and wherein the variant has increased thermoactivity compared to the pullulanase of SEQ ID NO: 3, particularly the variant has at least 60% relative activity when measured at 70°C relative to activity at 65°C, more particularly at least 65%, more particularly at least 70%, more particularly at least 80%, more particularly at least 90%, more particularly at least 100%; or
- b) wherein the variant has at least 85%, at least 90%, at least 96%, at least 97%, at least 98%, or at least 99%, but less than 100% sequence identity to the polypeptide of SEQ ID NO: 6 and wherein the variant has increased thermoactivity compared to the pullulanase of SEQ ID NO: 6, particularly the variant has at least 30% relative activity when measured at 70°C relative to activity at 65°C, more particularly at least 40%, more particularly at least 50%, more particularly at least 60%, more particularly at least 70%, more particularly at least 80%, more particularly at least 90%, more particularly at least 100%; or
- c) wherein the variant has at least 85%, at least 90%, at least 95%, at least 96%, at least 97%, at least 98%, or at least 99%, but less than 100% sequence identity to the polypeptide of SEQ ID NO: 9 and wherein the variant has increased thermoactivity compared to the pullulanase of SEQ ID NO: 9, particularly the variant has at least 30% relative activity when measured at 70°C relative to activity at 65°C, more particularly at least 40%, more particularly at least 50%, more particularly at least 60%, more particularly at least 70%, more particularly at least 80%, more particularly at least 90%, more particularly at least 100%; or
- d) wherein the variant has at least 85%, at least 90%, at least 95%, at least 96%, at least 97%, at least 98%, or at least 99%, but less than 100% sequence identity to the polypeptide of SEQ ID NO: 16 and wherein the variant has increased thermoactivity compared to the pullulanase of SEQ ID NO: 16, particularly the variant has at least 30% relative activity when measured at 70°C relative to activity at 65°C, more particularly at least 40%, more particularly at least 50%, more particularly at least 60%, more particularly at least 90%, more particularly at least 100%; or
- e) wherein the variant has at least 85%, at least 90%, at least 95%, at least 96%, at least 97%, at least 98%, or at least 99%, but less than 100% sequence identity to the polypeptide of SEQ ID NO: 17 and wherein the variant has increased thermoactivity compared to the pullulanase of SEQ ID NO: 17, particularly the variant has at least 30% relative activity when measured at 70°C relative to activity at 65°C, more particularly at least 40%, more particularly at least 50%, more particularly at least 60%, more particularly at least 90%, more particularly at least 100%.

[0135] In another aspect, the variant comprises or consists of substitutions at positions corresponding to positions 368G and 393A and 432F, wherein the variant has pullulanase activity, and;

- a) wherein the variant has at least 85%, at least 90%, at least 95%, at least 96%, at least 97%, at least 98%, or at least 99%, but less than 100% sequence identity to the polypeptide of SEQ ID NO: 3 and wherein the variant has increased thermoactivity compared to the pullulanase of SEQ ID NO: 3, particularly the variant has at least 60% relative activity when measured at 70°C relative to activity at 65°C, more particularly at least 65%, more particularly at least 70%, more particularly at least 80%, more particularly at least 90%, more particularly at least 100%; or
- b) wherein the variant has at least 85%, at least 90%, at least 95%, at least 96%, at least 97%, at least 98%, or at least 99%, but less than 100% sequence identity to the polypeptide of SEQ ID NO: 6 and wherein the variant has increased thermoactivity compared to the pullulanase of SEQ ID NO: 6, particularly the variant has at least 30%

relative activity when measured at 70°C relative to activity at 65°C, more particularly at least 40%, more particularly at least 50%, more particularly at least 60%, more particularly at least 70%, more particularly at least 80%, more particularly at least 90%, more particularly at least 100%; or

c) wherein the variant has at least 85%, at least 90%, at least 95%, at least 96%, at least 97%, at least 98%, or at least 99%, but less than 100% sequence identity to the polypeptide of SEQ ID NO: 9 and wherein the variant has increased thermoactivity compared to the pullulanase of SEQ ID NO: 9, particularly the variant has at least 30% relative activity when measured at 70°C relative to activity at 65°C, more particularly at least 40%, more particularly at least 50%, more particularly at least 80%, more particularly at least 90%, more particularly at least 100%; or

5

10

15

20

25

30

35

40

45

50

55

- d) wherein the variant has at least 85%, at least 90%, at least 95%, at least 96%, at least 97%, at least 98%, or at least 99%, but less than 100% sequence identity to the polypeptide of SEQ ID NO: 16 and wherein the variant has increased thermoactivity compared to the pullulanase of SEQ ID NO: 16, particularly the variant has at least 30% relative activity when measured at 70°C relative to activity at 65°C, more particularly at least 40%, more particularly at least 50%, more particularly at least 60%, more particularly at least 70%, more particularly at least 80%, more particularly at least 90%, more particularly at least 100%; or
- e) wherein the variant has at least 85%, at least 90%, at least 95%, at least 96%, at least 97%, at least 98%, or at least 99%, but less than 100% sequence identity to the polypeptide of SEQ ID NO: 17 and wherein the variant has increased thermoactivity compared to the pullulanase of SEQ ID NO: 17, particularly the variant has at least 30% relative activity when measured at 70°C relative to activity at 65°C, more particularly at least 40%, more particularly at least 50%, more particularly at least 80%, more particularly at least 90%, more particularly at least 100%.

[0136] In another aspect, the variant comprises or consists of substitutions at positions corresponding to positions 368G and 393A and 610R, wherein the variant has pullulanase activity, and;

- a) wherein the variant has at least 85%, at least 90%, at least 95%, at least 96%, at least 97%, at least 98%, or at least 99%, but less than 100% sequence identity to the polypeptide of SEQ ID NO: 3 and wherein the variant has increased thermoactivity compared to the pullulanase of SEQ ID NO: 3, particularly the variant has at least 60% relative activity when measured at 70°C relative to activity at 65°C, more particularly at least 65%, more particularly at least 70%, more particularly at least 80%, more particularly at least 90%, more particularly at least 100%; or
- b) wherein the variant has at least 85%, at least 90%, at least 95%, at least 96%, at least 97%, at least 98%, or at least 99%, but less than 100% sequence identity to the polypeptide of SEQ ID NO: 6 and wherein the variant has increased thermoactivity compared to the pullulanase of SEQ ID NO: 6, particularly the variant has at least 30% relative activity when measured at 70°C relative to activity at 65°C, more particularly at least 40%, more particularly at least 50%, more particularly at least 80%, more particularly at least 90%, more particularly at least 100%; or
- c) wherein the variant has at least 85%, at least 90%, at least 95%, at least 96%, at least 97%, at least 98%, or at least 99%, but less than 100% sequence identity to the polypeptide of SEQ ID NO: 9 and wherein the variant has increased thermoactivity compared to the pullulanase of SEQ ID NO: 9, particularly the variant has at least 30% relative activity when measured at 70°C relative to activity at 65°C, more particularly at least 40%, more particularly at least 50%, more particularly at least 80%, more particularly at least 90%, more particularly at least 100%; or
- d) wherein the variant has at least 85%, at least 90%, at least 95%, at least 96%, at least 97%, at least 98%, or at least 99%, but less than 100% sequence identity to the polypeptide of SEQ ID NO: 16 and wherein the variant has increased thermoactivity compared to the pullulanase of SEQ ID NO: 16, particularly the variant has at least 30% relative activity when measured at 70°C relative to activity at 65°C, more particularly at least 40%, more particularly at least 50%, more particularly at least 60%, more particularly at least 90%, more particularly at least 100%; or
- e) wherein the variant has at least 85%, at least 90%, at least 95%, at least 96%, at least 97%, at least 98%, or at least 99%, but less than 100% sequence identity to the polypeptide of SEQ ID NO: 17 and wherein the variant has increased thermoactivity compared to the pullulanase of SEQ ID NO: 17, particularly the variant has at least 30% relative activity when measured at 70°C relative to activity at 65°C, more particularly at least 40%, more particularly at least 50%, more particularly at least 80%, more particularly at least 90%, more particularly at least 100%.

[0137] In another aspect, the variant comprises or consists of substitutions at positions corresponding to positions 368G and 393A and 624S, wherein the variant has pullulanase activity, and;

a) wherein the variant has at least 85%, at least 90%, at least 95%, at least 96%, at least 97%, at least 98%, or at least 99%, but less than 100% sequence identity to the polypeptide of SEQ ID NO: 3 and wherein the variant has increased thermoactivity compared to the pullulanase of SEQ ID NO: 3, particularly the variant has at least 60% relative activity when measured at 70°C relative to activity at 65°C, more particularly at least 65%, more particularly at least 70%, more particularly at least 80%, more particularly at least 90%, more particularly at least 100%; or

5

10

15

20

25

30

45

50

55

- b) wherein the variant has at least 85%, at least 90%, at least 95%, at least 96%, at least 97%, at least 98%, or at least 99%, but less than 100% sequence identity to the polypeptide of SEQ ID NO: 6 and wherein the variant has increased thermoactivity compared to the pullulanase of SEQ ID NO: 6, particularly the variant has at least 30% relative activity when measured at 70°C relative to activity at 65°C, more particularly at least 40%, more particularly at least 50%, more particularly at least 80%, more particularly at least 90%, more particularly at least 100%; or
- c) wherein the variant has at least 85%, at least 90%, at least 95%, at least 96%, at least 97%, at least 98%, or at least 99%, but less than 100% sequence identity to the polypeptide of SEQ ID NO: 9 and wherein the variant has increased thermoactivity compared to the pullulanase of SEQ ID NO: 9, particularly the variant has at least 30% relative activity when measured at 70°C relative to activity at 65°C, more particularly at least 40%, more particularly at least 50%, more particularly at least 60%, more particularly at least 90%, more particularly at least 100%; or
- d) wherein the variant has at least 85%, at least 90%, at least 95%, at least 96%, at least 97%, at least 98%, or at least 99%, but less than 100% sequence identity to the polypeptide of SEQ ID NO: 16 and wherein the variant has increased thermoactivity compared to the pullulanase of SEQ ID NO: 16, particularly the variant has at least 30% relative activity when measured at 70°C relative to activity at 65°C, more particularly at least 40%, more particularly at least 50%, more particularly at least 50%, more particularly at least 80%, more particularly at least 90%, more particularly at least 100%; or
- e) wherein the variant has at least 85%, at least 90%, at least 95%, at least 96%, at least 97%, at least 98%, or at least 99%, but less than 100% sequence identity to the polypeptide of SEQ ID NO: 17 and wherein the variant has increased thermoactivity compared to the pullulanase of SEQ ID NO: 17, particularly the variant has at least 30% relative activity when measured at 70°C relative to activity at 65°C, more particularly at least 40%, more particularly at least 50%, more particularly at least 60%, more particularly at least 70%, more particularly at least 80%, more particularly at least 90%, more particularly at least 100%.

[0138] In another aspect, the variant comprises or consists of substitutions at positions corresponding to positions 368G and 431E and 432F, wherein the variant has pullulanase activity, and;

- a) wherein the variant has at least 85%, at least 90%, at least 95%, at least 96%, at least 97%, at least 98%, or at least 99%, but less than 100% sequence identity to the polypeptide of SEQ ID NO: 3 and wherein the variant has increased thermoactivity compared to the pullulanase of SEQ ID NO: 3, particularly the variant has at least 60% relative activity when measured at 70°C relative to activity at 65°C, more particularly at least 65%, more particularly at least 70%, more particularly at least 80%, more particularly at least 90%, more particularly at least 100%; or
 - b) wherein the variant has at least 85%, at least 90%, at least 95%, at least 96%, at least 97%, at least 98%, or at least 99%, but less than 100% sequence identity to the polypeptide of SEQ ID NO: 6 and wherein the variant has increased thermoactivity compared to the pullulanase of SEQ ID NO: 6, particularly the variant has at least 30% relative activity when measured at 70°C relative to activity at 65°C, more particularly at least 40%, more particularly at least 50%, more particularly at least 50%, more particularly at least 80%, more particularly at least 90%, more particularly at least 100%; or
 - c) wherein the variant has at least 85%, at least 90%, at least 95%, at least 96%, at least 97%, at least 98%, or at least 99%, but less than 100% sequence identity to the polypeptide of SEQ ID NO: 9 and wherein the variant has increased thermoactivity compared to the pullulanase of SEQ ID NO: 9, particularly the variant has at least 30% relative activity when measured at 70°C relative to activity at 65°C, more particularly at least 40%, more particularly at least 50%, more particularly at least 80%, more particularly at least 90%, more particularly at least 100%; or
 - d) wherein the variant has at least 85%, at least 90%, at least 95%, at least 96%, at least 97%, at least 98%, or at least 99%, but less than 100% sequence identity to the polypeptide of SEQ ID NO: 16 and wherein the variant has increased thermoactivity compared to the pullulanase of SEQ ID NO: 16, particularly the variant has at least 30% relative activity when measured at 70°C relative to activity at 65°C, more particularly at least 40%, more particularly at least 50%, more particularly at least 60%, more particularly at least 70%, more particularly at least 80%, more particularly at least 90%, more particularly at least 100%; or

e) wherein the variant has at least 85%, at least 90%, at least 95%, at least 96%, at least 97%, at least 98%, or at least 99%, but less than 100% sequence identity to the polypeptide of SEQ ID NO: 17 and wherein the variant has increased thermoactivity compared to the pullulanase of SEQ ID NO: 17, particularly the variant has at least 30% relative activity when measured at 70°C relative to activity at 65°C, more particularly at least 40%, more particularly at least 50%, more particularly at least 80%, more particularly at least 90%, more particularly at least 100%.

[0139] In another aspect, the variant comprises or consists of substitutions at positions corresponding to positions 368G and 431E and 610R, wherein the variant has pullulanase activity, and;

5

10

15

20

25

30

35

40

45

50

55

- a) wherein the variant has at least 85%, at least 90%, at least 95%, at least 96%, at least 97%, at least 98%, or at least 99%, but less than 100% sequence identity to the polypeptide of SEQ ID NO: 3 and wherein the variant has increased thermoactivity compared to the pullulanase of SEQ ID NO: 3, particularly the variant has at least 60% relative activity when measured at 70°C relative to activity at 65°C, more particularly at least 65%, more particularly at least 70%, more particularly at least 80%, more particularly at least 90%, more particularly at least 100%; or
- b) wherein the variant has at least 85%, at least 90%, at least 95%, at least 96%, at least 97%, at least 98%, or at least 99%, but less than 100% sequence identity to the polypeptide of SEQ ID NO: 6 and wherein the variant has increased thermoactivity compared to the pullulanase of SEQ ID NO: 6, particularly the variant has at least 30% relative activity when measured at 70°C relative to activity at 65°C, more particularly at least 40%, more particularly at least 50%, more particularly at least 60%, more particularly at least 70%, more particularly at least 80%, more particularly at least 90%, more particularly at least 100%; or
- c) wherein the variant has at least 85%, at least 90%, at least 95%, at least 96%, at least 97%, at least 98%, or at least 99%, but less than 100% sequence identity to the polypeptide of SEQ ID NO: 9 and wherein the variant has increased thermoactivity compared to the pullulanase of SEQ ID NO: 9, particularly the variant has at least 30% relative activity when measured at 70°C relative to activity at 65°C, more particularly at least 40%, more particularly at least 50%, more particularly at least 80%, more particularly at least 90%, more particularly at least 100%; or
- d) wherein the variant has at least 85%, at least 90%, at least 95%, at least 96%, at least 97%, at least 98%, or at least 99%, but less than 100% sequence identity to the polypeptide of SEQ ID NO: 16 and wherein the variant has increased thermoactivity compared to the pullulanase of SEQ ID NO: 16, particularly the variant has at least 30% relative activity when measured at 70°C relative to activity at 65°C, more particularly at least 40%, more particularly at least 50%, more particularly at least 60%, more particularly at least 70%, more particularly at least 80%, more particularly at least 90%, more particularly at least 100%; or
- e) wherein the variant has at least 85%, at least 90%, at least 95%, at least 96%, at least 97%, at least 98%, or at least 99%, but less than 100% sequence identity to the polypeptide of SEQ ID NO: 17 and wherein the variant has increased thermoactivity compared to the pullulanase of SEQ ID NO: 17, particularly the variant has at least 30% relative activity when measured at 70°C relative to activity at 65°C, more particularly at least 40%, more particularly at least 50%, more particularly at least 80%, more particularly at least 90%, more particularly at least 100%.

[0140] In another aspect, the variant comprises or consists of substitutions at positions corresponding to positions 368G and 431E and 624S, wherein the variant has pullulanase activity, and;

- a) wherein the variant has at least 85%, at least 90%, at least 95%, at least 96%, at least 97%, at least 98%, or at least 99%, but less than 100% sequence identity to the polypeptide of SEQ ID NO: 3 and wherein the variant has increased thermoactivity compared to the pullulanase of SEQ ID NO: 3, particularly the variant has at least 60% relative activity when measured at 70°C relative to activity at 65°C, more particularly at least 65%, more particularly at least 70%, more particularly at least 80%, more particularly at least 90%, more particularly at least 100%; or
 - b) wherein the variant has at least 85%, at least 90%, at least 95%, at least 96%, at least 97%, at least 98%, or at least 99%, but less than 100% sequence identity to the polypeptide of SEQ ID NO: 6 and wherein the variant has increased thermoactivity compared to the pullulanase of SEQ ID NO: 6, particularly the variant has at least 30% relative activity when measured at 70°C relative to activity at 65°C, more particularly at least 40%, more particularly at least 50%, more particularly at least 80%, more particularly at least 90%, more particularly at least 100%; or
 - c) wherein the variant has at least 85%, at least 90%, at least 95%, at least 96%, at least 97%, at least 98%, or at least 99%, but less than 100% sequence identity to the polypeptide of SEQ ID NO: 9 and wherein the variant has

5

10

15

20

25

30

35

40

45

50

increased thermoactivity compared to the pullulanase of SEQ ID NO: 9, particularly the variant has at least 30% relative activity when measured at 70°C relative to activity at 65°C, more particularly at least 40%, more particularly at least 50%, more particularly at least 60%, more particularly at least 80%, more particularly at least 90%, more particularly at least 100%; or

- d) wherein the variant has at least 85%, at least 90%, at least 95%, at least 96%, at least 97%, at least 98%, or at least 99%, but less than 100% sequence identity to the polypeptide of SEQ ID NO: 16 and wherein the variant has increased thermoactivity compared to the pullulanase of SEQ ID NO: 16, particularly the variant has at least 30% relative activity when measured at 70°C relative to activity at 65°C, more particularly at least 40%, more particularly at least 50%, more particularly at least 60%, more particularly at least 70%, more particularly at least 80%, more particularly at least 90%, more particularly at least 100%; or
- e) wherein the variant has at least 85%, at least 90%, at least 95%, at least 96%, at least 97%, at least 98%, or at least 99%, but less than 100% sequence identity to the polypeptide of SEQ ID NO: 17 and wherein the variant has increased thermoactivity compared to the pullulanase of SEQ ID NO: 17, particularly the variant has at least 30% relative activity when measured at 70°C relative to activity at 65°C, more particularly at least 40%, more particularly at least 50%, more particularly at least 80%, more particularly at least 90%, more particularly at least 100%.

[0141] In another aspect, the variant comprises or consists of substitutions at positions corresponding to positions 368G and 432F and 610R, wherein the variant has pullulanase activity, and;

- a) wherein the variant has at least 85%, at least 90%, at least 95%, at least 96%, at least 97%, at least 98%, or at least 99%, but less than 100% sequence identity to the polypeptide of SEQ ID NO: 3 and wherein the variant has increased thermoactivity compared to the pullulanase of SEQ ID NO: 3, particularly the variant has at least 60% relative activity when measured at 70°C relative to activity at 65°C, more particularly at least 65%, more particularly at least 70%, more particularly at least 80%, more particularly at least 90%, more particularly at least 100%; or
- b) wherein the variant has at least 85%, at least 90%, at least 95%, at least 96%, at least 97%, at least 98%, or at least 99%, but less than 100% sequence identity to the polypeptide of SEQ ID NO: 6 and wherein the variant has increased thermoactivity compared to the pullulanase of SEQ ID NO: 6, particularly the variant has at least 30% relative activity when measured at 70°C relative to activity at 65°C, more particularly at least 40%, more particularly at least 50%, more particularly at least 60%, more particularly at least 90%, more particularly at least 100%; or
- c) wherein the variant has at least 85%, at least 90%, at least 95%, at least 96%, at least 97%, at least 98%, or at least 99%, but less than 100% sequence identity to the polypeptide of SEQ ID NO: 9 and wherein the variant has increased thermoactivity compared to the pullulanase of SEQ ID NO: 9, particularly the variant has at least 30% relative activity when measured at 70°C relative to activity at 65°C, more particularly at least 40%, more particularly at least 50%, more particularly at least 80%, more particularly at least 90%, more particularly at least 100%; or
- d) wherein the variant has at least 85%, at least 90%, at least 95%, at least 96%, at least 97%, at least 98%, or at least 99%, but less than 100% sequence identity to the polypeptide of SEQ ID NO: 16 and wherein the variant has increased thermoactivity compared to the pullulanase of SEQ ID NO: 16, particularly the variant has at least 30% relative activity when measured at 70°C relative to activity at 65°C, more particularly at least 40%, more particularly at least 50%, more particularly at least 60%, more particularly at least 70%, more particularly at least 80%, more particularly at least 90%, more particularly at least 100%; or
- e) wherein the variant has at least 85%, at least 90%, at least 95%, at least 96%, at least 97%, at least 98%, or at least 99%, but less than 100% sequence identity to the polypeptide of SEQ ID NO: 17 and wherein the variant has increased thermoactivity compared to the pullulanase of SEQ ID NO: 17, particularly the variant has at least 30% relative activity when measured at 70°C relative to activity at 65°C, more particularly at least 40%, more particularly at least 50%, more particularly at least 80%, more particularly at least 90%, more particularly at least 100%.

[0142] In another aspect, the variant comprises or consists of substitutions at positions corresponding to positions 368G and 432F and 624S, wherein the variant has pullulanase activity, and;

a) wherein the variant has at least 85%, at least 90%, at least 95%, at least 96%, at least 97%, at least 98%, or at least 99%, but less than 100% sequence identity to the polypeptide of SEQ ID NO: 3 and wherein the variant has increased thermoactivity compared to the pullulanase of SEQ ID NO: 3, particularly the variant has at least 60% relative activity when measured at 70°C relative to activity at 65°C, more particularly at least 65%, more particularly

at least 70%, more particularly at least 60%, more particularly at least 75%, more particularly at least 80%, more particularly at least 90%, more particularly at least 100%;

b) wherein the variant has at least 85%, at least 90%, at least 95%, at least 96%, at least 97%, at least 98%, or at least 99%, but less than 100% sequence identity to the polypeptide of SEQ ID NO: 6 and wherein the variant has increased thermoactivity compared to the pullulanase of SEQ ID NO: 6, particularly the variant has at least 30% relative activity when measured at 70°C relative to activity at 65°C, more particularly at least 40%, more particularly at least 50%, more particularly at least 80%, more particularly at least 90%, more particularly at least 100%; or

5

10

15

20

25

30

35

40

45

50

55

- c) wherein the variant has at least 85%, at least 90%, at least 95%, at least 96%, at least 97%, at least 98%, or at least 99%, but less than 100% sequence identity to the polypeptide of SEQ ID NO: 9 and wherein the variant has increased thermoactivity compared to the pullulanase of SEQ ID NO: 9, particularly the variant has at least 30% relative activity when measured at 70°C relative to activity at 65°C, more particularly at least 40%, more particularly at least 50%, more particularly at least 60%, more particularly at least 70%, more particularly at least 80%, more particularly at least 90%, more particularly at least 100%; or
- d) wherein the variant has at least 85%, at least 90%, at least 95%, at least 96%, at least 97%, at least 98%, or at least 99%, but less than 100% sequence identity to the polypeptide of SEQ ID NO: 16 and wherein the variant has increased thermoactivity compared to the pullulanase of SEQ ID NO: 16, particularly the variant has at least 30% relative activity when measured at 70°C relative to activity at 65°C, more particularly at least 40%, more particularly at least 50%, more particularly at least 60%, more particularly at least 90%, more particularly at least 100%; or
- e) wherein the variant has at least 85%, at least 90%, at least 95%, at least 96%, at least 97%, at least 98%, or at least 99%, but less than 100% sequence identity to the polypeptide of SEQ ID NO: 17 and wherein the variant has increased thermoactivity compared to the pullulanase of SEQ ID NO: 17, particularly the variant has at least 30% relative activity when measured at 70°C relative to activity at 65°C, more particularly at least 40%, more particularly at least 50%, more particularly at least 80%, more particularly at least 90%, more particularly at least 100%.

[0143] In another aspect, the variant comprises or consists of substitutions at positions corresponding to positions 368G and 610R and 624S, wherein the variant has pullulanase activity, and;

- a) wherein the variant has at least 85%, at least 90%, at least 95%, at least 96%, at least 97%, at least 98%, or at least 99%, but less than 100% sequence identity to the polypeptide of SEQ ID NO: 3 and wherein the variant has increased thermoactivity compared to the pullulanase of SEQ ID NO: 3, particularly the variant has at least 60% relative activity when measured at 70°C relative to activity at 65°C, more particularly at least 65%, more particularly at least 70%, more particularly at least 80%, more particularly at least 90%, more particularly at least 100%; or
- b) wherein the variant has at least 85%, at least 90%, at least 95%, at least 96%, at least 97%, at least 98%, or at least 99%, but less than 100% sequence identity to the polypeptide of SEQ ID NO: 6 and wherein the variant has increased thermoactivity compared to the pullulanase of SEQ ID NO: 6, particularly the variant has at least 30% relative activity when measured at 70°C relative to activity at 65°C, more particularly at least 40%, more particularly at least 50%, more particularly at least 50%, more particularly at least 80%, more particularly at least 90%, more particularly at least 100%; or
- c) wherein the variant has at least 85%, at least 90%, at least 95%, at least 96%, at least 97%, at least 98%, or at least 99%, but less than 100% sequence identity to the polypeptide of SEQ ID NO: 9 and wherein the variant has increased thermoactivity compared to the pullulanase of SEQ ID NO: 9, particularly the variant has at least 30% relative activity when measured at 70°C relative to activity at 65°C, more particularly at least 40%, more particularly at least 50%, more particularly at least 80%, more particularly at least 90%, more particularly at least 100%; or
- d) wherein the variant has at least 85%, at least 90%, at least 95%, at least 96%, at least 97%, at least 98%, or at least 99%, but less than 100% sequence identity to the polypeptide of SEQ ID NO: 16 and wherein the variant has increased thermoactivity compared to the pullulanase of SEQ ID NO: 16, particularly the variant has at least 30% relative activity when measured at 70°C relative to activity at 65°C, more particularly at least 40%, more particularly at least 50%, more particularly at least 60%, more particularly at least 90%, more particularly at least 100%; or
- e) wherein the variant has at least 85%, at least 90%, at least 95%, at least 96%, at least 97%, at least 98%, or at least 99%, but less than 100% sequence identity to the polypeptide of SEQ ID NO: 17 and wherein the variant has increased thermoactivity compared to the pullulanase of SEQ ID NO: 17, particularly the variant has at least 30% relative activity when measured at 70°C relative to activity at 65°C, more particularly at least 40%, more particularly

at least 50%, more particularly at least 60%, more particularly at least 70%, more particularly at least 80%, more particularly at least 90%, more particularly at least 100%.

[0144] In another aspect, the variant comprises or consists of substitutions at positions corresponding to positions 393A and 431E and 432F, wherein the variant has pullulanase activity, and;

a) wherein the variant has at least 85%, at least 90%, at least 95%, at least 96%, at least 97%, at least 98%, or at least 99%, but less than 100% sequence identity to the polypeptide of SEQ ID NO: 3 and wherein the variant has increased thermoactivity compared to the pullulanase of SEQ ID NO: 3, particularly the variant has at least 60% relative activity when measured at 70°C relative to activity at 65°C, more particularly at least 65%, more particularly at least 70%, more particularly at least 80%, more particularly at least 90%, more particularly at least 100%; or

10

15

20

25

30

35

40

45

50

55

- b) wherein the variant has at least 85%, at least 90%, at least 95%, at least 96%, at least 97%, at least 98%, or at least 99%, but less than 100% sequence identity to the polypeptide of SEQ ID NO: 6 and wherein the variant has increased thermoactivity compared to the pullulanase of SEQ ID NO: 6, particularly the variant has at least 30% relative activity when measured at 70°C relative to activity at 65°C, more particularly at least 40%, more particularly at least 50%, more particularly at least 80%, more particularly at least 90%, more particularly at least 100%; or
- c) wherein the variant has at least 85%, at least 90%, at least 95%, at least 96%, at least 97%, at least 98%, or at least 99%, but less than 100% sequence identity to the polypeptide of SEQ ID NO: 9 and wherein the variant has increased thermoactivity compared to the pullulanase of SEQ ID NO: 9, particularly the variant has at least 30% relative activity when measured at 70°C relative to activity at 65°C, more particularly at least 40%, more particularly at least 50%, more particularly at least 50%, more particularly at least 80%, more particularly at least 90%, more particularly at least 100%; or
- d) wherein the variant has at least 85%, at least 90%, at least 95%, at least 96%, at least 97%, at least 98%, or at least 99%, but less than 100% sequence identity to the polypeptide of SEQ ID NO: 16 and wherein the variant has increased thermoactivity compared to the pullulanase of SEQ ID NO: 16, particularly the variant has at least 30% relative activity when measured at 70°C relative to activity at 65°C, more particularly at least 40%, more particularly at least 50%, more particularly at least 60%, more particularly at least 70%, more particularly at least 80%, more particularly at least 90%, more particularly at least 100%; or
- e) wherein the variant has at least 85%, at least 90%, at least 95%, at least 96%, at least 97%, at least 98%, or at least 99%, but less than 100% sequence identity to the polypeptide of SEQ ID NO: 17 and wherein the variant has increased thermoactivity compared to the pullulanase of SEQ ID NO: 17, particularly the variant has at least 30% relative activity when measured at 70°C relative to activity at 65°C, more particularly at least 40%, more particularly at least 50%, more particularly at least 80%, more particularly at least 90%, more particularly at least 100%.

[0145] In another aspect, the variant comprises or consists of substitutions at positions corresponding to positions 393A and 431E and 610R, wherein the variant has pullulanase activity, and;

- a) wherein the variant has at least 85%, at least 90%, at least 95%, at least 96%, at least 97%, at least 98%, or at least 99%, but less than 100% sequence identity to the polypeptide of SEQ ID NO: 3 and wherein the variant has increased thermoactivity compared to the pullulanase of SEQ ID NO: 3, particularly the variant has at least 60% relative activity when measured at 70°C relative to activity at 65°C, more particularly at least 65%, more particularly at least 70%, more particularly at least 80%, more particularly at least 90%, more particularly at least 100%; or
- b) wherein the variant has at least 85%, at least 90%, at least 95%, at least 96%, at least 97%, at least 98%, or at least 99%, but less than 100% sequence identity to the polypeptide of SEQ ID NO: 6 and wherein the variant has increased thermoactivity compared to the pullulanase of SEQ ID NO: 6, particularly the variant has at least 30% relative activity when measured at 70°C relative to activity at 65°C, more particularly at least 40%, more particularly at least 50%, more particularly at least 60%, more particularly at least 90%, more particularly at least 100%; or
- c) wherein the variant has at least 85%, at least 90%, at least 95%, at least 96%, at least 97%, at least 98%, or at least 99%, but less than 100% sequence identity to the polypeptide of SEQ ID NO: 9 and wherein the variant has increased thermoactivity compared to the pullulanase of SEQ ID NO: 9, particularly the variant has at least 30% relative activity when measured at 70°C relative to activity at 65°C, more particularly at least 40%, more particularly at least 50%, more particularly at least 80%, more particularly at least 90%, more particularly at least 100%; or

d) wherein the variant has at least 85%, at least 90%, at least 95%, at least 96%, at least 97%, at least 98%, or at least 99%, but less than 100% sequence identity to the polypeptide of SEQ ID NO: 16 and wherein the variant has increased thermoactivity compared to the pullulanase of SEQ ID NO: 16, particularly the variant has at least 30% relative activity when measured at 70°C relative to activity at 65°C, more particularly at least 40%, more particularly at least 50%, more particularly at least 60%, more particularly at least 90%, more particularly 90%, more particular

5

10

15

20

25

30

35

40

45

50

- e) wherein the variant has at least 85%, at least 90%, at least 95%, at least 96%, at least 97%, at least 98%, or at least 99%, but less than 100% sequence identity to the polypeptide of SEQ ID NO: 17 and wherein the variant has increased thermoactivity compared to the pullulanase of SEQ ID NO: 17, particularly the variant has at least 30% relative activity when measured at 70°C relative to activity at 65°C, more particularly at least 40%, more particularly at least 50%, more particularly at least 80%, more particularly at least 90%, more particularly at least 100%.
- [0146] In another aspect, the variant comprises or consists of substitutions at positions corresponding to positions 393A and 431E and 624S, wherein the variant has pullulanase activity, and;
 - a) wherein the variant has at least 85%, at least 90%, at least 95%, at least 96%, at least 97%, at least 98%, or at least 99%, but less than 100% sequence identity to the polypeptide of SEQ ID NO: 3 and wherein the variant has increased thermoactivity compared to the pullulanase of SEQ ID NO: 3, particularly the variant has at least 60% relative activity when measured at 70°C relative to activity at 65°C, more particularly at least 65%, more particularly at least 70%, more particularly at least 80%, more particularly at least 90%, more particularly at least 100%; or
 - b) wherein the variant has at least 85%, at least 90%, at least 95%, at least 96%, at least 97%, at least 98%, or at least 99%, but less than 100% sequence identity to the polypeptide of SEQ ID NO: 6 and wherein the variant has increased thermoactivity compared to the pullulanase of SEQ ID NO: 6, particularly the variant has at least 30% relative activity when measured at 70°C relative to activity at 65°C, more particularly at least 40%, more particularly at least 50%, more particularly at least 60%, more particularly at least 90%, more particularly at least 100%; or
 - c) wherein the variant has at least 85%, at least 90%, at least 95%, at least 96%, at least 97%, at least 98%, or at least 99%, but less than 100% sequence identity to the polypeptide of SEQ ID NO: 9 and wherein the variant has increased thermoactivity compared to the pullulanase of SEQ ID NO: 9, particularly the variant has at least 30% relative activity when measured at 70°C relative to activity at 65°C, more particularly at least 40%, more particularly at least 50%, more particularly at least 60%, more particularly at least 70%, more particularly at least 80%, more particularly at least 90%, more particularly at least 100%; or
 - d) wherein the variant has at least 85%, at least 90%, at least 95%, at least 96%, at least 97%, at least 98%, or at least 99%, but less than 100% sequence identity to the polypeptide of SEQ ID NO: 16 and wherein the variant has increased thermoactivity compared to the pullulanase of SEQ ID NO: 16, particularly the variant has at least 30% relative activity when measured at 70°C relative to activity at 65°C, more particularly at least 40%, more particularly at least 50%, more particularly at least 60%, more particularly at least 90%, more particularly 90%, more particular
 - e) wherein the variant has at least 85%, at least 90%, at least 95%, at least 96%, at least 97%, at least 98%, or at least 99%, but less than 100% sequence identity to the polypeptide of SEQ ID NO: 17 and wherein the variant has increased thermoactivity compared to the pullulanase of SEQ ID NO: 17, particularly the variant has at least 30% relative activity when measured at 70°C relative to activity at 65°C, more particularly at least 40%, more particularly at least 50%, more particularly at least 60%, more particularly at least 90%, more particularly at least 100%.
 - **[0147]** In another aspect, the variant comprises or consists of substitutions at positions corresponding to positions 393A and 432F and 610R, wherein the variant has pullulanase activity, and;
 - a) wherein the variant has at least 85%, at least 90%, at least 95%, at least 96%, at least 97%, at least 98%, or at least 99%, but less than 100% sequence identity to the polypeptide of SEQ ID NO: 3 and wherein the variant has increased thermoactivity compared to the pullulanase of SEQ ID NO: 3, particularly the variant has at least 60% relative activity when measured at 70°C relative to activity at 65°C, more particularly at least 65%, more particularly at least 70%, more particularly at least 80%, more particularly at least 90%, more particularly at least 100%; or
 - b) wherein the variant has at least 85%, at least 90%, at least 95%, at least 96%, at least 97%, at least 98%, or at least 99%, but less than 100% sequence identity to the polypeptide of SEQ ID NO: 6 and wherein the variant has

increased thermoactivity compared to the pullulanase of SEQ ID NO: 6, particularly the variant has at least 30% relative activity when measured at 70°C relative to activity at 65°C, more particularly at least 40%, more particularly at least 50%, more particularly at least 60%, more particularly at least 80%, more particularly at least 90%, more particularly at least 100%; or

5

10

15

20

25

30

35

40

45

50

55

- c) wherein the variant has at least 85%, at least 90%, at least 95%, at least 96%, at least 97%, at least 98%, or at least 99%, but less than 100% sequence identity to the polypeptide of SEQ ID NO: 9 and wherein the variant has increased thermoactivity compared to the pullulanase of SEQ ID NO: 9, particularly the variant has at least 30% relative activity when measured at 70°C relative to activity at 65°C, more particularly at least 40%, more particularly at least 50%, more particularly at least 80%, more particularly at least 90%, more particularly at least 100%; or
- d) wherein the variant has at least 85%, at least 90%, at least 95%, at least 96%, at least 97%, at least 98%, or at least 99%, but less than 100% sequence identity to the polypeptide of SEQ ID NO: 16 and wherein the variant has increased thermoactivity compared to the pullulanase of SEQ ID NO: 16, particularly the variant has at least 30% relative activity when measured at 70°C relative to activity at 65°C, more particularly at least 40%, more particularly at least 50%, more particularly at least 80%, more particularly at least 90%, more particularly at least 100%; or
- e) wherein the variant has at least 85%, at least 90%, at least 95%, at least 96%, at least 97%, at least 98%, or at least 99%, but less than 100% sequence identity to the polypeptide of SEQ ID NO: 17 and wherein the variant has increased thermoactivity compared to the pullulanase of SEQ ID NO: 17, particularly the variant has at least 30% relative activity when measured at 70°C relative to activity at 65°C, more particularly at least 40%, more particularly at least 50%, more particularly at least 80%, more particularly at least 90%, more particularly at least 100%.

[0148] In another aspect, the variant comprises or consists of substitutions at positions corresponding to positions 393A and 432F and 624S, wherein the variant has pullulanase activity, and;

- a) wherein the variant has at least 85%, at least 90%, at least 95%, at least 96%, at least 97%, at least 98%, or at least 99%, but less than 100% sequence identity to the polypeptide of SEQ ID NO: 3 and wherein the variant has increased thermoactivity compared to the pullulanase of SEQ ID NO: 3, particularly the variant has at least 60% relative activity when measured at 70°C relative to activity at 65°C, more particularly at least 65%, more particularly at least 70%, more particularly at least 80%, more particularly at least 90%, more particularly at least 100%; or
- b) wherein the variant has at least 85%, at least 90%, at least 95%, at least 96%, at least 97%, at least 98%, or at least 99%, but less than 100% sequence identity to the polypeptide of SEQ ID NO: 6 and wherein the variant has increased thermoactivity compared to the pullulanase of SEQ ID NO: 6, particularly the variant has at least 30% relative activity when measured at 70°C relative to activity at 65°C, more particularly at least 40%, more particularly at least 50%, more particularly at least 80%, more particularly at least 90%, more particularly at least 100%; or
- c) wherein the variant has at least 85%, at least 90%, at least 95%, at least 96%, at least 97%, at least 98%, or at least 99%, but less than 100% sequence identity to the polypeptide of SEQ ID NO: 9 and wherein the variant has increased thermoactivity compared to the pullulanase of SEQ ID NO: 9, particularly the variant has at least 30% relative activity when measured at 70°C relative to activity at 65°C, more particularly at least 40%, more particularly at least 50%, more particularly at least 60%, more particularly at least 90%, more particularly at least 100%; or
- d) wherein the variant has at least 85%, at least 90%, at least 95%, at least 96%, at least 97%, at least 98%, or at least 99%, but less than 100% sequence identity to the polypeptide of SEQ ID NO: 16 and wherein the variant has increased thermoactivity compared to the pullulanase of SEQ ID NO: 16, particularly the variant has at least 30% relative activity when measured at 70°C relative to activity at 65°C, more particularly at least 40%, more particularly at least 50%, more particularly at least 60%, more particularly at least 70%, more particularly at least 80%, more particularly at least 90%, at least 95%, at least 95%, at least 97%, at least 98%, or at least 99%, but less than 100% sequence identity to the polypeptide of SEQ ID NO: 17 and wherein the variant has increased thermoactivity compared to the pullulanase of SEQ ID NO: 17, particularly the variant has at least 30% relative activity when measured at 70°C relative to activity at 65°C, more particularly at least 40%, more particularly at least 50%, more particularly at least 60%, more particularly at least 100%.

[0149] In another aspect, the variant comprises or consists of substitutions at positions corresponding to positions 393A and 610R and 624S, wherein the variant has pullulanase activity, and;

a) wherein the variant has at least 85%, at least 90%, at least 95%, at least 96%, at least 97%, at least 98%, or at least 99%, but less than 100% sequence identity to the polypeptide of SEQ ID NO: 3 and wherein the variant has increased thermoactivity compared to the pullulanase of SEQ ID NO: 3, particularly the variant has at least 60% relative activity when measured at 70°C relative to activity at 65°C, more particularly at least 65%, more particularly at least 70%, more particularly at least 80%, more particularly at least 90%, more particularly at least 100%; or

5

10

15

20

25

30

45

50

55

- b) wherein the variant has at least 85%, at least 90%, at least 95%, at least 96%, at least 97%, at least 98%, or at least 99%, but less than 100% sequence identity to the polypeptide of SEQ ID NO: 6 and wherein the variant has increased thermoactivity compared to the pullulanase of SEQ ID NO: 6, particularly the variant has at least 30% relative activity when measured at 70°C relative to activity at 65°C, more particularly at least 40%, more particularly at least 50%, more particularly at least 80%, more particularly at least 90%, more particularly at least 100%; or
- c) wherein the variant has at least 85%, at least 90%, at least 95%, at least 96%, at least 97%, at least 98%, or at least 99%, but less than 100% sequence identity to the polypeptide of SEQ ID NO: 9 and wherein the variant has increased thermoactivity compared to the pullulanase of SEQ ID NO: 9, particularly the variant has at least 30% relative activity when measured at 70°C relative to activity at 65°C, more particularly at least 40%, more particularly at least 50%, more particularly at least 60%, more particularly at least 90%, more particularly at least 100%; or
- d) wherein the variant has at least 85%, at least 90%, at least 95%, at least 96%, at least 97%, at least 98%, or at least 99%, but less than 100% sequence identity to the polypeptide of SEQ ID NO: 16 and wherein the variant has increased thermoactivity compared to the pullulanase of SEQ ID NO: 16, particularly the variant has at least 30% relative activity when measured at 70°C relative to activity at 65°C, more particularly at least 40%, more particularly at least 50%, more particularly at least 60%, more particularly at least 90%, more particularly at least 100%; or
- e) wherein the variant has at least 85%, at least 90%, at least 95%, at least 96%, at least 97%, at least 98%, or at least 99%, but less than 100% sequence identity to the polypeptide of SEQ ID NO: 17 and wherein the variant has increased thermoactivity compared to the pullulanase of SEQ ID NO: 17, particularly the variant has at least 30% relative activity when measured at 70°C relative to activity at 65°C, more particularly at least 40%, more particularly at least 50%, more particularly at least 60%, more particularly at least 70%, more particularly at least 80%, more particularly at least 90%, more particularly at least 100%.

[0150] In another aspect, the variant comprises or consists of substitutions at positions corresponding to positions 431E and 432F and 610R, wherein the variant has pullulanase activity, and;

- a) wherein the variant has at least 85%, at least 90%, at least 95%, at least 96%, at least 97%, at least 98%, or at least 99%, but less than 100% sequence identity to the polypeptide of SEQ ID NO: 3 and wherein the variant has increased thermoactivity compared to the pullulanase of SEQ ID NO: 3, particularly the variant has at least 60% relative activity when measured at 70°C relative to activity at 65°C, more particularly at least 65%, more particularly at least 70%, more particularly at least 80%, more particularly at least 90%, more particularly at least 100%; or
 - b) wherein the variant has at least 85%, at least 90%, at least 95%, at least 96%, at least 97%, at least 98%, or at least 99%, but less than 100% sequence identity to the polypeptide of SEQ ID NO: 6 and wherein the variant has increased thermoactivity compared to the pullulanase of SEQ ID NO: 6, particularly the variant has at least 30% relative activity when measured at 70°C relative to activity at 65°C, more particularly at least 40%, more particularly at least 50%, more particularly at least 50%, more particularly at least 80%, more particularly at least 90%, more particularly at least 100%; or
 - c) wherein the variant has at least 85%, at least 90%, at least 95%, at least 96%, at least 97%, at least 98%, or at least 99%, but less than 100% sequence identity to the polypeptide of SEQ ID NO: 9 and wherein the variant has increased thermoactivity compared to the pullulanase of SEQ ID NO: 9, particularly the variant has at least 30% relative activity when measured at 70°C relative to activity at 65°C, more particularly at least 40%, more particularly at least 50%, more particularly at least 60%, more particularly at least 90%, more particularly at least 100%; or
 - d) wherein the variant has at least 85%, at least 90%, at least 95%, at least 96%, at least 97%, at least 98%, or at least 99%, but less than 100% sequence identity to the polypeptide of SEQ ID NO: 16 and wherein the variant has increased thermoactivity compared to the pullulanase of SEQ ID NO: 16, particularly the variant has at least 30% relative activity when measured at 70°C relative to activity at 65°C, more particularly at least 40%, more particularly at least 50%, more particularly at least 60%, more particularly at least 70%, more particularly at least 80%, more particularly at least 90%, more particularly at least 100%; or

e) wherein the variant has at least 85%, at least 90%, at least 95%, at least 96%, at least 97%, at least 98%, or at least 99%, but less than 100% sequence identity to the polypeptide of SEQ ID NO: 17 and wherein the variant has increased thermoactivity compared to the pullulanase of SEQ ID NO: 17, particularly the variant has at least 30% relative activity when measured at 70°C relative to activity at 65°C, more particularly at least 40%, more particularly at least 50%, more particularly at least 80%, more particularly at least 90%, more particularly at least 100%.

[0151] In another aspect, the variant comprises or consists of substitutions at positions corresponding to positions 431E and 432F and 624S, wherein the variant has pullulanase activity, and;

5

10

15

20

25

30

35

40

45

50

55

- a) wherein the variant has at least 85%, at least 90%, at least 95%, at least 96%, at least 97%, at least 98%, or at least 99%, but less than 100% sequence identity to the polypeptide of SEQ ID NO: 3 and wherein the variant has increased thermoactivity compared to the pullulanase of SEQ ID NO: 3, particularly the variant has at least 60% relative activity when measured at 70°C relative to activity at 65°C, more particularly at least 65%, more particularly at least 70%, more particularly at least 80%, more particularly at least 90%, more particularly at least 100%; or
- b) wherein the variant has at least 85%, at least 90%, at least 95%, at least 96%, at least 97%, at least 98%, or at least 99%, but less than 100% sequence identity to the polypeptide of SEQ ID NO: 6 and wherein the variant has increased thermoactivity compared to the pullulanase of SEQ ID NO: 6, particularly the variant has at least 30% relative activity when measured at 70°C relative to activity at 65°C, more particularly at least 40%, more particularly at least 50%, more particularly at least 50%, more particularly at least 80%, more particularly at least 90%, more particularly at least 100%; or
- c) wherein the variant has at least 85%, at least 90%, at least 95%, at least 96%, at least 97%, at least 98%, or at least 99%, but less than 100% sequence identity to the polypeptide of SEQ ID NO: 9 and wherein the variant has increased thermoactivity compared to the pullulanase of SEQ ID NO: 9, particularly the variant has at least 30% relative activity when measured at 70°C relative to activity at 65°C, more particularly at least 40%, more particularly at least 50%, more particularly at least 60%, more particularly at least 90%, more particularly at least 100%; or
- d) wherein the variant has at least 85%, at least 90%, at least 95%, at least 96%, at least 97%, at least 98%, or at least 99%, but less than 100% sequence identity to the polypeptide of SEQ ID NO: 16 and wherein the variant has increased thermoactivity compared to the pullulanase of SEQ ID NO: 16, particularly the variant has at least 30% relative activity when measured at 70°C relative to activity at 65°C, more particularly at least 40%, more particularly at least 50%, more particularly at least 60%, more particularly at least 70%, more particularly at least 80%, more particularly at least 90%, more particularly at least 100%; or
- e) wherein the variant has at least 85%, at least 90%, at least 95%, at least 96%, at least 97%, at least 98%, or at least 99%, but less than 100% sequence identity to the polypeptide of SEQ ID NO: 17 and wherein the variant has increased thermoactivity compared to the pullulanase of SEQ ID NO: 17, particularly the variant has at least 30% relative activity when measured at 70°C relative to activity at 65°C, more particularly at least 40%, more particularly at least 50%, more particularly at least 60%, more particularly at least 90%, more particularly at least 100%.

[0152] In another aspect, the variant comprises or consists of substitutions at positions corresponding to positions 431E and 610R and 624S, wherein the variant has pullulanase activity, and;

- a) wherein the variant has at least 85%, at least 90%, at least 95%, at least 96%, at least 97%, at least 98%, or at least 99%, but less than 100% sequence identity to the polypeptide of SEQ ID NO: 3 and wherein the variant has increased thermoactivity compared to the pullulanase of SEQ ID NO: 3, particularly the variant has at least 60% relative activity when measured at 70°C relative to activity at 65°C, more particularly at least 65%, more particularly at least 70%, more particularly at least 80%, more particularly at least 90%, more particularly at least 100%; or
 - b) wherein the variant has at least 85%, at least 90%, at least 95%, at least 96%, at least 97%, at least 98%, or at least 99%, but less than 100% sequence identity to the polypeptide of SEQ ID NO: 6 and wherein the variant has increased thermoactivity compared to the pullulanase of SEQ ID NO: 6, particularly the variant has at least 30% relative activity when measured at 70°C relative to activity at 65°C, more particularly at least 40%, more particularly at least 50%, more particularly at least 50%, more particularly at least 80%, more particularly at least 90%, more particularly at least 100%; or
 - c) wherein the variant has at least 85%, at least 90%, at least 95%, at least 96%, at least 97%, at least 98%, or at least 99%, but less than 100% sequence identity to the polypeptide of SEQ ID NO: 9 and wherein the variant has

increased thermoactivity compared to the pullulanase of SEQ ID NO: 9, particularly the variant has at least 30% relative activity when measured at 70°C relative to activity at 65°C, more particularly at least 40%, more particularly at least 50%, more particularly at least 60%, more particularly at least 80%, more particularly at least 90%, more particularly at least 100%; or

5

10

15

20

25

30

35

40

45

50

- d) wherein the variant has at least 85%, at least 90%, at least 95%, at least 96%, at least 97%, at least 98%, or at least 99%, but less than 100% sequence identity to the polypeptide of SEQ ID NO: 16 and wherein the variant has increased thermoactivity compared to the pullulanase of SEQ ID NO: 16, particularly the variant has at least 30% relative activity when measured at 70°C relative to activity at 65°C, more particularly at least 40%, more particularly at least 50%, more particularly at least 60%, more particularly at least 70%, more particularly at least 80%, more particularly at least 90%, more particularly at least 100%; or
- e) wherein the variant has at least 85%, at least 90%, at least 95%, at least 96%, at least 97%, at least 98%, or at least 99%, but less than 100% sequence identity to the polypeptide of SEQ ID NO: 17 and wherein the variant has increased thermoactivity compared to the pullulanase of SEQ ID NO: 17, particularly the variant has at least 30% relative activity when measured at 70°C relative to activity at 65°C, more particularly at least 40%, more particularly at least 50%, more particularly at least 80%, more particularly at least 90%, more particularly at least 100%.

[0153] In another aspect, the variant comprises or consists of substitutions at positions corresponding to positions 432F and 610R and 624S, wherein the variant has pullulanase activity, and;

- a) wherein the variant has at least 85%, at least 90%, at least 95%, at least 96%, at least 97%, at least 98%, or at least 99%, but less than 100% sequence identity to the polypeptide of SEQ ID NO: 3 and wherein the variant has increased thermoactivity compared to the pullulanase of SEQ ID NO: 3, particularly the variant has at least 60% relative activity when measured at 70°C relative to activity at 65°C, more particularly at least 65%, more particularly at least 70%, more particularly at least 80%, more particularly at least 90%, more particularly at least 100%; or
- b) wherein the variant has at least 85%, at least 90%, at least 95%, at least 96%, at least 97%, at least 98%, or at least 99%, but less than 100% sequence identity to the polypeptide of SEQ ID NO: 6 and wherein the variant has increased thermoactivity compared to the pullulanase of SEQ ID NO: 6, particularly the variant has at least 30% relative activity when measured at 70°C relative to activity at 65°C, more particularly at least 40%, more particularly at least 50%, more particularly at least 60%, more particularly at least 90%, more particularly at least 100%; or
- c) wherein the variant has at least 85%, at least 90%, at least 95%, at least 96%, at least 97%, at least 98%, or at least 99%, but less than 100% sequence identity to the polypeptide of SEQ ID NO: 9 and wherein the variant has increased thermoactivity compared to the pullulanase of SEQ ID NO: 9, particularly the variant has at least 30% relative activity when measured at 70°C relative to activity at 65°C, more particularly at least 40%, more particularly at least 50%, more particularly at least 80%, more particularly at least 90%, more particularly at least 100%; or
- d) wherein the variant has at least 85%, at least 90%, at least 95%, at least 96%, at least 97%, at least 98%, or at least 99%, but less than 100% sequence identity to the polypeptide of SEQ ID NO: 16 and wherein the variant has increased thermoactivity compared to the pullulanase of SEQ ID NO: 16, particularly the variant has at least 30% relative activity when measured at 70°C relative to activity at 65°C, more particularly at least 40%, more particularly at least 50%, more particularly at least 60%, more particularly at least 70%, more particularly at least 80%, more particularly at least 90%, more particularly at least 100%; or
- e) wherein the variant has at least 85%, at least 90%, at least 95%, at least 96%, at least 97%, at least 98%, or at least 99%, but less than 100% sequence identity to the polypeptide of SEQ ID NO: 17 and wherein the variant has increased thermoactivity compared to the pullulanase of SEQ ID NO: 17, particularly the variant has at least 30% relative activity when measured at 70°C relative to activity at 65°C, more particularly at least 40%, more particularly at least 50%, more particularly at least 80%, more particularly at least 90%, more particularly at least 100%.

[0154] In another aspect, the variant comprises or consists of substitutions at positions corresponding to positions 368G and 393A and 431E and 432F, wherein the variant has pullulanase activity, and;

a) wherein the variant has at least 85%, at least 90%, at least 95%, at least 96%, at least 97%, at least 98%, or at least 99%, but less than 100% sequence identity to the polypeptide of SEQ ID NO: 3 and wherein the variant has increased thermoactivity compared to the pullulanase of SEQ ID NO: 3, particularly the variant has at least 60% relative activity when measured at 70°C relative to activity at 65°C, more particularly at least 65%, more particularly

at least 70%, more particularly at least 60%, more particularly at least 75%, more particularly at least 80%, more particularly at least 90%, more particularly at least 100%; or

b) wherein the variant has at least 85%, at least 90%, at least 95%, at least 96%, at least 97%, at least 98%, or at least 99%, but less than 100% sequence identity to the polypeptide of SEQ ID NO: 6 and wherein the variant has increased thermoactivity compared to the pullulanase of SEQ ID NO: 6, particularly the variant has at least 30% relative activity when measured at 70°C relative to activity at 65°C, more particularly at least 40%, more particularly at least 50%, more particularly at least 80%, more particularly at least 90%, more particularly at least 100%; or

5

10

15

20

25

30

35

40

45

50

55

- c) wherein the variant has at least 85%, at least 90%, at least 95%, at least 96%, at least 97%, at least 98%, or at least 99%, but less than 100% sequence identity to the polypeptide of SEQ ID NO: 9 and wherein the variant has increased thermoactivity compared to the pullulanase of SEQ ID NO: 9, particularly the variant has at least 30% relative activity when measured at 70°C relative to activity at 65°C, more particularly at least 40%, more particularly at least 50%, more particularly at least 60%, more particularly at least 70%, more particularly at least 80%, more particularly at least 90%, more particularly at least 100%; or
- d) wherein the variant has at least 85%, at least 90%, at least 95%, at least 96%, at least 97%, at least 98%, or at least 99%, but less than 100% sequence identity to the polypeptide of SEQ ID NO: 16 and wherein the variant has increased thermoactivity compared to the pullulanase of SEQ ID NO: 16, particularly the variant has at least 30% relative activity when measured at 70°C relative to activity at 65°C, more particularly at least 40%, more particularly at least 50%, more particularly at least 60%, more particularly at least 90%, more particularly at least 100%; or
- e) wherein the variant has at least 85%, at least 90%, at least 95%, at least 96%, at least 97%, at least 98%, or at least 99%, but less than 100% sequence identity to the polypeptide of SEQ ID NO: 17 and wherein the variant has increased thermoactivity compared to the pullulanase of SEQ ID NO: 17, particularly the variant has at least 30% relative activity when measured at 70°C relative to activity at 65°C, more particularly at least 40%, more particularly at least 50%, more particularly at least 80%, more particularly at least 90%, more particularly at least 100%.

[0155] In another aspect, the variant comprises or consists of substitutions at positions corresponding to positions 368G and 393A and 431E and 610R, wherein the variant has pullulanase activity, and;

- a) wherein the variant has at least 85%, at least 90%, at least 95%, at least 96%, at least 97%, at least 98%, or at least 99%, but less than 100% sequence identity to the polypeptide of SEQ ID NO: 3 and wherein the variant has increased thermoactivity compared to the pullulanase of SEQ ID NO: 3, particularly the variant has at least 60% relative activity when measured at 70°C relative to activity at 65°C, more particularly at least 65%, more particularly at least 70%, more particularly at least 80%, more particularly at least 90%, more particularly at least 100%; or
- b) wherein the variant has at least 85%, at least 90%, at least 95%, at least 96%, at least 97%, at least 98%, or at least 99%, but less than 100% sequence identity to the polypeptide of SEQ ID NO: 6 and wherein the variant has increased thermoactivity compared to the pullulanase of SEQ ID NO: 6, particularly the variant has at least 30% relative activity when measured at 70°C relative to activity at 65°C, more particularly at least 40%, more particularly at least 50%, more particularly at least 80%, more particularly at least 90%, more particularly at least 100%; or
- c) wherein the variant has at least 85%, at least 90%, at least 95%, at least 96%, at least 97%, at least 98%, or at least 99%, but less than 100% sequence identity to the polypeptide of SEQ ID NO: 9 and wherein the variant has increased thermoactivity compared to the pullulanase of SEQ ID NO: 9, particularly the variant has at least 30% relative activity when measured at 70°C relative to activity at 65°C, more particularly at least 40%, more particularly at least 50%, more particularly at least 80%, more particularly at least 90%, more particularly at least 100%; or
- d) wherein the variant has at least 85%, at least 90%, at least 95%, at least 96%, at least 97%, at least 98%, or at least 99%, but less than 100% sequence identity to the polypeptide of SEQ ID NO: 16 and wherein the variant has increased thermoactivity compared to the pullulanase of SEQ ID NO: 16, particularly the variant has at least 30% relative activity when measured at 70°C relative to activity at 65°C, more particularly at least 40%, more particularly at least 50%, more particularly at least 60%, more particularly at least 90%, more particularly 90%, more particular
- e) wherein the variant has at least 85%, at least 90%, at least 95%, at least 96%, at least 97%, at least 98%, or at least 99%, but less than 100% sequence identity to the polypeptide of SEQ ID NO: 17 and wherein the variant has increased thermoactivity compared to the pullulanase of SEQ ID NO: 17, particularly the variant has at least 30% relative activity when measured at 70°C relative to activity at 65°C, more particularly at least 40%, more particularly

at least 50%, more particularly at least 60%, more particularly at least 70%, more particularly at least 80%, more particularly at least 90%, more particularly at least 100%.

[0156] In another aspect, the variant comprises or consists of substitutions at positions corresponding to positions 368G and 393A and 431E and 624S, wherein the variant has pullulanase activity, and;

5

10

15

20

25

30

35

40

45

50

55

- a) wherein the variant has at least 85%, at least 90%, at least 95%, at least 96%, at least 97%, at least 98%, or at least 99%, but less than 100% sequence identity to the polypeptide of SEQ ID NO: 3 and wherein the variant has increased thermoactivity compared to the pullulanase of SEQ ID NO: 3, particularly the variant has at least 60% relative activity when measured at 70°C relative to activity at 65°C, more particularly at least 65%, more particularly at least 70%, more particularly at least 80%, more particularly at least 90%, more particularly at least 100%; or
- b) wherein the variant has at least 85%, at least 90%, at least 95%, at least 96%, at least 97%, at least 98%, or at least 99%, but less than 100% sequence identity to the polypeptide of SEQ ID NO: 6 and wherein the variant has increased thermoactivity compared to the pullulanase of SEQ ID NO: 6, particularly the variant has at least 30% relative activity when measured at 70°C relative to activity at 65°C, more particularly at least 40%, more particularly at least 50%, more particularly at least 80%, more particularly at least 90%, more particularly at least 100%; or
- c) wherein the variant has at least 85%, at least 90%, at least 95%, at least 96%, at least 97%, at least 98%, or at least 99%, but less than 100% sequence identity to the polypeptide of SEQ ID NO: 9 and wherein the variant has increased thermoactivity compared to the pullulanase of SEQ ID NO: 9, particularly the variant has at least 30% relative activity when measured at 70°C relative to activity at 65°C, more particularly at least 40%, more particularly at least 50%, more particularly at least 80%, more particularly at least 90%, more particularly at least 100%; or
- d) wherein the variant has at least 85%, at least 90%, at least 95%, at least 96%, at least 97%, at least 98%, or at least 99%, but less than 100% sequence identity to the polypeptide of SEQ ID NO: 16 and wherein the variant has increased thermoactivity compared to the pullulanase of SEQ ID NO: 16, particularly the variant has at least 30% relative activity when measured at 70°C relative to activity at 65°C, more particularly at least 40%, more particularly at least 50%, more particularly at least 60%, more particularly at least 70%, more particularly at least 80%, more particularly at least 90%, more particularly at least 100%; or
- e) wherein the variant has at least 85%, at least 90%, at least 95%, at least 96%, at least 97%, at least 98%, or at least 99%, but less than 100% sequence identity to the polypeptide of SEQ ID NO: 17 and wherein the variant has increased thermoactivity compared to the pullulanase of SEQ ID NO: 17, particularly the variant has at least 30% relative activity when measured at 70°C relative to activity at 65°C, more particularly at least 40%, more particularly at least 50%, more particularly at least 80%, more particularly at least 90%, more particularly at least 100%.

[0157] In another aspect, the variant comprises or consists of substitutions at positions corresponding to positions 368G and 393A and 432F and 610R, wherein the variant has pullulanase activity, and;

- a) wherein the variant has at least 85%, at least 90%, at least 95%, at least 96%, at least 97%, at least 98%, or at least 99%, but less than 100% sequence identity to the polypeptide of SEQ ID NO: 3 and wherein the variant has increased thermoactivity compared to the pullulanase of SEQ ID NO: 3, particularly the variant has at least 60% relative activity when measured at 70°C relative to activity at 65°C, more particularly at least 65%, more particularly at least 70%, more particularly at least 80%, more particularly at least 90%, more particularly at least 100%; or
- b) wherein the variant has at least 85%, at least 90%, at least 95%, at least 96%, at least 97%, at least 98%, or at least 99%, but less than 100% sequence identity to the polypeptide of SEQ ID NO: 6 and wherein the variant has increased thermoactivity compared to the pullulanase of SEQ ID NO: 6, particularly the variant has at least 30% relative activity when measured at 70°C relative to activity at 65°C, more particularly at least 40%, more particularly at least 50%, more particularly at least 60%, more particularly at least 90%, more particularly at least 100%; or
- c) wherein the variant has at least 85%, at least 90%, at least 95%, at least 96%, at least 97%, at least 98%, or at least 99%, but less than 100% sequence identity to the polypeptide of SEQ ID NO: 9 and wherein the variant has increased thermoactivity compared to the pullulanase of SEQ ID NO: 9, particularly the variant has at least 30% relative activity when measured at 70°C relative to activity at 65°C, more particularly at least 40%, more particularly at least 50%, more particularly at least 80%, more particularly at least 90%, more particularly at least 100%; or

d) wherein the variant has at least 85%, at least 90%, at least 95%, at least 96%, at least 97%, at least 98%, or at least 99%, but less than 100% sequence identity to the polypeptide of SEQ ID NO: 16 and wherein the variant has increased thermoactivity compared to the pullulanase of SEQ ID NO: 16, particularly the variant has at least 30% relative activity when measured at 70°C relative to activity at 65°C, more particularly at least 40%, more particularly at least 50%, more particularly at least 60%, more particularly at least 90%, more particularly at least 100%; or

5

10

15

20

25

30

35

40

45

50

55

- e) wherein the variant has at least 85%, at least 90%, at least 95%, at least 96%, at least 97%, at least 98%, or at least 99%, but less than 100% sequence identity to the polypeptide of SEQ ID NO: 17 and wherein the variant has increased thermoactivity compared to the pullulanase of SEQ ID NO: 17, particularly the variant has at least 30% relative activity when measured at 70°C relative to activity at 65°C, more particularly at least 40%, more particularly at least 50%, more particularly at least 80%, more particularly at least 90%, more particularly at least 100%.
- [0158] In another aspect, the variant comprises or consists of substitutions at positions corresponding to positions 368G and 393A and 432F and 624S, wherein the variant has pullulanase activity, and;
 - a) wherein the variant has at least 85%, at least 90%, at least 95%, at least 96%, at least 97%, at least 98%, or at least 99%, but less than 100% sequence identity to the polypeptide of SEQ ID NO: 3 and wherein the variant has increased thermoactivity compared to the pullulanase of SEQ ID NO: 3, particularly the variant has at least 60% relative activity when measured at 70°C relative to activity at 65°C, more particularly at least 65%, more particularly at least 70%, more particularly at least 80%, more particularly at least 90%, more particularly at least 100%; or
 - b) wherein the variant has at least 85%, at least 90%, at least 95%, at least 96%, at least 97%, at least 98%, or at least 99%, but less than 100% sequence identity to the polypeptide of SEQ ID NO: 6 and wherein the variant has increased thermoactivity compared to the pullulanase of SEQ ID NO: 6, particularly the variant has at least 30% relative activity when measured at 70°C relative to activity at 65°C, more particularly at least 40%, more particularly at least 50%, more particularly at least 60%, more particularly at least 90%, more particularly at least 100%; or
 - c) wherein the variant has at least 85%, at least 90%, at least 95%, at least 96%, at least 97%, at least 98%, or at least 99%, but less than 100% sequence identity to the polypeptide of SEQ ID NO: 9 and wherein the variant has increased thermoactivity compared to the pullulanase of SEQ ID NO: 9, particularly the variant has at least 30% relative activity when measured at 70°C relative to activity at 65°C, more particularly at least 40%, more particularly at least 50%, more particularly at least 60%, more particularly at least 70%, more particularly at least 80%, more particularly at least 90%, more particularly at least 100%; or
 - d) wherein the variant has at least 85%, at least 90%, at least 95%, at least 96%, at least 97%, at least 98%, or at least 99%, but less than 100% sequence identity to the polypeptide of SEQ ID NO: 16 and wherein the variant has increased thermoactivity compared to the pullulanase of SEQ ID NO: 16, particularly the variant has at least 30% relative activity when measured at 70°C relative to activity at 65°C, more particularly at least 40%, more particularly at least 50%, more particularly at least 60%, more particularly at least 90%, more particularly at least 100%; or
 - e) wherein the variant has at least 85%, at least 90%, at least 95%, at least 96%, at least 97%, at least 98%, or at least 99%, but less than 100% sequence identity to the polypeptide of SEQ ID NO: 17 and wherein the variant has increased thermoactivity compared to the pullulanase of SEQ ID NO: 17, particularly the variant has at least 30% relative activity when measured at 70°C relative to activity at 65°C, more particularly at least 40%, more particularly at least 50%, more particularly at least 60%, more particularly at least 90%, more particularly at least 100%.
 - **[0159]** In another aspect, the variant comprises or consists of substitutions at positions corresponding to positions 368G and 393A and 610R and 624S, wherein the variant has pullulanase activity, and;
 - a) wherein the variant has at least 85%, at least 90%, at least 95%, at least 96%, at least 97%, at least 98%, or at least 99%, but less than 100% sequence identity to the polypeptide of SEQ ID NO: 3 and wherein the variant has increased thermoactivity compared to the pullulanase of SEQ ID NO: 3, particularly the variant has at least 60% relative activity when measured at 70°C relative to activity at 65°C, more particularly at least 65%, more particularly at least 70%, more particularly at least 80%, more particularly at least 90%, more particularly at least 100%; or
 - b) wherein the variant has at least 85%, at least 90%, at least 95%, at least 96%, at least 97%, at least 98%, or at least 99%, but less than 100% sequence identity to the polypeptide of SEQ ID NO: 6 and wherein the variant has

5

10

15

20

25

30

35

40

45

50

55

increased thermoactivity compared to the pullulanase of SEQ ID NO: 6, particularly the variant has at least 30% relative activity when measured at 70°C relative to activity at 65°C, more particularly at least 40%, more particularly at least 50%, more particularly at least 60%, more particularly at least 80%, more particularly at least 90%, more particularly at least 100%; or

- c) wherein the variant has at least 85%, at least 90%, at least 95%, at least 96%, at least 97%, at least 98%, or at least 99%, but less than 100% sequence identity to the polypeptide of SEQ ID NO: 9 and wherein the variant has increased thermoactivity compared to the pullulanase of SEQ ID NO: 9, particularly the variant has at least 30% relative activity when measured at 70°C relative to activity at 65°C, more particularly at least 40%, more particularly at least 50%, more particularly at least 80%, more particularly at least 90%, more particularly at least 100%; or
- d) wherein the variant has at least 85%, at least 90%, at least 95%, at least 96%, at least 97%, at least 98%, or at least 99%, but less than 100% sequence identity to the polypeptide of SEQ ID NO: 16 and wherein the variant has increased thermoactivity compared to the pullulanase of SEQ ID NO: 16, particularly the variant has at least 30% relative activity when measured at 70°C relative to activity at 65°C, more particularly at least 40%, more particularly at least 50%, more particularly at least 80%, more particularly at least 90%, more particularly at least 100%; or
- e) wherein the variant has at least 85%, at least 90%, at least 95%, at least 96%, at least 97%, at least 98%, or at least 99%, but less than 100% sequence identity to the polypeptide of SEQ ID NO: 17 and wherein the variant has increased thermoactivity compared to the pullulanase of SEQ ID NO: 17, particularly the variant has at least 30% relative activity when measured at 70°C relative to activity at 65°C, more particularly at least 40%, more particularly at least 50%, more particularly at least 80%, more particularly at least 90%, more particularly at least 100%.

[0160] In another aspect, the variant comprises or consists of substitutions at positions corresponding to positions 368G and 431E and 432F and 610R, wherein the variant has pullulanase activity, and;

- a) wherein the variant has at least 85%, at least 90%, at least 95%, at least 96%, at least 97%, at least 98%, or at least 99%, but less than 100% sequence identity to the polypeptide of SEQ ID NO: 3 and wherein the variant has increased thermoactivity compared to the pullulanase of SEQ ID NO: 3, particularly the variant has at least 60% relative activity when measured at 70°C relative to activity at 65°C, more particularly at least 65%, more particularly at least 70%, more particularly at least 80%, more particularly at least 90%, more particularly at least 100%; or
- b) wherein the variant has at least 85%, at least 90%, at least 95%, at least 96%, at least 97%, at least 98%, or at least 99%, but less than 100% sequence identity to the polypeptide of SEQ ID NO: 6 and wherein the variant has increased thermoactivity compared to the pullulanase of SEQ ID NO: 6, particularly the variant has at least 30% relative activity when measured at 70°C relative to activity at 65°C, more particularly at least 40%, more particularly at least 50%, more particularly at least 80%, more particularly at least 90%, more particularly at least 100%; or
- c) wherein the variant has at least 85%, at least 90%, at least 95%, at least 96%, at least 97%, at least 98%, or at least 99%, but less than 100% sequence identity to the polypeptide of SEQ ID NO: 9 and wherein the variant has increased thermoactivity compared to the pullulanase of SEQ ID NO: 9, particularly the variant has at least 30% relative activity when measured at 70°C relative to activity at 65°C, more particularly at least 40%, more particularly at least 50%, more particularly at least 60%, more particularly at least 90%, more particularly at least 100%; or
- d) wherein the variant has at least 85%, at least 90%, at least 95%, at least 96%, at least 97%, at least 98%, or at least 99%, but less than 100% sequence identity to the polypeptide of SEQ ID NO: 16 and wherein the variant has increased thermoactivity compared to the pullulanase of SEQ ID NO: 16, particularly the variant has at least 30% relative activity when measured at 70°C relative to activity at 65°C, more particularly at least 40%, more particularly at least 50%, more particularly at least 80%, more particularly at least 90%, more particularly at least 100%; or
- e) wherein the variant has at least 85%, at least 90%, at least 95%, at least 96%, at least 97%, at least 98%, or at least 99%, but less than 100% sequence identity to the polypeptide of SEQ ID NO: 17 and wherein the variant has increased thermoactivity compared to the pullulanase of SEQ ID NO: 17, particularly the variant has at least 30% relative activity when measured at 70°C relative to activity at 65°C, more particularly at least 40%, more particularly at least 50%, more particularly at least 80%, more particularly at least 90%, more particularly at least 100%.

[0161] In another aspect, the variant comprises or consists of substitutions at positions corresponding to positions

368G and 431E and 432F and 624S, wherein the variant has pullulanase activity, and;

5

10

15

20

25

30

35

40

45

50

- a) wherein the variant has at least 85%, at least 90%, at least 95%, at least 96%, at least 97%, at least 98%, or at least 99%, but less than 100% sequence identity to the polypeptide of SEQ ID NO: 3 and wherein the variant has increased thermoactivity compared to the pullulanase of SEQ ID NO: 3, particularly the variant has at least 60% relative activity when measured at 70°C relative to activity at 65°C, more particularly at least 65%, more particularly at least 70%, more particularly at least 80%, more particularly at least 90%, more particularly at least 100%; or
- b) wherein the variant has at least 85%, at least 90%, at least 95%, at least 96%, at least 97%, at least 98%, or at least 99%, but less than 100% sequence identity to the polypeptide of SEQ ID NO: 6 and wherein the variant has increased thermoactivity compared to the pullulanase of SEQ ID NO: 6, particularly the variant has at least 30% relative activity when measured at 70°C relative to activity at 65°C, more particularly at least 40%, more particularly at least 50%, more particularly at least 60%, more particularly at least 70%, more particularly at least 80%, more particularly at least 90%, more particularly at least 100%; or
- c) wherein the variant has at least 85%, at least 90%, at least 95%, at least 96%, at least 97%, at least 98%, or at least 99%, but less than 100% sequence identity to the polypeptide of SEQ ID NO: 9 and wherein the variant has increased thermoactivity compared to the pullulanase of SEQ ID NO: 9, particularly the variant has at least 30% relative activity when measured at 70°C relative to activity at 65°C, more particularly at least 40%, more particularly at least 50%, more particularly at least 60%, more particularly at least 90%, more particularly at least 100%; or
- d) wherein the variant has at least 85%, at least 90%, at least 95%, at least 96%, at least 97%, at least 98%, or at least 99%, but less than 100% sequence identity to the polypeptide of SEQ ID NO: 16 and wherein the variant has increased thermoactivity compared to the pullulanase of SEQ ID NO: 16, particularly the variant has at least 30% relative activity when measured at 70°C relative to activity at 65°C, more particularly at least 40%, more particularly at least 50%, more particularly at least 60%, more particularly at least 90%, more particularly at least 100%; or
- e) wherein the variant has at least 85%, at least 90%, at least 95%, at least 96%, at least 97%, at least 98%, or at least 99%, but less than 100% sequence identity to the polypeptide of SEQ ID NO: 17 and wherein the variant has increased thermoactivity compared to the pullulanase of SEQ ID NO: 17, particularly the variant has at least 30% relative activity when measured at 70°C relative to activity at 65°C, more particularly at least 40%, more particularly at least 50%, more particularly at least 80%, more particularly at least 90%, more particularly at least 100%.

[0162] In another aspect, the variant comprises or consists of substitutions at positions corresponding to positions 368G and 431E and 610R and 624S, wherein the variant has pullulanase activity, and;

- a) wherein the variant has at least 85%, at least 90%, at least 95%, at least 96%, at least 97%, at least 98%, or at least 99%, but less than 100% sequence identity to the polypeptide of SEQ ID NO: 3 and wherein the variant has increased thermoactivity compared to the pullulanase of SEQ ID NO: 3, particularly the variant has at least 60% relative activity when measured at 70°C relative to activity at 65°C, more particularly at least 65%, more particularly at least 70%, more particularly at least 80%, more particularly at least 90%, more particularly at least 100%; or
- b) wherein the variant has at least 85%, at least 90%, at least 95%, at least 96%, at least 97%, at least 98%, or at least 99%, but less than 100% sequence identity to the polypeptide of SEQ ID NO: 6 and wherein the variant has increased thermoactivity compared to the pullulanase of SEQ ID NO: 6, particularly the variant has at least 30% relative activity when measured at 70°C relative to activity at 65°C, more particularly at least 40%, more particularly at least 50%, more particularly at least 50%, more particularly at least 80%, more particularly at least 90%, more particularly at least 100%; or
- c) wherein the variant has at least 85%, at least 90%, at least 95%, at least 96%, at least 97%, at least 98%, or at least 99%, but less than 100% sequence identity to the polypeptide of SEQ ID NO: 9 and wherein the variant has increased thermoactivity compared to the pullulanase of SEQ ID NO: 9, particularly the variant has at least 30% relative activity when measured at 70°C relative to activity at 65°C, more particularly at least 40%, more particularly at least 50%, more particularly at least 60%, more particularly at least 90%, more particularly at least 100%; or
- d) wherein the variant has at least 85%, at least 90%, at least 95%, at least 96%, at least 97%, at least 98%, or at least 99%, but less than 100% sequence identity to the polypeptide of SEQ ID NO: 16 and wherein the variant has increased thermoactivity compared to the pullulanase of SEQ ID NO: 16, particularly the variant has at least 30% relative activity when measured at 70°C relative to activity at 65°C, more particularly at least 40%, more particularly

at least 50%, more particularly at least 60%, more particularly at least 70%, more particularly at least 80%, more particularly at least 90%, more particularly at least 100%; or

e) wherein the variant has at least 85%, at least 90%, at least 95%, at least 96%, at least 97%, at least 98%, or at least 99%, but less than 100% sequence identity to the polypeptide of SEQ ID NO: 17 and wherein the variant has increased thermoactivity compared to the pullulanase of SEQ ID NO: 17, particularly the variant has at least 30% relative activity when measured at 70°C relative to activity at 65°C, more particularly at least 40%, more particularly at least 50%, more particularly at least 80%, more particularly at least 90%, more particularly at least 100%.

[0163] In another aspect, the variant comprises or consists of substitutions at positions corresponding to positions 368G and 432F and 610R and 624S, wherein the variant has pullulanase activity, and;

5

15

20

25

30

35

40

50

55

- a) wherein the variant has at least 85%, at least 90%, at least 95%, at least 96%, at least 97%, at least 98%, or at least 99%, but less than 100% sequence identity to the polypeptide of SEQ ID NO: 3 and wherein the variant has increased thermoactivity compared to the pullulanase of SEQ ID NO: 3, particularly the variant has at least 60% relative activity when measured at 70°C relative to activity at 65°C, more particularly at least 65%, more particularly at least 70%, more particularly at least 80%, more particularly at least 90%, more particularly at least 100%; or
- b) wherein the variant has at least 85%, at least 90%, at least 95%, at least 96%, at least 97%, at least 98%, or at least 99%, but less than 100% sequence identity to the polypeptide of SEQ ID NO: 6 and wherein the variant has increased thermoactivity compared to the pullulanase of SEQ ID NO: 6, particularly the variant has at least 30% relative activity when measured at 70°C relative to activity at 65°C, more particularly at least 40%, more particularly at least 50%, more particularly at least 60%, more particularly at least 70%, more particularly at least 80%, more particularly at least 90%, more particularly at least 100%; or
- c) wherein the variant has at least 85%, at least 90%, at least 95%, at least 96%, at least 97%, at least 98%, or at least 99%, but less than 100% sequence identity to the polypeptide of SEQ ID NO: 9 and wherein the variant has increased thermoactivity compared to the pullulanase of SEQ ID NO: 9, particularly the variant has at least 30% relative activity when measured at 70°C relative to activity at 65°C, more particularly at least 40%, more particularly at least 50%, more particularly at least 60%, more particularly at least 70%, more particularly at least 80%, more particularly at least 90%, more particularly at least 100%; or
- d) wherein the variant has at least 85%, at least 90%, at least 95%, at least 96%, at least 97%, at least 98%, or at least 99%, but less than 100% sequence identity to the polypeptide of SEQ ID NO: 16 and wherein the variant has increased thermoactivity compared to the pullulanase of SEQ ID NO: 16, particularly the variant has at least 30% relative activity when measured at 70°C relative to activity at 65°C, more particularly at least 40%, more particularly at least 50%, more particularly at least 80%, more particularly at least 90%, more particularly at least 100%; or
- e) wherein the variant has at least 85%, at least 90%, at least 95%, at least 96%, at least 97%, at least 98%, or at least 99%, but less than 100% sequence identity to the polypeptide of SEQ ID NO: 17 and wherein the variant has increased thermoactivity compared to the pullulanase of SEQ ID NO: 17, particularly the variant has at least 30% relative activity when measured at 70°C relative to activity at 65°C, more particularly at least 40%, more particularly at least 50%, more particularly at least 80%, more particularly at least 90%, more particularly at least 100%.

[0164] In another aspect, the variant comprises or consists of substitutions at positions corresponding to positions 393A and 431E and 432F and 610R, wherein the variant has pullulanase activity, and;

- a) wherein the variant has at least 85%, at least 90%, at least 95%, at least 96%, at least 97%, at least 98%, or at least 99%, but less than 100% sequence identity to the polypeptide of SEQ ID NO: 3 and wherein the variant has increased thermoactivity compared to the pullulanase of SEQ ID NO: 3, particularly the variant has at least 60% relative activity when measured at 70°C relative to activity at 65°C, more particularly at least 65%, more particularly at least 70%, more particularly at least 80%, more particularly at least 90%, more particularly at least 100%; or
- b) wherein the variant has at least 85%, at least 90%, at least 95%, at least 96%, at least 97%, at least 98%, or at least 99%, but less than 100% sequence identity to the polypeptide of SEQ ID NO: 6 and wherein the variant has increased thermoactivity compared to the pullulanase of SEQ ID NO: 6, particularly the variant has at least 30% relative activity when measured at 70°C relative to activity at 65°C, more particularly at least 40%, more particularly at least 50%, more particularly at least 60%, more particularly at least 70%, more particularly at least 80%, more particularly at least 90%, more particularly at least 100%; or

c) wherein the variant has at least 85%, at least 90%, at least 95%, at least 96%, at least 97%, at least 98%, or at least 99%, but less than 100% sequence identity to the polypeptide of SEQ ID NO: 9 and wherein the variant has increased thermoactivity compared to the pullulanase of SEQ ID NO: 9, particularly the variant has at least 30% relative activity when measured at 70°C relative to activity at 65°C, more particularly at least 40%, more particularly at least 50%, more particularly at least 60%, more particularly at least 90%, more particularly 90%, more particularly

5

10

15

25

30

35

40

45

50

55

- d) wherein the variant has at least 85%, at least 90%, at least 96%, at least 97%, at least 98%, or at least 99%, but less than 100% sequence identity to the polypeptide of SEQ ID NO: 16 and wherein the variant has increased thermoactivity compared to the pullulanase of SEQ ID NO: 16, particularly the variant has at least 30% relative activity when measured at 70°C relative to activity at 65°C, more particularly at least 40%, more particularly at least 50%, more particularly at least 60%, more particularly at least 70%, more particularly at least 80%, more particularly at least 90%, more particularly at least 100%; or
- e) wherein the variant has at least 85%, at least 90%, at least 95%, at least 96%, at least 97%, at least 98%, or at least 99%, but less than 100% sequence identity to the polypeptide of SEQ ID NO: 17 and wherein the variant has increased thermoactivity compared to the pullulanase of SEQ ID NO: 17, particularly the variant has at least 30% relative activity when measured at 70°C relative to activity at 65°C, more particularly at least 40%, more particularly at least 50%, more particularly at least 80%, more particularly at least 90%, more particularly at least 100%.
- [0165] In another aspect, the variant comprises or consists of substitutions at positions corresponding to positions 393A and 431E and 432F and 624S, wherein the variant has pullulanase activity, and;
 - a) wherein the variant has at least 85%, at least 90%, at least 95%, at least 96%, at least 97%, at least 98%, or at least 99%, but less than 100% sequence identity to the polypeptide of SEQ ID NO: 3 and wherein the variant has increased thermoactivity compared to the pullulanase of SEQ ID NO: 3, particularly the variant has at least 60% relative activity when measured at 70°C relative to activity at 65°C, more particularly at least 65%, more particularly at least 70%, more particularly at least 80%, more particularly at least 90%, more particularly at least 100%; or
 - b) wherein the variant has at least 85%, at least 90%, at least 95%, at least 96%, at least 97%, at least 98%, or at least 99%, but less than 100% sequence identity to the polypeptide of SEQ ID NO: 6 and wherein the variant has increased thermoactivity compared to the pullulanase of SEQ ID NO: 6, particularly the variant has at least 30% relative activity when measured at 70°C relative to activity at 65°C, more particularly at least 40%, more particularly at least 50%, more particularly at least 60%, more particularly at least 70%, more particularly at least 80%, more particularly at least 90%, more particularly at least 100%; or
 - c) wherein the variant has at least 85%, at least 90%, at least 95%, at least 96%, at least 97%, at least 98%, or at least 99%, but less than 100% sequence identity to the polypeptide of SEQ ID NO: 9 and wherein the variant has increased thermoactivity compared to the pullulanase of SEQ ID NO: 9, particularly the variant has at least 30% relative activity when measured at 70°C relative to activity at 65°C, more particularly at least 40%, more particularly at least 50%, more particularly at least 60%, more particularly at least 90%, more particularly at least 100%; or
 - d) wherein the variant has at least 85%, at least 90%, at least 95%, at least 96%, at least 97%, at least 98%, or at least 99%, but less than 100% sequence identity to the polypeptide of SEQ ID NO: 16 and wherein the variant has increased thermoactivity compared to the pullulanase of SEQ ID NO: 16, particularly the variant has at least 30% relative activity when measured at 70°C relative to activity at 65°C, more particularly at least 40%, more particularly at least 50%, more particularly at least 60%, more particularly at least 70%, more particularly at least 80%, more particularly at least 90%, more particularly at least 100%; or
 - e) wherein the variant has at least 85%, at least 90%, at least 95%, at least 96%, at least 97%, at least 98%, or at least 99%, but less than 100% sequence identity to the polypeptide of SEQ ID NO: 17 and wherein the variant has increased thermoactivity compared to the pullulanase of SEQ ID NO: 17, particularly the variant has at least 30% relative activity when measured at 70°C relative to activity at 65°C, more particularly at least 40%, more particularly at least 50%, more particularly at least 80%, more particularly at least 90%, more particularly at least 100%.
 - [0166] In another aspect, the variant comprises or consists of substitutions at positions corresponding to positions 393A and 431E and 610R and 624S, wherein the variant has pullulanase activity, and;
 - a) wherein the variant has at least 85%, at least 90%, at least 95%, at least 96%, at least 97%, at least 98%, or at least 99%, but less than 100% sequence identity to the polypeptide of SEQ ID NO: 3 and wherein the variant has

increased thermoactivity compared to the pullulanase of SEQ ID NO: 3, particularly the variant has at least 60% relative activity when measured at 70°C relative to activity at 65°C, more particularly at least 65%, more particularly at least 70%, more particularly at least 80%, more particularly at least 80%, more particularly at least 90%, more particularly at least 100%; or

5

10

15

20

25

35

40

45

50

55

- b) wherein the variant has at least 85%, at least 90%, at least 95%, at least 96%, at least 97%, at least 98%, or at least 99%, but less than 100% sequence identity to the polypeptide of SEQ ID NO: 6 and wherein the variant has increased thermoactivity compared to the pullulanase of SEQ ID NO: 6, particularly the variant has at least 30% relative activity when measured at 70°C relative to activity at 65°C, more particularly at least 40%, more particularly at least 50%, more particularly at least 50%, more particularly at least 80%, more particularly at least 90%, more particularly at least 100%; or
- c) wherein the variant has at least 85%, at least 90%, at least 95%, at least 96%, at least 97%, at least 98%, or at least 99%, but less than 100% sequence identity to the polypeptide of SEQ ID NO: 9 and wherein the variant has increased thermoactivity compared to the pullulanase of SEQ ID NO: 9, particularly the variant has at least 30% relative activity when measured at 70°C relative to activity at 65°C, more particularly at least 40%, more particularly at least 50%, more particularly at least 60%, more particularly at least 70%, more particularly at least 80%, more particularly at least 90%, more particularly at least 100%; or
- d) wherein the variant has at least 85%, at least 90%, at least 95%, at least 96%, at least 97%, at least 98%, or at least 99%, but less than 100% sequence identity to the polypeptide of SEQ ID NO: 16 and wherein the variant has increased thermoactivity compared to the pullulanase of SEQ ID NO: 16, particularly the variant has at least 30% relative activity when measured at 70°C relative to activity at 65°C, more particularly at least 40%, more particularly at least 50%, more particularly at least 60%, more particularly at least 70%, more particularly at least 80%, more particularly at least 90%, more particularly at least 100%; or
- e) wherein the variant has at least 85%, at least 90%, at least 95%, at least 96%, at least 97%, at least 98%, or at least 99%, but less than 100% sequence identity to the polypeptide of SEQ ID NO: 17 and wherein the variant has increased thermoactivity compared to the pullulanase of SEQ ID NO: 17, particularly the variant has at least 30% relative activity when measured at 70°C relative to activity at 65°C, more particularly at least 40%, more particularly at least 50%, more particularly at least 60%, more particularly at least 70%, more particularly at least 80%, more particularly at least 90%, more particularly at least 100%.
- [0167] In another aspect, the variant comprises or consists of substitutions at positions corresponding to positions 393A and 432F and 610R and 624S, wherein the variant has pullulanase activity, and;
 - a) wherein the variant has at least 85%, at least 90%, at least 95%, at least 96%, at least 97%, at least 98%, or at least 99%, but less than 100% sequence identity to the polypeptide of SEQ ID NO: 3 and wherein the variant has increased thermoactivity compared to the pullulanase of SEQ ID NO: 3, particularly the variant has at least 60% relative activity when measured at 70°C relative to activity at 65°C, more particularly at least 65%, more particularly at least 70%, more particularly at least 80%, more particularly at least 90%, more particularly at least 100%; or
 - b) wherein the variant has at least 85%, at least 90%, at least 95%, at least 96%, at least 97%, at least 98%, or at least 99%, but less than 100% sequence identity to the polypeptide of SEQ ID NO: 6 and wherein the variant has increased thermoactivity compared to the pullulanase of SEQ ID NO: 6, particularly the variant has at least 30% relative activity when measured at 70°C relative to activity at 65°C, more particularly at least 40%, more particularly at least 50%, more particularly at least 60%, more particularly at least 70%, more particularly at least 80%, more particularly at least 90%, more particularly at least 100%; or
 - c) wherein the variant has at least 85%, at least 90%, at least 95%, at least 96%, at least 97%, at least 98%, or at least 99%, but less than 100% sequence identity to the polypeptide of SEQ ID NO: 9 and wherein the variant has increased thermoactivity compared to the pullulanase of SEQ ID NO: 9, particularly the variant has at least 30% relative activity when measured at 70°C relative to activity at 65°C, more particularly at least 40%, more particularly at least 50%, more particularly at least 80%, more particularly at least 90%, more particularly at least 100%; or
 - d) wherein the variant has at least 85%, at least 90%, at least 95%, at least 96%, at least 97%, at least 98%, or at least 99%, but less than 100% sequence identity to the polypeptide of SEQ ID NO: 16 and wherein the variant has increased thermoactivity compared to the pullulanase of SEQ ID NO: 16, particularly the variant has at least 30% relative activity when measured at 70°C relative to activity at 65°C, more particularly at least 40%, more particularly at least 50%, more particularly at least 60%, more particularly at least 70%, more particularly at least 80%, more particularly at least 90%, more particularly at least 100%; or
 - e) wherein the variant has at least 85%, at least 90%, at least 95%, at least 96%, at least 97%, at least 98%, or at least 99%, but less than 100% sequence identity to the polypeptide of SEQ ID NO: 17 and wherein the variant has

increased thermoactivity compared to the pullulanase of SEQ ID NO: 17, particularly the variant has at least 30% relative activity when measured at 70°C relative to activity at 65°C, more particularly at least 40%, more particularly at least 50%, more particularly at least 60%, more particularly at least 80%, more particularly at least 90%, more particularly at least 100%.

5

[0168] In another aspect, the variant comprises or consists of substitutions at positions corresponding to positions 431E and 432F and 610R and 624S, wherein the variant has pullulanase activity, and;

10

a) wherein the variant has at least 85%, at least 90%, at least 95%, at least 96%, at least 97%, at least 98%, or at least 99%, but less than 100% sequence identity to the polypeptide of SEQ ID NO: 3 and wherein the variant has increased thermoactivity compared to the pullulanase of SEQ ID NO: 3, particularly the variant has at least 60% relative activity when measured at 70°C relative to activity at 65°C, more particularly at least 65%, more particularly at least 70%, more particularly at least 80%, more particularly at least 90%, more particularly at least 100%; or

15

b) wherein the variant has at least 85%, at least 90%, at least 95%, at least 96%, at least 97%, at least 98%, or at least 99%, but less than 100% sequence identity to the polypeptide of SEQ ID NO: 6 and wherein the variant has increased thermoactivity compared to the pullulanase of SEQ ID NO: 6, particularly the variant has at least 30% relative activity when measured at 70°C relative to activity at 65°C, more particularly at least 40%, more particularly at least 50%, more particularly at least 60%, more particularly at least 70%, more particularly at least 80%, more particularly at least 90%, more particularly at least 100%; or

20

c) wherein the variant has at least 85%, at least 90%, at least 95%, at least 96%, at least 97%, at least 98%, or at least 99%, but less than 100% sequence identity to the polypeptide of SEQ ID NO: 9 and wherein the variant has increased thermoactivity compared to the pullulanase of SEQ ID NO: 9, particularly the variant has at least 30% relative activity when measured at 70°C relative to activity at 65°C, more particularly at least 40%, more particularly at least 50%, more particularly at least 60%, more particularly at least 90%, more

25

d) wherein the variant has at least 85%, at least 90%, at least 95%, at least 96%, at least 97%, at least 98%, or at least 99%, but less than 100% sequence identity to the polypeptide of SEQ ID NO: 16 and wherein the variant has increased thermoactivity compared to the pullulanase of SEQ ID NO: 16, particularly the variant has at least 30% relative activity when measured at 70°C relative to activity at 65°C, more particularly at least 40%, more particularly at least 50%, more particularly at least 60%, more particularly at least 70%, more particularly at least 80%, more particularly at least 90%, more particularly at least 100%; or

30

e) wherein the variant has at least 85%, at least 90%, at least 95%, at least 96%, at least 97%, at least 98%, or at least 99%, but less than 100% sequence identity to the polypeptide of SEQ ID NO: 17 and wherein the variant has increased thermoactivity compared to the pullulanase of SEQ ID NO: 17, particularly the variant has at least 30% relative activity when measured at 70°C relative to activity at 65°C, more particularly at least 40%, more particularly at least 50%, more particularly at least 60%, more particularly at least 70%, more particularly at least 80%, more particularly at least 90%.

35

40

[0169] In another aspect, the variant comprises or consists of substitutions at positions corresponding to positions 368G and 393A and 431E and 432F and 610R, wherein the variant has pullulanase activity, and;

45

a) wherein the variant has at least 85%, at least 90%, at least 95%, at least 96%, at least 97%, at least 98%, or at least 99%, but less than 100% sequence identity to the polypeptide of SEQ ID NO: 3 and wherein the variant has increased thermoactivity compared to the pullulanase of SEQ ID NO: 3, particularly the variant has at least 60% relative activity when measured at 70°C relative to activity at 65°C, more particularly at least 65%, more particularly at least 70%, more particularly at least 80%, more particularly at least 90%, more particularly at least 100%; or

50

b) wherein the variant has at least 85%, at least 90%, at least 95%, at least 96%, at least 97%, at least 98%, or at least 99%, but less than 100% sequence identity to the polypeptide of SEQ ID NO: 6 and wherein the variant has increased thermoactivity compared to the pullulanase of SEQ ID NO: 6, particularly the variant has at least 30% relative activity when measured at 70°C relative to activity at 65°C, more particularly at least 40%, more particularly at least 50%, more particularly at least 80%, more particularly at least 90%, more particularly at least 100%; or

55

c) wherein the variant has at least 85%, at least 90%, at least 95%, at least 96%, at least 97%, at least 98%, or at least 99%, but less than 100% sequence identity to the polypeptide of SEQ ID NO: 9 and wherein the variant has increased thermoactivity compared to the pullulanase of SEQ ID NO: 9, particularly the variant has at least 30% relative activity when measured at 70°C relative to activity at 65°C, more particularly at least 40%, more particularly

at least 50%, more particularly at least 60%, more particularly at least 70%, more particularly at least 80%, more particularly at least 90%, more particularly at least 100%; or

d) wherein the variant has at least 85%, at least 90%, at least 95%, at least 96%, at least 97%, at least 98%, or at least 99%, but less than 100% sequence identity to the polypeptide of SEQ ID NO: 16 and wherein the variant has increased thermoactivity compared to the pullulanase of SEQ ID NO: 16, particularly the variant has at least 30% relative activity when measured at 70°C relative to activity at 65°C, more particularly at least 40%, more particularly at least 50%, more particularly at least 60%, more particularly at least 70%, more particularly at least 80%, more particularly at least 90%, more particularly at least 100%; or

5

10

15

20

25

30

35

40

45

55

e) wherein the variant has at least 85%, at least 90%, at least 95%, at least 96%, at least 97%, at least 98%, or at least 99%, but less than 100% sequence identity to the polypeptide of SEQ ID NO: 17 and wherein the variant has increased thermoactivity compared to the pullulanase of SEQ ID NO: 17, particularly the variant has at least 30% relative activity when measured at 70°C relative to activity at 65°C, more particularly at least 40%, more particularly at least 50%, more particularly at least 80%, more particularly at least 90%, more particularly at least 100%.

[0170] In another aspect, the variant comprises or consists of substitutions at positions corresponding to positions 368G and 393A and 431E and 432F and 624S, wherein the variant has pullulanase activity, and;

- a) wherein the variant has at least 85%, at least 90%, at least 95%, at least 96%, at least 97%, at least 98%, or at least 99%, but less than 100% sequence identity to the polypeptide of SEQ ID NO: 3 and wherein the variant has increased thermoactivity compared to the pullulanase of SEQ ID NO: 3, particularly the variant has at least 60% relative activity when measured at 70°C relative to activity at 65°C, more particularly at least 65%, more particularly at least 70%, more particularly at least 80%, more particularly at least 90%, more particularly at least 100%; or
- b) wherein the variant has at least 85%, at least 90%, at least 95%, at least 96%, at least 97%, at least 98%, or at least 99%, but less than 100% sequence identity to the polypeptide of SEQ ID NO: 6 and wherein the variant has increased thermoactivity compared to the pullulanase of SEQ ID NO: 6, particularly the variant has at least 30% relative activity when measured at 70°C relative to activity at 65°C, more particularly at least 40%, more particularly at least 50%, more particularly at least 60%, more particularly at least 70%, more particularly at least 80%, more particularly at least 90%, more particularly at least 100%; or
- c) wherein the variant has at least 85%, at least 90%, at least 95%, at least 96%, at least 97%, at least 98%, or at least 99%, but less than 100% sequence identity to the polypeptide of SEQ ID NO: 9 and wherein the variant has increased thermoactivity compared to the pullulanase of SEQ ID NO: 9, particularly the variant has at least 30% relative activity when measured at 70°C relative to activity at 65°C, more particularly at least 40%, more particularly at least 50%, more particularly at least 80%, more particularly at least 90%, more particularly at least 100%; or
- d) wherein the variant has at least 85%, at least 90%, at least 95%, at least 96%, at least 97%, at least 98%, or at least 99%, but less than 100% sequence identity to the polypeptide of SEQ ID NO: 16 and wherein the variant has increased thermoactivity compared to the pullulanase of SEQ ID NO: 16, particularly the variant has at least 30% relative activity when measured at 70°C relative to activity at 65°C, more particularly at least 40%, more particularly at least 50%, more particularly at least 60%, more particularly at least 90%, more particularly at least 100%; or
- e) wherein the variant has at least 85%, at least 90%, at least 95%, at least 96%, at least 97%, at least 98%, or at least 99%, but less than 100% sequence identity to the polypeptide of SEQ ID NO: 17 and wherein the variant has increased thermoactivity compared to the pullulanase of SEQ ID NO: 17, particularly the variant has at least 30% relative activity when measured at 70°C relative to activity at 65°C, more particularly at least 40%, more particularly at least 50%, more particularly at least 80%, more particularly at least 90%, more particularly at least 100%.
- [0171] In another aspect, the variant comprises or consists of substitutions at positions corresponding to positions 368G and 393A and 431E and 610R and 624S, wherein the variant has pullulanase activity, and;
 - a) wherein the variant has at least 85%, at least 90%, at least 95%, at least 96%, at least 97%, at least 98%, or at least 99%, but less than 100% sequence identity to the polypeptide of SEQ ID NO: 3 and wherein the variant has increased thermoactivity compared to the pullulanase of SEQ ID NO: 3, particularly the variant has at least 60% relative activity when measured at 70°C relative to activity at 65°C, more particularly at least 65%, more particularly at least 70%, more particularly at least 80%, more

particularly at least 90%, more particularly at least 100%; or

5

10

15

20

25

30

35

40

45

50

55

- b) wherein the variant has at least 85%, at least 90%, at least 95%, at least 96%, at least 97%, at least 98%, or at least 99%, but less than 100% sequence identity to the polypeptide of SEQ ID NO: 6 and wherein the variant has increased thermoactivity compared to the pullulanase of SEQ ID NO: 6, particularly the variant has at least 30% relative activity when measured at 70°C relative to activity at 65°C, more particularly at least 40%, more particularly at least 50%, more particularly at least 80%, more particularly at least 90%, more particularly at least 100%; or
- c) wherein the variant has at least 85%, at least 90%, at least 95%, at least 96%, at least 97%, at least 98%, or at least 99%, but less than 100% sequence identity to the polypeptide of SEQ ID NO: 9 and wherein the variant has increased thermoactivity compared to the pullulanase of SEQ ID NO: 9, particularly the variant has at least 30% relative activity when measured at 70°C relative to activity at 65°C, more particularly at least 40%, more particularly at least 50%, more particularly at least 60%, more particularly at least 90%, more particularly at least 100%; or
- d) wherein the variant has at least 85%, at least 90%, at least 95%, at least 96%, at least 97%, at least 98%, or at least 99%, but less than 100% sequence identity to the polypeptide of SEQ ID NO: 16 and wherein the variant has increased thermoactivity compared to the pullulanase of SEQ ID NO: 16, particularly the variant has at least 30% relative activity when measured at 70°C relative to activity at 65°C, more particularly at least 40%, more particularly at least 50%, more particularly at least 60%, more particularly at least 70%, more particularly at least 80%, more particularly at least 90%, more particularly at least 100%; or
- e) wherein the variant has at least 85%, at least 90%, at least 95%, at least 96%, at least 97%, at least 98%, or at least 99%, but less than 100% sequence identity to the polypeptide of SEQ ID NO: 17 and wherein the variant has increased thermoactivity compared to the pullulanase of SEQ ID NO: 17, particularly the variant has at least 30% relative activity when measured at 70°C relative to activity at 65°C, more particularly at least 40%, more particularly at least 50%, more particularly at least 80%, more particularly at least 90%, more particularly at least 100%.

[0172] In another aspect, the variant comprises or consists of substitutions at positions corresponding to positions 368G and 393A and 432F and 610R and 624S, wherein the variant has pullulanase activity, and;

- a) wherein the variant has at least 85%, at least 90%, at least 95%, at least 96%, at least 97%, at least 98%, or at least 99%, but less than 100% sequence identity to the polypeptide of SEQ ID NO: 3 and wherein the variant has increased thermoactivity compared to the pullulanase of SEQ ID NO: 3, particularly the variant has at least 60% relative activity when measured at 70°C relative to activity at 65°C, more particularly at least 65%, more particularly at least 70%, more particularly at least 80%, more particularly at least 90%, more particularly at least 100%; or
 - b) wherein the variant has at least 85%, at least 90%, at least 95%, at least 96%, at least 97%, at least 98%, or at least 99%, but less than 100% sequence identity to the polypeptide of SEQ ID NO: 6 and wherein the variant has increased thermoactivity compared to the pullulanase of SEQ ID NO: 6, particularly the variant has at least 30% relative activity when measured at 70°C relative to activity at 65°C, more particularly at least 40%, more particularly at least 50%, more particularly at least 50%, more particularly at least 80%, more particularly at least 90%, more particularly at least 100%; or
 - c) wherein the variant has at least 85%, at least 90%, at least 95%, at least 96%, at least 97%, at least 98%, or at least 99%, but less than 100% sequence identity to the polypeptide of SEQ ID NO: 9 and wherein the variant has increased thermoactivity compared to the pullulanase of SEQ ID NO: 9, particularly the variant has at least 30% relative activity when measured at 70°C relative to activity at 65°C, more particularly at least 40%, more particularly at least 50%, more particularly at least 60%, more particularly at least 90%, more particularly at least 100%; or
 - d) wherein the variant has at least 85%, at least 90%, at least 95%, at least 96%, at least 97%, at least 98%, or at least 99%, but less than 100% sequence identity to the polypeptide of SEQ ID NO: 16 and wherein the variant has increased thermoactivity compared to the pullulanase of SEQ ID NO: 16, particularly the variant has at least 30% relative activity when measured at 70°C relative to activity at 65°C, more particularly at least 40%, more particularly at least 50%, more particularly at least 60%, more particularly at least 70%, more particularly at least 80%, more particularly at least 90%, more particularly at least 100%; or
 - e) wherein the variant has at least 85%, at least 90%, at least 95%, at least 96%, at least 97%, at least 98%, or at least 99%, but less than 100% sequence identity to the polypeptide of SEQ ID NO: 17 and wherein the variant has increased thermoactivity compared to the pullulanase of SEQ ID NO: 17, particularly the variant has at least 30% relative activity when measured at 70°C relative to activity at 65°C, more particularly at least 40%, more particularly at least 50%, more particularly at least 80%, more

particularly at least 90%, more particularly at least 100%.

5

10

15

20

25

30

35

40

45

50

55

[0173] In another aspect, the variant comprises or consists of substitutions at positions corresponding to positions 368G and 431E and 432F and 610R and 624S, wherein the variant has pullulanase activity, and;

- a) wherein the variant has at least 85%, at least 90%, at least 95%, at least 96%, at least 97%, at least 98%, or at least 99%, but less than 100% sequence identity to the polypeptide of SEQ ID NO: 3 and wherein the variant has increased thermoactivity compared to the pullulanase of SEQ ID NO: 3, particularly the variant has at least 60% relative activity when measured at 70°C relative to activity at 65°C, more particularly at least 65%, more particularly at least 70%, more particularly at least 80%, more particularly at least 90%, more particularly at least 100%; or
- b) wherein the variant has at least 85%, at least 90%, at least 96%, at least 97%, at least 98%, or at least 99%, but less than 100% sequence identity to the polypeptide of SEQ ID NO: 6 and wherein the variant has increased thermoactivity compared to the pullulanase of SEQ ID NO: 6, particularly the variant has at least 30% relative activity when measured at 70°C relative to activity at 65°C, more particularly at least 40%, more particularly at least 50%, more particularly at least 60%, more particularly at least 70%, more particularly at least 80%, more particularly at least 90%, more particularly at least 100%; or
- c) wherein the variant has at least 85%, at least 90%, at least 95%, at least 96%, at least 97%, at least 98%, or at least 99%, but less than 100% sequence identity to the polypeptide of SEQ ID NO: 9 and wherein the variant has increased thermoactivity compared to the pullulanase of SEQ ID NO: 9, particularly the variant has at least 30% relative activity when measured at 70°C relative to activity at 65°C, more particularly at least 40%, more particularly at least 50%, more particularly at least 60%, more particularly at least 90%, more particularly at least 100%; or
- d) wherein the variant has at least 85%, at least 90%, at least 96%, at least 97%, at least 98%, or at least 99%, but less than 100% sequence identity to the polypeptide of SEQ ID NO: 16 and wherein the variant has increased thermoactivity compared to the pullulanase of SEQ ID NO: 16, particularly the variant has at least 30% relative activity when measured at 70°C relative to activity at 65°C, more particularly at least 40%, more particularly at least 50%, more particularly at least 60%, more particularly at least 90%, more particularly at least 100%; or
- e) wherein the variant has at least 85%, at least 90%, at least 95%, at least 96%, at least 97%, at least 98%, or at least 99%, but less than 100% sequence identity to the polypeptide of SEQ ID NO: 17 and wherein the variant has increased thermoactivity compared to the pullulanase of SEQ ID NO: 17, particularly the variant has at least 30% relative activity when measured at 70°C relative to activity at 65°C, more particularly at least 40%, more particularly at least 50%, more particularly at least 60%, more particularly at least 90%, more particularly at least 100%.

[0174] In another aspect, the variant comprises or consists of substitutions at positions corresponding to positions 393A and 431E and 432F and 610R and 624S, wherein the variant has pullulanase activity, and:

- a) wherein the variant has at least 85%, at least 90%, at least 95%, at least 96%, at least 97%, at least 98%, or at least 99%, but less than 100% sequence identity to the polypeptide of SEQ ID NO: 3 and wherein the variant has increased thermoactivity compared to the pullulanase of SEQ ID NO: 3, particularly the variant has at least 60% relative activity when measured at 70°C relative to activity at 65°C, more particularly at least 65%, more particularly at least 70%, more particularly at least 80%, more particularly at least 90%, more particularly at least 100%; or
 - b) wherein the variant has at least 85%, at least 90%, at least 95%, at least 96%, at least 97%, at least 98%, or at least 99%, but less than 100% sequence identity to the polypeptide of SEQ ID NO: 6 and wherein the variant has increased thermoactivity compared to the pullulanase of SEQ ID NO: 6, particularly the variant has at least 30% relative activity when measured at 70°C relative to activity at 65°C, more particularly at least 40%, more particularly at least 50%, more particularly at least 60%, more particularly at least 70%, more particularly at least 80%, more particularly at least 90%, more particularly at least 100%; or
 - c) wherein the variant has at least 85%, at least 90%, at least 95%, at least 96%, at least 97%, at least 98%, or at least 99%, but less than 100% sequence identity to the polypeptide of SEQ ID NO: 9 and wherein the variant has increased thermoactivity compared to the pullulanase of SEQ ID NO: 9, particularly the variant has at least 30% relative activity when measured at 70°C relative to activity at 65°C, more particularly at least 40%, more particularly at least 50%, more particularly at least 80%, more particularly at least 90%, more particularly at least 100%; or
 - d) wherein the variant has at least 85%, at least 90%, at least 95%, at least 96%, at least 97%, at least 98%, or at

least 99%, but less than 100% sequence identity to the polypeptide of SEQ ID NO: 16 and wherein the variant has increased thermoactivity compared to the pullulanase of SEQ ID NO: 16, particularly the variant has at least 30% relative activity when measured at 70°C relative to activity at 65°C, more particularly at least 40%, more particularly at least 50%, more particularly at least 60%, more particularly at least 70%, more particularly at least 80%, more particularly at least 90%, more particularly at least 100%; or

e) wherein the variant has at least 85%, at least 90%, at least 95%, at least 96%, at least 97%, at least 98%, or at least 99%, but less than 100% sequence identity to the polypeptide of SEQ ID NO: 17 and wherein the variant has increased thermoactivity compared to the pullulanase of SEQ ID NO: 17, particularly the variant has at least 30% relative activity when measured at 70°C relative to activity at 65°C, more particularly at least 40%, more particularly at least 50%, more particularly at least 60%, more particularly at least 90%, more particularly at least 100%.

[0175] In another aspect, the variant comprises or consists of substitutions at positions corresponding to positions 368G and 393A and 431E and 432F and 610R and 624S, wherein the variant has pullulanase activity, and;

a) wherein the variant has at least 85%, at least 90%, at least 95%, at least 96%, at least 97%, at least 98%, or at least 99%, but less than 100% sequence identity to the polypeptide of SEQ ID NO: 3 and wherein the variant has increased thermoactivity compared to the pullulanase of SEQ ID NO: 3, particularly the variant has at least 60% relative activity when measured at 70°C relative to activity at 65°C, more particularly at least 65%, more particularly at least 70%, more particularly at least 80%, more particularly at least 90%, more particularly at least 100%; or

b) wherein the variant has at least 85%, at least 90%, at least 95%, at least 96%, at least 97%, at least 98%, or at least 99%, but less than 100% sequence identity to the polypeptide of SEQ ID NO: 6 and wherein the variant has increased thermoactivity compared to the pullulanase of SEQ ID NO: 6, particularly the variant has at least 30% relative activity when measured at 70°C relative to activity at 65°C, more particularly at least 40%, more particularly at least 50%, more particularly at least 60%, more particularly at least 90%, more particularly at least 100%; or

c) wherein the variant has at least 85%, at least 90%, at least 95%, at least 96%, at least 97%, at least 98%, or at least 99%, but less than 100% sequence identity to the polypeptide of SEQ ID NO: 9 and wherein the variant has increased thermoactivity compared to the pullulanase of SEQ ID NO: 9, particularly the variant has at least 30% relative activity when measured at 70°C relative to activity at 65°C, more particularly at least 40%, more particularly at least 50%, more particularly at least 60%, more particularly at least 70%, more particularly at least 80%, more particularly at least 90%, more particularly at least 100%; or

d) wherein the variant has at least 85%, at least 90%, at least 95%, at least 96%, at least 97%, at least 98%, or at least 99%, but less than 100% sequence identity to the polypeptide of SEQ ID NO: 16 and wherein the variant has increased thermoactivity compared to the pullulanase of SEQ ID NO: 16, particularly the variant has at least 30% relative activity when measured at 70°C relative to activity at 65°C, more particularly at least 40%, more particularly at least 50%, more particularly at least 80%, more particularly at least 90%, more particularly at least 100%; or

e) wherein the variant has at least 85%, at least 90%, at least 95%, at least 96%, at least 97%, at least 98%, or at least 99%, but less than 100% sequence identity to the polypeptide of SEQ ID NO: 17 and wherein the variant has increased thermoactivity compared to the pullulanase of SEQ ID NO: 17, particularly the variant has at least 30% relative activity when measured at 70°C relative to activity at 65°C, more particularly at least 40%, more particularly at least 50%, more particularly at least 60%, more particularly at least 90%, more particularly at least 100%.

[0176] In a further particular embodiment the variant of the invention comprises at least one of the following substitutions or combinations of specific substitutions of the polypeptide of SEQ ID NO: 3 or in a corresponding position in the polypeptides of SEQ ID NO: 6, SEQ ID NO: 9, SEQ ID NO: 16, SEQ ID NO: 17:

N368G; E699R; E150R; N346S; N243E; S244K; V143G;

N393A;

5

10

15

20

25

30

35

40

45

50

```
N610R:
        N610L;
        G624S;
        F456A;
5
        T492S.A:
        V486C + T492S,A;
        N368G + M402T;
        T631S + S632C;
        V486C + T492S,A+ T631S+ S632C;
10
        N393A + T631S + S632C;
        T631S + S632C + E699R;
        N393A + V486C + T492S,A+ T631S + S632C;
        N393A + G624S + S632C;
        N393A + N610R + T631S + S632C;
15
        N393A + G624S + T631S + S632C;
        N393A + N610R + G624S + T631S + S632C;
        N393A + V486C+ T492S,A + G624S + T631S+ S632C;
        N393A + V486C + T492S,A + N610R + G624S + T631S + S632C;
        N368G+ N393A + V486C + T492S,A + N610R + G624S + T631S + S632C;
20
        N393A + V486C + T492S,A + N610R + G624S + T631S + S632C + E699R;
        N346S + N393A + V486C + T492S,A + N610R + G624S + T631S + S632C;
        N393A + F456A + V486C + T492S,A + N610R + G624S + T631S + S632C;
        N393A + T492S,A + N610R + G624S + T631S + S632C;
        N368G + N393A + T492S,A + N610R + G624S + T631S + S632C;
25
        A345P + N393A+ V486C + T492S,A + N610R + G624S + T631S + S632C;
        N368G + K370S + I373L + N393A+ V486C + T492S,A+ N610R + G624S + T631S + S632C;
        I381V + Q385E + Q387L + N393A + V486C + T492S,A + N610R + G624S + T631S + S632C;
        I381V + N382T + Q385E + Q387L + N393A + V486C + T492S,A + N610R + G624S + T631S + S632C;
        A345P + N368G+ N393A + T492S,A + N610R + G624S + T631S + S632C;
30
        N368G + I381V + Q385E + Q387L + N393A + T492S,A + N610R + G624S + T631S + S632C;
        A345P + N368G + I381V + Q385E + Q387L + N393A + T492S,A + N610R + G624S + T631S + S632C;
        A345P + N368G + I381V + Q385E + Q387L + N393A + T492S,A + N610R + G624S + T631S + S632C + V665I;
        N393A + T430R + Q431E + L432F + V486C + T492S,A + N610R + G624S + T631S + S632C;
        N393A + Q431E + L432F+ V486C+ T492S,A + N610R + G624S + T631S + S632C;
35
        N393A + I429V + Q431E + V486C + T492S,A + N610R + G624S + T631S + S632C;
        N393A + I429V + T430R + Q431E + L432F + V486C + T492S,A + N610R + G624S+ T631S + S632C;
        N368G+N393A+A492S,A;
        N368G+N393A;
        N393A+N610R:
40
        N368G+N393A+N610R;
        N368G+N393A+T492S,A+N610R+G624S;
        N368G + N393A + T492S,A + N610R + G624S + T631S + S632C + Q431E + L432F;
        N368G+N393A+N610R+G624S+T631S+S632C;
        N368G+N393A+T492S,A+N610R+G624S+T631S+S632C; or
45
        N368G+N393A+N610R+G624S+T631S+S632C+Q431E+L432F;
```

and wherein the variant has pullulanase activity, and;

- a) wherein the variant has at least 85%, at least 90%, at least 95%, at least 96%, at least 97%, at least 98%, or at least 99%, but less than 100% sequence identity to the polypeptide of SEQ ID NO: 3 and wherein the variant has increased thermoactivity compared to the pullulanase of SEQ ID NO: 3, particularly the variant has at least 60% relative activity when measured at 70°C relative to activity at 65°C, more particularly at least 65%, more particularly at least 70%, more particularly at least 80%, more particularly at least 90%, more particularly at least 100%; or
- b) wherein the variant has at least 85%, at least 90%, at least 95%, at least 96%, at least 97%, at least 98%, or at least 99%, but less than 100% sequence identity to the polypeptide of SEQ ID NO: 6 and wherein the variant has increased thermoactivity compared to the pullulanase of SEQ ID NO: 6, particularly the variant has at least 30% relative activity when measured at 70°C relative to activity at 65°C, more particularly at least 40%, more particularly

at least 50%, more particularly at least 60%, more particularly at least 70%, more particularly at least 80%, more particularly at least 90%, more particularly at least 100%; or

- c) wherein the variant has at least 85%, at least 90%, at least 95%, at least 96%, at least 97%, at least 98%, or at least 99%, but less than 100% sequence identity to the polypeptide of SEQ ID NO: 9 and wherein the variant has increased thermoactivity compared to the pullulanase of SEQ ID NO: 9, particularly the variant has at least 30% relative activity when measured at 70°C relative to activity at 65°C, more particularly at least 40%, more particularly at least 50%, more particularly at least 60%, more particularly at least 90%, more particularly at least 100%; or
- d) wherein the variant has at least 85%, at least 90%, at least 95%, at least 96%, at least 97%, at least 98%, or at least 99%, but less than 100% sequence identity to the polypeptide of SEQ ID NO: 16 and wherein the variant has increased thermoactivity compared to the pullulanase of SEQ ID NO: 16, particularly the variant has at least 30% relative activity when measured at 70°C relative to activity at 65°C, more particularly at least 40%, more particularly at least 50%, more particularly at least 80%, more particularly at least 90%, more particularly at least 100%; or
- e) wherein the variant has at least 85%, at least 90%, at least 95%, at least 96%, at least 97%, at least 98%, or at least 99%, but less than 100% sequence identity to the polypeptide of SEQ ID NO: 17 and wherein the variant has increased thermoactivity compared to the pullulanase of SEQ ID NO: 17, particularly the variant has at least 30% relative activity when measured at 70°C relative to activity at 65°C, more particularly at least 40%, more particularly at least 50%, more particularly at least 80%, more particularly at least 90%, more particularly at least 100%.

[0177] In a further particular embodiment the variant of the invention comprises at least one of the following substitutions or combinations of specific substitutions of the polypeptide of SEQ ID NO: 3 or in a corresponding position in the polypeptides of SEQ ID NO: 6, SEQ ID NO: 9, SEQ ID NO: 16, SEQ ID NO: 17:

```
25
        N368G;
        N393A;
        N610R;
        G624S;
30
        T492S,A;
        N393A + V486C + T492S,A + N610R + G624S + T631S + S632C;
        N393A + T492S,A + N610R + G624S + T631S + S632C;
        N368G + N393A + T492S,A + N610R + G624S + T631S + S632C;
        N368G+N393A+A492S,A;
35
        N368G+N393A+T492S,A+N610R+G624S;
        N368G + N393A + T492S,A + N610R + G624S + T631S + S632C + Q431E + L432F;
        N368G+N393A+N610R+G624S+T631S+S632C;
        N368G+N393A+N610R+G624S+T631S+S632C+Q431 E+L432F;
```

and wherein the variant has pullulanase activity, and;

5

10

15

20

45

50

55

- a) wherein the variant has at least 85%, at least 90%, at least 95%, at least 96%, at least 97%, at least 98%, or at least 99%, but less than 100% sequence identity to the polypeptide of SEQ ID NO: 3 and wherein the variant has increased thermoactivity compared to the pullulanase of SEQ ID NO: 3, particularly the variant has at least 60% relative activity when measured at 70°C relative to activity at 65°C, more particularly at least 65%, more particularly at least 70%, more particularly at least 80%, more particularly at least 90%, more particularly at least 100%; or
- b) wherein the variant has at least 85%, at least 90%, at least 95%, at least 96%, at least 97%, at least 98%, or at least 99%, but less than 100% sequence identity to the polypeptide of SEQ ID NO: 6 and wherein the variant has increased thermoactivity compared to the pullulanase of SEQ ID NO: 6, particularly the variant has at least 30% relative activity when measured at 70°C relative to activity at 65°C, more particularly at least 40%, more particularly at least 50%, more particularly at least 60%, more particularly at least 70%, more particularly at least 80%, more particularly at least 90%, more particularly at least 100%; or
- c) wherein the variant has at least 85%, at least 90%, at least 95%, at least 96%, at least 97%, at least 98%, or at least 99%, but less than 100% sequence identity to the polypeptide of SEQ ID NO: 9 and wherein the variant has increased thermoactivity compared to the pullulanase of SEQ ID NO: 9, particularly the variant has at least 30% relative activity when measured at 70°C relative to activity at 65°C, more particularly at least 40%, more particularly at least 50%, more particularly at least 80%, more

particularly at least 90%, more particularly at least 100%; or

5

10

25

30

45

50

- d) wherein the variant has at least 85%, at least 90%, at least 95%, at least 96%, at least 97%, at least 98%, or at least 99%, but less than 100% sequence identity to the polypeptide of SEQ ID NO: 16 and wherein the variant has increased thermoactivity compared to the pullulanase of SEQ ID NO: 16, particularly the variant has at least 30% relative activity when measured at 70°C relative to activity at 65°C, more particularly at least 40%, more particularly at least 50%, more particularly at least 80%, more particularly at least 90%, more particularly at least 100%; or
- e) wherein the variant has at least 85%, at least 90%, at least 95%, at least 96%, at least 97%, at least 98%, or at least 99%, but less than 100% sequence identity to the polypeptide of SEQ ID NO: 17 and wherein the variant has increased thermoactivity compared to the pullulanase of SEQ ID NO: 17, particularly the variant has at least 30% relative activity when measured at 70°C relative to activity at 65°C, more particularly at least 40%, more particularly at least 50%, more particularly at least 80%, more particularly at least 90%, more particularly at least 100%.
- [0178] More specifically the invention relates in one embodiment to pullulanase variants, comprising the substitution N368G of the polypeptide of SEQ ID NO: 3, wherein the variant has pullulanase activity, and wherein the pullulanase variants have at least 75%, at least 80%, at least 85%, at least 90%, at least 95%, at least 96%, at least 97%, at least 98%, or at least 99%, but less than 100% sequence identity to the polypeptide of SEQ ID NO: 3.
 - **[0179]** More specifically the invention relates in one embodiment to pullulanase variants, comprising the substitution E699R of the polypeptide of SEQ ID NO: 3, wherein the variant has pullulanase activity, and wherein the pullulanase variants have at least 75%, at least 80%, at least 85%, at least 90%, at least 95%, at least 96%, at least 97%, at least 98%, or at least 99%, but less than 100% sequence identity to the polypeptide of SEQ ID NO: 3.
 - **[0180]** More specifically the invention relates in one embodiment to pullulanase variants, comprising the substitution E150R of the polypeptide of SEQ ID NO: 3, wherein the variant has pullulanase activity, and wherein the pullulanase variants have at least 75%, at least 80%, at least 85%, at least 90%, at least 95%, at least 96%, at least 97%, at least 98%, or at least 99%, but less than 100% sequence identity to the polypeptide of SEQ ID NO: 3.
 - **[0181]** More specifically the invention relates in one embodiment to pullulanase variants, comprising the substitution N346S of the polypeptide of SEQ ID NO: 3, wherein the variant has pullulanase activity, and wherein the pullulanase variants have at least 75%, at least 80%, at least 85%, at least 90%, at least 95%, at least 96%, at least 97%, at least 98%, or at least 99%, but less than 100% sequence identity to the polypeptide of SEQ ID NO: 3.
 - **[0182]** More specifically the invention relates in one embodiment to pullulanase variants, comprising the substitution N243E of the polypeptide of SEQ ID NO: 3, wherein the variant has pullulanase activity, and wherein the pullulanase variants have at least 75%, at least 80%, at least 85%, at least 90%, at least 96%, at least 97%, at least 98%, or at least 99%, but less than 100% sequence identity to the polypeptide of SEQ ID NO: 3.
- [0183] More specifically the invention relates in one embodiment to pullulanase variants, comprising the substitution S244K of the polypeptide of SEQ ID NO: 3, wherein the variant has pullulanase activity, and wherein the pullulanase variants have at least 75%, at least 80%, at least 85%, at least 90%, at least 95%, at least 96%, at least 97%, at least 98%, or at least 99%, but less than 100% sequence identity to the polypeptide of SEQ ID NO: 3.
 - **[0184]** More specifically the invention relates in one embodiment to pullulanase variants, comprising the substitution V143G of the polypeptide of SEQ ID NO: 3, wherein the variant has pullulanase activity, and wherein the pullulanase variants have at least 75%, at least 80%, at least 85%, at least 90%, at least 95%, at least 96%, at least 97%, at least 98%, or at least 99%, but less than 100% sequence identity to the polypeptide of SEQ ID NO: 3.
 - **[0185]** More specifically the invention relates in one embodiment to pullulanase variants, comprising the substitution N393A of the polypeptide of SEQ ID NO: 3, wherein the variant has pullulanase activity, and wherein the pullulanase variants have at least 75%, at least 80%, at least 85%, at least 90%, at least 96%, at least 97%, at least 98%, or at least 99%, but less than 100% sequence identity to the polypeptide of SEQ ID NO: 3.
 - **[0186]** More specifically the invention relates in one embodiment to pullulanase variants, comprising the substitution N610R of the polypeptide of SEQ ID NO: 3, wherein the variant has pullulanase activity, and wherein the pullulanase variants have at least 75%, at least 80%, at least 85%, at least 90%, at least 95%, at least 96%, at least 97%, at least 98%, or at least 99%, but less than 100% sequence identity to the polypeptide of SEQ ID NO: 3.
 - **[0187]** More specifically the invention relates in one embodiment to pullulanase variants, comprising the substitution N610L of the polypeptide of SEQ ID NO: 3, wherein the variant has pullulanase activity, and wherein the pullulanase variants have at least 75%, at least 80%, at least 85%, at least 90%, at least 95%, at least 96%, at least 97%, at least 98%, or at least 99%, but less than 100% sequence identity to the polypeptide of SEQ ID NO: 3.
- [0188] More specifically the invention relates in one embodiment to pullulanase variants, comprising the substitution G624S of the polypeptide of SEQ ID NO: 3, wherein the variant has pullulanase activity, and wherein the pullulanase variants have at least 75%, at least 80%, at least 85%, at least 90%, at least 95%, at least 96%, at least 97%, at least 98%, or at least 99%, but less than 100% sequence identity to the polypeptide of SEQ ID NO: 3.

[0189] More specifically the invention relates in one embodiment to pullulanase variants, comprising the substitution F456A of the polypeptide of SEQ ID NO: 3, wherein the variant has pullulanase activity, and wherein the pullulanase variants have at least 75%, at least 80%, at least 85%, at least 90%, at least 95%, at least 96%, at least 97%, at least 98%, or at least 99%, but less than 100% sequence identity to the polypeptide of SEQ ID NO: 3.

[0190] More specifically the invention relates in one embodiment to pullulanase variants, comprising the substitution T492S,A of the polypeptide of SEQ ID NO: 3, wherein the variant has pullulanase activity, and wherein the pullulanase variants have at least 75%, at least 80%, at least 85%, at least 90%, at least 95%, at least 96%, at least 97%, at least 98%, or at least 99%, but less than 100% sequence identity to the polypeptide of SEQ ID NO: 3.

[0191] More specifically the invention relates in one embodiment to pullulanase variants, comprising the substitution V486C + T492S,A of the polypeptide of SEQ ID NO: 3, wherein the variant has pullulanase activity, and wherein the pullulanase variants have at least 75%, at least 80%, at least 85%, at least 90%, at least 95%, at least 96%, at least 97%, at least 98%, or at least 99%, but less than 100% sequence identity to the polypeptide of SEQ ID NO: 3.

[0192] More specifically the invention relates in one embodiment to pullulanase variants, comprising the substitution N368G + M402T of the polypeptide of SEQ ID NO: 3, wherein the variant has pullulanase activity, and wherein the pullulanase variants have at least 75%, at least 80%, at least 85%, at least 90%, at least 95%, at least 96%, at least 97%, at least 98%, or at least 99%, but less than 100% sequence identity to the polypeptide of SEQ ID NO: 3.

[0193] More specifically the invention relates in one embodiment to pullulanase variants, comprising the substitution T631S + S632C of the polypeptide of SEQ ID NO: 3, wherein the variant has pullulanase activity, and wherein the pullulanase variants have at least 75%, at least 80%, at least 85%, at least 90%, at least 95%, at least 96%, at least 97%, at least 98%, or at least 99%, but less than 100% sequence identity to the polypeptide of SEQ ID NO: 3.

[0194] More specifically the invention relates in one embodiment to pullulanase variants, comprising the substitution V486C + T492S,A+ T631S+ S632C of the polypeptide of SEQ ID NO: 3, wherein the variant has pullulanase activity, and wherein the pullulanase variants have at least 75%, at least 80%, at least 85%, at least 90%, at least 95%, at least 96%, at least 97%, at least 97%, at least 98%, or at least 99%, but less than 100% sequence identity to the polypeptide of SEQ ID NO: 3.

[0195] More specifically the invention relates in one embodiment to pullulanase variants, comprising the substitution N393A + T631S+ S632C of the polypeptide of SEQ ID NO: 3, wherein the variant has pullulanase activity, and wherein the pullulanase variants have at least 75%, at least 80%, at least 85%, at least 90%, at least 95%, at least 96%, at least 97%, at least 98%, or at least 99%, but less than 100% sequence identity to the polypeptide of SEQ ID NO: 3.

25

30

35

40

45

50

[0196] More specifically the invention relates in one embodiment to pullulanase variants, comprising the substitution T631S + S632C+ E699R of the polypeptide of SEQ ID NO: 3 wherein the variant has pullulanase activity, and wherein the pullulanase variants have at least 75%, at least 80%, at least 85%, at least 90%, at least 95%, at least 96%, at least 97%, at least 98%, or at least 99%, but less than 100% sequence identity to the polypeptide of SEQ ID NO: 3.

[0197] More specifically the invention relates in one embodiment to pullulanase variants, comprising the substitution N393A + V486C + T492S,A + T631S + S632C of the polypeptide of SEQ ID NO: 3, wherein the variant has pullulanase activity, and wherein the pullulanase variants have at least 75%, at least 80%, at least 85%, at least 90%, at least 95%, at least 97%, at least 98%, or at least 99%, but less than 100% sequence identity to the polypeptide of SEQ ID NO: 3.

[0198] More specifically the invention relates in one embodiment to pullulanase variants, comprising the substitution N393A + G624S + S632C of the polypeptide of SEQ ID NO: 3, wherein the variant has pullulanase activity, and wherein the pullulanase variants have at least 75%, at least 80%, at least 85%, at least 90%, at least 95%, at least 96%, at least 97%, at least 98%, or at least 99%, but less than 100% sequence identity to the polypeptide of SEQ ID NO: 3.

[0199] More specifically the invention relates in one embodiment to pullulanase variants, comprising the substitution N393A + N610R + T631S + S632C of the polypeptide of SEQ ID NO: 3, wherein the variant has pullulanase activity, and wherein the pullulanase variants have at least 75%, at least 80%, at least 85%, at least 90%, at least 95%, at least 96%, at least 97%, at least 98%, or at least 99%, but less than 100% sequence identity to the polypeptide of SEQ ID NO: 3.

[0200] More specifically the invention relates in one embodiment to pullulanase variants, comprising the substitution N393A + G624S + T631S + S632C of the polypeptide of SEQ ID NO: 3, wherein the variant has pullulanase activity.

N393A + G624S + T631S + S632C of the polypeptide of SEQ ID NO: 3, wherein the variant has pullulanase activity, and wherein the pullulanase variants have at least 75%, at least 85%, at least 90%, at least 95%, at least 96%, at least 97%, at least 98%, or at least 99%, but less than 100% sequence identity to the polypeptide of SEQ ID NO: 3.

[0201] More specifically the invention relates in one embodiment to pullulanase variants, comprising the substitution N393A + N610R + G624S + T631S + S632C of the polypeptide of SEQ ID NO: 3, wherein the variant has pullulanase activity, and wherein the pullulanase variants have at least 75%, at least 80%, at least 85%, at least 90%, at least 95%, at least 96%, at least 97%, at least 98%, or at least 99%, but less than 100% sequence identity to the polypeptide of SEQ ID NO: 3.

[0202] More specifically the invention relates in one embodiment to pullulanase variants, comprising the substitution N393A + V486C+ T492S,A + G624S + T631S + S632C of the polypeptide of SEQ ID NO: 3, wherein the variant has pullulanase activity, and wherein the pullulanase variants have at least 75%, at least 80%, at least 85%, at least 90%, at least 95%, at least 96%, at least 97%, at least 98%, or at least 99%, but less than 100% sequence identity to the

polypeptide of SEQ ID NO: 3.

30

35

45

50

55

[0203] More specifically the invention relates in one embodiment to pullulanase variants, comprising the substitution N393A + V486C + T492S,A + N610R + G624S + T631S + S632C of the polypeptide of SEQ ID NO: 3, wherein the variant has pullulanase activity, and wherein the pullulanase variants have at least 75%, at least 80%, at least 85%, at least 90%, at least 95%, at least 96%, at least 97%, at least 98%, or at least 99%, but less than 100% sequence identity to the polypeptide of SEQ ID NO: 3.

[0204] More specifically the invention relates in one embodiment to pullulanase variants, comprising the substitution N368G+ N393A + V486C + T492S,A + N610R + G624S + T631S + S632C of the polypeptide of SEQ ID NO: 3, wherein the variant has pullulanase activity, and wherein the pullulanase variants have at least 75%, at least 80%, at least 85%, at least 90%, at least 95%, at least 96%, at least 97%, at least 98%, or at least 99%, but less than 100% sequence identity to the polypeptide of SEQ ID NO: 3.

[0205] More specifically the invention relates in one embodiment to pullulanase variants, comprising the substitution N393A + V486C + T492S,A + N610R + G624S + T631S + S632C + E699R of the polypeptide of SEQ ID NO: 3, wherein the variant has pullulanase activity, and wherein the pullulanase variants have at least 75%, at least 80%, at least 85%, at least 90%, at least 95%, at least 96%, at least 97%, at least 98%, or at least 99%, but less than 100% sequence identity to the polypeptide of SEQ ID NO: 3.

[0206] More specifically the invention relates in one embodiment to pullulanase variants, comprising the substitution N393A + V486C + T492S,A + N610R + G624S + T631S + S632C + E699R of the polypeptide of SEQ ID NO: 3, wherein the variant has pullulanase activity, and wherein the pullulanase variants have at least 75%, at least 80%, at least 85%, at least 90%, at least 95%, at least 96%, at least 97%, at least 98%, or at least 99%, but less than 100% sequence identity to the polypeptide of SEQ ID NO: 3.

[0207] More specifically the invention relates in one embodiment to pullulanase variants, comprising the substitution N393A + V486C + T492S,A + N610R + G624S + T631S + S632C + E699R of the polypeptide of SEQ ID NO: 3, wherein the variant has pullulanase activity, and wherein the pullulanase variants have at least 75%, at least 80%, at least 85%, at least 90%, at least 95%, at least 96%, at least 97%, at least 98%, or at least 99%, but less than 100% sequence identity to the polypeptide of SEQ ID NO: 3.

[0208] More specifically the invention relates in one embodiment to pullulanase variants, comprising the substitution N393A + V486C + T492S,A + N610R + G624S + T631S + S632C + E699R of the polypeptide of SEQ ID NO: 3, wherein the variant has pullulanase activity, and wherein the pullulanase variants have at least 75%, at least 80%, at least 85%, at least 90%, at least 95%, at least 96%, at least 97%, at least 98%, or at least 99%, but less than 100% sequence identity to the polypeptide of SEQ ID NO: 3.

[0209] More specifically the invention relates in one embodiment to pullulanase variants, comprising the substitution N393A + V486C + T492S,A + N610R + G624S + T631S + S632C + E699R of the polypeptide of SEQ ID NO: 3, wherein the variant has pullulanase activity, and wherein the pullulanase variants have at least 75%, at least 80%, at least 85%, at least 90%, at least 95%, at least 96%, at least 97%, at least 98%, or at least 99%, but less than 100% sequence identity to the polypeptide of SEQ ID NO: 3.

[0210] More specifically the invention relates in one embodiment to pullulanase variants, comprising the substitution N346S + N393A + V486C + T492S,A + N610R + G624S + T631S + S632C of the polypeptide of SEQ ID NO: 3, wherein the variant has pullulanase activity, and wherein the pullulanase variants have at least 75%, at least 80%, at least 85%, at least 90%, at least 95%, at least 96%, at least 97%, at least 98%, or at least 99%, but less than 100% sequence identity to the polypeptide of SEQ ID NO: 3.

[0211] More specifically the invention relates in one embodiment to pullulanase variants, comprising the substitution N393A + F456A + V486C + T492S,A + N610R + G624S + T631S + S632C of the polypeptide of SEQ ID NO: 3, wherein the variant has pullulanase activity, and wherein the pullulanase variants have at least 75%, at least 80%, at least 85%, at least 90%, at least 95%, at least 96%, at least 97%, at least 98%, or at least 99%, but less than 100% sequence identity to the polypeptide of SEQ ID NO: 3.

[0212] More specifically the invention relates in one embodiment to pullulanase variants, comprising the substitution N393A + T492S,A + N610R + G624S + T631S + S632C of the polypeptide of SEQ ID NO: 3, wherein the variant has pullulanase activity, and wherein the pullulanase variants have at least 75%, at least 80%, at least 85%, at least 90%, at least 95%, at least 96%, at least 97%, at least 98%, or at least 99%, but less than 100% sequence identity to the polypeptide of SEQ ID NO: 3.

[0213] More specifically the invention relates in one embodiment to pullulanase variants, comprising the substitution N368G + N393A + T492S,A + N610R + G624S + T631S + S632C of the polypeptide of SEQ ID NO: 3, wherein the variant has pullulanase activity, and wherein the pullulanase variants have at least 75%, at least 80%, at least 85%, at least 90%, at least 95%, at least 96%, at least 97%, at least 98%, or at least 99%, but less than 100% sequence identity to the polypeptide of SEQ ID NO: 3.

[0214] More specifically the invention relates in one embodiment to pullulanase variants, comprising the substitution A345P + N393A+ V486C + T492S,A + N610R + G624S + T631S + S632C of the polypeptide of SEQ ID NO: 3, wherein

the variant has pullulanase activity, and wherein the pullulanase variants have at least 75%, at least 80%, at least 85%, at least 90%, at least 96%, at least 97%, at least 98%, or at least 99%, but less than 100% sequence identity to the polypeptide of SEQ ID NO: 3.

[0215] More specifically the invention relates in one embodiment to pullulanase variants, comprising the substitution N368G + K370S + I373L + N393A+ V486C + T492S,A + N610R + G624S + T631S + S632C of the polypeptide of SEQ ID NO: 3, wherein the variant has pullulanase activity, and wherein the pullulanase variants have at least 75%, at least 80%, at least 85%, at least 95%, at least 96%, at least 97%, at least 98%, or at least 99%, but less than 100% sequence identity to the polypeptide of SEQ ID NO: 3.

[0216] More specifically the invention relates in one embodiment to pullulanase variants, comprising the substitution I381V + Q385E + Q387L + N393A + V486C + T492S,A + N610R + G624S + T631S + S632C of the polypeptide of SEQ ID NO: 3, wherein the variant has pullulanase activity, and wherein the pullulanase variants have at least 75%, at least 80%, at least 95%, at least 95%, at least 96%, at least 97%, at least 98%, or at least 99%, but less than 100% sequence identity to the polypeptide of SEQ ID NO: 3.

[0217] More specifically the invention relates in one embodiment to pullulanase variants, comprising the substitution I381V + N382T + Q385E + Q387L + N393A + V486C + T492S,A + N610R + G624S + T631S + S632C of the polypeptide of SEQ ID NO: 3, wherein the variant has pullulanase activity, and wherein the pullulanase variants have at least 75%, at least 80%, at least 85%, at least 90%, at least 95%, at least 96%, at least 97%, at least 98%, or at least 99%, but less than 100% sequence identity to the polypeptide of SEQ ID NO: 3.

[0218] More specifically the invention relates in one embodiment to pullulanase variants, comprising the substitution A345P + N368G+ N393A + T492S,A + N610R + G624S + T631S + S632C of the polypeptide of SEQ ID NO: 3, wherein the variant has pullulanase activity, and wherein the pullulanase variants have at least 75%, at least 80%, at least 85%, at least 90%, at least 95%, at least 96%, at least 97%, at least 98%, or at least 99%, but less than 100% sequence identity to the polypeptide of SEQ ID NO: 3.

[0219] More specifically the invention relates in one embodiment to pullulanase variants, comprising the substitution N368G + I381V + Q385E + Q387L + N393A + T492S,A + N610R + G624S + T631S + S632C of the polypeptide of SEQ ID NO: 3, wherein the variant has pullulanase activity, and wherein the pullulanase variants have at least 75%, at least 80%, at least 95%, at least 95%, at least 96%, at least 97%, at least 98%, or at least 99%, but less than 100% sequence identity to the polypeptide of SEQ ID NO: 3.

[0220] More specifically the invention relates in one embodiment to pullulanase variants, comprising the substitution A345P + N368G + I381V + Q385E + Q387L + N393A + T492S,A + N610R + G624S + T631S + S632C of the polypeptide of SEQ ID NO: 3, wherein the variant has pullulanase activity, and wherein the pullulanase variants have at least 75%, at least 80%, at least 85%, at least 90%, at least 95%, at least 96%, at least 97%, at least 98%, or at least 99%, but less than 100% sequence identity to the polypeptide of SEQ ID NO: 3.

30

35

50

[0221] More specifically the invention relates in one embodiment to pullulanase variants, comprising the substitution A345P + N368G + I381V + Q385E + Q387L + N393A + T492S,A + N610R + G624S + T631S + S632C + V665I of the polypeptide of SEQ ID NO: 3, wherein the variant has pullulanase activity, and wherein the pullulanase variants have at least 75%, at least 80%, at least 85%, at least 90%, at least 96%, at least 97%, at least 98%, or at least 99%, but less than 100% sequence identity to the polypeptide of SEQ ID NO: 3.

[0222] More specifically the invention relates in one embodiment to pullulanase variants, comprising the substitution N393A + T430R + Q431E + L432F + V486C + T492S,A + N610R + G624S + T631S + S632C of the polypeptide of SEQ ID NO: 3, wherein the variant has pullulanase activity, and wherein the pullulanase variants have at least 75%, at least 80%, at least 85%, at least 95%, at least 96%, at least 97%, at least 98%, or at least 99%, but less than 100% sequence identity to the polypeptide of SEQ ID NO: 3.

[0223] More specifically the invention relates in one embodiment to pullulanase variants, comprising the substitution N393A + Q431E + L432F+ V486C+ T492S,A + N610R + G624S + T631S + S632C of the polypeptide of SEQ ID NO: 3, wherein the variant has pullulanase activity, and wherein the pullulanase variants have at least 75%, at least 80%, at least 85%, at least 90%, at least 96%, at least 97%, at least 98%, or at least 99%, but less than 100% sequence identity to the polypeptide of SEQ ID NO: 3.

[0224] More specifically the invention relates in one embodiment to pullulanase variants, comprising the substitution N393A + I429V + Q431E + V486C + T492S,A + N610R + G624S + T631S + S632C of the polypeptide of SEQ ID NO: 3, wherein the variant has pullulanase activity, and wherein the pullulanase variants have at least 75%, at least 80%, at least 85%, at least 90%, at least 95%, at least 96%, at least 97%, at least 98%, or at least 99%, but less than 100% sequence identity to the polypeptide of SEQ ID NO: 3.

[0225] More specifically the invention relates in one embodiment to pullulanase variants, comprising the substitution N393A + I429V + T430R + Q431E + L432F + V486C + T492S,A + N610R + G624S+ T631S + S632C of the polypeptide of SEQ ID NO: 3, wherein the variant has pullulanase activity, and wherein the pullulanase variants have at least 75%, at least 80%, at least 85%, at least 90%, at least 95%, at least 96%, at least 97%, at least 98%, or at least 99%, but less than 100% sequence identity to the polypeptide of SEQ ID NO: 3.

[0226] All of the above specific substitutions or combinations of substitutions have an effect of increased thermoactivity of the resulting variant when introduced in the parent disclosed as SEQ ID NO: 3. In order to test the effect of the specific substitutions in a different parent enzyme, several substitutions and combination of substitutions have been introduced in the parent enzyme disclosed herein as SEQ ID NO: 6. All the tested substitutions were shown also to be effective in SEQ ID NO: 6. SEQ ID NO: 6 has an additional 100 amino acids compared to SEQ ID NO: 3. Thus the actual position numbers are +100. The additional 100 amino acids constitute what is known as an X25 domain (domain of unknown function) of 104 amino acids and deletions corresponding to 4 amino acids in the N-terminal part. The X25 domain is found in the N-terminal part of SEQ ID NO: 6 in positions 158-261, upstream of the catalytic domain.

[0227] In a particular embodiment the variant of the invention comprises at least one of the following substitutions or combinations of specific substitutions of the polypeptide of SEQ ID NO: 3 or in a corresponding position in the polypeptides of SEQ ID NO: 6:

N368G;

N393A;

15 N610R;

10

20

25

30

35

40

45

50

55

G624S;

N368G+N393A+A492S,A;

N368G+N393A;

N393A+N610R;

N368G+N393A+N610R;

N368G+N393A+T492S,A+N610R+G624S; and wherein the variant has pullulanase activity, and wherein the variant has at least 85%, at least 90%, at least 95%, at least 96%, at least 97%, at least 98%, or at least 99%, but less than 100% sequence identity to the polypeptide of SEQ ID NO: 6 and wherein the variant has increased thermoactivity compared to the pullulanase of SEQ ID NO: 6, particularly the variant has at least 30% relative activity when measured at 70°C relative to activity at 65°C, more particularly at least 40%, more particularly at least 50%, more particularly at least 50%, more particularly at least 90%, more particularly at least 90%, more particularly at least 100%.

Similarly, in a further embodiments specific combinations of substitutions were tested in parent hybrid pullulanases disclosed herein as SEQ ID NO: 16 and SEQ ID NO: 17.

[0228] Thus in a particular embodiment the variant of the invention comprises at least one of the following substitutions or combinations of specific substitutions of the polypeptide of SEQ ID NO: 3 or in a corresponding position in the polypeptides of SEQ ID NO: 16 or SEQ ID NO: 17:

N368G+N393A+N610R+G624S+T631S+S632C;

N368G+N393A+N610R+G624S+T631S+S632C+Q431E+L432F;

N368G+N393A+T492S,A+N610R+G624S+T631S+S632C; or

N368G+N393A+T492S,A+N610R+G624S+T631S+S632C+Q431E+L432F;

and wherein the variant has pullulanase activity, and wherein the variant has at least 85%, at least 90%, at least 95%, at least 97%, at least 98%, or at least 99%, but less than 100% sequence identity to the polypeptide of SEQ ID NO: 16 or SEQ ID NO: 17 and wherein the variant has increased thermoactivity compared to the pullulanase of SEQ ID NO: 16 or SEQ ID NO: 17, particularly the variant has at least 30% relative activity when measured at 70°C relative to activity at 65°C, more particularly at least 40%, more particularly at least 50%, more particularly at least 50%, more particularly at least 90%, more particularly at least 90%, more particularly at least 90%, more particularly at least 100%.

[0229] When the parent pullulanase is selected as SEQ ID NO: 6, SEQ ID NO: 16, or SEQ ID NO: 17, which have 100 amino acids more than e.g., SEQ ID NO: 3 the actual positions referring to SEQ ID NO: 6 SEQ ID NO: 16, or SEQ ID NO: 17, numbering will be +100. Thus as an example, N368G+N393A+A492S, would correspond to N468G+N493A+A592S in SEQ ID NO: 6.

Variant Catalytic domain

[0230] The present invention provides a variant catalytic domain, wherein the variant catalytic domain comprises a substitution at one or more positions corresponding to positions 393, 346, 368, 370, 373, 381, 385, 387, 402, 429, 430, 456, 486, 492, 610, 631, 632, 665 and 699 of the polypeptide of SEQ ID NO: 3; and

a) wherein the variant catalytic domain has at least 85%, at least 90%, at least 95%, at least 96%, at least 97%, at

least 98%, or at least 99%, but less than 100% sequence identity to amino acids 330 to 828 of SEQ ID NO: 3; or b) wherein the variant catalytic domain has at least 85%, at least 90%, at least 95%, at least 96%, at least 97%, at least 98%, or at least 99%, but less than 100% sequence identity to amino acids 430 to 928 of SEQ ID NO: 6; or c) wherein the variant catalytic domain has at least 85%, at least 90%, at least 95%, at least 96%, at least 97%, at least 98%, or at least 99%, but less than 100% sequence identity to amino acids 330 to 829 of SEQ ID NO: 9; or d) wherein the variant catalytic domain has at least 85%, at least 90%, at least 95%, at least 96%, at least 97%, at least 98%, or at least 99%, but less than 100% sequence identity to amino acids 430 to 928 of SEQ ID NO: 16; or e) wherein the variant catalytic domain has at least 85%, at least 90%, at least 95%, at least 96%, at least 97%, at least 98%, or at least 99%, but less than 100% sequence identity to amino acids 430 to 928 of SEQ ID NO: 17.

10

5

[0231] In another aspect, a variant catalytic domain comprises a substitution at two or more positions corresponding to positions 393, 346, 368, 370, 373, 381, 385, 387, 402, 429, 430, 456, 486, 492, 610, 624, 631, 632, 665 and 699 of the polypeptide of SEQ ID NO: 3; and

15

20

a) wherein the variant catalytic domain has at least 85%, at least 90%, at least 95%, at least 96%, at least 97%, at least 98%, or at least 99%, but less than 100% sequence identity to amino acids 330 to 828 of SEQ ID NO: 3; or b) wherein the variant catalytic domain has at least 85%, at least 90%, at least 95%, at least 96%, at least 97%, at least 98%, or at least 99%, but less than 100% sequence identity to amino acids 430 to 928 of SEQ ID NO: 6; or c) wherein the variant catalytic domain has at least 85%, at least 90%, at least 95%, at least 96%, at least 97%, at least 98%, or at least 99%, but less than 100% sequence identity to amino acids 330 to 829 of SEQ ID NO: 9; or d) wherein the variant catalytic domain has at least 85%, at least 90%, at least 95%, at least 96%, at least 97%, at least 98%, or at least 99%, but less than 100% sequence identity to amino acids 430 to 928 of SEQ ID NO: 16; or e) wherein the variant catalytic domain has at least 85%, at least 90%, at least 95%, at least 96%, at least 97%, at least 98%, or at least 99%, but less than 100% sequence identity to amino acids 430 to 928 of SEQ ID NO: 17.

25

[0232] In another aspect, a variant catalytic domain comprises a substitution at three or more positions corresponding to positions 393, 346, 368, 370, 373, 381, 385, 387, 402, 429, 430, 431, 456, 486, 492, 610, 624, 631, 632, 665 and 699 of the polypeptide of SEQ ID NO: 3; and

30

a) wherein the variant catalytic domain has at least 85%, at least 90%, at least 95%, at least 96%, at least 97%, at least 98%, or at least 99%, but less than 100% sequence identity to amino acids 330 to 828 of SEQ ID NO: 3; or b) wherein the variant catalytic domain has at least 85%, at least 90%, at least 95%, at least 96%, at least 97%, at least 98%, or at least 99%, but less than 100% sequence identity to amino acids 430 to 928 of SEQ ID NO: 6; or c) wherein the variant catalytic domain has at least 85%, at least 90%, at least 95%, at least 96%, at least 97%, at least 98%, or at least 99%, but less than 100% sequence identity to amino acids 330 to 829 of SEQ ID NO: 9; or d) wherein the variant catalytic domain has at least 85%, at least 90%, at least 95%, at least 96%, at least 97%, at least 98%, or at least 99%, but less than 100% sequence identity to amino acids 430 to 928 of SEQ ID NO: 16; or e) wherein the variant catalytic domain has at least 85%, at least 90%, at least 95%, at least 96%, at least 97%, at least 98%, or at least 99%, but less than 100% sequence identity to amino acids 430 to 928 of SEQ ID NO: 17.

40

35

In another aspect, a variant catalytic domain comprises a four or more positions corresponding to positions 393, 346, 368, 370, 373, 381, 385, 387, 402, 429, 430, 431, 432, 456, 486, 492, 610, 624, 631, 632, 665 and 699 of the polypeptide of SEQ ID NO: 3; and

45

50

a) wherein the variant catalytic domain has at least 85%, at least 90%, at least 95%, at least 96%, at least 97%, at least 98%, or at least 99%, but less than 100% sequence identity to amino acids 330 to 828 of SEQ ID NO: 3; or b) wherein the variant catalytic domain has at least 85%, at least 90%, at least 95%, at least 96%, at least 97%, at least 98%, or at least 99%, but less than 100% sequence identity to amino acids 430 to 928 of SEQ ID NO: 6; or c) wherein the variant catalytic domain has at least 85%, at least 90%, at least 95%, at least 96%, at least 97%, at least 98%, or at least 99%, but less than 100% sequence identity to amino acids 330 to 829 of SEQ ID NO: 9; or d) wherein the variant catalytic domain has at least 85%, at least 90%, at least 95%, at least 96%, at least 97%, at least 98%, or at least 99%, but less than 100% sequence identity to amino acids 430 to 928 of SEQ ID NO: 16; or e) wherein the variant catalytic domain has at least 85%, at least 90%, at least 95%, at least 96%, at least 97%, at least 98%, or at least 99%, but less than 100% sequence identity to amino acids 430 to 928 of SEQ ID NO: 17.

55

In another aspect, a variant catalytic domain comprises a five or more positions corresponding to positions 393, 345, 346, 368, 370, 373, 381, 385, 387, 402, 429, 430, 431, 432, 456, 486, 492, 610, 624, 631, 632, 665 and 699 of the polypeptide of SEQ ID NO: 3; and

a) wherein the variant catalytic domain has at least 85%, at least 90%, at least 95%, at least 96%, at least 97%, at least 98%, or at least 99%, but less than 100% sequence identity to amino acids 330 to 828 of SEQ ID NO: 3; or b) wherein the variant catalytic domain has at least 85%, at least 90%, at least 95%, at least 96%, at least 97%, at least 98%, or at least 99%, but less than 100% sequence identity to amino acids 430 to 928 of SEQ ID NO: 6; or c) wherein the variant catalytic domain has at least 85%, at least 90%, at least 95%, at least 96%, at least 97%, at least 98%, or at least 99%, but less than 100% sequence identity to amino acids 330 to 829 of SEQ ID NO: 9; or d) wherein the variant catalytic domain has at least 85%, at least 90%, at least 95%, at least 96%, at least 97%, at least 98%, or at least 99%, but less than 100% sequence identity to amino acids 430 to 928 of SEQ ID NO: 16; or e) wherein the variant catalytic domain has at least 85%, at least 90%, at least 95%, at least 96%, at least 97%, at least 98%, or at least 99%, but less than 100% sequence identity to amino acids 430 to 928 of SEQ ID NO: 17.

5

10

15

20

25

30

35

40

45

50

55

In another aspect, a variant catalytic domain comprises a substitution at six or more positions corresponding to positions 393, 345, 346, 368, 370, 373, 381, 382, 385, 387, 402, 429, 430, 431, 432, 456, 486, 492, 610, 624, 631, 632, 665 and 699 of the polypeptide of SEQ ID NO: 3; and

a) wherein the variant catalytic domain has at least 85%, at least 90%, at least 95%, at least 96%, at least 97%, at least 98%, or at least 99%, but less than 100% sequence identity to amino acids 330 to 828 of SEQ ID NO: 3; or b) wherein the variant catalytic domain has at least 85%, at least 90%, at least 95%, at least 96%, at least 97%, at least 98%, or at least 99%, but less than 100% sequence identity to amino acids 430 to 928 of SEQ ID NO: 6; or c) wherein the variant catalytic domain has at least 85%, at least 90%, at least 95%, at least 96%, at least 97%, at least 98%, or at least 99%, but less than 100% sequence identity to amino acids 330 to 829 of SEQ ID NO: 9; or d) wherein the variant catalytic domain has at least 85%, at least 90%, at least 95%, at least 96%, at least 97%, at least 98%, or at least 99%, but less than 100% sequence identity to amino acids 430 to 928 of SEQ ID NO: 16; or e) wherein the variant catalytic domain has at least 85%, at least 90%, at least 95%, at least 96%, at least 97%, at least 98%, or at least 99%, but less than 100% sequence identity to amino acids 430 to 928 of SEQ ID NO: 17.

[0233] In a further embodiment the present invention relates to a pullulanase variant comprising the variant catalytic domain according to the invention, wherein the pullulanase variant has pullulanase activity and increased thermoactivity compared to the parent pullulanase, and the variant has at least 60% relative activity when measured at 70°C relative to activity at 65°C, more particularly at least 65%, more particularly at least 70%, more particularly at least 60%, more particularly at least 75%, more particularly at least 80%, more particularly at least 90%, more particularly at least 100%. [0234] The pullulanase variant comprising the variant catalytic domain, comprises one or more substitutions selected from the group consisting of 393A, 345P, 346S, 368G, 370S, 373L, 381V, 382T, 385F, 387L, 402T, 429V, 430R, 431E, 432F, 456A, 486C, 492S,A, 610R,L, 624S, 631S, 632C, 665I and 699R corresponding to positions of polypeptide of SEQ ID NO: 3.

[0235] According to the invention several variant catalytic domains (CD) have been constructed and it has further been shown in the examples that the resulting variant pullulanases having increased thermo-activity can be further modified by replacing the N-terminal part of the mature pullulanase and at the same time retain the improved properties, e.g., increased thermo-activity.

[0236] Pullulanases may comprise N-terminal parts comprising domains selected from a CBM41 domain, an X45 domain and a CBM48 domain. Thus in one embodiment the pullulanase variant according to the invention, further comprises an N-terminal part comprising at least one of the domains selected from a CBM41 domain, an X45 domain and a CBM48 domain. In one embodiment all of these domains may be present.

[0237] The pullulanase variant according to the invention may further comprise an X25 domain. Preferably the N-terminal domains are selected from CBM41, X45, X25, and CBM48 obtainable from a *Bacillus* bacterium. Particualerly the *Bacillus* species is *Bacillus* acidopullulyticus or *Bacillus* deramificans.

[0238] In a particular embodiment the pullulanase variant according to the invention comprises or consists of one or more substitutions selected from the group consisting of 393A, 368G, 492S,A, 610R,L, 624S, 631S, 632C, 431E, 432F. More particularly the variant catalytic domain comprises at least one of the following substitutions or combinations of substitutions:

368G+393A+492S,A; 368G+393A+T492A,S+610R+624S; 393A+492S,A+610R+624S+631S+632C; 368G+393A+492S,A+610R+624S+631S+632C; 368G+393A+492S,A+610R+624S+631S+632C+431E+432F; 368G+393A+610R+624S+631S+632C; or 368G+393A+610R+624S+631S+632C+431E+432F; and

5

10

15

30

35

40

45

50

a) wherein the variant catalytic domain has at least 85%, at least 90%, at least 95%, at least 96%, at least 97%, at least 98%, or at least 99%, but less than 100% sequence identity to amino acids 330 to 828 of SEQ ID NO: 3; or b) wherein the variant catalytic domain has at least 85%, at least 90%, at least 95%, at least 96%, at least 97%, at least 98%, or at least 99%, but less than 100% sequence identity to amino acids 430 to 928 of SEQ ID NO: 6; or c) wherein the variant catalytic domain has at least 85%, at least 90%, at least 95%, at least 96%, at least 97%, at least 98%, or at least 99%, but less than 100% sequence identity to amino acids 330 to 829 of SEQ ID NO: 9; or d) wherein the variant catalytic domain has at least 85%, at least 90%, at least 95%, at least 96%, at least 97%, at least 98%, or at least 99%, but less than 100% sequence identity to amino acids 430 to 928 of SEQ ID NO: 16; or e) wherein the variant catalytic domain has at least 85%, at least 90%, at least 95%, at least 96%, at least 97%, at least 98%, or at least 99%, but less than 100% sequence identity to amino acids 430 to 928 of SEQ ID NO: 17.

[0239] Particular examples of variants according to the invention, in which N-terminal part have been replaced are further described in the examples. Thus in further particular embodiments the invention relates to pullulanase variant selected from SEQ ID NO: 20 or a pullulanase having at least 85%, at least 90%, at least 95%, at least 96%, at least 97%, at least 98%, or at least 99%, or 100% sequence identity to the polypeptide of SEQ ID NO: 20, and comprising the substitutions N368G+N393A+N610R+G624S+T631S+S632C, using SEQ ID NO: 3 for numbering. In another particular embodiment the invention relates to pullulanase variant selected from SEQ ID NO: 21 or a pullulanase having at least 85%, at least 90%, at least 95%, at least 96%, at least 97%, at least 98%, or at least 99%, or 100% sequence identity to the polypeptide of SEQ ID NO: 21, and comprising the substitutions N368G+N393A+A492S,A, using SEQ ID NO: 3 for numbering. In another particular embodiment the invention relates to pullulanase variant selected from SEQ ID NO: 22 or a pullulanase having at least 85%, at least 90%, at least 95%, at least 96%, at least 97%, at least 98%, or at least 99%, or 100% sequence identity to the polypeptide of SEQ ID NO: 22, and comprising the substitutions N368G+N393A+T492S,A+N610R+G624S, using SEQ ID NO: 3 for numbering. In another particular embodiment the invention relates to pullulanase variant selected from SEQ ID NO: 23 or a pullulanase having at least 85%, at least 90%, at least 95%, at least 96%, at least 97%, at least 98%, or at least 99%, or 100% sequence identity to the polypeptide of SEQ ID NO: 23, and comprising the substitutions N368G+N393A+T492S,A+N610R+G624S, using SEQ ID NO: 3 for numbering. In another particular embodiment the invention relates to pullulanase variant selected from SEQ ID NO: 24 or a pullulanase having at least 85%, at least 90%, at least 95%, at least 96%, at least 97%, at least 98%, or at least 99%, or 100% sequence identity to the polypeptide of SEQ ID NO: 24, and comprising the substitutions N368G+N393A+T492S,A +N610R+G624S+T631S+S632C, using SEQ ID NO: 3 for numbering. In another particular embodiment the invention relates to pullulanase variant selected from SEQ ID NO: 25 or a pullulanase having at least 85%, at least 90%, at least 95%, at least 96%, at least 97%, at least 98%, or at least 99%, or 100% sequence identity the polypeptide of **SEQ** ID NO: 25, and comprising the substitutions to N368G+N393A+T492S,A+N610R+G624S+T631S+S632C, using SEQ ID NO: 3 for numbering. In another particular embodiment the invention relates to pullulanase variant selected from SEQ ID NO: 26 or a pullulanase having at least 85%, at least 90%, at least 95%, at least 96%, at least 97%, at least 98%, or at least 99%, or 100% sequence identity the polypeptide of **SEQ** ID NO: 26. and comprising to substitutions N368G+N393A+N610R+G624S+T631S+S632C+Q431E+L432F, using SEQ ID NO: 3 for numbering. In another particular embodiment the invention relates to pullulanase variant selected from SEQ ID NO: 27 or a pullulanase having at least 85%, at least 90%, at least 95%, at least 96%, at least 97%, at least 98%, or at least 99%, or 100% sequence identity to the polypeptide of SEQ ID NO: 27, and comprising the substitutions N368G+N393A+T492S,A +N610R+G624S+T631S+S632C+Q431E+L432F, using SEQ ID NO: 3 for numbering. In another particular embodiment the invention relates to pullulanase variant selected from SEQ ID NO: 28 or a pullulanase having at least 85%, at least 90%, at least 95%, at least 96%, at least 97%, at least 98%, or at least 99%, or 100% sequence identity to the polypeptide 28, and comprising the substitutions N368G+N393A+T492S,A +N610R+G624S+T631S+S632C+Q431E+L432F, using SEQ ID NO: 3 for numbering.

[0240] In a further aspect of the invention thermoactivity may be further improved by the addition of further specific substitutions (using SEQ ID NO: 6 for numbering) selected from one of the following substitutions or combinations of substitutions:

Q258A; Q287R; 55 Q352A; Q356R; Q258A+Q352A+Q356R; Q258A+Q287R+Q352A+Q356R;

```
V212I:
        H186A:
        V212I+Q258A+Q287R+Q352A+Q356R;
        H186A+V212I+Q258A+Q287R+Q352A+Q356R;
5
        Y27K+H79Y+V212I+Q258A+Q287R+Q352A+Q356R:
        Q258A+Q287R+N322P+Q352A+Q356R;
        H186A+V212I+Q258A+Q287R+N322P+Q352A+Q356R;
        H186A+V212I+Q258A+Q287R+Q352A+Q356R;
        H186A+V212I+Q258A+Q287R+N322P+Q352A+Q356R;
10
        Y27K+H79Y+H186A+V212I+Q258A+Q287R+Q352A+Q356R;
        Y27K+H79Y+H186A+V212I+Q258A+Q287R+N322P+Q352A+Q356R;
        Y27K+H79Y+H186A+V212I+Q258A+Q287R+N322P+Q352A+Q356R+D686S;
        N19G+Y27K+H79Y+H186A+V212I+Q258A+Q287R+N322P+Q352A+Q356R+D686S;
        N19G+Y27K+H79Y+H186A+V212I+Q258A+Q287R+G296R+N322P+Q352A+Q356R+D686S;
15
        Y27K+H79Y+H186A+V212I+Q258A+Q287R+N322P+Q352A+Q356R+V586A+D686S;
        Y27K+H79Y+H186A+V212I+Q258A+Q287R+N322P+Q352A+Q356R+D686S+E799R;
        N19G+Y27K+H79Y+H186A+V212I+Q258A+Q287R+N322P+Q352A+Q356R+V586A+D686S;
        N19G+Y27K+H79Y+H186A+V212I+Q258A+Q287R+N322P+Q352A+Q356R+D686S+E799R;
        N19G+Y27K+H79Y+H186A+V212I+Q258A+Q287R+N322P+Q352A+Q356R+Q485E +D686S+E799R;
20
        N19G+Y27K+H79Y+H186A+V212I+Q258A+Q287R+N322P+Q352A+Q356R+Q487L +D686S+E799R;
        N19G+Y27K+H79Y+H186A+V212I+Q258A+Q287R+N322P+Q352A+Q356R+V586A +D686S+E799R;
        N19G+Y27K+H79Y+H186A+V212I+Q258A+Q287R+G296R+N322P+Q352A+Q356R +V586A+D686S+E799R;
        N19G+Y27K+H79Y+H186A+V212I+Q258A+Q287R+G296R+N322P+Q352A+Q356R
        +Q487L+V586A+D686S+E799R;
25
        N19G+Y27K+H79Y+H186A+V212I+Q258A+Q287R+N322P+Q352A+Q356R+Q487L +D686S+C732S+E799R:
        N19G+Y27K+H79Y+H186A+V212I+Q258A+Q287R+N322P+Q352A+Q356R+Q487L +D686S+C732S+E799R;
        N19G+Y27K+H79Y+H186A+V212I+Q258A+Q287R+N322P+Q352A+Q356R+Q487L
        +S557A+L559G+D686S+E799R:
        N19G+Y27K+H79Y+H186A+V212I+Q258A+Q287R+N322P+Q352A+Q356R+H421E
                                                                                    +Q487L+S557A
30
        +L559G+V586A+D686S+E799R.
    [0241] In a particular embodiment the invention relates to pullulanase variants selected from a pullulanase having at
    least 85%, at least 90%, at least 95%, at least 96%, at least 97%, at least 98%, or at least 99% sequence identity to the
    polypeptide of SEQ ID NO: 26, and comprising the substitutions (using SEQ ID NO: 6 for numbering)
35
    N468G+N493A+N710R+G724S+T731S+S732C+Q531E+L532F, and wherein the variants further comprises one of the
    following substitutions or combinations of substitutions:
        Q258A;
        Q287R:
40
        Q352A;
        Q356R;
        Q258A+Q352A+Q356R;
        Q258A+Q287R+Q352A +Q356R;
        V212I;
45
        H186A;
        V212I+Q258A+Q287R+Q352A+Q356R;
        H186A+V212I+Q258A+Q287R+Q352A+Q356R;
        Y27K+H79Y+V212I+Q258A+Q287R+Q352A+Q356R;
        Q258A+Q287R+N322P+Q352A+Q356R;
50
        H186A+V212I+Q258A+Q287R+N322P+Q352A+Q356R;
        H186A+V212I+Q258A+Q287R+Q352A+Q356R;
        H186A+V212I+Q258A+Q287R+N322P+Q352A+Q356R;
        Y27K+H79Y+H186A+V212I+Q258A+Q287R+Q352A+Q356R;
        Y27K+H79Y+H186A+V212I+Q258A+Q287R+N322P+Q352A+Q356R:
55
        Y27K+H79Y+H186A+V212I+Q258A+Q287R+N322P+Q352A+Q356R+D686S;
        N19G+Y27K+H79Y+H186A+V212I+Q258A+Q287R+N322P+Q352A+Q356R+D686S;
        N19G+Y27K+H79Y+H186A+V212I+Q258A+Q287R+G296R+N322P+Q352A+Q356R+D686S;
```

Y27K+H79Y+H186A+V212I+Q258A+Q287R+N322P+Q352A+Q356R+V586A+D686S;

Y27K+H79Y+H186A+V212I+Q258A+Q287R+N322P+Q352A+Q356R+D686S+E799R:

```
N19G+Y27K+H79Y+H186A+V212I+Q258A+Q287R+N322P+Q352A+Q356R+V586A+D686S;
        N19G+Y27K+H79Y+H186A+V212I+Q258A+Q287R+N322P+Q352A+Q356R+D686S+E799R;
        N19G+Y27K+H79Y+H186A+V212I+Q258A+Q287R+N322P+Q352A+Q356R+Q485E +D686S+E799R;
5
        N19G+Y27K+H79Y+H186A+V212I+Q258A+Q287R+N322P+Q352A+Q356R+Q487L +D686S+E799R:
        N19G+Y27K+H79Y+H186A+V2121+Q258A+Q287R+N322P+Q352A+Q356R+V586A +D686S+E799R;
        N19G+Y27K+H79Y+H186A+V212I+Q258A+Q287R+G296R+N322P+Q352A+Q356R +V586A+D686S+E799R;
        N19G+Y27K+H79Y+H186A+V212I+Q258A+Q287R+G296R+N322P+Q352A+Q356R
        +Q487L+V586A+D686S+E799R;
10
        N19G+Y27K+H79Y+H186A+V212I+Q258A+Q287R+N322P+Q352A+Q356R+Q487L +D686S+C732S+E799R;
        N19G+Y27K+H79Y+H186A+V212I+Q258A+Q287R+N322P+Q352A+Q356R+Q487L +D686S+C732S+E799R;
        N19G+Y27K+H79Y+H186A+V212I+Q258A+Q287R+N322P+Q352A+Q356R+Q487L
        +S557A+L559G+D686S+E799R;
        N19G+Y27K+H79Y+H186A+V212I+Q258A+Q287R+N322P+Q352A+Q356R+H421E
                                                                                    +Q487L+S557A
15
        +L559G+V586A+D686S+E799R; said variants having at least 60% relative activity when measured at 72°C relative
        to activity at 65°C using the PHADEBAS assay.
    [0242] In a further particular embodiment the invention relates to pullulanase variants selected from a pullulanase
    having at least 85%, at least 90%, at least 95%, at least 96%, at least 97%, at least 98%, or at least 99% sequence
20
    identity to the polypeptide of SEQ ID NO: 27, and comprising the substitutions (using SEQ ID NO: 6 for numbering)
    N468G+N493A+T592S,A+N710R+G724S+T731S+S732C+Q531E+L532F, and wherein the variants further comprises
    one of the following substitutions or combinations of substitutions:
        Q258A;
25
        Q287R:
        Q352A;
        Q356R;
        Q258A+Q352A+Q356R;
        Q258A+Q287R+Q352A +Q356R;
30
        V212I:
        H186A;
        V212I+Q258A+Q287R+Q352A+Q356R;
        H186A+V212I+Q258A+Q287R+Q352A+Q356R;
        Y27K+H79Y+V212I+Q258A+Q287R+Q352A+Q356R;
35
        Q258A+Q287R+N322P+Q352A+Q356R;
        H186A+V212I+Q258A+Q287R+N322P+Q352A+Q356R;
        H186A+V212I+Q258A+Q287R+Q352A+Q356R;
        H186A+V212I+Q258A+Q287R+N322P+Q352A+Q356R;
        Y27K+H79Y+H186A+V212I+Q258A+Q287R+Q352A+Q356R:
40
        Y27K+H79Y+H186A+V212I+Q258A+Q287R+N322P+Q352A+Q356R;
        Y27K+H79Y+H186A+V212I+Q258A+Q287R+N322P+Q352A+Q356R+D686S;
        N19G+Y27K+H79Y+H186A+V212I+Q258A+Q287R+N322P+Q352A+Q356R+D686S;
        N19G+Y27K+H79Y+H186A+V212I+Q258A+Q287R+G296R+N322P+Q352A+Q356R+D686S;
        Y27K+H79Y+H186A+V212I+Q258A+Q287R+N322P+Q352A+Q356R+V586A+D686S;
45
        Y27K+H79Y+H186A+V212I+Q258A+Q287R+N322P+Q352A+Q356R+D686S+E799R;
        N19G+Y27K+H79Y+H186A+V212I+Q258A+Q287R+N322P+Q352A+Q356R+V586A+D686S;
        N19G+Y27K+H79Y+H186A+V212I+Q258A+Q287R+N322P+Q352A+Q356R+D686S+E799R;
        N19G+Y27K+H79Y+H186A+V212I+Q258A+Q287R+N322P+Q352A+Q356R+Q485E +D686S+E799R;
        N19G+Y27K+H79Y+H186A+V212I+Q258A+Q287R+N322P+Q352A+Q356R+Q487L +D686S+E799R;
50
        N19G+Y27K+H79Y+H186A+V212I+Q258A+Q287R+N322P+Q352A+Q356R+V586A +D686S+E799R;
        N19G+Y27K+H79Y+H186A+V212I+Q258A+Q287R+G296R+N322P+Q352A+Q356R +V586A+D686S+E799R;
        N19G+Y27K+H79Y+H186A+V212I+Q258A+Q287R+G296R+N322P+Q352A+Q356R
        +Q487L+V586A+D686S+F799R:
        N19G+Y27K+H79Y+H186A+V212I+Q258A+Q287R+N322P+Q352A+Q356R+Q487L +D686S+C732S+E799R:
55
        N19G+Y27K+H79Y+H186A+V212I+Q258A+Q287R+N322P+Q352A+Q356R+Q487L +D686S+C732S+E799R;
        N19G+Y27K+H79Y+H186A+V212I+Q258A+Q287R+N322P+Q352A+Q356R+Q487L
        +S557A+L559G+D686S+E799R;
```

+Q487L+S557A

N19G+Y27K+H79Y+H186A+V212I+Q258A+Q287R+N322P+Q352A+Q356R+H421E

+L559G+V586A+D686S+E799R; said variants having at least 60% relative activity when measured at 72°C relative to activity at 65°C using the PHADEBAS assay.

[0243] In another aspect of the invention thermoactivity may be further improved by the addition of further specific substitutions (using SEQ ID NO: 3 for numbering) selected from one of the following substitutions or combinations of substitutions:

```
Y27K+H79Y+Q187R+S798R;
       Y27K+H79Y+Q187R+D586S +S798R;
10
       Y27K+H79Y+Q187R+D586S+E699R+S798R;
       Y27K+H79Y+Q187R+T486S+D586S+S798R;
       N19G+Y27K+H79Y+Q187R+T486C+D586S+E699R+S798R;
       N19G+Y27K+H79Y+Q187R+Q385E+T486C+D586S+E699R+S798R;
       N19G+Y27K+H79Y+Q187R+Q387L+T486C+D586S+E699R+S798R;
15
       N19G+Y27K+H79Y+Q187R+Q387L+Q459G+T486C+D586S+C632S+E699R+S798R;
       N19G+Y27K+H79Y+Q187R+Q387L+T486C+D586S+C632S+Q675L+E699R+S798R;
       N19G+Y27K+H79Y+Q187R+V196R+Q387L+T486C+D586S+C632S+E699R+S798R;
       N19G+Y27K+H79Y+Q187R+V196R+Q387L+T486C+D586S+C632S+Q675L+E699R +S798R;
       N19G+Y27K+H79Y+Q187R+V196R+Q387L+Q459G+T486C+D586S+C632S+Q675L +E699R+S798R;
20
       N19G+Y27K+H79Y+Q187R+Q387L+D586S+E699R+S798R;
       N19G+Y27K+H79Y+Q187R+H321E+Q387L+D586S+E699R+S798R;
       N19G+Y27K+H79Y+Q187R+Q387L+Q459G+D586S+E699R+S798R;
       N19G+Y27K+H79Y+Q187R+Q387L+D586S+C632S+E699R+S798R;
       N19G+Y27K+H79Y+Q187R+E310A+D311K+Q387L+D586S+E699R+S798R;
25
       N19G+Y27K+H79Y+Q187R+E310A+D311K+Q387L+Q459G+D586S+E699R+S798R.
```

[0244] In a particular embodiment the invention relates to pullulanase variants selected from a pullulanase having at least 85%, at least 90%, at least 95%, at least 96%, at least 97%, at least 98%, or at least 99% sequence identity to the polypeptide of SEQ ID NO: 28, and comprising the substitutions (using SEQ ID NO: 3 for numbering) N368G+N393A+T492S,A+N610R+G624S+T631S+S632C+Q431E+L432F, and wherein the variants further comprises one of the following substitutions or combinations of substitutions:

30

Y27K+H79Y+Q187R+S798R;

Y27K+H79Y+Q187R+D586S +S798R;

```
35
       Y27K+H79Y+Q187R+D586S+E699R+S798R;
       Y27K+H79Y+Q187R+T486S+D586S+S798R;
       N19G+Y27K+H79Y+Q187R+T486C+D586S+E699R+S798R;
       N19G+Y27K+H79Y+Q187R+Q385E+T486C+D586S+E699R+S798R;
       N19G+Y27K+H79Y+Q187R+Q387L+T486C+D586S+E699R+S798R:
40
       N19G+Y27K+H79Y+Q187R+Q387L+Q459G+T486C+D586S+C632S+E699R+S798R;
       N19G+Y27K+H79Y+Q187R+Q387L+T486C+D586S+C632S+Q675L+E699R+S798R;
       N19G+Y27K+H79Y+Q187R+V196R+Q387L+T486C+D586S+C632S+E699R+S798R;
       N19G+Y27K+H79Y+Q187R+V196R+Q387L+T486C+D586S+C632S+Q675L+E699R +S798R;
       N19G+Y27K+H79Y+Q187R+V196R+Q387L+Q459G+T486C+D586S+C632S+Q675L +E699R+S798R;
45
       N19G+Y27K+H79Y+Q187R+Q387L+D586S+E699R+S798R;
       N19G+Y27K+H79Y+Q187R+H321E+Q387L+D586S+E699R+S798R;
       N19G+Y27K+H79Y+Q187R+Q387L+Q459G+D586S+E699R+S798R;
       N19G+Y27K+H79Y+Q187R+Q387L+D586S+C632S+E699R+S798R;
       N19G+Y27K+H79Y+Q187R+E310A+D311K+Q387L+D586S+E699R+S798R;
50
       N19G+Y27K+H79Y+Q187R+E310A+D311K+Q387L+Q459G+D586S+E699R+S798R, said variants having at
       least 30% relative activity when measured at 76°C relative to activity at 65°C using the PHADEBAS assay.
```

[0245] The variants may further comprise one or more additional substitutions at one or more (e.g., several) other positions. Such further variation could be introduced without affecting significantly the properties of the pullulanase variants

[0246] The amino acid changes may be of a minor nature, that is conservative amino acid substitutions or insertions that do not significantly affect the folding and/or activity of the protein; small deletions, typically of 1-30 amino acids; small amino- or carboxyl-terminal extensions, such as an amino-terminal methionine residue; a small linker peptide of

up to 20-25 residues; or a small extension that facilitates purification by changing net charge or another function, such as a poly-histidine tract, an antigenic epitope or a binding domain.

[0247] Examples of conservative substitutions are within the groups of basic amino acids (arginine, lysine and histidine), acidic amino acids (glutamic acid and aspartic acid), polar amino acids (glutamine and asparagine), hydrophobic amino acids (leucine, isoleucine and valine), aromatic amino acids (phenylalanine, tryptophan and tyrosine), and small amino acids (glycine, alanine, serine, threonine and methionine). Amino acid substitutions that do not generally alter specific activity are known in the art and are described, for example, by H. Neurath and R.L. Hill, 1979, In, The Proteins, Academic Press, New York. Common substitutions are Ala/Ser, Val/Ile, Asp/Glu, Thr/Ser, Ala/Gly, Ala/Thr, Ser/Asn, Ala/Val, Ser/Gly, Tyr/Phe, Ala/Pro, Lys/Arg, Asp/Asn, Leu/Ile, Leu/Val, Ala/Glu, and Asp/Gly.

[0248] Alternatively, the amino acid changes are of such a nature that the physico-chemical properties of the polypeptides are altered. For example, amino acid changes may improve the thermal stability of the polypeptide, alter the substrate specificity, change the pH optimum, and the like.

[0249] Essential amino acids in a polypeptide can be identified according to procedures known in the art, such as site-directed mutagenesis or alanine-scanning mutagenesis (Cunningham and Wells, 1989, Science 244: 1081-1085). In the latter technique, single alanine mutations are introduced at every residue in the molecule, and the resultant mutant molecules are tested for pullulanase activity to identify amino acid residues that are critical to the activity of the molecule. See also, Hilton et al., 1996, J. Biol. Chem. 271: 4699-4708. The active site of the enzyme or other biological interaction can also be determined by physical analysis of structure, as determined by such techniques as nuclear magnetic resonance, crystallography, electron diffraction, or photoaffinity labeling, in conjunction with mutation of putative contact site amino acids. See, for example, de Vos et al., 1992, Science 255: 306-312; Smith et al., 1992, J. Mol. Biol. 224: 899-904; Wlodaver et al., 1992, FEBS Lett. 309: 59-64. The identity of essential amino acids can also be inferred from an alignment with a related polypeptide.

Parent pullulanase

20

25

30

35

40

50

[0250] The parent pullulanase, may be a hybrid enzyme, e.g., P008 (SEQ ID NO: 3), as described herein obtained by combining an N-terminal fragment of the pullulanase derived from *Bacillus acidopullulyticus* described in WO 2009/075682 (SEQ ID NO: 4 in WO2009/075682; GENESEQP: AXB71624), fused to a C-terminal fragment of a pullulanase derived from a *Bacillus deramificans* strain isolated from a humus sample collected in Denmark (a homologous pullulanase from *Bacillus deramificans* was disclosed in US 6,074,854 and US 5,817,498). Further parent pullulanases disclosed herein include P258, disclosed herein as SEQ ID NO: 16 or P243, disclosed herein as SEQ ID NO: 17, P006 disclosed herein as SEQ ID NO: 19.

[0251] The parent pullulanase may also be any wildtype, or variant or hybrid pullulanase that may advantageously be improved by increasing the thermo-activity by introducing one or more substitutions as specified herein.

[0252] The parent pullulanase may be (a) a polypeptide having at least 70% sequence identity to the mature polypeptide of SEQ ID NO: 2 or 5 or 8; (b) a polypeptide encoded by a polynucleotide that hybridizes under low stringency conditions with (i) the mature polypeptide coding sequence of SEQ ID NO: 1 or 4 or 7, (ii) the full-length complement of (i) or (c) a polypeptide encoded by a polynucleotide having at least 60% sequence identity to the mature polypeptide coding sequence of SEQ ID NO: 1 or 4 or 7.

[0253] In an aspect, the parent has a sequence identity to the mature polypeptide of SEQ ID NO: 2 or 5 or 8 of at least 75%, at least 80%, at least 85%, at least 90%, at least 91%, at least 92%, at least 93%, at least 94%, at least 95%, at least 96%, at least 97%, at least 98%, at least 99%, or 100%, which have pullulanase activity. In one aspect, the amino acid sequence of the parent differs by up to 10 amino acids, e.g., 1, 2, 3, 4, 5, 6, 7, 8, 9, or 10, from the mature polypeptide of SEQ ID NO: 2 or 5 or 8.

[0254] In another aspect, the parent comprises or consists of the amino acid sequence of SEQ ID NO: 2 or 5 or 8. In another aspect, the parent comprises or consists of the mature polypeptide of SEQ ID NO: 2 or 5 or 8. In another aspect, the parent comprises or consists of amino acids 34 to 861 of SEQ ID NO: 2; 30 to 957 of SEQ ID NO: 5 or 34 to 862 of SEQ ID NO: 8 respectively.

[0255] In another embodiment, the parent is an allelic variant of the mature polypeptide of SEQ ID NO: 2 or 5 or 8.

[0256] In another aspect, the parent is encoded by a polynucleotide that hybridizes under very low stringency conditions, low stringency conditions, medium stringency conditions, medium-high stringency conditions, high stringency conditions, or very high stringency conditions with (i) the mature polypeptide coding sequence of SEQ ID NO: 1 or 4 or 7, (ii) the full-length complement of (i) (Sambrook et al., 1989, Molecular Cloning, A Laboratory Manual, 2d edition, Cold Spring Harbor, New York).

[0257] The polynucleotide of SEQ ID NO: 1 or 4 or 7 and their subsequence thereof, as well as the polypeptide of SEQ ID NO: 2 or 5 or 8 and their fragment thereof, may be used to design nucleic acid probes to identify and clone DNA encoding a parent from strains of different genera or species according to methods well known in the art. In particular, such probes can be used for hybridization with the genomic DNA or cDNA of a cell of interest, following standard Southern

blotting procedures, in order to identify and isolate the corresponding gene therein. Such probes can be considerably shorter than the entire sequence, but should be at least 15, e.g., at least 25, at least 35, or at least 70 nucleotides in length. Preferably, the nucleic acid probe is at least 100 nucleotides in length, e.g., at least 200 nucleotides, at least 300 nucleotides, at least 400 nucleotides, at least 500 nucleotides, at least 600 nucleotides, at least 700 nucleotides, at least 800 nucleotides, or at least 900 nucleotides in length. Both DNA and RNA probes can be used. The probes are typically labeled for detecting the corresponding gene (for example, with 32 P, 3 H, 35 S, biotin, or avidin). Such probes are encompassed by the present invention.

[0258] A genomic DNA or cDNA library prepared from such other strains may be screened for DNA that hybridizes with the probes described above and encodes a parent. Genomic or other DNA from such other strains may be separated by agarose or polyacrylamide gel electrophoresis, or other separation techniques. DNA from the libraries or the separated DNA may be transferred to and immobilized on nitrocellulose or other suitable carrier material. In order to identify a clone or DNA that hybridizes with SEQ ID NO: 1 or 4 or 7 or a subsequence thereof, the carrier material is used in a Southern blot. [0259] For purposes of the present invention, hybridization indicates that the polynucleotide hybridizes to a labeled nucleic acid probe corresponding to (i) SEQ ID NO: 1 or 4 or 7; (ii) the mature polypeptide coding sequence of SEQ ID NO: 1 or 4 or 7; (iii) the full-length complement thereof; or (iv) a subsequence thereof; under very low to very high stringency conditions. Molecules to which the nucleic acid probe hybridizes under these conditions can be detected using, for example, X-ray film or any other detection means known in the art.

10

30

35

40

45

[0260] In one aspect, the nucleic acid probe is the mature polypeptide coding sequence of SEQ ID NO: 1, 4 or 7. In another aspect, the nucleic acid probe is nucleotides 100 to 2583 of SEQ ID NO: 1; nucleotides 88 to 2871 of SEQ ID NO: 4 or nucleotides 100 to 2586 of SEQ ID NO: 7. In another aspect, the nucleic acid probe is a polynucleotide that encodes the polypeptide of SEQ ID NO: 2, 5 or 8; the mature polypeptide thereof; or a fragment thereof. In another aspect, the nucleic acid probe is SEQ ID NO: 1, 4, or 7.

[0261] In another embodiment, the parent is encoded by a polynucleotide having a sequence identity to the mature polypeptide coding sequence of SEQ ID NO: 1 of at least 60%, e.g., at least 65%, at least 70%, at least 75%, at least 80%, at least 95%, at least 91%, at least 92%, at least 93%, at least 94%, at least 95%, at least 96%, at least 97%, at least 98%, at least 99%, or 100%.

[0262] The polypeptide may be a hybrid polypeptide in which a region of one polypeptide is fused at the N-terminus or the C-terminus of a region of another polypeptide.

[0263] The parent may be a fusion polypeptide or cleavable fusion polypeptide in which another polypeptide is fused at the N-terminus or the C-terminus of the polypeptide of the present invention. A fusion polypeptide is produced by fusing a polynucleotide encoding another polypeptide to a polynucleotide of the present invention. Techniques for producing fusion polypeptides are known in the art, and include ligating the coding sequences encoding the polypeptides so that they are in frame and that expression of the fusion polypeptide is under control of the same promoter(s) and terminator. Fusion polypeptides may also be constructed using intein technology in which fusion polypeptides are created post-translationally (Cooper et al., 1993, EMBO J. 12: 2575-2583; Dawson et al., 1994, Science 266: 776-779).

[0264] A fusion polypeptide can further comprise a cleavage site between the two polypeptides. Upon secretion of the fusion protein, the site is cleaved releasing the two polypeptides. Examples of cleavage sites include, but are not limited to, the sites disclosed in Martin et al., 2003, J. Ind. Microbiol. Biotechnol. 3: 568-576; Svetina et al., 2000, J. Biotechnol. 76: 245-251; Rasmussen-Wilson et al., 1997, Appl. Environ. Microbiol. 63: 3488-3493; Ward et al., 1995, Biotechnology 13: 498-503; and Contreras et al., 1991, Biotechnology 9: 378-381; Eaton et al., 1986, Biochemistry 25: 505-512; Collins-Racie et al., 1995, Biotechnology 13: 982-987; Carter et al., 1989, Proteins: Structure, Function, and Genetics 6: 240-248; and Stevens, 2003, Drug Discovery World 4: 35-48.

[0265] The parent may be obtained from microorganisms of any genus. For purposes of the present invention, the term "obtained from" as used herein in connection with a given source shall mean that the parent encoded by a polynucleotide is produced by the source or by a strain in which the polynucleotide from the source has been inserted. In one aspect, the parent is secreted extracellularly.

[0266] The parent may be a bacterial pullulanase for example, the parent may be a Gram-positive bacterial polypeptide such as a *Bacillus*.

[0267] In one aspect, the parent is a Bacillus acidopullulyticus, or Bacillus deramificans pullulanase.

[0268] In another aspect, the parent is a Bacillus pullulanase, e.g., the pullulanase of SEQ ID NO: 2 or 5 or 8 or the mature polypeptide thereof.

[0269] It will be understood that for the aforementioned species, the invention encompasses both the perfect and imperfect states, and other taxonomic equivalents, e.g., anamorphs, regardless of the species name by which they are known. Those skilled in the art will readily recognize the identity of appropriate equivalents.

[0270] Strains of these species are readily accessible to the public in a number of culture collections, such as the American Type Culture Collection (ATCC), Deutsche Sammlung von Mikroorganismen und Zellkulturen GmbH (DSMZ), Centraalbureau Voor Schimmelcultures (CBS), and Agricultural Research Service Patent Culture Collection, Northern Regional Research Center (NRRL).

[0271] The parent may be identified and obtained from other sources including microorganisms isolated from nature (e.g., soil, composts, water, etc.) or DNA samples obtained directly from natural materials (e.g., soil, composts, water, etc.) using the above-mentioned probes. Techniques for isolating microorganisms and DNA directly from natural habitats are well known in the art. A polynucleotide encoding a parent may then be obtained by similarly screening a genomic DNA or cDNA library of another microorganism or mixed DNA sample. Once a polynucleotide encoding a parent has been detected with the probe(s), the polynucleotide can be isolated or cloned by utilizing techniques that are known to those of ordinary skill in the art (see, e.g., Sambrook et al., 1989, supra).

Preparation of Variants

10

20

25

30

35

40

45

50

55

[0272] The present invention also relates to methods for obtaining a variant having pullulanase activity, comprising: (a) introducing into a parent pullulanase a substitution at one or more (e.g., several) positions corresponding to positions 393, 143, 150, 243, 244, 345, 346, 368, 370, 373, 381, 382, 385, 387, 402, 429, 430, 431, 432, 456, 486, 492, 610, 624, 631, 632, 665 and 699 of the polypeptide of SEQ ID NO: 3, 6, 9 or hybrids thereof, wherein the variant has pullulanase activity; and (b) recovering the variant.

[0273] The variants can be prepared using any mutagenesis procedure known in the art, such as site-directed mutagenesis, synthetic gene construction, semi-synthetic gene construction, random mutagenesis, shuffling, etc.

[0274] Site-directed mutagenesis is a technique in which one or more (*e.g.*, several) mutations are introduced at one or more defined sites in a polynucleotide encoding the parent.

[0275] Site-directed mutagenesis can be accomplished *in vitro* by PCR involving the use of oligonucleotide primers containing the desired mutation. Site-directed mutagenesis can also be performed *in vitro* by cassette mutagenesis involving the cleavage by a restriction enzyme at a site in the plasmid comprising a polynucleotide encoding the parent and subsequent ligation of an oligonucleotide containing the mutation in the polynucleotide. Usually the restriction enzyme that digests the plasmid and the oligonucleotide is the same, permitting sticky ends of the plasmid and the insert to ligate to one another. See, *e.g.*, Scherer and Davis, 1979, Proc. Natl. Acad. Sci. USA 76: 4949-4955; and Barton et al., 1990, Nucleic Acids Res. 18: 7349-4966.

[0276] Site-directed mutagenesis can also be accomplished *in vivo* by methods known in the art. See, *e.g.*, U.S. Patent Application Publication No. 2004/0171154; Storici et al., 2001, Nature Biotechnol. 19: 773-776; Kren et al., 1998, Nat. Med. 4: 285-290; and Calissano and Macino, 1996, Fungal Genet. Newslett. 43: 15-16.

[0277] Any site-directed mutagenesis procedure can be used in the present invention. There are many commercial kits available that can be used to prepare variants.

[0278] Synthetic gene construction entails *in vitro* synthesis of a designed polynucleotide molecule to encode a polypeptide of interest. Gene synthesis can be performed utilizing a number of techniques, such as the multiplex microchipbased technology described by Tian et al. (2004, Nature 432: 1050-1054) and similar technologies wherein oligonucleotides are synthesized and assembled upon photo-programmable microfluidic chips.

[0279] Single or multiple amino acid substitutions, deletions, and/or insertions can be made and tested using known methods of mutagenesis, recombination, and/or shuffling, followed by a relevant screening procedure, such as those disclosed by Reidhaar-Olson and Sauer, 1988, Science 241: 53-57; Bowie and Sauer, 1989, Proc. Natl. Acad. Sci. USA 86: 2152-2156; WO 95/17413; or WO 95/22625. Other methods that can be used include error-prone PCR, phage display (*e.g.*, Lowman et al., 1991, Biochemistry 30: 10832-10837; U.S. Patent No. 5,223,409; WO 92/06204) and region-directed mutagenesis (Derbyshire et al., 1986, Gene 46: 145; Ner et al., 1988, DNA 7: 127).

[0280] Mutagenesis/shuffling methods can be combined with high-throughput, automated screening methods to detect activity of cloned, mutagenized polypeptides expressed by host cells (Ness et al., 1999, Nature Biotechnology 17: 893-896). Mutagenized DNA molecules that encode active polypeptides can be recovered from the host cells and rapidly sequenced using standard methods in the art. These methods allow the rapid determination of the importance of individual amino acid residues in a polypeptide.

[0281] Semi-synthetic gene construction is accomplished by combining aspects of synthetic gene construction, and/or site-directed mutagenesis, and/or random mutagenesis, and/or shuffling. Semi-synthetic construction is typified by a process utilizing polynucleotide fragments that are synthesized, in combination with PCR techniques. Defined regions of genes may thus be synthesized *de novo*, while other regions may be amplified using site-specific mutagenic primers, while yet other regions may be subjected to error-prone PCR or non-error prone PCR amplification. Polynucleotide subsequences may then be shuffled.

Polynucleotides

[0282] The present invention also relates to polynucleotides encoding a variant of the present invention.

Nucleic Acid Constructs

10

20

30

35

40

45

[0283] The present invention also relates to nucleic acid constructs comprising a polynucleotide encoding a variant of the present invention operably linked to one or more control sequences that direct the expression of the coding sequence in a suitable host cell under conditions compatible with the control sequences.

[0284] The polynucleotide may be manipulated in a variety of ways to provide for expression of a variant. Manipulation of the polynucleotide prior to its insertion into a vector may be desirable or necessary depending on the expression vector. The techniques for modifying polynucleotides utilizing recombinant DNA methods are well known in the art.

[0285] The control sequence may be a promoter, a polynucleotide which is recognized by a host cell for expression of the polynucleotide. The promoter contains transcriptional control sequences that mediate the expression of the variant. The promoter may be any polynucleotide that shows transcriptional activity in the host cell including mutant, truncated, and hybrid promoters, and may be obtained from genes encoding extracellular or intracellular polypeptides either homologous or heterologous to the host cell.

[0286] Examples of suitable promoters for directing transcription of the nucleic acid constructs of the present invention in a bacterial host cell are the promoters obtained from the *Bacillus amyloliquefaciens* alpha-amylase gene (*amyQ*), *Bacillus licheniformis* penicillinase gene (*penP*), *Bacillus stearothermophilus* maltogenic amylase gene (*amyM*), *Bacillus subtilis* levansucrase gene (*sacB*), *Bacillus subtilis xylA* and *xylB* genes, *Bacillus thuringiensis crylIIA* gene (Agaisse and Lereclus, 1994, Molecular Microbiology 13: 97-107), *E. coli lac* operon, *E. coli trc* promoter (Egon et al., 1988, Gene 69: 301-315), *Streptomyces coelicolor* agarase gene (*dagA*), and prokaryotic beta-lactamase gene (Villa-Kamaroff et al., 1978, Proc. Natl. Acad. Sci. USA 75: 3727-3731), as well as the *tac* promoter (DeBoer et al., 1983, Proc. Natl. Acad. Sci. USA 80: 21-25). Further promoters are described in "Useful proteins from recombinant bacteria" in Gilbert et al., 1980, Scientific American 242: 74-94; and in Sambrook *et al.*, 1989, *supra*. Examples of tandem promoters are disclosed in WO 99/43835.

[0287] Examples of suitable promoters for directing transcription of the nucleic acid constructs of the present invention in a filamentous fungal host cell are promoters obtained from the genes for Aspergillus nidulans acetamidase, Aspergillus niger neutral alpha-amylase, Aspergillus niger acid stable alpha-amylase, Aspergillus niger or Aspergillus awamori glucoamylase (glaA), Aspergillus oryzae TAKA amylase, Aspergillus oryzae alkaline protease, Aspergillus oryzae triose phosphate isomerase, Fusarium oxysporum trypsin-like protease (WO 96/00787), Fusarium venenatum amyloglucosidase (WO 00/56900), Fusarium venenatum Daria (WO 00/56900), Fusarium venenatum Quinn (WO 00/56900), Rhizomucor miehei lipase, Rhizomucor miehei aspartic proteinase, Trichoderma reesei beta-glucosidase, Trichoderma reesei cellobiohydrolase I, Trichoderma reesei cellobiohydrolase II, Trichoderma reesei endoglucanase I, Trichoderma reesei endoglucanase II, Trichoderma reesei endoglucanase III, Trichoderma reesei endoglucanase IV, Trichoderma reesei endoglucanase V, Trichoderma reesei xylanase I, Trichoderma reesei xylanase II, Trichoderma reesei beta-xylosidase, as well as the NA2-tpi promoter (a modified promoter from an Aspergillus neutral alpha-amylase gene in which the untranslated leader has been replaced by an untranslated leader from an Aspergillus triose phosphate isomerase gene; non-limiting examples include modified promoters from an Aspergillus niger neutral alpha-amylase gene in which the untranslated leader has been replaced by an untranslated leader from an Aspergillus nidulans or Aspergillus oryzae triose phosphate isomerase gene); and mutant, truncated, and hybrid promoters thereof. Other promoters are described in U.S. Patent No. 6,011,147.

[0288] In a yeast host, useful promoters are obtained from the genes for Saccharomyces cerevisiae enolase (ENO-1), Saccharomyces cerevisiae galactokinase (GAL1), Saccharomyces cerevisiae alcohol dehydrogenase/glyceraldehyde-3-phosphate dehydrogenase (ADH1, ADH2/GAP), Saccharomyces cerevisiae triose phosphate isomerase (TPI), Saccharomyces cerevisiae metallothionein (CUP1), and Saccharomyces cerevisiae 3-phosphoglycerate kinase. Other useful promoters for yeast host cells are described by Romanos et al., 1992, Yeast 8: 423-488.

[0289] The control sequence may also be a transcription terminator, which is recognized by a host cell to terminate transcription. The terminator sequence is operably linked to the 3'-terminus of the polynucleotide encoding the variant. Any terminator that is functional in the host cell may be used.

[0290] Preferred terminators for bacterial host cells are obtained from the genes for *Bacillus clausii* alkaline protease (*aprH*), *Bacillus licheniformis* alpha-amylase (*amyL*), and *Escherichia coli* ribosomal RNA (*rrnB*).

Preferred terminators for filamentous fungal host cells are obtained from the genes for Aspergillus nidulans anthranilate synthase, Aspergillus niger glucoamylase, Aspergillus niger alpha-glucosidase, Aspergillus oryzae TAKA amylase, and Fusarium oxysporum trypsin-like protease Trichoderma reesei beta-glucosidase, Trichoderma reesei cellobiohydrolase I, Trichoderma reesei endoglucanase I, Trichoderma reesei endoglucanase II, Trichoderma reesei endoglucanase V, Trichoderma reesei xylanase I, Trichoderma reesei xylanase II, Trichoderma reesei beta-xylosidase, and Trichoderma reesei translation elongation factor.

[0291] Preferred terminators for yeast host cells are obtained from the genes for *Saccharomyces cerevisiae* enolase, *Saccharomyces cerevisiae* cytochrome C (CYC1), and *Saccharomyces cerevisiae* glyceraldehyde-3-phosphate dehy-

drogenase. Other useful terminators for yeast host cells are described by Romanos et al., 1992, supra.

10

15

20

30

35

40

45

50

55

[0292] The control sequence may also be an mRNA stabilizer region downstream of a promoter and upstream of the coding sequence of a gene which increases expression of the gene.

[0293] Examples of suitable mRNA stabilizer regions are obtained from a *Bacillus thuringiensis crylllA* gene (WO 94/25612) and a *Bacillus subtilis* SP82 gene (Hue et al., 1995, Journal of Bacteriology 177: 3465-3471).

[0294] The control sequence may also be a leader, a nontranslated region of an mRNA that is important for translation by the host cell. The leader sequence is operably linked to the 5'-terminus of the polynucleotide encoding the variant. Any leader that is functional in the host cell may be used.

[0295] Preferred leaders for filamentous fungal host cells are obtained from the genes for *Aspergillus oryzae* TAKA amylase and *Aspergillus nidulans* triose phosphate isomerase.

[0296] Suitable leaders for yeast host cells are obtained from the genes for *Saccharomyces cerevisiae* enolase (ENO-1), *Saccharomyces cerevisiae* 3-phosphoglycerate kinase, *Saccharomyces cerevisiae* alpha-factor, and *Saccharomyces cerevisiae* alcohol dehydrogenase/glyceraldehyde-3-phosphate dehydrogenase (ADH2/GAP).

[0297] The control sequence may also be a polyadenylation sequence, a sequence operably linked to the 3'-terminus of the variant-encoding sequence and, when transcribed, is recognized by the host cell as a signal to add polyadenosine residues to transcribed mRNA. Any polyadenylation sequence that is functional in the host cell may be used.

[0298] Preferred polyadenylation sequences for filamentous fungal host cells are obtained from the genes for *Aspergillus nidulans* anthranilate synthase, *Aspergillus niger* glucoamylase, *Aspergillus niger* alpha-glucosidase, *Aspergillus oryzae* TAKA amylase, and *Fusarium oxysporum* trypsin-like protease.

[0299] Useful polyadenylation sequences for yeast host cells are described by Guo and Sherman, 1995, Mol. Cellular Biol. 15: 5983-5990.

[0300] The control sequence may also be a signal peptide coding region that encodes a signal peptide linked to the N-terminus of a variant and directs the variant into the cell's secretory pathway. The 5'-end of the coding sequence of the polynucleotide may inherently contain a signal peptide coding sequence naturally linked in translation reading frame with the segment of the coding sequence that encodes the variant. Alternatively, the 5'-end of the coding sequence may contain a signal peptide coding sequence that is foreign to the coding sequence. A foreign signal peptide coding sequence may be required where the coding sequence does not naturally contain a signal peptide coding sequence. Alternatively, a foreign signal peptide coding sequence may simply replace the natural signal peptide coding sequence in order to enhance secretion of the variant. However, any signal peptide coding sequence that directs the expressed variant into the secretory pathway of a host cell may be used.

[0301] Effective signal peptide coding sequences for bacterial host cells are the signal peptide coding sequences obtained from the genes for *Bacillus* NCIB 11837 maltogenic amylase, *Bacillus licheniformis* subtilisin, *Bacillus licheniformis* beta-lactamase, *Bacillus stearothermophilus* alpha-amylase, *Bacillus stearothermophilus* neutral proteases (*nprT*, *nprS*, *nprM*), and *Bacillus subtilis prsA*. Further signal peptides are described by Simonen and Palva, 1993, Microbiological Reviews 57: 109-137.

[0302] Effective signal peptide coding sequences for filamentous fungal host cells are the signal peptide coding sequences obtained from the genes for *Aspergillus niger* neutral amylase, *Aspergillus* niger glucoamylase, *Aspergillus oryzae* TAKA amylase, *Humicola insolens* cellulase, *Humicola insolens* endoglucanase V, *Humicola lanuginosa* lipase, and *Rhizomucor miehei* aspartic proteinase.

[0303] Useful signal peptides for yeast host cells are obtained from the genes for *Saccharomyces cerevisiae* alphafactor and *Saccharomyces cerevisiae* invertase. Other useful signal peptide coding sequences are described by Romanos et al., 1992, supra.

[0304] The control sequence may also be a propeptide coding sequence that encodes a propeptide positioned at the N-terminus of a variant. The resultant polypeptide is known as a proenzyme or propolypeptide (or a zymogen in some cases). A propolypeptide is generally inactive and can be converted to an active polypeptide by catalytic or autocatalytic cleavage of the propeptide from the propolypeptide. The propeptide coding sequence may be obtained from the genes for *Bacillus subtilis* alkaline protease (*aprE*), *Bacillus subtilis* neutral protease (*nprT*), *Myceliophthora thermophila* laccase (WO 95/33836), *Rhizomucor miehei* aspartic proteinase, and *Saccharomyces cerevisiae* alpha-factor.

[0305] Where both signal peptide and propeptide sequences are present, the propeptide sequence is positioned next to the N-terminus of the variant and the signal peptide sequence is positioned next to the N-terminus of the propeptide sequence.

[0306] It may also be desirable to add regulatory sequences that regulate expression of the variant relative to the growth of the host cell. Examples of regulatory systems are those that cause expression of the gene to be turned on or off in response to a chemical or physical stimulus, including the presence of a regulatory compound. Regulatory systems in prokaryotic systems include the *lac*, *tac*, and *trp* operator systems. In yeast, the ADH2 system or GAL1 system may be used. In filamentous fungi, the *Aspergillus niger* glucoamylase promoter, *Aspergillus oryzae* TAKA alpha-amylase promoter, and *Aspergillus oryzae* glucoamylase promoter may be used. Other examples of regulatory sequences are those that allow for gene amplification. In eukaryotic systems, these regulatory sequences include the dihydrofolate

reductase gene that is amplified in the presence of methotrexate, and the metallothionein genes that are amplified with heavy metals. In these cases, the polynucleotide encoding the variant would be operably linked with the regulatory sequence.

5 Expression Vectors

10

20

30

35

40

45

50

[0307] The present invention also relates to recombinant expression vectors comprising a polynucleotide encoding a variant of the present invention, a promoter, and transcriptional and translational stop signals. The various nucleotide and control sequences may be joined together to produce a recombinant expression vector that may include one or more convenient restriction sites to allow for insertion or substitution of the polynucleotide encoding the variant at such sites. Alternatively, the polynucleotide may be expressed by inserting the polynucleotide or a nucleic acid construct comprising the polynucleotide into an appropriate vector for expression. In creating the expression vector, the coding sequence is located in the vector so that the coding sequence is operably linked with the appropriate control sequences for expression.

[0308] The recombinant expression vector may be any vector (e.g., a plasmid or virus) that can be conveniently subjected to recombinant DNA procedures and can bring about expression of the polynucleotide. The choice of the vector will typically depend on the compatibility of the vector with the host cell into which the vector is to be introduced. The vector may be a linear or closed circular plasmid.

[0309] The vector may be an autonomously replicating vector, *i.e.*, a vector that exists as an extrachromosomal entity, the replication of which is independent of chromosomal replication, *e.g.*, a plasmid, an extrachromosomal element, a minichromosome, or an artificial chromosome. The vector may contain any means for assuring self-replication. Alternatively, the vector may be one that, when introduced into the host cell, is integrated into the genome and replicated together with the chromosome(s) into which it has been integrated. Furthermore, a single vector or plasmid or two or more vectors or plasmids that together contain the total DNA to be introduced into the genome of the host cell, or a transposon, may be used.

[0310] The vector preferably contains one or more selectable markers that permit easy selection of transformed, transfected, transduced, or the like cells. A selectable marker is a gene the product of which provides for biocide or viral resistance, resistance to heavy metals, prototrophy to auxotrophs, and the like.

Examples of bacterial selectable markers are *Bacillus licheniformis* or *Bacillus subtilis dal* genes, or markers that confer antibiotic resistance such as ampicillin, chloramphenicol, kanamycin, neomycin, spectinomycin or tetracycline resistance. Suitable markers for yeast host cells include, but are not limited to, ADE2, HIS3, LEU2, LYS2, MET3, TRP1, and URA3. Selectable markers for use in a filamentous fungal host cell include, but are not limited to, *amdS* (acetamidase), *argB* (ornithine carbamoyltransferase), *bar* (phosphinothricin acetyltransferase), *hph* (hygromycin phosphotransferase), *niaD* (nitrate reductase), *pyrG* (orotidine-5'-phosphate decarboxylase), *sC* (sulfate adenyltransferase), and *trpC* (anthranilate synthase), as well as equivalents thereof. Preferred for use in an *Aspergillus* cell are *Aspergillus nidulans* or *Aspergillus* oryzae amdS and pyrG genes and a *Streptomyces hygroscopicus bar* gene. Preferred for use in a *Trichoderma* cell are *adeA*, *adeB*, *amdS*, *hph*, and *pyrG* genes.

[0311] The selectable marker may be a dual selectable marker system as described in WO 2010/039889. In one aspect, the dual selectable marker is an *hph-tk* dual selectable marker system.

[0312] The vector preferably contains an element(s) that permits integration of the vector into the host cell's genome or autonomous replication of the vector in the cell independent of the genome.

[0313] For integration into the host cell genome, the vector may rely on the polynucleotide's sequence encoding the variant or any other element of the vector for integration into the genome by homologous or non-homologous recombination. Alternatively, the vector may contain additional polynucleotides for directing integration by homologous recombination into the genome of the host cell at a precise location(s) in the chromosome(s). To increase the likelihood of integration at a precise location, the integrational elements should contain a sufficient number of nucleic acids, such as 100 to 10,000 base pairs, 400 to 10,000 base pairs, and 800 to 10,000 base pairs, which have a high degree of sequence identity to the corresponding target sequence to enhance the probability of homologous recombination. The integrational elements may be any sequence that is homologous with the target sequence in the genome of the host cell. Furthermore, the integrational elements may be non-encoding or encoding polynucleotides. On the other hand, the vector may be integrated into the genome of the host cell by non-homologous recombination.

[0314] For autonomous replication, the vector may further comprise an origin of replication enabling the vector to replicate autonomously in the host cell in question. The origin of replication may be any plasmid replicator mediating autonomous replication that functions in a cell. The term "origin of replication" or "plasmid replicator" means a polynucleotide that enables a plasmid or vector to replicate *in vivo*.

[0315] Examples of bacterial origins of replication are the origins of replication of plasmids pBR322, pUC19, pACYC177, and pACYC184 permitting replication in *E. coli*, and pUB110, pE194, pTA1060, and pAMβ1 permitting replication in *Bacillus*.

[0316] Examples of origins of replication for use in a yeast host cell are the 2 micron origin of replication, ARS1, ARS4, the combination of ARS1 and CEN3, and the combination of ARS4 and CEN6.

[0317] Examples of origins of replication useful in a filamentous fungal cell are AMA1 and ANS1 (Gems et al., 1991, Gene 98: 61-67; Cullen et al., 1987, Nucleic Acids Res. 15: 9163-9175; WO 00/24883). Isolation of the AMA1 gene and construction of plasmids or vectors comprising the gene can be accomplished according to the methods disclosed in WO 00/24883.

[0318] More than one copy of a polynucleotide of the present invention may be inserted into a host cell to increase production of a variant. An increase in the copy number of the polynucleotide can be obtained by integrating at least one additional copy of the sequence into the host cell genome or by including an amplifiable selectable marker gene with the polynucleotide where cells containing amplified copies of the selectable marker gene, and thereby additional copies of the polynucleotide, can be selected for by cultivating the cells in the presence of the appropriate selectable agent. **[0319]** The procedures used to ligate the elements described above to construct the recombinant expression vectors of the present invention are well known to one skilled in the art (see, e.g., Sambrook et al., 1989, supra).

Host Cells

15

25

35

40

45

50

55

[0320] The present invention also relates to recombinant host cells, comprising a polynucleotide encoding a variant of the present invention operably linked to one or more control sequences that direct the production of a variant of the present invention. A construct or vector comprising a polynucleotide is introduced into a host cell so that the construct or vector is maintained as a chromosomal integrant or as a self-replicating extra-chromosomal vector as described earlier. The term "host cell" encompasses any progeny of a parent cell that is not identical to the parent cell due to mutations that occur during replication. The choice of a host cell will to a large extent depend upon the gene encoding the variant and its source.

[0321] The host cell may be any cell useful in the recombinant production of a variant, e.g., a prokaryote or a eukaryote. [0322] The prokaryotic host cell may be any Gram-positive or Gram-negative bacterium. Gram-positive bacteria include, but are not limited to, *Bacillus, Clostridium, Enterococcus, Geobacillus, Lactobacillus, Lactococcus, Oceanobacillus, Staphylococcus, Streptococcus*, and *Streptomyces*. Gram-negative bacteria include, but are not limited to, *Campylobacter, E. coli, Flavobacterium, Fusobacterium, Helicobacter, Ilyobacter, Neisseria, Pseudomonas, Salmonella*, and *Ureaplasma*.

[0323] The bacterial host cell may be any Bacillus cell including, but not limited to, Bacillus alkalophilus, Bacillus amyloliquefaciens, Bacillus brevis, Bacillus circulans, Bacillus clausii, Bacillus coagulans, Bacillus firmus, Bacillus lautus, Bacillus lentus, Bacillus licheniformis, Bacillus megaterium, Bacillus pumilus, Bacillus stearothermophilus, Bacillus subtilis, and Bacillus thuringiensis cells.

[0324] The bacterial host cell may also be any *Streptococcus* cell including, but not limited to, *Streptococcus equisimilis*, *Streptococcus pyogenes*, *Streptococcus uberis*, and *Streptococcus equi* subsp. *Zooepidemicus* cells.

[0325] The bacterial host cell may also be any Streptomyces cell, including, but not limited to, Streptomyces achromogenes, Streptomyces avermitilis, Streptomyces coelicolor, Streptomyces griseus, and Streptomyces lividans cells. [0326] The introduction of DNA into a Bacillus cell may be effected by protoplast transformation (see, e.g., Chang and Cohen, 1979, Mol. Gen. Genet. 168: 111-115), competent cell transformation (see, e.g., Young and Spizizen, 1961, J. Bacteriol. 81: 823-829, or Dubnau and Davidoff-Abelson, 1971, J. Mol. Biol. 56: 209-221), electroporation (see, e.g., Shigekawa and Dower, 1988, Biotechniques 6: 742-751), or conjugation (see, e.g., Koehler and Thorne, 1987, J. Bacteriol. 169: 5271-5278). The introduction of DNA into an E. coli cell may be effected by protoplast transformation (see, e.g., Hanahan, 1983, J. Mol. Biol. 166: 557-580) or electroporation (see, e.g., Dower et al., 1988, Nucleic Acids Res. 16: 6127-6145). The introduction of DNA into a Streptomyces cell may be effected by protoplast transformation, electroporation (see, e.g., Gong et al., 2004, Folia Microbiol. (Praha) 49: 399-405), conjugation (see, e.g., Mazodier et al., 1989, J. Bacteriol. 171: 3583-3585), or transduction (see, e.g., Burke et al., 2001, Proc. Natl. Acad. Sci. USA 98: 6289-6294). The introduction of DNA into a Pseudomonas cell may be effected by electroporation (see, e.g., Choi et al., 2006, J. Microbiol. Methods 64: 391-397), or conjugation (see, e.g., Pinedo and Smets, 2005, Appl. Environ. Microbiol. 71: 51-57). The introduction of DNA into a Streptococcus cell may be effected by natural competence (see, e.g., Perry and Kuramitsu, 1981, Infect. Immun. 32: 1295-1297), protoplast transformation (see, e.g., Catt and Jollick, 1991, Microbios 68: 189-207), electroporation (see, e.g., Buckley et al., 1999, Appl. Environ. Microbiol. 65: 3800-3804) or conjugation (see, e.g., Clewell, 1981, Microbiol. Rev. 45: 409-436). However, any method known in the art for introducing DNA into a host cell can be used. [0327] The host cell may also be a eukaryote, such as a mammalian, insect, plant, or fungal cell.

[0328] The host cell may be a fungal cell. "Fungi" as used herein includes the phyla Ascomycota, Basidiomycota, Chytridiomycota, and Zygomycota as well as the Oomycota and all mitosporic fungi (as defined by Hawksworth et al., In, Ainsworth and Bisby's Dictionary of The Fungi, 8th edition, 1995, CAB International, University Press, Cambridge, UK).
[0329] The fungal host cell may be a yeast cell. "Yeast" as used herein includes ascosporogenous yeast (Endomycetales), basidiosporogenous yeast, and yeast belonging to the Fungi Imperfecti (Blastomycetes). Since the classification

of yeast may change in the future, for the purposes of this invention, yeast shall be defined as described in *Biology and Activities of Yeast* (Skinner, Passmore, and Davenport, editors, Soc. App. Bacteriol. Symposium Series No. 9, 1980).

[0330] The yeast host cell may be a Candida, Hansenula, Kluyveromyces, Pichia, Saccharomyces, Schizosaccharomyces, or Yarrowia cell such as a Kluyveromyces lactis, Saccharomyces carlsbergensis, Saccharomyces cerevisiae, Saccharomyces diastaticus, Saccharomyces douglasii, Saccharomyces kluyveri, Saccharomyces norbensis, Saccharomyces oviformis, or Yarrowia lipolytica cell.

[0331] The fungal host cell may be a filamentous fungal cell. "Filamentous fungi" include all filamentous forms of the subdivision Eumycota and Oomycota (as defined by Hawksworth *et al.*, 1995, *supra*). The filamentous fungi are generally characterized by a mycelial wall composed of chitin, cellulose, glucan, chitosan, mannan, and other complex polysaccharides. Vegetative growth is by hyphal elongation and carbon catabolism is obligately aerobic. In contrast, vegetative growth by yeasts such as *Saccharomyces cerevisiae* is by budding of a unicellular thallus and carbon catabolism may be fermentative.

[0332] The filamentous fungal host cell may be an Acremonium, Aspergillus, Aureobasidium, Bjerkandera, Ceriporiopsis, Chrysosporium, Coprinus, Coriolus, Cryptococcus, Filibasidium, Fusarium, Humicola, Magnaporthe, Mucor, Myceliophthora, Neocallimastix, Neurospora, Paecilomyces, Penicillium, Phanerochaete, Phlebia, Piromyces, Pleurotus, Schizophyllum, Talaromyces, Thermoascus, Thielavia, Tolypocladium, Trametes, or Trichoderma cell.

[0333] For example, the filamentous fungal host cell may be an Aspergillus awamori, Aspergillus foetidus, Aspergillus fumigatus, Aspergillus japonicus, Aspergillus nidulans, Aspergillus niger, Aspergillus oryzae, Bjerkandera adusta, Ceriporiopsis aneirina, Ceriporiopsis caregiea, Ceriporiopsis gilvescens, Ceriporiopsis pannocinta, Ceriporiopsis rivulosa, Ceriporiopsis subrufa, Ceriporiopsis subvermispora, Chrysosporium inops, Chrysosporium keratinophilum, Chrysosporium lucknowense, Chrysosporium merdarium, Chrysosporium pannicola, Chrysosporium queenslandicum, Chrysosporium tropicum, Chrysosporium zonatum, Coprinus cinereus, Coriolus hirsutus, Fusarium bactridioides, Fusarium cerealis, Fusarium crookwellense, Fusarium culmorum, Fusarium graminearum, Fusarium graminum, Fusarium heterosporum, Fusarium negundi, Fusarium oxysporum, Fusarium reticulatum, Fusarium roseum, Fusarium sambucinum, Fusarium sarcochroum, Fusarium sporotrichioides, Fusarium sulphureum, Fusarium torulosum, Fusarium trichothecioides, Fusarium venenatum, Humicola insolens, Humicola lanuginosa, Mucor miehei, Myceliophthora thermophila, Neurospora crassa, Penicillium purpurogenum, Phanerochaete chrysosporium, Phlebia radiata, Pleurotus eryngii, Thielavia terrestris, Trametes villosa, Trametes versicolor, Trichoderma harzianum, Trichoderma koningii, Trichoderma longibrachiatum, Trichoderma reesei, or Trichoderma viride cell.

[0334] Fungal cells may be transformed by a process involving protoplast formation, transformation of the protoplasts, and regeneration of the cell wall in a manner known *per se*. Suitable procedures for transformation of *Aspergillus* and *Trichoderma* host cells are described in EP 238023, Yelton et al., 1984, Proc. Natl. Acad. Sci. USA 81: 1470-1474, and Christensen et al., 1988, Bio/Technology 6: 1419-1422. Suitable methods for transforming *Fusarium* species are described by Malardier et al., 1989, Gene 78: 147-156, and WO 96/00787. Yeast may be transformed using the procedures described by Becker and Guarente, In Abelson, J.N. and Simon, M.I., editors, Guide to Yeast Genetics and Molecular Biology, Methods in Enzymology, Volume 194, pp 182-187, Academic Press, Inc., New York; Ito et al., 1983, J. Bacteriol. 153: 163; and Hinnen et al., 1978, Proc. Natl. Acad. Sci. USA 75: 1920.

Methods of Production

30

35

40

45

50

55

[0335] The present invention also relates method for producing a variant pullulanase of a parent pullulanase comprising substitution of the parent pullulanase at one or more positions corresponding to positions 393, 143, 150, 243, 244, 345, 346, 368, 370, 373, 381, 382, 385, 387, 402, 429, 430, 431, 432, 456, 486, 492, 610, 624, 631, 632, 665 and 699 of the polypeptide of SEQ ID NO: 3 wherein the variant has pullulanase activity and increased thermoactivity compared to the parent; and

- a) wherein the variant has at least 85%, at least 90%, at least 95%, at least 96%, at least 97%, at least 98%, or at least 99%, but less than 100% sequence identity to the polypeptide of SEQ ID NO: 3; or
- b) wherein the variant has at least 85%, at least 90%, at least 95%, at least 96%, at least 97%, at least 98%, or at least 99%, but less than 100% sequence identity to the polypeptide of SEQ ID NO: 6; or
- c) wherein the variant has at least 85%, at least 90%, at least 95%, at least 96%, at least 97%, at least 98%, or at least 99%, but less than 100% sequence identity to the polypeptide of SEQ ID NO: 9.

[0336] A further embodiment relates to variant pullulanases produced by the method of the invention.

[0337] In another aspect, method of producing a variant, comprising: (a) cultivating a host cell of the present invention under conditions suitable for expression of the variant; and (b) recovering the variant.

[0338] The host cells are cultivated in a nutrient medium suitable for production of the variant using methods known in the art. For example, the cell may be cultivated by shake flask cultivation, or small-scale or large-scale fermentation

(including continuous, batch, fed-batch, or solid state fermentations) in laboratory or industrial fermentors performed in a suitable medium and under conditions allowing the variant to be expressed and/or isolated. The cultivation takes place in a suitable nutrient medium comprising carbon and nitrogen sources and inorganic salts, using procedures known in the art. Suitable media are available from commercial suppliers or may be prepared according to published compositions (e.g., in catalogues of the American Type Culture Collection). If the variant is secreted into the nutrient medium, the variant can be recovered directly from the medium. If the variant is not secreted, it can be recovered from cell lysates.

[0339] The variant may be detected using methods known in the art that are specific for the variants. These detection methods include, but are not limited to, use of specific antibodies, formation of an enzyme product, or disappearance of an enzyme substrate. For example, an enzyme assay may be used to determine the activity of the variant.

[0340] The variant may be recovered using methods known in the art. For example, the variant may be recovered from the nutrient medium by conventional procedures including, but not limited to, collection, centrifugation, filtration, extraction, spray-drying, evaporation, or precipitation.

[0341] The variant may be purified by a variety of procedures known in the art including, but not limited to, chromatography (e.g., ion exchange, affinity, hydrophobic, chromatofocusing, and size exclusion), electrophoretic procedures (e.g., preparative isoelectric focusing), differential solubility (e.g., ammonium sulfate precipitation), SDS-PAGE, or extraction (see, e.g., Protein Purification, Janson and Ryden, editors, VCH Publishers, New York, 1989) to obtain substantially pure variants.

[0342] In an alternative aspect, the variant is not recovered, but rather a host cell of the present invention expressing the variant is used as a source of the variant.

Fermentation Broth Formulations or Cell Compositions

20

30

35

40

45

50

55

[0343] The present invention also relates to a fermentation broth formulation or a cell composition comprising a polypeptide of the present invention. The fermentation broth product further comprises additional ingredients used in the fermentation process, such as, for example, cells (including, the host cells containing the gene encoding the polypeptide of the present invention which are used to produce the polypeptide of interest), cell debris, biomass, fermentation media and/or fermentation products. In some embodiments, the composition is a cell-killed whole broth containing organic acid(s), killed cells and/or cell debris, and culture medium.

[0344] The term "fermentation broth" as used herein refers to a preparation produced by cellular fermentation that undergoes no or minimal recovery and/or purification. For example, fermentation broths are produced when microbial cultures are grown to saturation, incubated under carbon-limiting conditions to allow protein synthesis (*e.g.*, expression of enzymes by host cells) and secretion into cell culture medium. The fermentation broth can contain unfractionated or fractionated contents of the fermentation materials derived at the end of the fermentation. Typically, the fermentation broth is unfractionated and comprises the spent culture medium and cell debris present after the microbial cells (*e.g.*, filamentous fungal cells) are removed, *e.g.*, by centrifugation. In some embodiments, the fermentation broth contains spent cell culture medium, extracellular enzymes, and viable and/or nonviable microbial cells.

[0345] In an embodiment, the fermentation broth formulation and cell compositions comprise a first organic acid component comprising at least one 1-5 carbon organic acid and/or a salt thereof and a second organic acid component comprising at least one 6 or more carbon organic acid and/or a salt thereof. In a specific embodiment, the first organic acid component is acetic acid, formic acid, propionic acid, a salt thereof, or a mixture of two or more of the foregoing and the second organic acid component is benzoic acid, cyclohexanecarboxylic acid, 4-methylvaleric acid, phenylacetic acid, a salt thereof, or a mixture of two or more of the foregoing.

[0346] In one aspect, the composition contains an organic acid(s), and optionally further contains killed cells and/or cell debris. In one embodiment, the killed cells and/or cell debris are removed from a cell-killed whole broth to provide a composition that is free of these components.

[0347] The fermentation broth formulations or cell compositions may further comprise a preservative and/or antimicrobial (*e.g.*, bacteriostatic) agent, including, but not limited to, sorbitol, sodium chloride, potassium sorbate, and others known in the art.

[0348] The cell-killed whole broth or composition may contain the unfractionated contents of the fermentation materials derived at the end of the fermentation. Typically, the cell-killed whole broth or composition contains the spent culture medium and cell debris present after the microbial cells (e.g., filamentous fungal cells) are grown to saturation, incubated under carbon-limiting conditions to allow protein synthesis. In some embodiments, the cell-killed whole broth or composition contains the spent cell culture medium, extracellular enzymes, and killed filamentous fungal cells. In some embodiments, the microbial cells present in the cell-killed whole broth or composition can be permeabilized and/or lysed using methods known in the art. A whole broth or cell composition as described herein is typically a liquid, but may contain insoluble components, such as killed cells, cell debris, culture media components, and/or insoluble enzyme(s). In some embodiments, insoluble components may be removed to provide a clarified liquid composition.

[0349] The whole broth formulations and cell compositions of the present invention may be produced by a method

described in WO 90/15861 or WO 2010/096673.

Enzyme Compositions

10

15

20

30

35

40

50

[0350] The present invention also relates to compositions comprising a pullulanase variant of the present invention. Preferably, the compositions are enriched in such a polypeptide. The term "enriched" indicates that the pullulanase activity of the composition has been increased, e.g., with an enrichment factor of at least 1.1.

[0351] The compositions may comprise a polypeptide of the present invention as the major enzymatic component, e.g., a mono-component composition. Alternatively, the compositions may comprise multiple enzymatic activities, such as the pullulanase variant according to the invention and one or more (e.g., several) enzymes selected from the group consisting of hydrolase, isomerase, ligase, lyase, oxidoreductase, or transferase, e.g., an alpha-galactosidase, alphaglucosidase, aminopeptidase, alpha-amylase, beta-amylase, beta-glucosidase, beta-glucosidase, beta-xylosidase, carbohydrase, carboxypeptidase, catalase, cellobiohydrolase, cellulase, chitinase, cutinase, cyclodextrin glycosyltransferase, deoxyribonuclease, endoglucanase, esterase, glucoamylase, invertase, laccase, lipase, mannosidase, mutanase, oxidase, pectinolytic enzyme, peroxidase, phytase, polyphenoloxidase, protease, ribonuclease, transglutaminase, or xylanase. Preferably the enzyme activities comprised in the composition are selected from the hybrid pullulanase according to the invention and one or more enzymes selected from the group consisting of glucoamylase, alpha-amylase, beta-amylase, and protease. In one particular embodiment the composition comprises a pullulanase, a glucoamylase, an alpha-amylase and a protease. In another particular embodiment the composition comprises a pullulanase, an alphaamylase and a protease. In another particular embodiment the composition comprises a pullulanase, a glucoamylase, and an alpha-amylase. In another particular embodiment the composition comprises a pullulanase, and a beta-amylase. [0352] In a particular embodiment the composition comprises the variant pullulanase of the invention and an alpha amylase. Preferred are bacterial alpha-amylases, which typically are stable at temperatures used during liquefaction. In a preferred embodiment the alpha-amylase is derived from Bacillus stearothermophilus. The Bacillus stearothermophilus alpha-amylase may be a mature wild-type or a mature variant thereof. The mature Bacillus stearothermophilus alpha-amylases may naturally be truncated during recombinant production. For instance, the Bacillus stearothermophilus alpha-amylase may be truncated so it has around 491 amino acids compared to SEQ ID NO: 3 in WO 99/19467. Preferred are Bacillus alpha-amylases, especially Bacillus stearothermophilus alpha-amylases, which have a double deletion corresponding to a deletion of positions 181 and 182 and further comprise a N193F substitution (also denoted I181* + G182* + N193F) compared to the wild-type BSG alpha-amylase amino acid sequence set forth in SEQ ID NO: 3 disclosed in WO 99/19467. The bacterial alpha-amylase may also have a substitution in a position corresponding to S239 in the Bacillus licheniformis alpha-amylase shown in SEQ ID NO: 4 in WO 99/19467, or a S242 variant of the Bacillus stearothermophilus alpha-amylase of SEQ ID NO: 3 in WO 99/19467. In a preferred embodiment the alpha-amylase is selected from the group of Bacillus stearomthermphilus alpha-amylase variants:

```
I181*+G182*+N193F+E129V+K177L+R179E;
I181*+G182*+N193F+V59A+Q89R+E129V+K177L+R179E+H208Y+K220P+N224L+Q2 54S;
I181*+G182*+N193F+V59A+Q89R+ E129V+ K177L+ R179E+ Q254S+ M284V; and
I181*+G182*+N193F+E129V+K177L+R179E+K220P+N224L+S242Q+Q254S (using SEQ ID NO: 3 disclosed in WO 99/19467 for numbering).
```

[0353] In another preferred embodiment the alpha-amylase is an alpha-amylase derived from *Rhizomucor pusillus* with an *Aspergillus niger* glucoamylase linker and starch-binding domain (SBD), preferably the one shown in SEQ ID NO: 7 in WO2013/006756, preferably having one or more of the following substitutions: G128D, D143N, especially G128D+D143N.

[0354] In another particular embodiment the composition comprises the variant pullulanase of the invention, and a protease. In an preferred embodiment the protease is a variant of the *Thermoascus aurantiacus* metallo protease disclosed as SEQ ID NO: 2 in WO 2003/048353, or amino acids 1-177 of SEQ ID NO: 2 in WO 2011/072191, with the following mutations:

```
D79L+S87P+A112P+D142L;
D79L+S87P+D142L; or
A27K+ D79L+ Y82F+S87G+D104P+A112P+A126V+D142L.
```

[0355] In another embodiment the protease is derived from a strain of the bacterium *Pyrococcus*, such as a strain of *Pyrococcus furiosus* (pfu protease)

[0356] In an embodiment the protease is the one shown as SEQ ID NO: 1 in US patent No. 6,358,726-B1. In another embodiment the protease is the one shown as SEQ ID NO: 13 in WO2012/088303.

[0357] In another particular embodiment the composition comprises the hybrid pullulanase of the invention, and a glucoamylase. In a specific embodiment the glucoamylase is from a strain of the genus *Penicillium*, especially a strain of *Penicillium oxalicum*, in particular the *Penicillium oxalicum* glucoamylase disclosed as SEQ ID NO: 2 in WO 2011/127802. In a preferred embodiment the glucoamylase is a variant of the *Penicillium oxalicum* glucoamylase disclosed as SEQ ID NO: 2 in WO 2011/127802 having a K79V substitution using the mature polypeptide (amino acids 22-616 of SEQ ID NO: 2) for numbering, and described in WO 2013/036526. In a preferred embodiment the glucoamylase is a variant of the *Penicillium oxalicum* glucoamylase disclosed as amino acids 22-616 of SEQ ID NO: 2 in WO 2011/127802, having a K79V substitution and one or more of the following substitutions P2N, P4S, P11F, T65A, Q327F, especially P2N + P4S + P11F + T65A + Q327F as described in WO2013/053801.

[0358] In a specific embodiment the glucoamylase is from a strain of the genus *Pycnoporus*, especially a strain of *Pycnoporus sanguineus*, in particular the *Pycnoporus sanguineus* glucoamylase disclosed as SEQ ID NO: 2, 4, or 6 in WO 2011/066576. In a preferred embodiment the enzyme composition comprises the glucoamylase shown as amino acids 19-573 of SEQ ID NO: 6 in WO 2011/066576.

[0359] In a specific embodiment the glucoamylase is from a strain of the genus *Gloeophillum*, especially a strain of *Gloeophyllum trabeum*, in particular the *Gloeophyllum trabeum* glucoamylase disclosed as SEQ ID NO: 18 in WO 2011/068803. In an especially preferred embodiment the enzyme composition comprises the *Gloeophyllum trabeum* glucoamylase shown in amino acids 18-576 of SEQ ID NO: 18 in WO2011/068803, and having one or more of the following substitutions: S95P, A121P, especially S95P+A121P using the mature polypeptide (positions 18-576 of SEQ ID NO: 18) for numbering.

[0360] In a specific embodiment the glucoamylase is from a strain of the genus *Gloeophillum*, especially a strain of *Gloeophillum sepiarium*, in particular the mature *Gloeophillum sepiarium* glucoamylase disclosed as amino acids 18-573 of SEQ ID NO: 2 in WO2011/068803.

[0361] In a particular embodiment the composition comprises a variant pullulanase of the invention and a glucoamylase and optionally an alpha-amylase, and wherein the pullulanase is selected from a polypeptide having at least 93%, at least 94%, at least 95%, at least 96%, at least 97%, at least 98%, at least 99% or 100% sequence identity to the mature polypeptide of SEQ ID NO: 21 herein, and comprising the substitutions N368G+N393A+A492S, using SEQ ID NO: 3 for numbering, and the glucoamylase is selected from i) a variant *Gloeophyllum trabeum* glucoamylase, which comprises the substitutions S95P+A121P compared to the wild type *Gloeophyllum trabeum* glucoamylase amino acid sequence set forth in amino acids 18-576 of SEQ ID NO: 18 in WO 2011/068803; or ii) a variant having at least 85%, at least 90%, at least 91%, at least 92%, at least 93%, at least 94%, at least 95%, at least 96%, at least 97%, at least 98%, at least 99% sequence identity to amino acids 18-576 of SEQ ID NO: 18 in WO 2011/068803, and the alpha-amylase is selected from: i) a variant *Rhizomucor pusillus* alpha-amylase with an *Aspergillus niger* glucoamylase linker and starch-binding domain (SBD), which comprises the substitutions G128D+D143N compared to the hybrid *Rhizomucor pusillus* alpha-amylase amino acid sequence set forth in SEQ ID NO: 7 in WO2013/006756; or ii) a variant having at least 95%, at least 90%, at least 91%, at least 92%, at least 93%, at least 94%, at least 95%, at least 96%, at least 97%, at least 98%, at least 99% sequence identity to the polypeptide of SEQ ID NO: 7 in WO2013/006756.

[0362] The compositions may be prepared in accordance with methods known in the art and may be in the form of a liquid or a dry composition. For instance, the composition may be in the form of granulate or microgranulate. The variant may be stabilized in accordance with methods known in the art.

[0363] The compositions may be prepared in accordance with methods known in the art and may be in the form of a liquid or a dry composition. The compositions may be stabilized in accordance with methods known in the art.

[0364] The enzyme composition of the present invention may be in any form suitable for use, such as, for example, a crude fermentation broth with or without cells removed, a cell lysate with or without cellular debris, a semi-purified or purified enzyme composition, or a host cell, e.g., *Trichoderma* host cell, as a source of the enzymes.

[0365] The enzyme composition may be a dry powder or granulate, a non-dusting granulate, a liquid, a stabilized liquid, or a stabilized protected enzyme. Liquid enzyme compositions may, for instance, be stabilized by adding stabilizers such as a sugar, a sugar alcohol or another polyol, and/or lactic acid or another organic acid according to established processes.

[0366] The compositions may be prepared in accordance with methods known in the art and may be in the form of a liquid or a dry composition. The compositions may be stabilized in accordance with methods known in the art.

[0367] Examples are given below of preferred uses of the compositions of the present invention. The dosage of the composition and other conditions under which the composition is used may be determined on the basis of methods known in the art.

Methods of Using the Pullulanase Variants - Industrial Applications

30

35

40

45

50

55

[0368] The present invention is also directed to methods of using polypeptide of present invention in various industrial applications.

[0369] The polypeptide of the present invention may be used for starch processes, in particular starch conversion, especially liquefaction of starch (see, *e.g.*, U.S. Patent No. 3,912,590, EP 252730 and EP 063909, WO 99/19467, and WO 96/28567, which are all hereby incorporated by reference). Also contemplated are compositions for starch conversion purposes, which may beside the polypeptide of the present invention also comprise a glucoamylase (AMG), and an alpha-amylase.

[0370] Further, the polypeptide of the present invention is particularly useful in the production of sweeteners and ethanol (see, e.g., U.S. Patent No. 5,231,017, which is hereby incorporated by reference), such as fuel, drinking and industrial ethanol, from starch or whole grains.

In one embodiment the present invention relates to a use of the polypeptide according to the invention for production of a syrup and/or a fermentation product from a starch containing material. The starch material may in one embodiment be gelatinized. In another embodiment the starch material is ungelatinized.

Starch Processing

10

35

45

50

55

[0371] Native starch consists of microscopic granules, which are insoluble in water at room temperature. When an aqueous starch slurry is heated, the granules swell and eventually burst, dispersing the starch molecules into the solution. At temperatures up to about 50°C to 75°C the swelling may be reversible. However, with higher temperatures an irreversible swelling called "gelatinization" begins. During this "gelatinization" process there is a dramatic increase in viscosity. Granular starch to be processed may be a highly refined starch quality, preferably at least 90%, at least 95%, at least 97% or at least 99.5% pure or it may be a more crude starch-containing materials comprising (e.g., milled) whole grains including non-starch fractions such as germ residues and fibers. The raw material, such as whole grains, may be reduced in particle size, e.g., by milling, in order to open up the structure and allowing for further processing. In dry milling whole kernels are milled and used. Wet milling gives a good separation of germ and meal (starch granules and protein) and is often applied at locations where the starch hydrolyzate is used in the production of, e.g., syrups. Both dry and wet milling is well known in the art of starch processing and may be used in a process of the invention. Methods for reducing the particle size of the starch containing material are well known to those skilled in the art.

[0372] As the solids level is 30-40% in a typical industrial process, the starch has to be thinned or "liquefied" so that it can be suitably processed. This reduction in viscosity is primarily attained by enzymatic degradation in current commercial practice.

Liquefaction is carried out in the presence of an alpha-amylase, preferably a bacterial alpha-amylase and/or acid fungal alpha-amylase. In an embodiment, a phytase is also present during liquefaction. In an embodiment, viscosity reducing enzymes such as a xylanase and/or beta-glucanase is also present during liquefaction.

[0373] During liquefaction, the long-chained starch is degraded into branched and linear shorter units (maltodextrins) by an alpha-amylase. Liquefaction may be carried out as a three-step hot slurry process. The slurry is heated to between 60-95°C (*e.g.*, 70-90°C, such as 77-86°C, 80-85°C, 83-85°C) and an alpha-amylase is added to initiate liquefaction (thinning).

The slurry may in an embodiment be jet-cooked at between 95-140°C, e.g., 105-125°C, for about 1-15 minutes, e.g., about 3-10 minutes, especially around 5 minutes. The slurry is then cooled to 60-95°C and more alpha-amylase is added to obtain final hydrolysis (secondary liquefaction). The jet-cooking process is carried out at pH 4.5-6.5, typically at a pH between 5 and 6. The alpha-amylase may be added as a single dose, e.g., before jet cooking.

[0374] The liquefaction process is carried out at between 70-95°C, such as 80-90°C, such as around 85°C, for about 10 minutes to 5 hours, typically for 1-2 hours. The pH is between 4 and 7, such as between 5.5 and 6.2. In order to ensure optimal enzyme stability under these conditions, calcium may optionally be added (to provide 1-60 ppm free calcium ions, such as about 40 ppm free calcium ions). After such treatment, the liquefied starch will typically have a "dextrose equivalent" (DE) of 10-15.

[0375] Generally liquefaction and liquefaction conditions are well known in the art.

Examples of alpha-amylase are disclosed in the "Alpha-Amylases" section below. Saccharification may be carried out using conditions well-known in the art with a carbohydrate-source generating enzyme, in particular a glucoamylase, or a beta-amylase and optionally a debranching enzyme, such as an isoamylase or a pullulanase. For instance, a full saccharification step may last from about 24 to about 72 hours. However, it is common to do a pre-saccharification of typically 40-90 minutes at a temperature between 30-65°C, typically about 60°C, followed by complete saccharification during fermentation in a simultaneous saccharification and fermentation (SSF) process. Saccharification is typically carried out at a temperature in the range of 20-75°C, e.g., 25-65°C and 40-70°C, typically around 60°C, and at a pH between about 4 and 5, normally at about pH 4.5.

[0376] The saccharification and fermentation steps may be carried out either sequentially or simultaneously. In an embodiment, saccharification and fermentation are performed simultaneously (referred to as "SSF"). However, it is common to perform a pre-saccharification step for about 30 minutes to 2 hours (e.g., 30 to 90 minutes) at a temperature of 30 to 65°C, typically around 60°C which is followed by a complete saccharification during fermentation referred to as

simultaneous saccharification and fermentation (SSF). The pH is usually between 4.2-4.8, e.g., pH 4.5. In a simultaneous saccharification and fermentation (SSF) process, there is no holding stage for saccharification, rather, the yeast and enzymes are added together.

[0377] In a typical saccharification process, maltodextrins produced during liquefaction are converted into dextrose by adding a glucoamylase and a debranching enzyme, such as an isoamylase (U.S. Patent No. 4,335,208) or a pullulanase. The temperature is lowered to 60° C, prior to the addition of the glucoamylase and debranching enzyme. The saccharification process proceeds for 24-72 hours. Prior to addition of the saccharifying enzymes, the pH is reduced to below 4.5, while maintaining a high temperature (above 95° C), to inactivate the liquefying alpha-amylase. This process reduces the formation of short oligosaccharide called "panose precursors," which cannot be hydrolyzed properly by the debranching enzyme. Normally, about 0.2-0.5% of the saccharification product is the branched trisaccharide panose (Glc p α 1-6Glc p α 1-4Glc), which cannot be degraded by a pullulanase. If active amylase from the liquefaction remains present during saccharification (*i.e.*, no denaturing), the amount of panose can be as high as 1-2%, which is highly undesirable since it lowers the saccharification yield significantly.

[0378] Other fermentation products may be fermented at conditions and temperatures well known to persons skilled in the art, suitable for the fermenting organism in question.

The fermentation product may be recovered by methods well known in the art, *e.g.*, by distillation. Examples of carbohydrate-source generating enzymes are disclosed in the "Enzymes" section below.

[0379] In a particular embodiment, the process of the invention further comprises, prior to the conversion of a starch-containing material to sugars/dextrins the steps of:

- (x) reducing the particle size of the starch-containing material; and
- (y) forming a slurry comprising the starch-containing material and water.

In an embodiment, the starch-containing material is milled to reduce the particle size. In an embodiment the particle size is reduced to between 0.05-3.0 mm, preferably 0.1-0.5 mm, or so that at least 30%, preferably at least 50%, more preferably at least 70%, even more preferably at least 90% of the starch-containing material fits through a sieve with a 0.05-3.0 mm screen, preferably 0.1-0.5 mm screen.

[0380] The aqueous slurry may contain from 10-55 wt. % dry solids (DS), preferably 25-45 wt. % dry solids (DS), more preferably 30-40 wt. % dry solids (DS) of starch-containing material. Conventional starch-conversion processes, such as liquefaction and saccharification processes are described, *e.g.*, in U.S. Patent No. 3,912,590, EP 252730 and EP 063909, which are incorporated herein by reference.

[0381] In an embodiment, the conversion process degrading starch to lower molecular weight carbohydrate components such as sugars or fat replacers includes a debranching step.

In the case of converting starch into a sugar, the starch is depolymerized. Such a depolymerization process consists of, e.g., a pre-treatment step and two or three consecutive process steps, *i.e.*, a liquefaction process, a saccharification process, and depending on the desired end-product, an optional isomerization process.

[0382] When the desired final sugar product is, *e.g.*, high fructose syrup the dextrose syrup may be converted into fructose. After the saccharification process, the pH is increased to a value in the range of 6-8, *e.g.*, pH 7.5, and the calcium is removed by ion exchange. The dextrose syrup is then converted into high fructose syrup using, *e.g.*, an immobilized glucose isomerase.

Production of Fermentation Products

20

25

30

35

40

45

50

55

[0383] Fermentable sugars (*e.g.*, dextrins, monosaccharides, particularly glucose) are produced from enzymatic saccharification. These fermentable sugars may be further purified and/or converted to useful sugar products. In addition, the sugars may be used as a fermentation feedstock in a microbial fermentation process for producing end-products, such as alcohol (*e.g.*, ethanol, and butanol), organic acids (*e.g.*, succinic acid, 3-HP and lactic acid), sugar alcohols (*e.g.*, glycerol), ascorbic acid intermediates (*e.g.*, gluconate, 2-keto-D-gluconate, 2,5-diketo-D-gluconate, and 2-keto-L-gulonic acid), amino acids (*e.g.*, lysine), proteins (*e.g.*, antibodies and fragment thereof).

[0384] In an embodiment, the fermentable sugars obtained during the liquefaction process steps are used to produce alcohol and particularly ethanol. In ethanol production, an SSF process is commonly used wherein the saccharifying enzymes and fermenting organisms (e.g., yeast) are added together and then carried out at a temperature of 30-40°C. [0385] The organism used in fermentation will depend on the desired end-product. Typically, if ethanol is the desired end product yeast will be used as the fermenting organism. In some preferred embodiments, the ethanol-producing microorganism is a yeast and specifically *Saccharomyces* such as strains of *S. cerevisiae* (U.S. Patent No. 4,316,956). A variety of *S. cerevisiae* are commercially available and these include but are not limited to FALI (Fleischmann's Yeast), SUPERSTART (Alltech), FERMIOL (DSM Specialties), RED STAR (Lesaffre) and Angel alcohol yeast (Angel Yeast Company, China). The amount of starter yeast employed in the methods is an amount effective to produce a commercially

significant amount of ethanol in a suitable amount of time, (e.g., to produce at least 10% ethanol from a substrate having between 25-40% DS in less than 72 hours). Yeast cells are generally supplied in amounts of about 10^4 to about 10^{12} , and preferably from about 10^7 to about 10^{10} viable yeast count per mL of fermentation broth. After yeast is added to the mash, it is typically subjected to fermentation for about 24-96 hours, e.g., 35-60 hours. The temperature is between about 26-34°C, typically at about 32°C, and the pH is from pH 3-6, e.g., around pH 4-5.

[0386] The fermentation may include, in addition to a fermenting microorganisms (e.g., yeast), nutrients, and additional enzymes, including phytases. The use of yeast in fermentation is well known in the art.

[0387] In further embodiments, use of appropriate fermenting microorganisms, as is known in the art, can result in fermentation end product including, e.g., glycerol, 1,3-propanediol, gluconate, 2-keto-D-gluconate, 2,5-diketo-D-gluconate, 2-keto-L-gulonic acid, succinic acid, lactic acid, amino acids, and derivatives thereof. More specifically when lactic acid is the desired end product, a *Lactobacillus* sp. (*L. casei*) may be used; when glycerol or 1,3-propanediol are the desired end-products *E. coli* may be used; and when 2-keto-D-gluconate, 2,5-diketo-D-gluconate, and 2-keto-L-gulonic acid are the desired end products, *Pantoea citrea* may be used as the fermenting microorganism. The above enumerated list are only examples and one skilled in the art will be aware of a number of fermenting microorganisms that may be used to obtain a desired end product.

Processes for producing fermentation products from ungelatinized starch-containing material

[0388] The invention relates to processes for producing fermentation products from starch-containing material without gelatinization (*i.e.*, without cooking) of the starch-containing material (often referred to as a "raw starch hydrolysis" process). The fermentation product, such as ethanol, can be produced without liquefying the aqueous slurry containing the starch-containing material and water. In one embodiment a process of the invention includes saccharifying (*e.g.*, milled) starch-containing material, *e.g.*, granular starch, below the initial gelatinization temperature, preferably in the presence of alpha-amylase and/or carbohydrate-source generating enzyme(s) to produce sugars that can be fermented into the fermentation product by a suitable fermenting organism. In this embodiment the desired fermentation product, *e.g.*, ethanol, is produced from ungelatinized (*i.e.*, uncooked), preferably milled, cereal grains, such as corn.

[0389] Accordingly, in one aspect the invention relates to processes for producing fermentation products from starch-containing material comprising simultaneously saccharifying and fermenting starch-containing material using a carbo-hydrate-source generating enzyme and a fermenting organism at a temperature below the initial gelatinization temperature of said starch-containing material. Saccharification and fermentation may also be separate. Thus in another aspect the invention relates to processes of producing fermentation products, comprising the following steps:

- (i) saccharifying a starch-containing material at a temperature below the initial gelatinization temperature; and
- (ii) fermenting using a fermentation organism;

10

15

20

30

35

40

45

50

55

wherein step (i) is carried out using at least a glucoamylase, and a variant pullulanase according to the invention. In one embodiment, an alpha amylase is added in step (i). In another embodiment steps (i) and (ii) are performed simultaneously.

[0390] In one embodiment, a protease is also present. The protease may be any acid fungal protease or metalloprotease. The fermentation product, e.g., ethanol, may optionally be recovered after fermentation, e.g., by distillation. Typically amylase(s), such as glucoamylase(s) and/or other carbohydrate-source generating enzymes, and/or alphaamylase(s), is(are) present during fermentation. Examples of glucoamylases and other carbohydrate-source generating enzymes include raw starch hydrolyzing glucoamylases. Examples of alpha-amylase(s) include acid alpha-amylases such as acid fungal alpha-amylases. Examples of fermenting organisms include yeast, e.g., a strain of Saccharomyces cerevisiae. The term "initial gelatinization temperature" means the lowest temperature at which starch gelatinization commences. In general, starch heated in water begins to gelatinize between about 50°C and 75°C; the exact temperature of gelatinization depends on the specific starch and can readily be determined by the skilled artisan. Thus, the initial gelatinization temperature may vary according to the plant species, to the particular variety of the plant species as well as with the growth conditions. In the context of this invention the initial gelatinization temperature of a given starchcontaining material may be determined as the temperature at which birefringence is lost in 5% of the starch granules using the method described by Gorinstein and Lii, 1992, Starch/Stärke 44(12): 461-466. Before initiating the process a slurry of starch-containing material, such as granular starch, having 10-55 w/w % dry solids (DS), preferably 25-45 w/w % dry solids, more preferably 30-40 w/w % dry solids of starch-containing material may be prepared. The slurry may include water and/or process waters, such as stillage (backset), scrubber water, evaporator condensate or distillate, side-stripper water from distillation, or process water from other fermentation product plants. Because the process of the invention is carried out below the initial gelatinization temperature, and thus no significant viscosity increase takes place, high levels of stillage may be used if desired. In an embodiment the aqueous slurry contains from about 1 to about 70 vol. %, preferably 15-60 vol. %, especially from about 30 to 50 vol. % water and/or process waters, such as stillage

(backset), scrubber water, evaporator condensate or distillate, side-stripper water from distillation, or process water from other fermentation product plants, or combinations thereof, or the like. The starch-containing material may be prepared by reducing the particle size, preferably by dry or wet milling, to 0.05 to 3.0 mm, preferably 0.1-0.5 mm. After being subjected to a process of the invention at least 85%, at least 86%, at least 87%, at least 88%, at least 89%, at least 90%, at least 91%, at least 92%, at least 93%, at least 94%, at least 95%, at least 96%, at least 97%, at least 98%, or preferably at least 99% of the dry solids in the starch-containing material are converted into a soluble starch hydrolyzate. A process in this aspect of the invention is conducted at a temperature below the initial gelatinization temperature, which means that the temperature typically lies in the range between 30-75°C, preferably between 45-60°C. In a preferred embodiment the process carried at a temperature from 25°C to 40°C, such as from 28°C to 35°C, such as from 30°C to 34°C, preferably around 32°C. In an embodiment the process is carried out so that the sugar level, such as glucose level, is kept at a low level, such as below 6 w/w %, such as below about 3 w/w %, such as below about 2 w/w %, such as below about 1 w/w %., such as below about 0.5 w/w %, or below 0.25 w/w %, such as below about 0.1 w/w %. Such low levels of sugar can be accomplished by simply employing adjusted quantities of enzyme and fermenting organism. A skilled person in the art can easily determine which doses/quantities of enzyme and fermenting organism to use. The employed quantities of enzyme and fermenting organism may also be selected to maintain low concentrations of maltose in the fermentation broth. For instance, the maltose level may be kept below about 0.5 w/w %, such as below about 0.2 w/w %. The process of the invention may be carried out at a pH from about 3 and 7, preferably from pH 3.5 to 6, or more preferably from pH 4 to 5. In an embodiment fermentation is ongoing for 6 to 120 hours, in particular 24 to 96 hours.

Processes for producing fermentation products from gelatinized starch-containing material

[0391] In this aspect, the invention relates to processes for producing fermentation products, especially ethanol, from starch-containing material, which process includes a liquefaction step and sequentially or simultaneously performed saccharification and fermentation steps. Consequently, the invention relates to processes for producing fermentation products from starch-containing material comprising the steps of:

- (a) liquefying starch-containing material in the presence of an alpha-amylase; or
- (b) saccharifying the liquefied material obtained in step (a) using a glucoamylase;
- (c) fermenting using a fermenting organism;

10

20

25

30

35

40

45

50

55

wherein step (a) and/or step (b) is carried out in the presence of a pullulanase according to the invention.

[0392] In an embodiment, a protease, such as an acid fungal protease or a metallo protease is added before, during and/or after liquefaction. In an embodiment the metalloprotease is derived from a strain of Thermoascus, e.g., a strain of Thermoascus aurantiacus, especially Thermoascus aurantiacus CGMCC No. 0670. In another embodiment the protease is a bacterial protease, particularly a protease derived from a strain of Pyrococcus, more particularly from Pyrococcus furiosus disclosed in US 6,358,726. In an embodiment the glucoamylase derived from a strain of Aspergillus, e.g., Aspergillus niger or Aspergillus awamori, a strain of Talaromyces, especially Talaromyces emersonii; or a strain of Athelia, especially Athelia rolfsii; a strain of Trametes, e.g., Trametes cingulata; a strain of the genus Gloeophyllum, e.g., a strain of Gloeophyllum sepiarum or Gloeophyllum trabeum; or a mixture thereof. Saccharification step (b) and fermentation step (c) may be carried out either sequentially or simultaneously. A pullulanase and/or metalloprotease may be added during saccharification and/or fermentation when the process is carried out as a sequential saccharification and fermentation process and before or during fermentation when steps (b) and (c) are carried out simultaneously (SSF process). The pullulanase and/or metalloprotease may also advantageously be added before liquefaction (pre-liquefaction treatment), i.e., before or during step (a), and/or after liquefaction (post liquefaction treatment), i.e., after step (a). The pullulanase is most advantageously added before or during liquefaction, i.e., before or during step (a). The fermentation product, such as especially ethanol, may optionally be recovered after fermentation, e.g., by distillation. The fermenting organism is preferably yeast, preferably a strain of Saccharomyces cerevisiae. In a particular embodiment, the process of the invention further comprises, prior to step (a), the steps of:

- x) reducing the particle size of the starch-containing material, preferably by milling (e.g., using a hammer mill);
- y) forming a slurry comprising the starch-containing material and water.

In an embodiment, the particle size is smaller than a # 7 screen, e.g., a # 6 screen. A # 7 screen is usually used in conventional prior art processes. The aqueous slurry may contain from 10-55, e.g., 25-45 and 30-40, w/w % dry solids (DS) of starch-containing material. The slurry is heated to above the gelatinization temperature and an alpha-amylase variant may be added to initiate liquefaction (thinning). The slurry may in an embodiment be jet-cooked to further gelatinize the slurry before being subjected to alpha-amylase in step (a). Liquefaction may in an embodiment be carried out as a three-step hot slurry process. The slurry is heated to between 60-95°C, preferably between 70-90°C, such as preferably

between 80-85°C at pH 4-6, preferably 4.5-5.5, and alpha-amylase variant, optionally together with a pullulanase and/or protease, preferably metalloprotease, are added to initiate liquefaction (thinning). In an embodiment the slurry may then be jet-cooked at a temperature between 95-140°C, preferably 100-135°C, such as 105-125°C, for about 1-15 minutes, preferably for about 3-10 minutes, especially around about 5 minutes. The slurry is cooled to 60-95°C and more alphaamylase variant and optionally pullulanase variant and/or protease, preferably metalloprotease, is(are) added to finalize hydrolysis (secondary liquefaction). The liquefaction process is usually carried out at pH 4.0-6, in particular at a pH from 4.5 to 5.5. Saccharification step (b) may be carried out using conditions well known in the art. For instance, a full saccharification process may last up to from about 24 to about 72 hours, however, it is common only to do a presaccharification of typically 40-90 minutes at a temperature between 30-65°C, typically about 60°C, followed by complete saccharification during fermentation in a simultaneous saccharification and fermentation process (SSF process). Saccharification is typically carried out at temperatures from 20-75°C, preferably from 40-70°C, typically around 60°C, and at a pH between 4 and 5, normally at about pH 4.5. The most widely used process to produce a fermentation product, especially ethanol, is a simultaneous saccharification and fermentation (SSF) process, in which there is no holding stage for the saccharification, meaning that a fermenting organism, such as yeast, and enzyme(s), may be added together. SSF may typically be carried out at a temperature from 25°C to 40°C, such as from 28°C to 35°C, such as from 30°C to 34°C, preferably around about 32°C. In an embodiment fermentation is ongoing for 6 to 120 hours, in particular 24 to 96 hours.

Starch-Containing Materials

20

25

50

55

[0393] Any suitable starch-containing starting material may be used in a process of the present invention. The starting material is generally selected based on the desired fermentation product. Examples of starch-containing starting materials, suitable for use in the processes of the present invention, include barley, beans, cassava, cereals, corn, milo, peas, potatoes, rice, rye, sago, sorghum, sweet potatoes, tapioca, wheat, and whole grains, or any mixture thereof. The starch-containing material may also be a waxy or non-waxy type of corn and barley. In a preferred embodiment the starch-containing material is corn. In a preferred embodiment the starch-containing material is wheat.

Fermentation Products

[0394] The term "fermentation product" means a product produced by a method or process including fermenting using a fermenting organism. Fermentation products include alcohols (e.g., ethanol, methanol, butanol); organic acids (e.g., citric acid, acetic acid, itaconic acid, lactic acid, succinic acid, gluconic acid); ketones (e.g., acetone); amino acids (e.g., glutamic acid); gases (e.g., H₂ and CO₂); antibiotics (e.g., penicillin and tetracycline); enzymes; vitamins (e.g., riboflavin, B₁₂, beta-carotene); and hormones. In a preferred embodiment the fermentation product is ethanol, e.g., fuel ethanol; drinking ethanol, i.e., potable neutral spirits; or industrial ethanol or products used in the consumable alcohol industry (e.g., beer and wine), dairy industry (e.g., fermented dairy products), leather industry and tobacco industry. Preferred beer types comprise ales, stouts, porters, lagers, bitters, malt liquors, happoushu, high-alcohol beer, low-alcohol beer, low-calorie beer or light beer. In an preferred embodiment the fermentation product is ethanol.

40 Starch Slurry Processing with Stillage

[0395] Milled starch-containing material is combined with water and recycled thin-stillage resulting in an aqueous slurry. The slurry can comprise between 15 to 55% ds w/w (e.g., 20 to 50%, 25 to 50%, 25 to 45%, 25 to 40%, 20 to 35% and 30-36% ds). In some embodiments, the recycled thin-stillage (backset) is in the range of about 10 to 70% v/v (e.g., 10 to 60%, 10 to 50%, 10 to 40%, 10 to 30%, 10 to 20%, 20 to 60%, 20 to 50%, 20 to 40% and also 20 to 30%). Once the milled starch-containing material is combined with water and backset, the pH is not adjusted in the slurry. Further the pH is not adjusted after the addition of a phytase and optionally an alpha-amylase to the slurry. In an embodiment, the pH of the slurry will be in the range of about pH 4.5 to less than about 6.0 (e.g., pH 4.5 to 5.8, pH 5.0 to 5.8, pH 5.0 to 5.4, pH 5.2 to 5.5 and pH 5.2 to 5.9). The pH of the slurry may be between about pH 4.5 and 5.2 depending on the amount of thin stillage added to the slurry and the type of material comprising the thin stillage. For example, the pH of the thin stillage may be between pH 3.8 and pH 4.5.

[0396] During ethanol production, acids can be added to lower the pH in the beer well, to reduce the risk of microbial contamination prior to distillation.

In some embodiments, a phytase is added to the slurry. In other embodiments, in addition to phytase, an alpha-amylase is added to the slurry. In some embodiments, a phytase and alpha-amylase are added to the slurry sequentially. In other embodiments, a phytase and alpha-amylase are added simultaneously. In some embodiments, the slurry comprising a phytase and optionally, an alpha-amylase, are incubated (pretreated) for a period of about 5 minutes to about 8 hours (e.g., 5 minutes to 6 hours, 5 minutes to 4 hours). In other embodiments,

the slurry is incubated at a temperature in the range of about 40 to 115° C (e.g., 45 to 80° C, 50 to 70° C, 50 to 75° C, 60 to 110° C, 60 to 95° C, 70 to 110° C, 70 to 85° C and 77 to 86° C).

[0397] In other embodiments, the slurry is incubated at a temperature of about 0 to about 30°C (e.g., 0 to 25°C, 0 to 20°C, 0 to 15°C, 0 to 10°C and 0 to 5°C) below the starch gelatinization temperature of the starch-containing material. In some embodiments, the temperature is below about 68°C, below about 65°C, below about 62°C, below about 60°C and below about 55°C. In some embodiments, the temperature is above about 45°C, above about 50°C, above about 55°C and above about 60°C. In some embodiments, the incubation of the slurry comprising a phytase and an alphaamylase at a temperature below the starch gelatinization temperature is referred to as a primary (1°) liquefaction.

[0398] In one embodiment, the milled starch-containing material is corn or milo. The slurry comprises 25 to 40% DS, the pH is in the range of 4.8 to 5.2, and the slurry is incubated with a phytase and optionally an alpha-amylase for 5 minutes to 2 hours, at a temperature range of 60 to 75°C.

[0399] Currently, it is believed that commercially-available microbial alpha-amylases used in the liquefaction process are generally not stable enough to produce liquefied starch substrate from a dry mill process using whole ground grain at a temperature above about 80°C at a pH level that is less than pH 5.6. The stability of many commercially available alpha-amylases is reduced at a pH of less than about 4.0.

[0400] In a further liquefaction step, the incubated or pretreated starch-containing material is exposed to an increase in temperature such as about 0 to about 45°C above the starch gelatinization temperature of the starch-containing material (e.g., 70°C to 120°C, 70°C to 110°C, and 70°C to 90°C) for a period of time of about 2 minutes to about 6 hours (e.g., 2 minutes to 4 hours, 90 minutes, 140 minutes and 90 to 140 minutes) at a pH of about 4.0 to 5.5 more preferably between 1 hour to 2 hours. The temperature can be increased by a conventional high temperature jet cooking system for a short period of time, for example, for 1 to 15 minutes. Then the starch maybe further hydrolyzed at a temperature ranging from about 75°C to 95°C (e.g., 80°C to 90°C and 80°C to 85°C) for a period of about 15 to 150 minutes (e.g., 30 to 120 minutes). In a preferred embodiment, the pH is not adjusted during these process steps and the pH of the liquefied mash is in the range of about pH 4.0 to pH 5.8 (e.g., pH 4.5 to 5.8, pH 4.8 to 5.4, and pH 5.0 to 5.2). In some embodiments, a second dose of thermostable alpha-amylase is added to the secondary liquefaction step, but in other embodiments there is no additional dosage of alpha-amylase.

The incubation and liquefaction steps may be followed by saccharification and fermentation steps well known in the art.

Distillation

20

25

30

35

50

55

[0401] Optionally, following fermentation, an alcohol (e.g., ethanol) may be extracted by, for example, distillation and optionally followed by one or more process steps.

[0402] In some embodiments, the yield of ethanol produced by the methods provided herein is at least 8%, at least 10%, at least 12%, at least 15%, at least 16%, at least 17% and at least 18% (v/v) and at least 23% v/v. The ethanol obtained according to the process provided herein may be used as, for example, fuel ethanol, drinking ethanol, *i.e.*, potable neutral spirits, or industrial ethanol.

By-Products

[0403] Left over from the fermentation is the grain, which is typically used for animal feed either in liquid or dried form. In further embodiments, the end product may include the fermentation coproducts such as distiller's dried grains (DDG) and distiller's dried grain plus solubles (DDGS), which may be used, for example, as an animal feed.

[0404] Further details on how to carry out liquefaction, saccharification, fermentation, distillation, and recovery of ethanol are well known to the skilled person.

45 [0405] According to the process provided herein, the saccharification and fermentation may be carried out simultaneously or separately.

Fermenting Organisms

[0406] The term "fermenting organism" refers to any organism, including bacterial and fungal organisms, such as yeast and filamentous fungi, suitable for producing a desired fermentation product. Suitable fermenting organisms are able to ferment, *i.e.*, convert, fermentable sugars, such as arabinose, fructose, glucose, maltose, mannose, or xylose, directly or indirectly into the desired fermentation product.

[0407] Examples of fermenting organisms include fungal organisms such as yeast. Preferred yeast include strains of Saccharomyces, in particular Saccharomyces cerevisiae or Saccharomyces uvarum; strains of Pichia, in particular Pichia stipitis such as Pichia stipitis CBS 5773 or Pichia pastoris; strains of Candida, in particular Candida arabinofermentans, Candida boidinii, Candida diddensii, Candida shehatae, Candida sonorensis, Candida tropicalis, or Candida utilis. Other fermenting organisms include strains of Hansenula, in particular Hansenula anomala or Hansenula polymorpha; strains

of Kluyveromyces, in particular Kluyveromyces fragilis or Kluyveromyces marxianus; and strains of Schizosaccharomyces, in particular Schizosaccharomyces pombe.

[0408] Preferred bacterial fermenting organisms include strains of *Escherichia*, in particular *Escherichia coli*, strains of *Zymomonas*, in particular *Zymomonas mobilis*, strains of *Zymobacter*, in particular *Zymobactor palmae*, strains of *Klebsiella* in particular *Klebsiella oxytoca*, strains of *Leuconostoc*, in particular *Leuconostoc mesenteroides*, strains of *Clostridium*, in particular *Clostridium butyricum*, strains of *Enterobacter*, in particular *Enterobacter aerogenes*, and strains of *Thermoanaerobacter*, in particular *Thermoanaerobacter BG1L1* (Appl. Microbiol. Biotech. 77: 61-86), *Thermoanaerobacter ethanolicus*, *Thermoanaerobacter mathranii*, or *Thermoanaerobacter thermosaccharolyticum*. Strains of *Lactobacillus* are also envisioned as are strains of *Corynebacterium glutamicum R*, *Bacillus thermoglucosidaisus*, and *Geobacillus thermoglucosidasius*.

[0409] In an embodiment, the fermenting organism is a C6 sugar fermenting organism, such as a strain of, e.g., Saccharomyces cerevisiae.

In an embodiment, the fermenting organism is a C5 sugar fermenting organism, such as a strain of, e.g., Saccharomyces cerevisiae.

[0410] In one embodiment, the fermenting organism is added to the fermentation medium so that the viable fermenting organism, such as yeast, count per mL of fermentation medium is in the range from 10⁵ to 10¹², preferably from 10⁷ to 10¹⁰, especially about 5x10⁷.

Yeast is the preferred fermenting organism for ethanol fermentation. Preferred are strains of *Saccharomyces*, especially strains of the species *Saccharomyces cerevisiae*, preferably strains which are resistant towards high levels of ethanol, *i.e.*, up to, e.g., about 10, 12, 15 or 20 vol. % or more ethanol.

[0411] In an embodiment, the C5 utilizing yeast is a Saccharomyces cerevisea strain disclosed in WO 2004/085627. [0412] In an embodiment, the fermenting organism is a C5 eukaryotic microbial cell concerned in WO 2010/074577 (Nedalco).

In an embodiment, the fermenting organism is a transformed C5 eukaryotic cell capable of directly isomerize xylose to xylose disclosed in US 2008/0014620.

[0413] In an embodiment, the fermenting organism is a C5 sugar fermentating cell disclosed in WO 2009/109633.

[0414] Commercially available yeast include LNF SA-1, LNF BG-1, LNF PE-2,and LNF CAT-1 (available from LNF Brazil), RED STAR™ and ETHANOL RED™ yeast (available from Fermentis/Lesaffre, USA), FALI (available from Fleischmann's Yeast, USA), SUPERSTART and THERMOSACC™ fresh yeast (available from Ethanol Technology, WI, USA), BIOFERM AFT and XR (available from NABC - North American Bioproducts Corporation, GA, USA), GERT STRAND (available from Gert Strand AB, Sweden), and FERMIOL (available from DSM Specialties).

[0415] The fermenting organism capable of producing a desired fermentation product from fermentable sugars is preferably grown under precise conditions at a particular growth rate. When the fermenting organism is introduced into/added to the fermentation medium the inoculated fermenting organism pass through a number of stages. Initially growth does not occur. This period is referred to as the "lag phase" and may be considered a period of adaptation. During the next phase referred to as the "exponential phase" the growth rate gradually increases. After a period of maximum growth the rate ceases and the fermenting organism enters "stationary phase". After a further period of time the fermenting organism enters the "death phase" where the number of viable cells declines.

40 Fermentation

30

35

45

50

[0416] The fermentation conditions are determined based on, e.g., the kind of plant material, the available fermentable sugars, the fermenting organism(s) and/or the desired fermentation product. One skilled in the art can easily determine suitable fermentation conditions. The fermentation may be carried out at conventionally used conditions. Preferred fermentation processes are anaerobic processes.

[0417] For example, fermentations may be carried out at temperatures as high as 75°C, e.g., between 40-70°C, such as between 50-60°C. However, bacteria with a significantly lower temperature optimum down to around room temperature (around 20°C) are also known. Examples of suitable fermenting organisms can be found in the "Fermenting Organisms" section above.

[0418] For ethanol production using yeast, the fermentation may go on for 24 to 96 hours, in particular for 35 to 60 hours. In an embodiment the fermentation is carried out at a temperature between 20 to 40°C, preferably 26 to 34°C, in particular around 32°C. In an embodiment the pH is from pH 3 to 6, preferably around pH 4 to 5.

[0419] Other fermentation products may be fermented at temperatures known to the skilled person in the art to be suitable for the fermenting organism in question.

⁵ **[0420]** Fermentation is typically carried out at a pH in the range between 3 and 7, preferably from pH 3.5 to 6, such as around pH 5. Fermentations are typically ongoing for 6-96 hours.

[0421] The processes of the invention may be performed as a batch or as a continuous process. Fermentations may be conducted in an ultrafiltration system wherein the retentate is held under recirculation in the presence of solids, water,

and the fermenting organism, and wherein the permeate is the desired fermentation product containing liquid. Equally contemplated are methods/processes conducted in continuous membrane reactors with ultrafiltration membranes and where the retentate is held under recirculation in presence of solids, water, and the fermenting organism(s) and where the permeate is the fermentation product containing liquid.

5 After fermentation the fermenting organism may be separated from the fermented slurry and recycled.

Fermentation Medium

[0422] The phrase "fermentation media" or "fermentation medium" refers to the environment in which fermentation is carried out and comprises the fermentation substrate, that is, the carbohydrate source that is metabolized by the fermenting organism(s).

[0423] The fermentation medium may comprise other nutrients and growth stimulator(s) for the fermenting organism(s). Nutrient and growth stimulators are widely used in the art of fermentation and include nitrogen sources, such as ammonia; vitamins and minerals, or combinations thereof.

Recovery

10

15

20

35

50

55

[0424] Subsequent to fermentation, the fermentation product may be separated from the fermentation medium. The fermentation medium may be distilled to extract the desired fermentation product or the desired fermentation product may be extracted from the fermentation medium by micro or membrane filtration techniques. Alternatively, the fermentation product may be recovered by stripping. Methods for recovery are well known in the art.

Compositions

[0425] The present invention also relates to compositions comprising a hybrid pullulanase according to the invention and at least one additional enzyme. The additional enzyme(s) may be selected from the group consisting of an alpha amylase, glucoamylase, beta-amylase, cellulase (beta-glucosidase, cellobiohydrolase and endoglucanase), hemicellulase (e.g., xylanase), isoamylase, isomerase, lipase, phytase, protease, a further pullulanase, and/or other enzymes useful in a commercial process in conjunction with a pullulanase. Such enzymes are known in the art in starch processing, sugar conversion, fermentations for alcohol and other useful end-products, commercial detergents and cleaning aids, stain removal, fabric treatment or desizing, and the like.

[0426] The enzyme composition of the present invention may be in any form suitable for use, such as, for example, a crude fermentation broth with or without cells removed, a cell lysate with or without cellular debris, a semi-purified or purified enzyme composition, or a host cell, e.g., *Trichoderma* host cell, as a source of the enzymes.

[0427] The enzyme composition may be a dry powder or granulate, a non-dusting granulate, a liquid, a stabilized liquid, or a stabilized protected enzyme. Liquid enzyme compositions may, for instance, be stabilized by adding stabilizers such as a sugar, a sugar alcohol or another polyol, and/or lactic acid or another organic acid according to established processes.

40 Enzymes

[0428] The enzyme(s) and polypeptides described below are to be used in an "effective amount" in processes of the present invention.

45 Alpha-Amylases

[0429] Any alpha-amylase may be used, such as of fungal, bacterial or plant origin. In a preferred embodiment the alpha-amylase is an acid alpha-amylase, e.g., acid fungal or acid bacterial alpha-amylase. The term "acid alpha-amylase" means an alpha-amylase (EC 3.2.1.1) which added in an effective amount has activity optimum at a pH in the range of 3 to 7, preferably from 3.5 to 6, or more preferably from 4-5.

Bacterial Alpha-Amylases

[0430] An alpha-amylase for use in the present invention may be a bacterial alpha-amylase, e.g., derived from *Bacillus*. In a preferred embodiment the *Bacillus* alpha-amylase is derived from a strain of *Bacillus amyloliquefaciens*, *Bacillus licheniformis*, *Bacillus stearothermophilus*, or *Bacillus subtilis*, but may also be derived from other *Bacillus* sp.

[0431] Specific examples of alpha-amylases include the *Bacillus amyloliquefaciens* alpha-amylase of SEQ ID NO: 5 in WO 99/19467, the *Bacillus licheniformis* alpha-amylase of SEQ ID NO: 4 in WO 99/19467, and the *Bacillus stearo*-

thermophilus alpha-amylase of SEQ ID NO: 3 in WO 99/19467 (all sequences are hereby incorporated by reference). In an embodiment the alpha-amylase may be an enzyme having a degree of identity of at least 60%, e.g., at least 70%, at least 80%, at least 90%, at least 95%, at least 96%, at least 97%, at least 98% or at least 99% to any of the sequences shown in SEQ ID NOS: 3, 4 or 5, respectively, in WO 99/19467.

[0432] The Bacillus alpha-amylase may also be a variant and/or hybrid, especially one described in any of WO 96/23873, WO 96/23874, WO 97/41213, WO 99/19467, WO 00/60059, and WO 02/10355 (all documents are hereby incorporated by reference). Specific alpha-amylase variants are disclosed in U.S. Patent Nos. 6,093,562, 6,187,576, and 6,297,038 (hereby incorporated by reference) and include Bacillus stearothermophilus alpha-amylase (BSG alphaamylase) variants having a deletion of one or two amino acids at positions R179 to G182, preferably a double deletion disclosed in WO 96/23873 - see, e.g., page 20, lines 1-10 (hereby incorporated by reference), preferably corresponding to delta(181-182) compared to the amino acid sequence of Bacillus stearothermophilus alpha-amylase set forth in SEQ ID NO: 3 disclosed in WO 99/19467 or the deletion of amino acids R179 and G180 using SEQ ID NO: 3 in WO 99/19467 for numbering (which reference is hereby incorporated by reference). Even more preferred are Bacillus alpha-amylases, especially Bacillus stearothermophilus alpha-amylases, which have a double deletion corresponding to delta(181-182) and further comprise a N193F substitution (also denoted I181* + G182* + N193F) compared to the wild-type BSG alphaamylase amino acid sequence set forth in SEQ ID NO: 3 disclosed in WO 99/19467. The bacterial alpha-amylase may also have a substitution in a position corresponding to S239 in the Bacillus licheniformis alpha-amylase shown in SEQ ID NO: 4 in WO 99/19467, or a S242 variant of the Bacillus stearothermophilus alpha-amylase of SEQ ID NO: 3 in WO 99/19467. In a preferred embodiment the alpha-amylase is selected from the group of Bacillus stearomthermphilus alpha-amylase variants:

I181*+G182*+N193F+E129V+K177L+R179E;

I181*+G182*+N193F+V59A+Q89R+E129V+K177L+R179E+H208Y+K220P+N224L+Q254S;

I181*+G182*+N193F+V59A+Q89R+E129V+K177L+R179E+Q254S+M284V; and

I181*+G182*+N193F+E129V+K177L+R179E+K220P+N224L+S242Q+Q254S (using SEQ ID NO: 3 disclosed in WO 99/19467 for numbering).

Bacterial Hybrid Alpha-Amylases

[0433] The alpha-amylase may be a hybrid alpha-amylase, e.g., an alpha-amylase comprising 445 C-terminal amino acid residues of the Bacillus licheniformis alpha-amylase (shown in SEQ ID NO: 4 of WO 99/19467) and the 37 N-terminal amino acid residues of the alpha-amylase derived from Bacillus amyloliquefaciens (shown in SEQ ID NO: 5 of WO 99/19467), with one or more, especially all, of the following substitutions:

G48A+T49I+G107A+H156Y+A181T+N190F+I201F+A209V+Q264S (using the *Bacillus licheniformis* numbering in SEQ ID NO: 4 of WO 99/19467). Also preferred are variants having one or more of the following mutations (or corresponding mutations in other *Bacillus* alpha-amylases): H154Y, A181T, N190F, A209V and Q264S and/or the deletion of two residues between positions 176 and 179, preferably the deletion of E178 and G179 (using SEQ ID NO: 5 of WO 99/19467 for position numbering).

Fungal Alpha-Amylases

10

15

20

25

35

45

50

55

[0434] Fungal alpha-amylases include alpha-amylases derived from a strain of *Aspergillus*, such as, *Aspergillus kawachii*, *Aspergillus niger* and *Aspergillus oryzae* alpha-amylases.

[0435] A preferred acidic fungal alpha-amylase is an alpha-amylase which exhibits a high identity, *i.e.*, at least 70%, at least 75%, at least 80%, at least 85%, at least 90%, at least 95%, at least 96%, at least 97%, at least 98%, at least 99% or even 100% identity to the mature part of the amino acid sequence shown in SEQ ID NO: 10 in WO 96/23874.

[0436] Another preferred acid alpha-amylase is derived from a strain of *Aspergillus niger*. In a preferred embodiment the acid fungal alpha-amylase is an *Aspergillus niger* alpha-amylase disclosed as "AMYA_ASPNG" in the Swissprot/TeEMBL database under the primary accession no. P56271 and described in WO 89/01969 (Example 3 - incorporated by reference).

[0437] Other wild-type alpha-amylases include those derived from a strain of *Meripilus* and *Rhizomucor*, preferably a strain of *Meripilus giganteus* or *Rhizomucor pusillus* (WO 2004/055178 which is incorporated herein by reference).

[0438] In a preferred embodiment, the alpha-amylase is derived from *Aspergillus kawachii* (Kaneko et al., 1996, J. Ferment. Bioeng. 81: 292-298, "Molecular-cloning and determination of the nucleotide-sequence of a gene encoding an acid-stable alpha-amylase from Aspergillus kawachii"; and further as EMBL: #AB008370).

[0439] The fungal alpha-amylase may also be a wild-type enzyme comprising a starch-binding domain (SBD) and an alpha-amylase catalytic domain, or a variant thereof.

Fungal Hybrid Alpha-Amylases

10

20

30

35

40

45

50

55

[0440] In a preferred embodiment, the fungal acid alpha-amylase is a hybrid alpha-amylase. Examples of fungal hybrid alpha-amylases include the ones disclosed in WO 2005/003311, U.S. Patent Application Publication No. 2005/0054071 (Novozymes), and WO 2006/069290 (Novozymes), which are hereby incorporated by reference. A hybrid alpha-amylase may comprise an alpha-amylase catalytic domain (CD) and a carbohydrate-binding domain/module (CBM), such as a starch binding domain (SBD), and optionally a linker.

[0441] Examples of hybrid alpha-amylases include those disclosed in Tables 1 to 5 of the examples in WO 2006/069290 including the variant with the catalytic domain JA118 and *Athelia rolfsii* SBD (SEQ ID NO: 100 in WO 2006/069290), *Rhizomucor pusillus* alpha-amylase with *Athelia rolfsii* AMG linker and SBD (SEQ ID NO: 101 in WO 2006/069290), *Rhizomucor pusillus* alpha-amylase with *Aspergillus niger* glucoamylase linker and SBD (which is disclosed in Table 5 as a combination of amino acid sequences SEQ ID NO: 20, SEQ ID NO: 72 and SEQ ID NO: 96 in U.S. application no. 11/316,535) or as V039 in Table 5 in WO 2006/069290, and *Meripilus giganteus* alpha-amylase with *Athelia rolfsii* glucoamylase linker and SBD (SEQ ID NO: 102 in WO 2006/069290). Other hybrid alpha-amylases are listed in Tables 3, 4, 5, and 6 in Example 4 in U.S. application no. 11/316,535 and WO 2006/069290 (which are hereby incorporated by reference).

[0442] In a preferred embodiment the alpha-amylase is an alpha-amylase derived from *Rhizomucor pusillus* with an *Aspergillus niger* glucoamylase linker and starch-binding domain (SBD), preferably the one shown in SEQ ID NO: 7 in WO2013/006756, preferably having one or more of the following substitutions: G128D, D143N, especially G128D+D143N.

Other examples of hybrid alpha-amylases include those disclosed in U.S. Patent Application Publication No. 2005/0054071, including those disclosed in Table 3 on page 15, such as *Aspergillus niger* alpha-amylase with *Aspergillus kawachii* linker and starch binding domain.

Other alpha-amylases exhibit a high degree of sequence identity to any of above mentioned alpha-amylases, *i.e.*, at least 70%, at least 75%, at least 80%, at least 85%, at least 90%, at least 95%, at least 96%, at least 97%, at least 98%, at least 99% or even 100% identity to the mature enzyme sequences disclosed above.

Commercial Alpha-Amylase Products

[0443] Preferred commercial compositions comprising alpha-amylase include MYCOLASE™ (DSM), BAN™, TER-MAMYL™ SC, FUNGAMYL™, LIQUOZYME™ X, LIQUOZYME™ SC and SAN™ SUPER, SAN™ EXTRAL (Novozymes A/S) and CLARASE™ L-40,000, DEX-LO™, SPEZYME™ FRED, SPEZYME™ AA, SPEZYME™ ALPHA, SPEZYME™ DELTA AA, GC358, GC980, SPEZYME™ CL and SPEZYME™ RSL (DuPont Industrial Biosciences), and the acid fungal alpha-amylase from *Aspergillus niger* referred to as SP288 (available from Novozymes A/S, Denmark).

Carbohydrate-Source Generating Enzymes (Saccharifying Enzymes)

[0444] The term "carbohydrate-source generating enzyme" includes glucoamylase (a glucose generator), beta-amylase and maltogenic amylase (both maltose generators) and also alpha-glucosidase, isoamylase and pullulanase. A carbohydrate-source generating enzyme is capable of producing a carbohydrate that can be used as an energy-source by the fermenting organism(s) in question, for instance, when used in a process of the invention for producing a fermentation product, such as ethanol. The generated carbohydrate may be converted directly or indirectly to the desired fermentation product, preferably ethanol. A mixture of carbohydrate-source generating enzymes may be used. Blends include mixtures comprising at least a glucoamylase and an alpha-amylase, especially an acid amylase, even more preferred an acid fungal alpha-amylase.

[0445] In a conventional starch-to-ethanol process (*i.e.*, including a liquefaction step), the ratio may preferably be as defined in EP 140410, especially when saccharification and fermentation are carried out simultaneously.

Glucoamylases

[0446] The term "glucoamylase" (1,4-alpha-D-glucan glucohydrolase, EC 3.2.1.3) is an enzyme, which catalyzes the release of D-glucose from the non-reducing ends of starch or related oligo- and polysaccharide molecules.

[0447] The glucoamylase may added in an amount of 0.001 to 10 AGU/g DS, preferably from 0.01 to 5 AGU/g DS, such as around 0.1, 0.3, 0.5, 1 or 2 AGU/g DS, especially 0.1 to 0.5 AGU/g DS or 0.02-20 AGU/g DS, preferably 0.1-10 AGU/g DS.

[0448] A glucoamylase may be derived from any suitable source, *e.g.*, derived from a microorganism or a plant. Preferred glucoamylases are of fungal or bacterial origin, selected from the group consisting of *Aspergillus* glucoamylases, in particular *Aspergillus* niger G1 or G2 glucoamylase (Boel et al., 1984, EMBO J. 3(5): 1097-1102), or variants thereof,

such as those disclosed in WO 92/00381, WO 00/04136 and WO 01/04273 (from Novozymes, Denmark); the *A. awamori* glucoamylase disclosed in WO 84/02921, *Aspergillus oryzae* glucoamylase (Hata et al., 1991, Agric. Biol. Chem. 55(4): 941-949), or variants or fragments thereof. Other *Aspergillus* glucoamylase variants include variants with enhanced thermal stability: G137A and G139A (Chen et al., 1996, Prot. Eng. 9: 499-505); D257E and D293E/Q (Chen et al., 1995, Prot. Eng. 8: 575-582); N182 (Chen et al., 1994, Biochem. J. 301: 275-281); disulphide bonds, A246C (Fierobe et al., 1996, Biochemistry 35: 8698-8704; and introduction of Pro residues in positions A435 and S436 (Li et al., 1997, Prot. Eng. 10: 1199-1204.

Other glucoamylases include *Athelia rolfsii* (previously denoted *Corticium rolfsii*) glucoamylase (see U.S. Patent No. 4,727,026 and Nagasaka et al., 1998, Appl. Microbiol. Biotechnol. 50: 323-330), *Talaromyces* glucoamylases, in particular derived from *Talaromyces duponti*, *Talaromyces emersonii* (WO 99/28448), *Talaromyces leycettanus* (U.S. Patent No. Re. 32,153), and *Talaromyces thermophilus* (U.S. Patent No. 4,587,215). *Gloeophyllum* sp. (US 2012/0214196).

[0449] In a specific embodiment the glucoamylase is from a strain of the genus *Penicillium*, especially a strain of *Penicillium oxalicum*, in particular the *Penicillium oxalicum* glucoamylase disclosed as SEQ ID NO: 2 in WO 2011/127802. In a preferred embodiment the glucoamylase is a variant of the *Penicillium oxalicum* glucoamylase disclosed as SEQ ID NO: 2 in WO 2011/127802 having a K79V substitution using the mature polypeptide (amino acids 22-616 of SEQ ID NO: 2) for numbering, and described in WO 2013/036526. In a preferred embodiment the glucoamylase is a variant of the *Penicillium oxalicum* glucoamylase disclosed as amino acids 22-616 of SEQ ID NO: 2 in WO 2011/127802 having a K79V substitution and one or more of the following substitutions P2N, P4S, P11F, T65A, Q327F, especially P2N + P4S + P11F + T65A + Q327F as described in WO2013/053801.

[0450] In a specific embodiment the glucoamylase is from a strain of the genus *Pycnoporus*, especially a strain of *Pycnoporus sanguineus*, in particular the *Pycnoporus sanguineus* glucoamylase disclosed as SEQ ID NO: 2, 4, or 6 in WO 2011/066576. In a preferred embodiment the enzyme composition comprises the glucoamylase shown as amino acids 19-573 of SEQ ID NO: 6 in WO 2011/066576.

[0451] In a specific embodiment the glucoamylase is from a strain of the genus *Gloeophillum*, especially a strain of *Gloeophyllum trabeum*, in particular the *Gloeophyllum trabeum* glucoamylase disclosed as SEQ ID NO: 18 in WO 2011/068803. In an especially preferred embodiment the enzyme composition comprises the *Gloeophyllum trabeum* glucoamylase shown in amino acids 18-576 of SEQ ID NO: 18 in WO2011/068803, and having one or more of the following substitutions: S95P, A121P, especially S95P+A121P using the mature polypeptide (positions 18-576 of SEQ ID NO: 18) for numbering.

[0452] In a specific embodiment the glucoamylase is from a strain of the genus Gloeophillum, especially a strain of Gloeophillum sepiarium, in particular the mature Gloeophillum sepiarium glucoamylase disclosed as amino acids 18-573 of SEQ ID NO: 2 in WO2011/068803.

[0453] Bacterial glucoamylases include glucoamylases from *Clostridium*, in particular C. *thermoamylolyticum* (EP 135138) and C. *thermohydrosulfuricum* (WO 86/01831), *Trametes cingulata, Pachykytospora papyracea*, and *Leucopaxillus giganteus*, all disclosed in WO 2006/069289; or *Peniophora rufomarginata* disclosed in PCT/US2007/066618; or a mixture thereof. A hybrid glucoamylase may be used in the present invention. Examples of hybrid glucoamylases are disclosed in WO 2005/045018. Specific examples include the hybrid glucoamylase disclosed in Tables 1 and 4 of Example 1 (which hybrids are hereby incorporated by reference).

[0454] The glucoamylase may have a high degree of sequence identity to any of above mentioned glucoamylases, *i.e.*, at least 70%, at least 75%, at least 80%, at least 95%, at least 95%, at least 96%, at least 97%, at least 98%, at least 99% or even 100% identity to the mature enzymes sequences mentioned above.

[0455] Commercially available glucoamylase compositions include AMG 200L; AMG 300L; SAN™ SUPER, SAN™ EXTRA L, SPIRIZYME™ PLUS, SPIRIZYME™ FUEL, SPIRIZYME™ B4U, SPIRIZYME ULTRA™ and AMG™ E (from Novozymes A/S, Denmark); OPTIDEX™ 300, GC480™ and GC147™ (from DuPont Industrial Biosciences, USA); AMIGASE™ and AMIGASE™ PLUS (from DSM); G-ZYME™ G900, G-ZYME™ and G990 ZR (from DuPont Industrial Biosciences).

Glucoamylases may be added in an amount of 0.02-20 AGU/g DS, preferably 0.1-10 AGU/g DS, especially between 1-5 AGU/g DS, such as 0.1-2 AGU/g DS, such as 0.5 AGU/g DS or in an amount of 0.0001-20 AGU/g DS, preferably 0.001-10 AGU/g DS, especially between 0.01-5 AGU/g DS, such as 0.1-2 AGU/g DS.

Beta-amylases

10

35

45

50

55

[0456] A beta-amylase (E.C 3.2.1.2) is the name traditionally given to exo-acting maltogenic amylases, which catalyze the hydrolysis of 1,4-alpha-glucosidic linkages in amylose, amylopectin and related glucose polymers. Maltose units are successively removed from the non-reducing chain ends in a step-wise manner until the molecule is degraded or, in the case of amylopectin, until a branch point is reached. The maltose released has the beta anomeric configuration, hence the name beta-amylase.

[0457] Beta-amylases have been isolated from various plants and microorganisms (Fogarty and Kelly, 1979, Progress

in Industrial Microbiology 15: 112-115). These beta-amylases are characterized by having a temperature optimum in the range from 40°C to 65°C and a pH optimum in the range from 4.5 to 7. A commercially available beta-amylase from barley is NOVOZYM™ WBA from Novozymes A/S, Denmark and SPEZYME™ BBA 1500 from DuPont Industrial Biosciences, USA.

Maltogenic Amylases

[0458] The amylase may also be a maltogenic alpha-amylase (glucan 1,4-alpha-maltohydrolase, EC 3.2.1.133), which catalyzes the hydrolysis of amylose and amylopectin to maltose in the alpha-configuration. A maltogenic amylase from *Bacillus stearothermophilus* strain NCIB 11837 is commercially available from Novozymes A/S. Maltogenic alpha-amylases are described in U.S. Patent Nos. 4,598,048, 4,604,355 and 6,162,628, which are hereby incorporated by reference. The maltogenic amylase may be added in an amount of 0.05-5 mg total protein/gram DS or 0.05-5 MANU/g DS.

Pullulanases

[0459] Pullulanases (E.C. 3.2.1.41, pullulan 6-glucano-hydrolase), are debranching enzymes characterized by their ability to hydrolyze the alpha-1,6-glycosidic bonds in, for example, amylopectin and pullulan.

[0460] The pullulanase according to the invention, and in addition any further pullulanase may be added, preferably a bacterial pullulanase, preferably derived from a strain of the genus *Bacillus*, especially derived from a strain of *Bacillus* deramificans, *Bacillus* subtilis, *Bacillus* amyloderamificans, or *Bacillus* acidopullulyticus.

[0461] The pullulanase may according to the invention be added in an effective amount which include the preferred range of from between 1-100 micro g per g DS, especially from 10-60 micro g per g DS. Pullulanase activity may be determined as NPUN. An Assay for determination of NPUN is described in the "Materials & Methods"-section below.

[0462] In a preferred embodiment, the pullulanase is used in an amount between 1-100 micro g enzyme protein per g DS, preferably between 10-60 micro g enzyme protein per g DS.

[0463] Suitable commercially available pullulanase products include PROMOZYME D, PROMOZYME™ D2 (Novozymes A/S, Denmark), OPTIMAX L-1000, OPTIMAX L-300 (DuPont Industrial Biosciences), and AMANO 8 (Amano, Japan).

The present invention is further described by the following numbered embodiments:

[Embodiment 1] A pullulanase variant comprising a substitution at one or more positions corresponding to positions 393, 143, 150, 243, 244, 346, 368, 370, 373, 381, 385, 387, 402, 429, 430, 456, 486, 492, 610, 631, 632, 665 and 699 of the polypeptide of SEQ ID NO: 3 wherein the variant has pullulanase activity; and

a) wherein the variant has at least 85%, at least 90%, at least 95%, at least 96%, at least 97%, at least 98%, or at least 99%, but less than 100% sequence identity to the polypeptide of SEQ ID NO: 3 and wherein the variant has increased thermoactivity compared to the pullulanase of SEQ ID NO: 3, particularly the variant has at least 60% relative activity when measured at 70° C relative to activity at 65° C, more particularly at least 65%, more particularly at least 70%, more particularly at least 75%, more particularly at least 80%, more particularly at least 90%, more particularly at least 100%; or

b) wherein the variant has at least 85%, at least 90%, at least 95%, at least 96%, at least 97%, at least 98%, or at least 99%, but less than 100% sequence identity to the polypeptide of SEQ ID NO: 6 and wherein the variant has increased thermoactivity compared to the pullulanase of SEQ ID NO: 6, particularly the variant has at least 30% relative activity when measured at 70° C relative to activity at 65° C, more particularly at least 40%, more particularly at least 50%, more particularly at least 70%, more particularly at least 80%, more particularly at least 90%, more particularly at least 100%; or

c) wherein the variant has at least 85%, at least 90%, at least 95%, at least 96%, at least 97%, at least 98%, or at least 99%, but less than 100% sequence identity to the polypeptide of SEQ ID NO: 9 and wherein the variant has increased thermoactivity compared to the pullulanase of SEQ ID NO: 9, particularly the variant has at least 30% relative activity when measured at 70° C relative to activity at 65°C, more particularly at least 40%, more particularly at least 50%, more particularly at least 70%, more particularly at least 80%, more particularly at least 90%, more particularly at least 100%; or

d) wherein the variant has at least 85%, at least 90%, at least 95%, at least 96%, at least 97%, at least 98%, or at least 99%, but less than 100% sequence identity to the polypeptide of SEQ ID NO: 16 and wherein the variant has increased thermoactivity compared to the pullulanase of SEQ ID NO: 16, particularly the variant has at least 30% relative activity when measured at 70°C relative to activity at 65°C, more particularly at least 40%, more particularly at least 50%, more particularly at least 70%, more particularly at least 80%, more particularly at least 90%, more particularly at least 100%; or

85

15

5

10

30

35

40

45

50

55

5

10

15

20

25

30

35

40

45

50

55

e) wherein the variant has at least 85%, at least 90%, at least 95%, at least 96%, at least 97%, at least 98%, or at least 99%, but less than 100% sequence identity to the polypeptide of SEQ ID NO: 17 and wherein the variant has increased thermoactivity compared to the pullulanase of SEQ ID NO: 17, particularly the variant has at least 30% relative activity when measured at 70°C relative to activity at 65°C, more particularly at least 40%, more particularly at least 50%, more particularly at least 70%, more particularly at least 80%, more particularly at least 100%.

[Embodiment 2] The pullulanase variant according to embodiment 1, comprising a substitution at two or more positions corresponding to positions 393, 143, 150, 243, 244, 346, 368, 370, 373, 381, 385, 387, 402, 429, 430, 456, 486, 492, 610, 624, 631, 632, 665 and 699 of the polypeptide of SEQ ID NO: 3 wherein the variant has pullulanase activity; and;

- a) wherein the variant has at least 85%, at least 90%, at least 95%, at least 96%, at least 97%, at least 98%, or at least 99%, but less than 100% sequence identity to the polypeptide of SEQ ID NO: 3 and wherein the variant has increased thermoactivity compared to the pullulanase of SEQ ID NO: 3, particularly the variant has at least 60% relative activity when measured at 70° C relative to activity at 65° C, more particularly at least 65%, more particularly at least 70%, more particularly at least 75%, more particularly at least 80%, more particularly at least 90%, more particularly at least 100%; or
- b) wherein the variant has at least 85%, at least 90%, at least 95%, at least 96%, at least 97%, at least 98%, or at least 99%, but less than 100% sequence identity to the polypeptide of SEQ ID NO: 6 and wherein the variant has increased thermoactivity compared to the pullulanase of SEQ ID NO: 6, particularly the variant has at least 30% relative activity when measured at 70° C relative to activity at 65° C, more particularly at least 40%, more particularly at least 50%, more particularly at least 70%, more particularly at least 80%, more particularly at least 90%, more particularly at least 100%; or
- c) wherein the variant has at least 85%, at least 90%, at least 95%, at least 96%, at least 97%, at least 98%, or at least 99%, but less than 100% sequence identity to the polypeptide of SEQ ID NO: 9 and wherein the variant has increased thermoactivity compared to the pullulanase of SEQ ID NO: 9, particularly the variant has at least 30% relative activity when measured at 70° C relative to activity at 65°C, more particularly at least 40%, more particularly at least 50%, more particularly at least 70%, more particularly at least 80%, more particularly at least 90%, more particularly at least 100%; or
- d) wherein the variant has at least 85%, at least 90%, at least 95%, at least 96%, at least 97%, at least 98%, or at least 99%, but less than 100% sequence identity to the polypeptide of SEQ ID NO: 16 and wherein the variant has increased thermoactivity compared to the pullulanase of SEQ ID NO: 16, particularly the variant has at least 30% relative activity when measured at 70°C relative to activity at 65°C, more particularly at least 40%, more particularly at least 50%, more particularly at least 50%, more particularly at least 80%, more particularly at least 90%, more particularly at least 100%; or
- e) wherein the variant has at least 85%, at least 90%, at least 95%, at least 96%, at least 97%, at least 98%, or at least 99%, but less than 100% sequence identity to the polypeptide of SEQ ID NO: 17 and wherein the variant has increased thermoactivity compared to the pullulanase of SEQ ID NO: 17, particularly the variant has at least 30% relative activity when measured at 70°C relative to activity at 65°C, more particularly at least 40%, more particularly at least 50%, more particularly at least 70%, more particularly at least 80%, more particularly at least 90%, more particularly at least 100%.

[Embodiment 3] The pullulanase variant according to embodiment 1, comprising a substitution at three or more positions corresponding to positions 393, 143, 150, 243, 244, 346, 368, 370, 373, 381, 385, 387, 402, 429, 430, 431, 456, 486, 492, 610, 624, 631, 632, 665 and 699 of the polypeptide of SEQ ID NO: 3 wherein the variant has pullulanase activity; and;

- a) wherein the variant has at least 85%, at least 90%, at least 95%, at least 96%, at least 97%, at least 98%, or at least 99%, but less than 100% sequence identity to the polypeptide of SEQ ID NO: 3 and wherein the variant has increased thermoactivity compared to the pullulanase of SEQ ID NO: 3, particularly the variant has at least 60% relative activity when measured at 70° C relative to activity at 65° C, more particularly at least 65%, more particularly at least 70%, more particularly at least 75%, more particularly at least 80%, more particularly at least 90%, more particularly at least 100%; or
- b) wherein the variant has at least 85%, at least 90%, at least 95%, at least 96%, at least 97%, at least 98%, or at least 99%, but less than 100% sequence identity to the polypeptide of SEQ ID NO: 6 and wherein the variant has increased thermoactivity compared to the pullulanase of SEQ ID NO: 6, particularly the variant has at least 30% relative activity when measured at 70° C relative to activity at 65° C, more particularly at least 40%,

5

10

15

20

25

30

35

40

45

50

55

more particularly at least 50%, more particularly at least 60%, more particularly at least 70%, more particularly at least 80%, more particularly at least 90%, more particularly at least 100%; or

- c) wherein the variant has at least 85%, at least 90%, at least 95%, at least 96%, at least 97%, at least 98%, or at least 99%, but less than 100% sequence identity to the polypeptide of SEQ ID NO: 9 and wherein the variant has increased thermoactivity compared to the pullulanase of SEQ ID NO: 9, particularly the variant has at least 30% relative activity when measured at 70° C relative to activity at 65°C, more particularly at least 40%, more particularly at least 50%, more particularly at least 70%, more particularly at least 80%, more particularly at least 90%, more particularly at least 100%; or
- d) wherein the variant has at least 85%, at least 90%, at least 95%, at least 96%, at least 97%, at least 98%, or at least 99%, but less than 100% sequence identity to the polypeptide of SEQ ID NO: 16 and wherein the variant has increased thermoactivity compared to the pullulanase of SEQ ID NO: 16, particularly the variant has at least 30% relative activity when measured at 70°C relative to activity at 65°C, more particularly at least 40%, more particularly at least 50%, more particularly at least 70%, more particularly at least 80%, more particularly at least 90%, more particularly at least 100%; or
- e) wherein the variant has at least 85%, at least 90%, at least 95%, at least 96%, at least 97%, at least 98%, or at least 99%, but less than 100% sequence identity to the polypeptide of SEQ ID NO: 17 and wherein the variant has increased thermoactivity compared to the pullulanase of SEQ ID NO: 17, particularly the variant has at least 30% relative activity when measured at 70°C relative to activity at 65°C, more particularly at least 40%, more particularly at least 50%, more particularly at least 70%, more particularly at least 80%, more particularly at least 90%, more particularly at least 100%.

[Embodiment 4] The pullulanase variant according to embodiment 1, comprising a substitution at four or more positions corresponding to positions 393, 143, 150, 243, 244, 346, 368, 370, 373, 381, 385, 387, 402, 429, 430, 431, 432, 456, 486, 492, 610, 624, 631, 632, 665 and 699 of the polypeptide of SEQ ID NO: 3 wherein the variant has pullulanase activity; and;

- a) wherein the variant has at least 85%, at least 90%, at least 95%, at least 96%, at least 97%, at least 98%, or at least 99%, but less than 100% sequence identity to the polypeptide of SEQ ID NO: 3 and wherein the variant has increased thermoactivity compared to the pullulanase of SEQ ID NO: 3, particularly the variant has at least 60% relative activity when measured at 70° C relative to activity at 65° C, more particularly at least 65%, more particularly at least 70%, more particularly at least 75%, more particularly at least 80%, more particularly at least 90%, more particularly at least 100%; or
- b) wherein the variant has at least 85%, at least 90%, at least 95%, at least 96%, at least 97%, at least 98%, or at least 99%, but less than 100% sequence identity to the polypeptide of SEQ ID NO: 6 and wherein the variant has increased thermoactivity compared to the pullulanase of SEQ ID NO: 6, particularly the variant has at least 30% relative activity when measured at 70° C relative to activity at 65° C, more particularly at least 40%, more particularly at least 50%, more particularly at least 70%, more particularly at least 80%, more particularly at least 90%, more particularly at least 100%; or
- c) wherein the variant has at least 85%, at least 90%, at least 95%, at least 96%, at least 97%, at least 98%, or at least 99%, but less than 100% sequence identity to the polypeptide of SEQ ID NO: 9 and wherein the variant has increased thermoactivity compared to the pullulanase of SEQ ID NO: 9, particularly the variant has at least 30% relative activity when measured at 70° C relative to activity at 65°C, more particularly at least 40%, more particularly at least 50%, more particularly at least 70%, more particularly at least 80%, more particularly at least 90%, more particularly at least 100%; or
- d) wherein the variant has at least 85%, at least 90%, at least 95%, at least 96%, at least 97%, at least 98%, or at least 99%, but less than 100% sequence identity to the polypeptide of SEQ ID NO: 16 and wherein the variant has increased thermoactivity compared to the pullulanase of SEQ ID NO: 16, particularly the variant has at least 30% relative activity when measured at 70°C relative to activity at 65°C, more particularly at least 40%, more particularly at least 50%, more particularly at least 70%, more particularly at least 80%, more particularly at least 90%, more particularly at least 100%; or
- e) wherein the variant has at least 85%, at least 90%, at least 95%, at least 96%, at least 97%, at least 98%, or at least 99%, but less than 100% sequence identity to the polypeptide of SEQ ID NO: 17 and wherein the variant has increased thermoactivity compared to the pullulanase of SEQ ID NO: 17, particularly the variant has at least 30% relative activity when measured at 70°C relative to activity at 65°C, more particularly at least 40%, more particularly at least 50%, more particularly at least 70%, more particularly at least 80%, more particularly at least 100%.

[Embodiment 5] The pullulanase variant according to embodiment 1, comprising a substitution at five or more

positions corresponding to positions 393, 143, 150, 243, 244, 345, 346, 368, 370, 373, 381, 385, 387, 402, 429, 430, 431, 432, 456, 486, 492, 610, 624, 631, 632, 665 and 699 of the polypeptide of SEQ ID NO: 3 wherein the variant has pullulanase activity; and;

5

a) wherein the variant has at least 85%, at least 90%, at least 95%, at least 96%, at least 97%, at least 98%, or at least 99%, but less than 100% sequence identity to the polypeptide of SEQ ID NO: 3 and wherein the variant has increased thermoactivity compared to the pullulanase of SEQ ID NO: 3, particularly the variant has at least 60% relative activity when measured at 70° C relative to activity at 65° C, more particularly at least 65%, more particularly at least 70%, more particularly at least 75%, more particularly at least 80%, more particularly at least 90%, more particularly at least 100%; or

10

b) wherein the variant has at least 85%, at least 90%, at least 95%, at least 96%, at least 97%, at least 98%, or at least 99%, but less than 100% sequence identity to the polypeptide of SEQ ID NO: 6 and wherein the variant has increased thermoactivity compared to the pullulanase of SEQ ID NO: 6, particularly the variant has at least 30% relative activity when measured at 70° C relative to activity at 65° C, more particularly at least 40%, more particularly at least 50%, more particularly at least 70%, more particularly at least 80%, more particularly at least 90%, more particularly at least 100%; or

15

c) wherein the variant has at least 85%, at least 90%, at least 95%, at least 96%, at least 97%, at least 98%, or at least 99%, but less than 100% sequence identity to the polypeptide of SEQ ID NO: 9 and wherein the variant has increased thermoactivity compared to the pullulanase of SEQ ID NO: 9, particularly the variant has at least 30% relative activity when measured at 70° C relative to activity at 65°C, more particularly at least 40%, more particularly at least 50%, more particularly at least 70%, more particularly at least 80%, more particularly at least 90%, more particularly at least 100%; or

20

d) wherein the variant has at least 85%, at least 90%, at least 95%, at least 96%, at least 97%, at least 98%, or at least 99%, but less than 100% sequence identity to the polypeptide of SEQ ID NO: 16 and wherein the variant has increased thermoactivity compared to the pullulanase of SEQ ID NO: 16, particularly the variant has at least 30% relative activity when measured at 70°C relative to activity at 65°C, more particularly at least 40%, more particularly at least 50%, more particularly at least 70%, more particularly at least 80%, more particularly at least 90%, more particularly at least 100%; or

25

30

e) wherein the variant has at least 85%, at least 90%, at least 95%, at least 96%, at least 97%, at least 98%, or at least 99%, but less than 100% sequence identity to the polypeptide of SEQ ID NO: 17 and wherein the variant has increased thermoactivity compared to the pullulanase of SEQ ID NO: 17, particularly the variant has at least 30% relative activity when measured at 70°C relative to activity at 65°C, more particularly at least 40%, more particularly at least 50%, more particularly at least 70%, more particularly at least 80%, more particularly at least 100%.

35

[Embodiment 6] The pullulanase variant according to embodiment 1, comprising a substitution at six or more positions corresponding to positions 393, 143, 150, 243, 244, 345, 346, 368, 370, 373, 381, 382, 385, 387, 402, 429, 430, 431, 432, 456, 486, 492, 610, 624, 631, 632, 665 and 699 of the polypeptide of SEQ ID NO: 3 wherein the variant has pullulanase activity; and;

40

a) wherein the variant has at least 85%, at least 90%, at least 95%, at least 96%, at least 97%, at least 98%, or at least 99%, but less than 100% sequence identity to the polypeptide of SEQ ID NO: 3 and wherein the variant has increased thermoactivity compared to the pullulanase of SEQ ID NO: 3, particularly the variant has at least 60% relative activity when measured at 70° C relative to activity at 65° C, more particularly at least 65%, more particularly at least 70%, more particularly at least 75%, more particularly at least 80%, more particularly at least 90%, more particularly at least 100%; or

45

b) wherein the variant has at least 85%, at least 90%, at least 95%, at least 96%, at least 97%, at least 98%, or at least 99%, but less than 100% sequence identity to the polypeptide of SEQ ID NO: 6 and wherein the variant has increased thermoactivity compared to the pullulanase of SEQ ID NO: 6, particularly the variant has at least 30% relative activity when measured at 70° C relative to activity at 65° C, more particularly at least 40%, more particularly at least 50%, more particularly at least 70%, more particularly at least 80%, more particularly at least 90%, more particularly at least 100%; or

50

c) wherein the variant has at least 85%, at least 90%, at least 95%, at least 96%, at least 97%, at least 98%, or at least 99%, but less than 100% sequence identity to the polypeptide of SEQ ID NO: 9 and wherein the variant has increased thermoactivity compared to the pullulanase of SEQ ID NO: 9, particularly the variant has at least 30% relative activity when measured at 70° C relative to activity at 65°C, more particularly at least 40%, more particularly at least 50%, more particularly at least 70%, more particularly at least 80%, more particularly at least 90%, more particularly at least 100%; or

55

to position 368.

d) wherein the variant has at least 85%, at least 90%, at least 95%, at least 96%, at least 97%, at least 98% or at least 99%, but less than 100% sequence identity to the polypeptide of SEQ ID NO: 16 and wherein the variant has increased thermoactivity compared to the pullulanase of SEQ ID NO: 16, particularly the variant has at least 30% relative activity when measured at 70°C relative to activity at 65°C, more particularly at least 40%, more particularly at least 50%, more particularly at least 60%, more particularly at least 70%, more particularly at least 80%, more particularly at least 90%, at least 90%, at least 96%, at least 97%, at least 98% or at least 99%, but less than 100% sequence identity to the polypeptide of SEQ ID NO: 17 and wherein the variant has increased thermoactivity compared to the pullulanase of SEQ ID NO: 17, particularly the variant has at least 30% relative activity when measured at 70°C relative to activity at 65°C, more particularly at least 40%, more particularly at least 50%, more particularly at least 70%, more particularly at least 100%.
[Embodiment 7] The pullulanase variant according to any of the preceding embodiments, comprising a substitution at one position corresponding to positions 393, 143, 150, 243, 244, 345, 346, 368, 486, 492, 610, 624, or 699 of the polypeptide of SEQ ID NO: 3 wherein the variant has pullulanase activity.
[Embodiment 8] The variant of any of embodiments 1-7, wherein the number of substitutions is 1-20, e.g., 1-10 and 1-5, such as 1, 2, 3, 4, 5, 6, 7, 8, 9 or 10 substitutions.
[Embodiment 9] The variant of any of embodiments 1-8, which comprises a substitution at a position corresponding to position 393.
[Embodiment 10] The variant of embodiment 09, wherein the substitution is with Alanine.
[Embodiment 11] The variant of any of embodiments 1-8, which comprises a substitution at a position corresponding to position 143.
[Embodiment 12] The variant of embodiment 11, wherein the substitution is with Valine.
[Embodiment 13] The variant of any of embodiments 1-8, which comprises a substitution at a position corresponding to position 150.
[Embodiment 14] The variant of embodiment 13, wherein the substitution is with Arginine.
[Embodiment 15] The variant of any of embodiments 1-8, which comprises a substitution at a position corresponding to position 243.
[Embodiment 16] The variant of embodiment 15, wherein the substitution is with Glutamic Acid.
[Embodiment 17] The variant of any of embodiments 1-8, which comprises a substitution at a position corresponding to position 244.
[Embodiment 18] The variant of embodiment 17, wherein the substitution is with Lysine.
[Embodiment 19] The variant of any of embodiments 1-8, which comprises a substitution at a position corresponding to position 345.
[Embodiment 20] The variant of embodiment 19, wherein the substitution is with Proline.
[Embodiment 21] The variant of any of embodiments 1-8, which comprises a substitution at a position corresponding to position 346.
[Embodiment 22] The variant of embodiment 21, wherein the substitution is with Serine.

[Embodiment 23] The variant of any of embodiments 1-8, which comprises a substitution at a position corresponding

	[Embodiment 24] The variant of embodiment 23, wherein the substitution is with Glutamic Acid.
E	[Embodiment 25] The variant of any of embodiments 1-8, which comprises a substitution at a position corresponding to position 370.
5	[Embodiment 26] The variant of embodiment 25, wherein the substitution is with Serine.
10	[Embodiment 27] The variant of any of embodiments 1-8, which comprises a substitution at a position corresponding to position 373.
	[Embodiment 28] The variant of embodiment 27, wherein the substitution is with Leucine.
15	[Embodiment 29] The variant of any of embodiments 1-8, which comprises a substitution at a position corresponding to position 381.
15	[Embodiment 30] The variant of embodiment 29, wherein the substitution is with Valine.
20	[Embodiment 31] The variant of any of embodiments 1-8, which comprises a substitution at a position corresponding to position 382.
20	[Embodiment 32] The variant of embodiment 31, wherein the substitution is with Threonine.
25	[Embodiment 33] The variant of any of embodiments 1-8, which comprises a substitution at a position corresponding to position 385.
25	[Embodiment 34] The variant of embodiment 33, wherein the substitution is with Glutamic Acid.
30	[Embodiment 35] The variant of any of embodiments 1-8, which comprises a substitution at a position corresponding to position 402.
30	[Embodiment 36] The variant of embodiment 35, wherein the substitution is with Threonine.
35	[Embodiment 37] The variant of any of embodiments 1-8, which comprises a substitution at a position corresponding to position 429.
30	[Embodiment 38] The variant of embodiment 37, wherein the substitution is with Valine.
40	[Embodiment 39] The variant of any of embodiments 1-8, which comprises a substitution at a position corresponding to position 430.
40	[Embodiment 40] The variant of embodiment 39, wherein the substitution is with Arginine.
45	[Embodiment 41] The variant of any of embodiments 1-8, which comprises a substitution at a position corresponding to position 431.
40	[Embodiment 42] The variant of embodiment 41, wherein the substitution is with Glutamic Acid.
50	[Embodiment 43] The variant of any of embodiments 1-8, which comprises a substitution at a position corresponding to position 432.
	[Embodiment 44] The variant of embodiment 43, wherein the substitution is with Phenylalanine.
55	[Embodiment 45] The variant of any of embodiments 1-8, which comprises a substitution at a position corresponding to position 456.
20	[Embodiment 46] The variant of embodiment 45, wherein the substitution is with Alanine.
	[Embodiment 47] The variant of any of embodiments 1-8, which comprises a substitution at a position corresponding

to position 486.

[Embodiment 48] The variant of embodiment 47, wherein the substitution is with Cysteine.

[Embodiment 49] The variant of any of embodiments 1-8, which comprises a substitution at a position corresponding to position 492.

[Embodiment 50] The variant of embodiment 49, wherein the substitution is with Serine or Alanine.

[Embodiment 51] The variant of any of embodiments 1-8, which comprises a substitution at a position corresponding to position 610.

[Embodiment 52] The variant of embodiment 51 wherein the substitution is with Leucine or Arginine.

[Embodiment 53] The variant of any of embodiments 1-8, which comprises a substitution at a position corresponding to position 624.

[Embodiment 54] The variant of embodiment 53, wherein the substitution is with Serine.

[Embodiment 55] The variant of any of embodiments 1-8, which comprises a substitution at a position corresponding to position 631.

[Embodiment 56] The variant of embodiment 55 wherein the substitution is with Serine.

²⁵ [Embodiment 57] The variant of any of embodiments 1-8, which comprises a substitution at a position corresponding to position 632.

[Embodiment 58] The variant of embodiment 57 wherein the substitution is with Cysteine.

[Embodiment 59] The variant of any of embodiments 1-8, which comprises a substitution at a position corresponding to position 665.

[Embodiment 60] The variant of embodiment 59 wherein the substitution is with Isoleucine.

[Embodiment 61] The variant of any of embodiments 1-8, which comprises a substitution at a position corresponding to position 699.

[Embodiment 62] The variant of embodiment 61 wherein the substitution is with Arginine.

[Embodiment 63] The variant according to embodiment 1-62, wherein the variant comprises or consists of one or more substitutions selected from the group consisting of 393A, 143G, 150R, 243E, 244K, 345P, 346S, 368G, 370S, 373L, 381V, 382T, 385F, 387L, 402T, 429V, 430R, 431E, 432F, 456A, 486C, 492S, 610R,L, 624S, 631S, 632C, 665I and 699R.

The variant of any of the preceding embodiments, wherein the variant comprises at least one of the following substitutions or combinations of substitutions:

	N368G;
	E699R;
	E150R;
50	N346S;
	N243E;
	S244K;
	V143G;
	N393A;
55	N610R;
	N610L;
	G624S;

F456A;

45

```
T492S:
            V486C + T492S;
            N368G + M402T;
            T631S + S632C;
5
            V486C + T492S+ T631S+ S632C:
            N393A + T631S+ S632C;
            T631S + S632C+ E699R;
            N393A + V486C + T492S+ T631S + S632C;
            N393A + G624S + S632C;
10
            N393A + N610R + T631S + S632C;
            N393A + G624S + T631S + S632C;
            N393A + N610R + G624S + T631S + S632C;
            N393A + V486C+ T492S + G624S + T631S+ S632C;
            N393A + V486C + T492S + N610R + G624S + T631S + S632C;
15
            N368G+ N393A + V486C + T492S+ N610R + G624S + T631S + S632C;
            N393A + V486C + T492S + N610R + G624S + T631S + S632C + E699R;
            N346S + N393A + V486C + T492S + N610R + G624S + T631S + S632C;
            N393A + F456A + V486C + T492S + N610R + G624S + T631S + S632C;
            N393A + T492S + N610R + G624S + T631S + S632C;
20
            N368G + N393A + T492S + N610R + G624S + T631S + S632C;
            A345P + N393A+ V486C + T492S + N610R + G624S + T631S + S632C;
            N368G + K370S + 1373L + N393A+ V486C + T492S+ N610R + G624S + T631S + S632C;
            1381V + Q385E + Q387L + N393A + V486C + T492S + N610R + G624S + T631S + S632C;
            1381V + N382T + Q385E + Q387L + N393A + V486C + T492S + N610R + G624S + T631S + S632C;
25
            A345P + N368G+ N393A + T492S + N610R + G624S + T631S + S632C:
            N368G + 1381V + Q385E + Q387L + N393A + T492S + N610R + G624S + T631S + S632C;
            A345P + N368G + I381V + Q385E + Q387L + N393A + T492S + N610R + G624S + T631S + S632C;
            A345P + N368G + I381V + Q385E + Q387L + N393A + T492S + N610R + G624S + T631S + S632C + V665I;
            N393A + T430R + Q431 E + L432F + V486C + T492S + N610R + G624S + T631S + S632C;
30
            N393A + Q431E + L432F+ V486C+ T492S+ N610R + G624S + T631S + S632C;
            N393A + I429V + Q431E + V486C + T492S + N610R + G624S + T631S + S632C;
            N393A + I429V + T430R + Q431E + L432F + V486C + T492S + N610R + G624S+ T631S + S632C;
            N368G+N393A+A492S,A;
            N368G+N393A;
35
            N393A+N610R;
            N368G+N393A+N610R;
            N368G+N393A+T492S,A+N610R+G624S;
            N368G+N393A+T492S,A+N610R+G624S+T631S+S632C+Q431 E+L432F;
            N368G+N393A+N610R+G624S+T631S+S632C:
40
            N368G+N393A+T492S,A+N610R+G624S+T631S+S632C;
            N368G+N393A+N610R+G624S+T631S+S632C+Q431E+L432F.
```

[Embodiment 64] A variant catalytic domain, wherein the variant catalytic domain comprises a substitution at one or more positions corresponding to positions 393, 346, 368, 370, 373, 381, 385, 387, 402, 429, 430, 456, 486, 492, 610, 631, 632, 665 and 699 of the polypeptide of SEQ ID NO: 3; and;

45

50

55

a) wherein the variant catalytic domain has at least 85%, at least 90%, at least 95%, at least 96%, at least 97%, at least 98%, or at least 99%, but less than 100% sequence identity to the polypeptide of SEQ ID NO: 3; or b) wherein the variant catalytic domain has at least 85%, at least 90%, at least 95%, at least 96%, at least 97%, at least 98%, or at least 99%, but less than 100% sequence identity to the polypeptide of SEQ ID NO: 6; or c) wherein the variant catalytic domain has at least 85%, at least 90%, at least 95%, at least 96%, at least 97%, at least 98%, or at least 99%, but less than 100% sequence identity to the polypeptide of SEQ ID NO: 9; or d) wherein the variant catalytic domain has at least 85%, at least 90%, at least 95%, at least 96%, at least 97%, at least 98%, or at least 99%, but less than 100% sequence identity to amino acids 430 to 928 of SEQ ID NO: 16; or e) wherein the variant catalytic domain has at least 85%, at least 90%, at least 95%, at least 96%, at least 97%, at least 98%, or at least 99%, but less than 100% sequence identity to amino acids 430 to 928 of SEQ ID NO: 17.

[Embodiment 65] The variant catalytic domain according to embodiment 64 comprising a substitution at two or more

5

10

15

20

25

30

35

40

45

50

55

positions corresponding to positions 393, 346, 368, 370, 373, 381, 385, 387, 402, 429, 430, 456, 486, 492, 610, 624, 631, 632, 665 and 699 of the polypeptide of SEQ ID NO: 3 wherein the variant catalytic domain has pullulanase activity, and;

a) wherein the variant catalytic domain has at least 85%, at least 90%, at least 95%, at least 96%, at least 97%, at least 98%, or at least 99%, but less than 100% sequence identity to the polypeptide of SEQ ID NO: 3; or b) wherein the variant catalytic domain has at least 85%, at least 90%, at least 95%, at least 96%, at least 97%, at least 98%, or at least 99%, but less than 100% sequence identity to the polypeptide of SEQ ID NO: 6; or c) wherein the variant catalytic domain has at least 85%, at least 90%, at least 95%, at least 96%, at least 97%, at least 98%, or at least 99%, but less than 100% sequence identity to the polypeptide of SEQ ID NO: 9; or d) wherein the variant catalytic domain has at least 85%, at least 90%, at least 95%, at least 96%, at least 97%, at least 98%, or at least 99%, but less than 100% sequence identity to amino acids 430 to 928 of SEQ ID NO: 16; or e) wherein the variant catalytic domain has at least 85%, at least 90%, at least 95%, at least 96%, at least 97%, at least 98%, or at least 99%, but less than 100% sequence identity to amino acids 430 to 928 of SEQ ID NO: 17.

[Embodiment 66] The variant catalytic domain according to embodiment 64 comprising a substitution at three or more positions corresponding to positions 393, 346, 368, 370, 373, 381, 385, 387, 402, 429, 430, 431, 456, 486, 492, 610, 624, 631, 632, 665 and 699 of the polypeptide of SEQ ID NO: 3 wherein the variant catalytic domain has pullulanase activity, and;

a) wherein the variant catalytic domain has at least 85%, at least 90%, at least 95%, at least 96%, at least 97%, at least 98%, or at least 99%, but less than 100% sequence identity to the polypeptide of SEQ ID NO: 3; or b) wherein the variant catalytic domain has at least 85%, at least 90%, at least 95%, at least 96%, at least 97%, at least 98%, or at least 99%, but less than 100% sequence identity to the polypeptide of SEQ ID NO: 6; or c) wherein the variant catalytic domain has at least 85%, at least 90%, at least 95%, at least 96%, at least 97%, at least 98%, or at least 99%, but less than 100% sequence identity to the polypeptide of SEQ ID NO: 9; or d) wherein the variant catalytic domain has at least 85%, at least 90%, at least 95%, at least 96%, at least 97%, at least 98%, or at least 99%, but less than 100% sequence identity to amino acids 430 to 928 of SEQ ID NO: 16; or e) wherein the variant catalytic domain has at least 85%, at least 90%, at least 95%, at least 96%, at least 97%, at least 98%, or at least 99%, but less than 100% sequence identity to amino acids 430 to 928 of SEQ ID NO: 17.

[Embodiment 67] The variant catalytic domain according to embodiment 64 comprising a substitution at four or more positions corresponding to positions 393, 346, 368, 370, 373, 381, 385, 387, 402, 429, 430, 431, 432, 456, 486, 492, 610, 624, 631, 632, 665 and 699 of the polypeptide of SEQ ID NO: 3 wherein the variant catalytic domain has pullulanase activity, and;

a) wherein the variant catalytic domain has at least 85%, at least 90%, at least 95%, at least 96%, at least 97%, at least 98%, or at least 99%, but less than 100% sequence identity to the polypeptide of SEQ ID NO: 3; or b) wherein the variant catalytic domain has at least 85%, at least 90%, at least 95%, at least 96%, at least 97%, at least 98%, or at least 99%, but less than 100% sequence identity to the polypeptide of SEQ ID NO: 6; or c) wherein the variant catalytic domain has at least 85%, at least 90%, at least 95%, at least 96%, at least 97%, at least 98%, or at least 99%, but less than 100% sequence identity to the polypeptide of SEQ ID NO: 9, or d) wherein the variant catalytic domain has at least 85%, at least 90%, at least 95%, at least 96%, at least 97%, at least 98%, or at least 99%, but less than 100% sequence identity to amino acids 430 to 928 of SEQ ID NO: 16; or e) wherein the variant catalytic domain has at least 85%, at least 90%, at least 95%, at least 96%, at least 97%, at least 98%, or at least 99%, but less than 100% sequence identity to amino acids 430 to 928 of SEQ ID NO: 17.

[Embodiment 68] The variant catalytic domain according to embodiment 64 comprising a substitution at five or more positions corresponding to positions 393, 345, 346, 368, 370, 373, 381, 385, 387, 402, 429, 430, 431, 432, 456, 486, 492, 610, 624, 631, 632, 665 and 699 of the polypeptide of SEQ ID NO: 3 wherein the variant catalytic domain has pullulanase activity; and;

a) wherein the variant catalytic domain has at least 85%, at least 90%, at least 95%, at least 96%, at least 97%, at least 98%, or at least 99%, but less than 100% sequence identity to the polypeptide of SEQ ID NO: 3; or b) wherein the variant catalytic domain has at least 85%, at least 90%, at least 95%, at least 96%, at least 97%, at least 98%, or at least 99%, but less than 100% sequence identity to the polypeptide of SEQ ID NO: 6; or c) wherein the variant catalytic domain has at least 85%, at least 90%, at least 95%, at least 96%, at least 97%, at least 98%, or at least 99%, but less than 100% sequence identity to the polypeptide of SEQ ID NO: 9; or

d) wherein the variant catalytic domain has at least 85%, at least 90%, at least 95%, at least 96%, at least 97%, at least 98%, or at least 99%, but less than 100% sequence identity to amino acids 430 to 928 of SEQ ID NO: 16; or e) wherein the variant catalytic domain has at least 85%, at least 90%, at least 95%, at least 96%, at least 97%, at least 98%, or at least 99%, but less than 100% sequence identity to amino acids 430 to 928 of SEQ ID NO: 17.

5

[Embodiment 69] The variant catalytic domain according to embodiment 64 comprising a substitution at six or more positions corresponding to positions 393, 345, 346, 368, 370, 373, 381, 382, 385, 387, 402, 429, 430, 431, 432, 456, 486, 492, 610, 624, 631, 632, 665 and 699 of the polypeptide of SEQ ID NO: 3 wherein the variant catalytic domain has pullulanase activity; and;

10

a) wherein the variant catalytic domain has at least 85%, at least 90%, at least 95%, at least 96%, at least 97%, at least 98%, or at least 99%, but less than 100% sequence identity to the polypeptide of SEQ ID NO: 3; or b) wherein the variant catalytic domain has at least 85%, at least 90%, at least 95%, at least 96%, at least 97%, at least 98%, or at least 99%, but less than 100% sequence identity to the polypeptide of SEQ ID NO: 6; or c) wherein the variant catalytic domain has at least 85%, at least 90%, at least 95%, at least 96%, at least 97%, at least 98%, or at least 99%, but less than 100% sequence identity to the polypeptide of SEQ ID NO: 9; or d) wherein the variant catalytic domain has at least 85%, at least 90%, at least 95%, at least 96%, at least 97%, at least 98%, or at least 99%, but less than 100% sequence identity to amino acids 430 to 928 of SEQID NO: 16; or e) wherein the variant catalytic domain has at least 85%, at least 90%, at least 95%, at least 96%, at least 97%, at least 98%, or at least 99%, but less than 100% sequence identity to amino acids 430 to 928 of SEQ ID NO: 17.

20

15

[Embodiment 70] A pullulanase variant comprising the variant catalytic domain according to any of embodiments 64 to 69, wherein the pullulanase variant has pullulanase activity and increased thermoactivity compared to the parent pullulanase, and the variant has at least 60% relative activity when measured at 70°C relative to activity at 65°C, more particularly at least 65%, more particularly at least 70%, more particularly at least 60%, more particularly at least 75%, more particularly at least 80%, more particularly at least 90%, more particularly at least 100%.

25

[Embodiment 71] The pullulanase variant according to embodiment 70, wherein the variant comprises or consists of one or more substitutions selected from the group consisting of 393A, 143G, 150R, 243E, 244K, 345P, 346S, 368G, 370S, 373L, 381V, 382T, 385F, 387L, 402T, 429V, 430R, 431E, 432F, 456A, 486C, 492S, 610R,L, 624S, 631S, 632C, 6651 and 699R.

30

[Embodiment 72] The pullulanase variant according to any of embodiments 64-71, further comprising an N-terminal part comprising at least one of the domains selected from a CBM41 domain, an X45 domain and a CBM48 domain.

35

[Embodiment 73] The pullulanase variant according to embodiment 72, comprising an N-terminal part comprising a CBM41 domain, an X45 domain and a CBM48 domain.

[Embodiment 74] The pullulanase variant according to embodiment 72-73, further comprising a X25 domain.

40

[Embodiment 75] The pullulanase variant according to any of embodiments 64-74, wherein the variant comprises one or more substitutions selected from the group consisting of 393A, 368G, 486C, 492S,A, 610R,L, 624S, 631S, 632C, 431E, 432F.

45

50

[Embodiment 76] The pullulanase variant according to embodiment 75, wherein the variant comprises at least one of the following substitutions or combinations of substitutions: 368G+393A+492S,A;

368G+393A+492A,S+610R+624S;

393A+492S,A+610R+624S+631S+632C;

368G+393A+492S,A+610R+624S+631S+632C;

368G+393A+492S,A+610R+624S+631S+632C+431E+432F;

368G+393A+610R+624S+631S+632C; or

368G+393A+610R+624S+631S+632C+431E+432F.

55

[Embodiment 77] The pullulanase variant according to any of embodiments 1-76, selected from SEQ ID NO: 20 or a pullulanase having at least 85%, at least 90%, at least 95%, at least 96%, at least 97%, at least 98%, or at least 99%, or 100% sequence identity to the polypeptide of SEQ ID NO: 20; SEQ ID NO: 21 or a pullulanase having at least 85%, at least 90%, at least 95%, at least 96%, at least 97%, at least 98%, or at least 99%, or 100% sequence

5

10

20

25

30

35

identity to the polypeptide of SEQ ID NO: 21; SEQ ID NO: 22 or a pullulanase having at least 85%, at least 90%, at least 95%, at least 96%, at least 97%, at least 98%, or at least 99%, or 100% sequence identity to the polypeptide of SEQ ID NO: 22; SEQ ID NO: 23 or a pullulanase having at least 85%, at least 90%, at least 95%, at least 96%, at least 97%, at least 99%, or at least 99%, or 100% sequence identity to the polypeptide of SEQ ID NO: 23; SEQ ID NO: 24 or a pullulanase having at least 85%, at least 90%, at least 96%, at least 97%, at least 97%, at least 98%, or at least 99%, or 100% sequence identity to the polypeptide of SEQ ID NO: 25; or a pullulanase having at least 85%, at least 90%, at least 95%, at least 96%, at least 99%, or at least 99%, or 100% sequence identity to the polypeptide of SEQ ID NO: 25; SEQ ID NO: 26 or a pullulanase having at least 85%, at least 95%, at lea

[Embodiment 78] The variants according to embodiments 1-77, which have an improved property relative to the parent, wherein the improved property is increased thermoactivity.

[Embodiment 79] The variant according to embodiments 1-78, wherein the variant has increased specific activity toward starch or maltodextrin compared to any of SEQ ID NO: 3, SEQ ID NO:6, SEQ ID NO:9, SEQ ID NO:16, or SEQ ID NO:17.

[Embodiment 80] The variants according to embodiment 79, wherein the variant is selected from SEQ ID NO: 20 or a pullulanase having at least 85%, at least 90%, at least 95%, at least 96%, at least 97%, at least 98%, or at least 99%, or 100% sequence identity to the polypeptide of SEQ ID NO: 20; SEQ ID NO: 21 or a pullulanase having at least 85%, at least 90%, at least 95%, at least 96%, at least 97%, at least 99%, or 100% sequence identity to the polypeptide of SEQ ID NO: 21; SEQ ID NO: 22 or a pullulanase having at least 85%, at least 95%, at least 96%, at least 97%, at least 98%, or at least 99%, or 100% sequence identity to the polypeptide of SEQ ID NO: 23 or a pullulanase having at least 85%, at least 90%, at least 95%, at least 96%, at least 97%, at least 99%, or 100% sequence identity to the polypeptide of SEQ ID NO: 23; SEQ ID NO: 25 or a pullulanase having at least 85%, at least 95%, at least 96%, at least 97%, at least 98%, or at least 99%, or 100% sequence identity to the polypeptide of SEQ ID NO: 26 or a pullulanase having at least 85%, at least 96%, at least 99%, or at least 99%, or 100% sequence identity to the polypeptide of SEQ ID NO: 26; SEQ ID NO: 27 or a pullulanase having at least 85%, at least 99%, or 100% sequence identity to the polypeptide of SEQ ID NO: 27 or a pullulanase having at least 85%, at least 95%, at least 90%, at least 99%, or 100% sequence identity to the polypeptide of SEQ ID NO: 28 or a pullulanase having at least 85%, at least 90%, at least 95%, at lea

[Embodiment 81] The variants according to any of the preceding embodiments, wherein the variants further comprises one of the following substitutions or combinations of substitutions (using SEQ ID NO: 6 for numbering):

```
40
           Q258A;
           Q287R;
           Q352A;
           Q356R;
45
           Q258A+Q352A+Q356R;
           Q258A+Q287R+Q352A +Q356R;
           V212I;
           H186A;
           V212I+Q258A+Q287R+Q352A +Q356R;
50
           H186A+V212I+Q258A+Q287R+Q352A+Q356R;
           Y27K+H79Y+V212I+Q258A+Q287R+Q352A+Q356R;
           Q258A+Q287R+N322P+Q352A+Q356R;
           H186A+V212I+Q258A+Q287R+N322P+Q352A+Q356R;
           H186A+V212I+Q258A+Q287R+Q352A+Q356R;
55
           H186A+V212I+Q258A+Q287R+N322P+Q352A+Q356R;
           Y27K+H79Y+H186A+V212I+Q258A+Q287R+Q352A+Q356R;
           Y27K+H79Y+H186A+V212I+Q258A+Q287R+N322P+Q352A+Q356R;
           Y27K+H79Y+H186A+V212I+Q258A+Q287R+N322P+Q352A+Q356R+D686S;
```

```
N19G+Y27K+H79Y+H186A+V212I+Q258A+Q287R+N322P+Q352A+Q356R+D686S;
           N19G+Y27K+H79Y+H186A+V212I+Q258A+Q287R+G296R+N322P+Q352A+Q356R+D686S;
           Y27K+H79Y+H186A+V212I+Q258A+Q287R+N322P+Q352A+Q356R+V586A+D686S;
           Y27K+H79Y+H186A+V212I+Q258A+Q287R+N322P+Q352A+Q356R+D686S+E799R;
5
           N19G+Y27K+H79Y+H186A+V212I+Q258A+Q287R+N322P+Q352A +Q356R+ V586A +D686S;
           N19G+Y27K+H79Y+H186A+V212I+Q258A+Q287R+N322P+Q352A+Q356R+D686S +E799R;
           N19G+Y27K+H79Y+H186A+V212I+Q258A+Q287R+N322P+Q352A+Q356R+Q485E +D686S+E799R;
           N19G+Y27K+H79Y+H186A+V212I+Q258A+Q287R+N322P+Q352A+Q356R+Q487L +D686S+E799R;
           N19G+Y27K+H79Y+H186A+V212I+Q258A+Q287R+N322P+Q352A+Q356R+V586A +D686S+E799R;
10
           N19G+Y27K+H79Y+H186A+V212I+Q258A+Q287R+G296R+N322P+Q352A+Q356R
           +V586A+D686S+E799R;
           N19G+Y27K+H79Y+H186A+V212I+Q258A+Q287R+G296R+N322P+Q352A+Q356R
           +Q487L+V586A+D686S+E799R;
           N19G+Y27K+H79Y+H186A+V212I+Q258A+Q287R+N322P+Q352A+Q356R+Q487L
15
           +D686S+C732S+F799R
           N19G+Y27K+H79Y+H186A+V212I+Q258A+Q287R+N322P+Q352A+Q356R+Q487L
           +D686S+C732S+E799R;
           N19G+Y27K+H79Y+H186A+V212I+Q258A+Q287R+N322P+Q352A+Q356R+Q487L
           +S557A+L559G+D686S+E799R;
           N19G+Y27K+H79Y+H186A+V212I+Q258A+Q287R+N322P+Q352A+Q356R+H421E
20
                                                                                  +Q487L+S557A
           +L559G+V586A+D686S+E799R.
       [Embodiment 82] The variants according to claim 81, wherein the variants are selected from a pullulanase having
25
```

at least 85%, at least 90%, at least 95%, at least 96%, at least 97%, at least 98%, or at least 99% sequence identity to the polypeptide of SEQ ID NO: 26, and comprising the substitutions (using SEQ ID NO: 6 for numbering): N468G+N493A + N710R+G724S +T731S+S732C+Q531E+L532F, and wherein the variants further comprises one of the following substitutions or combinations of substitutions:

```
Q258A;
30
           Q287R:
           Q352A;
           Q356R;
           Q258A+Q352A+Q356R;
           Q258A+Q287R+Q352A +Q356R;
           V212I:
35
           H186A;
           V212I+Q258A+Q287R+Q352A +Q356R;
           H186A+V212I+Q258A+Q287R+Q352A+Q356R;
           Y27K+H79Y+V212I+Q258A+Q287R+Q352A+Q356R:
40
           Q258A+Q287R+N322P+Q352A+Q356R;
           H186A+V212I+Q258A+Q287R+N322P+Q352A+Q356R;
           H186A+V212I+Q258A+Q287R+Q352A+Q356R;
           H186A+V212I+Q258A+Q287R+N322P+Q352A+Q356R;
           Y27K+H79Y+H186A+V212I+Q258A+Q287R+Q352A+Q356R;
45
           Y27K+H79Y+H186A+V212I+Q258A+Q287R+N322P+Q352A +Q356R;
           Y27K+H79Y+H186A+V212I+Q258A+Q287R+N322P+Q352A +Q356R+D686S;
           N19G+Y27K+H79Y+H186A+V212I+Q258A+Q287R+N322P+Q352A+Q356R+D686S;
           N19G+Y27K+H79Y+H186A+V212I+Q258A+Q287R+G296R+N322P+Q352A+Q356R+D686S;
           Y27K+H79Y+H186A+V212I+Q258A+Q287R+N322P+Q352A+Q356R+V586A+D686S;
50
           Y27K+H79Y+H186A+V212I+Q258A+Q287R+N322P+Q352A+Q356R+D686S+E799R;
           N19G+Y27K+H79Y+H186A+V212I+Q258A+Q287R+N322P+Q352A +Q356R+ V586A +D686S;
           N19G+Y27K+H79Y+H186A+V212I+Q258A+Q287R+N322P+Q352A+Q356R+D686S +E799R;
           N19G+Y27K+H79Y+H186A+V212I+Q258A+Q287R+N322P+Q352A+Q356R+Q485E +D686S+E799R;
           N19G+Y27K+H79Y+H186A+V212I+Q258A+Q287R+N322P+Q352A+Q356R+Q487L +D686S+E799R:
55
           N19G+Y27K+H79Y+H186A+V212I+Q258A+Q287R+N322P+Q352A+Q356R+V586A +D686S+E799R;
           N19G+Y27K+H79Y+H186A+V212I+Q258A+Q287R+G296R+N322P+Q352A+Q356R
           +V586A+D686S+E799R:
           N19G+Y27K+H79Y+H186A+V212I+Q258A+Q287R+G296R+N322P+Q352A+Q356R
```

```
+Q487L+V586A+D686S+E799R;
           N19G+Y27K+H79Y+H186A+V212I+Q258A+Q287R+N322P+Q352A+Q356R+Q487L
           +D686S+C732S+E799R;
           N19G+Y27K+H79Y+H186A+V212I+Q258A+Q287R+N322P+Q352A+Q356R+Q487L
5
           +D686S+C732S+E799R:
           N19G+Y27K+H79Y+H186A+V212I+Q258A+Q287R+N322P+Q352A+Q356R+Q487L
           +S557A+L559G+D686S+E799R;
           N19G+Y27K+H79Y+H186A+V212I+Q258A+Q287R+N322P+Q352A+Q356R+H421E
                                                                                      +Q487L+S557A
           +L559G+V586A+D686S+E799R; said variants having at least 60% relative activity when measured at 72°C
10
           relative to activity at 65°C using the PHADEBAS assay.
        [Embodiment 83] The variants according to embodiment 82, wherein the variants further comprises one of the
                                   combinations
                                                                  of
                                                                                        substitutions:
        N19G+Y27K+H79Y+H186A+V212I+Q258A+Q287R+N322P+Q352A+Q356R+Q487L +D686S+E799R.
15
        [Embodiment 84] The variants according to embodiment 81, wherein the variants are selected from a pullulanase
        having at least 85%, at least 90%, at least 95%, at least 96%, at least 97%, at least 98%, or at least 99% sequence
        identity to the polypeptide of SEQ ID NO: 27, and comprising the substitutions (using SEQ ID NO: 6 for numbering)
        N468G+N493A+T492S,A+N710R+G724S+T731S+S732C+Q531E+L532F, and wherein the variants further com-
20
        prises one of the following substitutions or combinations of substitutions:
           Q258A;
           Q287R;
           Q352A;
25
           Q356R:
           Q258A+Q352A+Q356R;
           Q258A+Q287R+Q352A +Q356R;
           V212I:
           H186A;
30
           V212I+Q258A+Q287R+Q352A +Q356R:
           H186A+V212I+Q258A+Q287R+Q352A+Q356R;
           Y27K+H79Y+V212I+Q258A+Q287R+Q352A+Q356R;
           Q258A+Q287R+N322P+Q352A+Q356R;
           H186A+V212I+Q258A+Q287R+N322P+Q352A+Q356R;
35
           H186A+V212I+Q258A+Q287R+Q352A+Q356R;
           H186A+V212I+Q258A+Q287R+N322P+Q352A+Q356R;
           Y27K+H79Y+H186A+V212I+Q258A+Q287R+Q352A+Q356R;
           Y27K+H79Y+H186A+V212I+Q258A+Q287R+N322P+Q352A +Q356R;
           Y27K+H79Y+H186A+V212I+Q258A+Q287R+N322P+Q352A +Q356R+D686S:
40
           N19G+Y27K+H79Y+H186A+V212I+Q258A+Q287R+N322P+Q352A+Q356R+D686S;
           N19G+Y27K+H79Y+H186A+V212I+Q258A+Q287R+G296R+N322P+Q352A+Q356R+D686S;
           Y27K+H79Y+H186A+V212I+Q258A+Q287R+N322P+Q352A+Q356R+V586A+D686S;
           Y27K+H79Y+H186A+V212I+Q258A+Q287R+N322P+Q352A+Q356R+D686S+E799R;
           N19G+Y27K+H79Y+H186A+V212I+Q258A+Q287R+N322P+Q352A +Q356R+ V586A +D686S;
45
           N19G+Y27K+H79Y+H186A+V212I+Q258A+Q287R+N322P+Q352A+Q356R+D686S +E799R;
           N19G+Y27K+H79Y+H186A+V212I+Q258A+Q287R+N322P+Q352A+Q356R+Q485E +D686S+E799R;
           N19G+Y27K+H79Y+H186A+V212I+Q258A+Q287R+N322P+Q352A+Q356R+Q487L +D686S+E799R;
           N19G+Y27K+H79Y+H186A+V212I+Q258A+Q287R+N322P+Q352A+Q356R+V586A +D686S+E799R;
           N19G+Y27K+H79Y+H186A+V212I+Q258A+Q287R+G296R+N322P+Q352A+Q356R
50
           +V586A+D686S+E799R;
           N19G+Y27K+H79Y+H186A+V212I+Q258A+Q287R+G296R+N322P+Q352A+Q356R
           +Q487L+V586A+D686S+E799R;
           N19G+Y27K+H79Y+H186A+V212I+Q258A+Q287R+N322P+Q352A+Q356R+Q487L
           +D686S+C732S+E799R:
55
           N19G+Y27K+H79Y+H186A+V212I+Q258A+Q287R+N322P+Q352A+Q356R+Q487L
           +D686S+C732S+E799R;
           N19G+Y27K+H79Y+H186A+V212I+Q258A+Q287R+N322P+Q352A+Q356R+Q487L
```

+S557A+L559G+D686S+E799R;

N19G+Y27K+H79Y+H186A+V212I+Q258A+Q287R+N322P+Q352A+Q356R+H421E +Q487L+S557A +L559G+V586A+D686S+E799R; said variants having at least 60% relative activity when measured at 72°C relative to activity at 65°C using the PHADEBAS assay.

5 [Embodiment 85] The variants according to claim 84, wherein the variants further comprise one of the following combinations substitutions: N19G+Y27K+H79Y+H186A+V212I+Q258A+Q287R+N322P+Q352A+Q356R+Q487L +D686S+E799R.

[Embodiment 86] The pullulanase variants according to any of the embodiments 1-80, wherein the variants further 10 comprises one of the following substitutions or combinations of substitutions:

```
Y27K+H79Y+Q187R+S798R;
          Y27K+H79Y+Q187R+D586S+S798R;
          Y27K+H79Y+Q187R+D586S+E699R+S798R;
15
          Y27K+H79Y+Q187R+T486S+D586S+S798R;
          N19G+Y27K+H79Y+Q187R+T486C+D586S+E699R+S798R;
          N19G+Y27K+H79Y+Q187R+Q385E+T486C+D586S+E699R+S798R;
          N19G+Y27K+H79Y+Q187R+Q387L+T486C+D586S+E699R+S798R;
          N19G+Y27K+H79Y+Q187R+Q387L+Q459G+T486C+D586S+C632S+E699R+S798R;
          N19G+Y27K+H79Y+Q187R+Q387L+T486C+D586S+C632S+Q675L+E699R+S798R;
          N19G+Y27K+H79Y+Q187R+V196R+Q387L+T486C+D586S+C632S+E699R+S798R;
          N19G+Y27K+H79Y+Q187R+V196R+Q387L+T486C+D586S+C632S+Q675L+E699R +S798R;
          N19G+Y27K+H79Y+Q187R+V196R+Q387L+Q459G+T486C+D586S+C632S+Q675L +E699R+S798R;
          N19G+Y27K+H79Y+Q187R+Q387L+D586S+E699R+S798R;
25
          N19G+Y27K+H79Y+Q187R+H321E+Q387L+D586S+E699R+S798R:
          N19G+Y27K+H79Y+Q187R+Q387L+Q459G+D586S+E699R+S798R;
          N19G+Y27K+H79Y+Q187R+Q387L+D586S+C632S+E699R+S798R;
          N19G+Y27K+H79Y+Q187R+E310A+D311K +Q387L+D586S+E699R+S798R;
          N19G+Y27K+H79Y+Q187R+E310A+D311K+Q387L+Q459G+D586S+E699R+S798R.
```

20

30

35

[Embodiment 87] The variants according to claim 86, wherein the variants are selected from a pullulanase having at least 85%, at least 90%, at least 95%, at least 96%, at least 97%, at least 98%, or at least 99% sequence identity polypeptide **SEQ** ID NO: 28. comprising substitutions N368G+N393A+T492S,A+N610R+G624S+T631S+S632C+Q431E+L432F, and wherein the variants further comprises one of the following substitutions or combinations of substitutions:

```
Y27K+H79Y+Q187R+S798R;
           Y27K+H79Y+Q187R+D586S +S798R;
           Y27K+H79Y+Q187R+D586S+E699R+S798R:
40
           Y27K+H79Y+Q187R+T486S+D586S+S798R;
           N19G+Y27K+H79Y+Q187R+T486C+D586S+E699R+S798R;
           N19G+Y27K+H79Y+Q187R+Q385E+T486C+D586S+E699R+S798R;
           N19G+Y27K+H79Y+Q187R+Q387L+T486C+D586S+E699R+S798R;
           N19G+Y27K+H79Y+Q187R+Q387L+Q459G+T486C+D586S+C632S+E699R+S798R;
45
           N19G+Y27K+H79Y+Q187R+Q387L+T486C+D586S+C632S+Q675L+E699R+S798R;
           N19G+Y27K+H79Y+Q187R+V196R+Q387L+T486C+D586S+C632S+E699R+S798R;
           N19G+Y27K+H79Y+Q187R+V196R+Q387L+T486C+D586S+C632S+Q675L+E699R +S798R;
           N19G+Y27K+H79Y+Q187R+V196R+Q387L+Q459G+T486C+D586S+C632S+Q675L +E699R+S798R;
           N19G+Y27K+H79Y+Q187R+Q387L+D586S+E699R+S798R;
           N19G+Y27K+H79Y+Q187R+H321E+Q387L+D586S+E699R+S798R;
50
           N19G+Y27K+H79Y+Q187R+Q387L+Q459G+D586S+E699R+S798R;
           N19G+Y27K+H79Y+Q187R+Q387L+D586S+C632S+E699R+S798R;
           N19G+Y27K+H79Y+Q187R+E310A+D311K +Q387L+D586S+E699R+S798R;
           N19G+Y27K+H79Y+Q187R+E310A+D311K+Q387L+Q459G+D586S+E699R+S798R, said variants having at
55
           least 30% relative activity when measured at 76°C relative to activity at 65°C using the PHADEBAS assay.
```

[Embodiment 88] The variants according to embodiment 87, wherein the variants further comprises one of the following combinations of substitutions:

N19G+Y27K+H79Y+Q187R+E310A+D311K+Q387L+D586S+E699R+S798R; or N19G+Y27K+H79Y+Q187R+E310A+D311K+Q387L+Q459G+D586S+E699R+S798R.

[Embodiment 89] A method for producing a variant pullulanase of a parent pullulanase comprising substitution of the parent pullulanase at one or more positions corresponding to positions 393, 143, 150, 243, 244, 345, 346, 368, 370, 373, 381, 382, 385, 387, 402, 429, 430, 431, 432, 456, 486, 492, 610, 624, 631, 632, 665 and 699 of the polypeptide of SEQ ID NO: 3 wherein the variant has pullulanase activity; and;

- a) wherein the variant has at least 85%, at least 90%, at least 95%, at least 96%, at least 97%, at least 98%, or at least 99%, but less than 100% sequence identity to the polypeptide of SEQ ID NO: 3; or
- b) wherein the variant has at least 85%, at least 90%, at least 95%, at least 96%, at least 97%, at least 98%, or at least 99%, but less than 100% sequence identity to the polypeptide of SEQ ID NO: 6; or
- c) wherein the variant has at least 85%, at least 90%, at least 95%, at least 96%, at least 97%, at least 98%, or at least 99%, but less than 100% sequence identity to the polypeptide of SEQ ID NO: 9; or
- d) wherein the variant has at least 85%, at least 90%, at least 95%, at least 96%, at least 97%, at least 98%, or at least 99%, but less than 100% sequence identity to the polypeptide of SEQ ID NO: 16; or
- e) wherein the variant has at least 85%, at least 90%, at least 95%, at least 96%, at least 97%, at least 98%, or at least 99%, but less than 100% sequence identity to the polypeptide of SEQ ID NO: 17
- [Embodiment 90] A variant pullulanase produced by the method of embodiment 89.

5

10

15

25

30

35

40

50

55

[Embodiment 91] A composition comprising the variant pullulanase of any of embodiments 1-90.

[Embodiment 92] The composition according to embodiment 91, comprising one or more enzymes selected from the group consisting of: glucoamylase, alpha-amylase, beta-amylase, and protease.

[Embodiment 93] The composition according to any of embodiments 91 and 92 comprising a pullulanase of polypeptide of any of embodiments 1-84 and: i) a glucoamylase, an alpha-amylase and a protease; ii) an alpha-amylase and a protease; iii) a glucoamylase and an alpha-amylase; iv) a beta-amylase; or v) a glucoamylase.

[Embodiment 94] A use of a variant pullulanase of any of embodiments 1-90 for production of a syrup and/ or a fermentation product, e.g., ethanol, from a starch containing material.

[Embodiment 95] The use according to embodiment 94, wherein the starch material is gelatinized or un-gelatinized starch material.

[Embodiment 96] A process of producing a fermentation product from starch-containing material comprising the steps of:

- (a) liquefying starch-containing material in the presence of an alpha amylase;
- (b) saccharifying the liquefied material in the presence of a glucoamylase; and
- (c) fermenting with a fermenting organism; wherein step (a) and/or step (b) is carried out in the presence of a variant pullulanase of any of embodiments 1-90.
- [Embodiment 97] A process of producing a fermentation product from starch-containing material, comprising the steps of:
 - (a) saccharifying starch-containing material at a temperature below the initial gelatinization temperature of said starch-containing material; and
 - (b) fermenting with a fermenting organism

wherein step (a) is carried out using at least a glucoamylase, and a variant pullulanase of any of embodiments 1-90.

[Embodiment 98] The process according to embodiment 97, wherein an alpha amylase is added in step (a).

[Embodiment 99] The process according to embodiment 97, wherein saccharification and fermentation is carried out simultaneously.

[Embodiment 100] The process according to any of embodiments 96-99, wherein the fermentation product is an alcohol, particularly ethanol.

[Embodiment 101] A polynucleotide encoding the variant pullulanase of any of embodiments 1-90.

[Embodiment 102] A nucleic acid construct comprising the polynucleotide of embodiment 101.

[Embodiment 103] An expression vector comprising the polynucleotide of embodiment 101.

[Embodiment 104] A host cell comprising the polynucleotide of embodiment 101.

[Embodiment 105] A method of producing a pullulanase variant of any of embodiments 1-90, comprising cultivating the host cell of embodiment 104 under conditions conducive for production of the polypeptide.

[Embodiment 106] The method of embodiment 105, further comprising recovering the polypeptide.

[Embodiment 107] A whole broth formulation or cell culture composition comprising a polypeptide of any of embodiments 1-90.

20 [0464] The present invention is further described by the following examples that should not be construed as limiting the scope of the invention.

MATERIALS AND METHODS

25 Determination of sugar profile and solubilised dry solids

[0465] The sugar composition of the starch hydrolysates is determined by HPLC and glucose yield is subsequently calculated as DX. °BRIX, solubilized (soluble) dry solids of the starch hydrolysates are determined by refractive index measurement.

Examples

Example 1: Construction of Pullulanase Libraries

[0466] Genomic DNAs from *Bacillus subtilis* strains harboring pullulanase genes from *Bacillus sp.* NCIB11777 (SEQ ID NO: 7 and 8), *Bacillus deramificans* NN18718 (SEQ ID NO: 4 and 5) and hybrid pullulanase P8, (SEQ ID NO: 1 and 2) which is a hybrid enzyme obtained by combining an N-terminal fragment of the pullulanase derived from *Bacillus acidopullullyticus* described in WO 2009/075682 (SEQ ID NO: 4 in WO2009/075682; GENESEQP: AXB71624), fused to a C-terminal fragment of a pullulanase derived from a *Bacillus deramificans* strain isolated from a humus sample collected in Denmark (a homologous pullulanase from *Bacillus deramificans* was disclosed in US 6,074,854 and US 5,817,498) were isolated using NucleoSpin® Tissue kit [MACHEREY-NAGEL]. Pullulanase genes were amplified from the genomic DNAs using primers having 15bp overlaps with an expression vector comprising the genetic elements for Bacillus expression and *E.coli* amplification as described in WO 99/43835 using Primer F1 and R1, Primer F2 and R2, and Primer F1 and R2 under the following conditions.

45

50

30

5

Primer F1: ATGTATTATGGAGCTCTATAAAAATGAGGAGGGAACCGAATGTCCCTAATACGTTCTAG (SEQ ID NO: 10)

Primer R1: TTATTGATTAACGCGTTTAATTTTGATCAATGACATC (SEQ ID NO: 11)

Primer F2: ATGTATTATGGAGCTCTATAAAAATGAGGAGGGAACCGAATGGCTAAAAAACTAATTTATG (SEQ ID NO: 12)

Primer R2: TTATTGATTAACGCGTTTACTTTTTACCGTGGTCTG (SEQ ID NO: 13)

[0467] Phusion polymerase (thermo scientific): Total 20 μ l: 1,0 μ l Template (100ng/ μ l), 4,8 μ l H₂O, 4 μ l, Phusion HF Buffer:1,6 μ l dNTP (2,5mM): 0,2 μ l Reverse primer (20 μ M), 0,4 μ l Phusion (2U/ μ l), 8,0 μ l Forward mutation primer(1 μ M). PCR-program: 98°C/30sec, 30x(98°C/10sec, 60°C/20sec, 72°C/3min), 72°C/5min, 4°C/ ∞

[0468] The resultant PCR fragments were purified by NucleoSpin® Gel and PCR Clean-up kit [MACHEREY-NAGEL] and ligated to the vector by In fusion cloning (Clontech). The *in fusion* mixture was then introduced into *E.coli* DH5 α , Jet Competent *E. coli* Cell, BDL. The resultant plasmids were confirmed to have designed sequences and named pGMM,

pD2 homolog and p008 and used as templates for library construction. All libraries were constructed by the following steps. A reverse or forward primer having NNK or desired mutation(s) at target site(s) with 15bp overlaps each other were designed and two PCRs were carried out using Primer1F or 2F and the reverse primer and the forward primer and Primer 1R or 2R using appropriate templates (pGMM, pD' or p008). The resultant PCR fragments were purified by NucleoSpin® Gel and PCR Clean-up kit [MACHEREY-NAGEL] and mixed with an expression vector digested with Sacl and Mlul and *in fusion* mixture to introduce into *E.coli*. The resultant *E.coli* libraries were recovered and transformed into *Bacillus subtilis* to construct *Bacillus* libraries having desired mutations as shown in Table 1a and Table 1b.

Table 1a: Substitutions of thermostabilized variants of P008 (SEQ ID NO: 3)

	1 4510	Ta. Substitutions of thermostabilized variables of 1 500 (CEQ ID 140. 5)
10	Position	Substitution(s)
	P022	V486C T492S
	P035	N368G
15	P040	N368G M402T
	P075	E699R
	P076	E150R
	P091	T631S S632C
20	P092	N346S
	P097	V486C T492S T631S S632C
	P129	N243E
25	P130	S244K
	P132	V143G
	P136	N393A
	P140	N393A T631S S632C
30	P147	N610R
	P148	N610L
	P150	T631S S632C E699R
35	P155	G624S
	P161	N393A V486C T492S T631S S632C
	P162	N393A G624S S632C
	P172	N393A N610R T631S S632C
40	P173	N393A G624S T631S S632C
	P178	F456A
	P188	N393A N610R G624S T631S S632C
45	P189	N393A V486C T492S G624S T631S S632C
	P190	N393A V486C T492S N610R G624S T631S S632C
	P191	N368G N393A V486C T492S N610R G624S T631S S632C
50	P192	N393A V486C T492S N610R G624S T631S S632C E699R
50	P193	N346S N393A V486C T492S N610R G624S T631S S632C
	P194	N393A F456A V486C T492S N610R G624S T631S S632C
	P199	N393A T492S N610R G624S T631S S632C
55	P202	N368G N393A T492S N610R G624S T631S S632C
	P203	A345P N393A V486C T492S N610R G624S T631S S632C
	·	+

(continued)

Position Substitution(s) P204 N368G K370S 1373L N393A V486C T492S N610R G624S T631S S632C 5 P205 1381V Q385E Q387L N393A V486C T492S N610R G624S T631S S632C P206 1381V N382T Q385E Q387L N393A V486C T492S N610R G624S T631S S632C P212 A345P N368G N393A T492S N610R G624S T631S S632C 10 P213 N368G 1381V Q385E Q387L N393A T492S N610R G624S T631S S632C P222 A345P N368G I381V Q385E Q387L N393A T492S N610R G624S T631S S632C P223 A345P N368G I381V Q385E Q387L N393A T492S N610R G624S T631S S632C V665I P224 N393A T430R Q431E L432F V486C T492S N610R G624S T631S S632C 15 P225 N393A Q431E L432F V486C T492S N610R G624S T631S S632C P226 N393A I429V Q431E V486C T492S N610R G624S T631S S632C P227 N393A I429V T430R Q431E L432F V486C T492S N610R G624S T631S S632C 20 P229 N368G I381V Q385E Q387L N393A Q431E L432F T492S N610R G624S T631S S632C P230 A345P N368G I381V Q385E Q387L N393A Q431E L432F T492S N610R G624S T631S S632C 25 A345P N368GI381V Q385E Q387L N393A Q431E L432F T492S N610R G624S T631S P231 S632C V665I P242 A345P N368G I381V Q385E Q387L N393A T492S N610R G624S T631S S632C

30 [0469] Substitutions shown to have thermoactivity improving effects in SEQ ID NO: 3 were tested in SEQ ID NO: 6 according to below tables 1b and 1c. Table 1c use the numbering in SEQ ID NO: 3.

Table 1b: Substitutions of thermostabilized variants of Bacillus deramificans pullulanase (D2 homolog) (SEQ ID NO: 6) Position numbering is according to SEQ ID NO: 6.

	3, 1111	3		
35	Variant No.	Substitution(s)		
	P233	N468G		
	P234	N493A		
40	P235	A592S		
	P236	N710R		
	P237	G724S		
	P238	T731S S732C		
45	P239	N710R G724S T731S S732C		
	P240	N468G N493A A592S		
	P241	N468G N493A A592S N710R G724S T731S S732C		

Table 1c: Variants of SEQ ID NO: 6 using numbering according to SEQ ID NO: 3.

50

55

Variant No.	Substitution referring to SEQ ID NO: 3.		
P233	N368G		
P234	N393A		
P235	A492S		

(continued)

Variant No.	Substitution referring to SEQ ID NO: 3.
P236	N610R
P237	G624S
P240	N368G N393A A492S
P259	N368G N393A
P261	N393A N610R
P262	N368G N393A N610R
P265	N368G N393A N610R G624S T492A

Table 1d: Variants of SEQ ID NO: 16 (P258).

Variant No.	Substitution referring to SEQ ID NO: 3.
P219	N368G N393A T492A N610R G624S T631S S632C
P306	N368G N393A T492A N610R G624S T631S S632C Q431E L432F

Table 1e: Variants of SEQ ID NO: 17 (P243).

Variant No.	Substitution referring to SEQ ID NO: 3.
P252	N368G N393A N610R G624S T631S S632C
P303	N368G N393A N610R G624S T631S S632C Q431E L432F

[0470] In order to test if the improved thermo-activity resulting from the introduced substitutions in the catalytic domain, could be maintained when N-terminal parts of the parent enzyme were replaced by N-terminal parts from other pullulanases the following hybrid pullulanases were constructed.

Table 2. Variants having substitutions in the catalytic domain were constructed by replacing N-terminal parts with equivalent parts from other pullulanases. The origin of the different N-terminal domains is shown by SEQ ID and for the CD both the origin and the specific substitutions are indicated.

and of some and and opening and and analysis							
	CBM41	X45a	X25	X45b	CBM48	Catalytic Domain, CD	
P6	SEQ ID 9	SEQ ID 9	No	SEQ ID 9	SEQ ID 6	SEQ ID 6 (or 19)	
P8	SEQ ID 9 (or 3)	SEQ ID 9 (or 3)	No	SEQ ID 9 (or 3)	SEQ ID 9 (or 3)	SEQ ID 6 (or 3)	
P-proD'	SEQ ID 6	SEQ ID 6	SEQ ID 6	SEQ ID 6	SEQ ID 6	SEQ ID 6	
P240	SEQ ID 6	SEQ ID 6	SEQ ID 6	SEQ ID 6	SEQ ID 6	N368G N393A A492S (SEQ ID 6)	
P254	SEQ ID 15	SEQ ID 15	SEQ ID 15	SEQ ID 15	SEQ ID 6	N368G N393A A492S (SEQ ID 6)	
P255	SEQ ID 15	SEQ ID 15	SEQ ID 15	SEQ ID 15	SEQ ID 9	N368G N393A A492S(SEQ ID 6)	
P265*	SEQ ID 15	SEQ ID 15	SEQ ID 15	SEQ ID 15	SEQ ID 9	N368G N393A T492A N610R G624S (SEQ ID 6)	
P256	SEQ ID 9	SEQ ID 9	No	SEQ ID 9	SEQ ID 6	N368G N393A A492S(SEQ ID 6)	
P257	SEQ ID 9	SEQ ID 9	No	SEQ ID 9	SEQ ID 9	N368G N393A A492S(SEQ ID 6)	

(continued)

		CBM41	X45a	X25	X45b	CBM48	Catalytic Domain, CD
P267	7*	SEQ ID 9	SEQ ID 9	No	SEQ ID 9	SEQ ID 6	N368G N393A T492A N610R G624S (SEQ ID 6)
P216	6	SEQ ID 15	SEQ ID 15	SEQ ID 15	SEQ ID 15	SEQ ID 9	N368G N393A T492S N610R G624S T631S S632C (SEQ ID 6)
P252	2	SEQ ID 15	SEQ ID 15	SEQ ID 15	SEQ ID 15	SEQ ID 9	N368G N393A N610R G624S T631S S632C (SEQ ID 17)
P303	3	SEQ ID 15	SEQ ID 15	SEQ ID 15	SEQ ID 15	SEQ ID 9	N368G N393A N610R G624S T631S S632C Q431E L432F(SEQ ID 17)
P219	9	SEQ ID 15	SEQ ID 15	SEQ ID 15	SEQ ID 15	SEQ ID 9	N368G N393A T492A N610R G624S T631S S632C (SEQ ID 16)
P306	6	SEQ ID 15	SEQ ID 15	SEQ ID 15	SEQ ID 15	SEQ ID 9	N368G N393A T492A N610R G624S T631S S632C Q431E L432F (SEQ ID 16)

^{*}P265 and P267 were borne with the A in position 492, however, this position is contributing to the observed effect and should not be modified unless the substitution is to S.

EXAMPLE 2: Construction of improved variants of P303

[0471] The pullulanase variant, P303, was used as the starting point for further variant selection resulting in the below list of specific variants.

5 10 15 N19G+Y27K+H79Y+H186A+V212I+Q258A+Q287R+N322P+Q352A+Q356R+Q485E+D686S+E799R N19G+Y27K+H79Y+H186A+V212I+Q258A+Q287R+N322P+Q352A +Q356R+ V586A +D686S N19G+Y27K+H79Y+H186A+V212I+Q258A+Q287R+N322P+Q352A+Q356R+D68 6S+E799R N19G+Y27K+H79Y+H186A+V212I+Q258A+Q287R+G296R+N322P+Q352A+Q356R+D686S 20 Y27K+H79Y+H186A+V212I+Q258A+Q287R+N322P+Q352A+Q356R+D686S+E799R Y27K+H79Y+H186A+V212I+Q258A+Q287R+N322P+Q352A+Q356R+V586A+D686S N19G+Y27K+H79Y+H186A+V212I+Q258A+Q287R+N322P+Q352A+Q356R+D686S 26) Substitutions in addition to P303 substitutions (numbering refers to SEQ ID NO: 25 Y27K+H79Y+H186A+V212I+Q258A+Q287R+N322P+Q352A+Q356R+D686S Y27K+H79Y+H186A+V212I+Q258A+Q287R+N322P+Q352A+Q356R Table 3. 30 Y27K+H79Y+H186A+V212I+Q258A+Q287R+Q352A+Q356R H186A+V212I+Q258A+Q287R+N322P+Q352A+Q356R H186A+V212I+Q258A+Q287R+N322P+Q352A+Q356R Y27K+H79Y+V212I+Q258A+Q287R+Q352A+Q356R 35 H186A+V212I+Q258A+Q287R+Q352A+Q356R H186A+V212I+Q258A+Q287R+Q352A+Q356R Q258A+Q287R+N322P+Q352A+Q356R V212I+Q258A+Q287R+Q352A +Q356R 40 Q258A+Q287R+Q352A+Q356R Q258A+Q352A+Q356R 45 Q258A Q287R Q356R H186A Q352A V212I 50 P416 P316 P375 P415 P318 P319 P323 P324 P329 P372 P376 P385 P417 P425 P317 P368 P369 P370 P378 P424 P347 P377 P397

105

55

10		
15		
20		
25		
30		:
35		
40		
45		
50		

55

5

N19G+Y27K+H79Y+H186A+V212I+Q258A+Q287R+N322P+Q352A+Q356R+H421E+Q487L+S557A+L559G+V586A+D686S+E799R N19G+Y27K+H79Y+H186A+V212I+Q258A+Q287R+N322P+Q352A+Q356R+Q4 87L+S557A+L559G+D686S+E799R N19G+Y27K+H79Y+H186A+V212I+Q258A+Q287R+G296R+N322P+Q352A+Q356R+Q487L+V586A+D686S+E799R N19G+Y27K+H79Y+H186A+V212I+Q258A+Q287R+G296R+N322P+Q352A+Q3 56R+V586A+D686S+E799R N19G+Y27K+H79Y+H186A+V212I+Q258A+Q287R+N322P+Q352A+Q356R+Q487L+D686S+C732S+E799R N19G+Y27K+H79Y+H186A+V212I+Q258A+Q287R+N322P+Q352A+Q356R+Q487L+D686S+C732S+E799R N19G+Y27K+H79Y+H186A+V212I+Q258A+Q287R+N322P+Q352A+Q356R+Q4 87L+D686S+E799R N19G+Y27K+H79Y+H186A+V212I+Q258A+Q287R+N322P+Q352A+Q356R+V58 6A+D686S+E799R Substitutions in addition to P303 substitutions (numbering refers to SEQ ID NO: 26) (continued) P428 P435 P436 P485 P486 P472 P484 P427

EXAMPLE 3: Construction of variants P287 and P380

[0472] Starting from P202, described in example 1 above, three further substitutions, N222P+Q252A +Q256R, were introduced in order to generate P287.

Thus, P287, is SEQ ID NO: 3 comprising the substitutions: N222P+Q252A+Q256R+N368G +N393A+T492S+N610R+G624S+T631S+S632C.

[0473] Another variant, P380, was generated by replacing the catalytic domain of P008 with the catalytic domain from P306. P380 is included herein as SEQ ID NO: 28.

Thus, P380, has the structure as shown below:

10

15

20

25

30

35

40

45

50

	CBM41	X45a	X25	X45b	CBM48	Catalytic Domain, CD
P380	SEQ ID 9 (or 3)	SEQ ID 9 (or 3)	No	SEQ ID 9 (or 3)	SEQ ID 9 (or 3)	N368G N393A T492A N610R G624S T631S S632C Q431E L432F (SEQ ID 16)

EXAMPLE 4: Construction of improved variants of P380

[0474] The pullulanase variant, P380, was used as the starting point for further variant selection resulting in the below list of specific variants.

Table 4.

	Table 4.
	Substitution in addition to P380 substitutions (numbering refers to SEQ ID NO: 3)
P388	Y27K+H79Y+Q187R+S798R
P398	Y27K+H79Y+Q187R+D586S+S798R
P403	Y27K+H79Y+Q187R+D586S+E699R+S798R
P408	Y27K+H79Y+Q187R+T486S+D586S+S798R
P423	N19G+Y27K+H79Y+Q187R+T486C+D586S+E699R+S798R
P430	N19G+Y27K+H79Y+Q187R+Q385E+T486C+D586S+E699R+S798R
P431	N19G+Y27K+H79Y+Q187R+Q387L+T486C+D586S+E699R+S798R
P443	N19G+Y27K+H79Y+Q187R+Q387L+Q459G+T486C+D586S+C632S+E699R+S798R
P444	N19G+Y27K+H79Y+Q187R+Q387L+T486C+D586S+C632S+Q675L+E699R+S798R
P448	N19G+Y27K+H79Y+Q187R+V196R+Q387L+T486C+D586S+C632S+E699R+S798R
P449	N19G+Y27K+H79Y+Q187R+V196R+Q387L+T486C+D586S+C632S+Q675L+E699R+S798R
P450	N19G+Y27K+H79Y+Q187R+V196R+Q387L+Q459G+T486C+D586S+C632S+Q67 5L+E699R+S798R
P470	N19G+Y27K+H79Y+Q187R+Q387L+D586S+E699R+S798R
P481	N19G+Y27K+H79Y+Q187R+H321E+Q387L+D586S+E699R+S798R
P482	N19G+Y27K+H79Y+Q187R+Q387L+Q459G+D586S+E699R+S798R
P483	N19G+Y27K+H79Y+Q187R+Q387L+D586S+C632S+E699R+S798R
P493	N19G+Y27K+H79Y+Q187R+E310A+D311K+Q387L+D586S+E699R+S798R
P507	N19G+Y27K+H79Y+Q187R+E310A+D311K+Q387L+Q459G+D586S+E699R+S798R
	·

EXAMPLE 5: Pullulanase Assay

Red-pullulan assay (Megazyme)

55 Substrate solution

[0475]

107

0.1g red-pullulan (megazyme S-RPUL) 0.75ml 2M sodium acetate, pH5.5 14.25ml H2O

[0476] 10 μl of enzyme samples were mixed with 80 μl of substrate solution and incubated at set temperatures (ex. 55, 60, 65°C) for 20min. 50 μl of ethanol was added to the reaction mixtures and centrifuge for 10 min. at 3500 rpm.
 [0477] The supernatants were carefully taken out and the absorbance, A510 was determined.

PAHBAH-pullulan assay

Substrate solution

[0478]

10

25

30

35

40

50

55

0.15g BH4-pullulan
25ml 50mM Na acetate buffer, pH5.5
PAHBAH solution
0.0552g Bismuth (III)-acetate
0.2g PAHBAH
0.5g Potassium sodium tartrate, tetrahydrate
10 ml 500 mM NaOH

[0479] 10 μ l of enzyme samples were mixed with 110 μ l of substrate solution and incubated at set temperatures (e.g., 55, 60, 65°C) for 20min. 40 μ l of PAHBAH solution was added to the reaction mixtures, incubated for another 20 min at 50°C and the absorbance. A405 was determined.

Lintner soluble waxy starch assay

Substrate solution

[0480]

0.2 g Lintner's waxy corn starch2.5 ml 2M sodium acetate97.5 ml H₂O

[0481] 5μ I of enzyme samples were mixed with 100 μ I of substrate solution and incubated at set temperatures (e.g., 55, 60, 65, 70, 75°C) for 20 min. 100 μ I of 0.15% I₂/1.5% KI solution was added to the reaction mixtures and the absorbance, A610 was determined.

PHADEBAS assay

[0482]

45 Substrate soln.

1 tablet of PHADEBAS alpha-amylase tablet 5ml 50mM Na acetate buffer, pH5 40sec. microwave oven up to boiling

Stop soln.

18% acetic acid

Assay method

Enzyme reaction in 96 well PCR tube

[0483] 10ul of enzyme samples were mixed with 100ul of substrate solution and incubated at set temperatures (eg. 55, 60, 65°C) for 20min. 50ul of stop solution was added to the reaction mixtures and centrifuge for 10minutes at 3500rpm. The supernatants were carefully taken out and the absorbance at A600 was read.

EXAMPLE 6: Evaluation of thermoactivity

[0484] Bacillus libraries constructed as in example 1 were fermented in 96 well MTPs containing TB-gly medium (13.3 g/L BactoTM Tryptone, 26.6 g/L BactoTM Yeast extract D, 4.4 g/L Glycerol) with 6mg/L chloramphenicol at 220rpm, 37°C and pullulanase activities were measured at several temperatures by Lintner soluble starch assay and/or Phadebas assay described in EXAMPLE 2. Relative activity of pullulanase variants showing higher thermoactivity compared to parental pullulanases as shown in tables.

	Relative activity	y of 70°C/65°C Re (%	elative activity of 72°C/65°C	Relative activity of 74°C/65°C (%)
SEQII	D NO: 15	6		
SEQII	D NO: 54	6		2
P091	98	31		
P092	86	4		
P129	83	8		
P130	71	10		
P132	69	11		
P136	115	61		
P147	74	58	1	
P148	64	51		
P155	87	14		
P178	62	11		
P097	118	71		
P140	106	81		
P150	82	44		10
P173	95	75	i	37

	Relative activity of 68°C/60°C(%)	Relative activity of 70°C/60°C (%)
SEQID NO: 3	67	35
P022	90	57
P035	113	119
P040	104	105
P075	86	72
P076	80	55

	Relative	Relative activity (%)							
	70/65	72/65	74/65	76/65	78/65	72/70	74/70	76/70°C	
SEQ ID NO: 9	6%	3%	1%						
SEQ ID NO: 3	28%	5%	1%			52%	8%	5%	
P091						72%	12%	6%	

(continued)

		Relative activity (%)							
5		70/65	72/65	74/65	76/65	78/65	72/70	74/70	76/70°C
·	P136						75%	9%	6%
	P147						53%	5%	4%
	P155	59%	6%	0%			59%	8%	6%
10	P140						91%	26%	8%
	P161	118%	82%	31%			97%	54%	10%
	P162						88%	27%	7%
15	P172	111%	75%	19%			95%	52%	8%
	P173	108%	84%	26%			96%	53%	9%
	P188	97%	100%	36%					
	P189	107%	81%	34%					
20	P190	122%	106%	61%	13%				
	P191	148%	134%	87%	30%				
	P193	135%	112%	21%					
25	P194	124%	68%	9%					
	P199	147%	106%	55%	7%				
	P202		112%	68%	12%				
	P203		115%	76%	29%				
30	P204		110%	66%	18%				
	P205		103%	63%	42%				
	P206		91%	71%	34%				
35	P212		97%	84%	22%				
	P213		86%	70%	44%				
	P222		98%	71%	8%				
	P223		92%	16%	0%				
40	P224			99%	43%	4%			
	P225			108%	76%	8%			
	P226			113%	66%	6%			
45	P227			99%	29%	3%			
	P230		102%	78%	64%	12%			
	P231		101%	65%	50%	12%			
	P242			84%	55%	4%			
50									

	Relative activity (%)		
	65°C/60°C	67°C/60°C	
Bacillus deramificans pullulanase (SEQ ID NO: 6)	70%	20%	
P233	100%	79%	

(continued)

	Relative activity (%)		
	65°C/60°C 67°C/60°C		
P234	102%	81%	
P235	92%	25%	
P236	100%	64%	
P240	101%	86%	

	Relative activity 65°C/60°C
Bacillus deramificans pullulanase (SEQ ID NO: 6)	65%
P261	69%
P262	77%
P265	84%

	Relative activity 70°C/60°C
Bacillus deramificans pullulanase (SEQ ID NO:6)	36%
P259	106%
P240	95%

30 EXAMPLE 7: Fermentation of the Bacillus Strains

[0485] *B. subtilis* strains were fermented on a rotary shaking table in 500 ml baffled flasks containing 100ml TB-gly with 6mg/L chloramphenicol at 220 rpm, 37°C. The culture was centrifuged (20000 x g, 20min) and the supernatants were carefully decanted from the precipitates. The supernatants were filtered through a 0.45um filter unit to remove the rest of the *Bacillus* host cells.

EXAMPLE 8: Purification of Pullulanases

[0486] Purification of pullulanases was carried out by β-cyclodextrin affinity column and followed by anion exchange column chromatography. After purification, pullulanases were dialyzed against 20 mM sodium acetate buffer (pH 5.5) and concentrated.

EXAMPLE 9: Enzyme thermostability measurement

Purified enzyme was diluted with 50 mM sodium acetate pH 5.0 or 4.3 to 0.5 mg/ml and mixed with the equal volume of SYPRO Orange (Invitrogen) diluted with Milli-Q water. Thirty microliters of mixture solution was transfer to LightCycler 480 Multiwell Plate 96 (Roche Diagnostics) and the plate was sealed.

Equipment parameters of TSA:

[0488]

5

10

15

20

25

35

40

50

55

Apparatus: LightCycler 480 Real-Time PCR System (Roche Applied Science)

Scan rate: 0.02°C/sec Scan range: 37 - 96°C Scan rate: 1.26°C/min Integration time: 0.5 sec

Excitation wave length 465 nm Emission wave length 580 nm

5

10

15

20

25

30

35

40

45

50

[0489] The obtained fluorescence signal was normalized into a range of 0 and 1. The Melting temperature (Tm) was defined as the temperature where the normalized value is closest to 0.5.

	TSA		
	Tm (°C)		
	pH4.3	pH5.0	
SEQ ID NO: 9	69	68	
SEQ ID NO: 3	72.5	72.7	
P091	76.5	77	
P136	76.9	76.5	
P155	76	76.3	
P097	77.7	77.4	
P140	78.1	77.5	
P161	79.2	78.5	
P172	78.1	77.8	
P173	78.5	77.6	
P190	79.2	78.5	

EXAMPLE 10: Temperature Activity Measurement

[0490] Activity measurement of pullulanases was carried out in the range of 55-77.5°C at pH 5.0 by PHADEBAS assay described in EXAMPLE 2. The temperature optimum of the variants were higher than the parental P008, around 70-72.5°C as shown in the below table.

	Temperature (°C)							
	55	60	65	67.5	70	72.5	75	77.5
SEQID NO: 3	53%	79%	89%	100%	93%	15%	2%	1%
P161	25%	46%	99%	91%	98%	100%	20%	2%
P172	38%	56%	68%	90%	100%	85%	17%	1%
P173	35%	55%	81%	97%	100%	89%	15%	1%
P190	23%	36%	62%	88%	98%	100%	34%	2%

EXAMPLE 11: Catalytic domain variants having N-terminal parts replaced

[0491] Two variants having substitutions in the catalytic domain, P240 and P265, described in example 3 were tested after replacement of the N-terminal domains. The replacement resulted in P256 and P267.

[0492] Bacillus clones were fermented in 96 well MTPs containing TB-gly medium (13.3 g/L BactoTM Tryptone, 26.6 g/L BactoTM Yeast extract D, 4.4 g/L Glycerol) with 6mg/L chloramphenicol at 220rpm, 37°C and pullulanase activities were measured at several temperatures by Phadebas assay described in EXAMPLE 2. Relative activity of pullulanase variants showing higher thermoactivity compared to parental pullulanases as shown in below table.

	Relative activity at indicated temp (°C)				
	65/60 67/60 70/60 72/60				
SEQ ID NO: 19	88%	50%	9%	9%	
P256	105%	90%	17%	9%	
P267	96%	101%	28%	10%	

EXAMPLE 12: Relative activity of selected variants

[0493] Purified enzyme was diluted to a fixed concentration with dilution buffer. Ten microliters of enzyme solution was added to 110 ul of preincubated 0.5% substrate solution (at 60 - 75°C at 5°C intervals) and incubated for 30 min. The reaction was stopped by adding 10 ul of 500 mM NaOH and 40 ul of PAHBAH solution was added there. After 20 min incubation at 55°C, the absorbance at A405 was read.

	Relative activity				
	65°C/60°C	70°C/60°C	70°C/75°C		
Commercial PromozymeD	65%	0%	0%		
P008	112%	117%	28%		
P199	122%	141%	119%		
P202	123%	141%	125%		
P216	123%	137%	75%		
P219	118%	121%	62%		
P240	114%	58%	3%		
P252	132%	136%	22%		
P254	115%	21%	6%		
P256	112%	40%	6%		
P303	125%	135%	68%		

	t	
	Relative activity	
	72°C/60°C	74°C/60°C
P303	37%	12%
P306	82%	29%
P219	65%	20%
Commercial PromozymeD	0%	0%

EXAMPLE 13: Improved specific activity for selected variants

[0494] Specific activities toward Pindex100 (DE3) were determined using the method described in a modified method of PAHBAH-Pullulan assay described in EXAMPLE 2 using purified pullulanase samples (2µg/ml) at 60°C and 65°C. Instead of using pullulan, Pindex100 was used in this experiment. The specific activities are listed as relative activity to that of purified commercial product, Promozyme® D2 (Sigma E2412)

Specific activity toward maltodextrin (100% at promozyme D at 60°C)			
60°C 65°C			
Commercial PromozymeD2	100%	65%	

(continued)

Specific activity toward maltodextrin (100% at promozyme D at 60°C)			
	60°C	65°C	
P199	108%	132%	
P202	110%	135%	
P219	127%	150%	
P240	141%	161%	
P252	108%	143%	
P254	122%	140%	
P256	128%	143%	
P303	110%	137%	
P380	97%	116%	

EXAMPLE 14: Relative activity measurements of selected pullulanase variants

[0495] Relative activity measurements of selected pullulanase variants was carried out in the range of 65-79°C at pH 5.0 by the PHADEBAS assay described in EXAMPLE 2. The results are shown in the tables below.

	Relative active	vity		
	72°C/65°C	74°C/65°C	76°C/65°C	78°C/65°C
P303	75%	12%	1%	0%
P316	91%	36%		
P317	97%	42%		
P318	91%	39%		
P319	93%	40%		
P323	86%	27%		
P324	74%	17%	2%	
P329	76%	21%		
P347	75%	13%		
P368	88%	62%		
P369	92%	59%	2%	
P370	105%	81%	11%	
P372	109%	87%	10%	
P375	113%	93%	4%	
P376	112%	98%	4%	
P377	93%	78%	16%	
P378	108%	86%		
P385	104%	63%	5%	
P397	90%	46%	3%	
P415		46%	6%	
P416		32%		

(continued)

	Relative activity				
	72°C/65°C	74°C/65°C	76°C/65°C	78°C/65°C	
P417		52%	8%		
P418		48%			
P424		60%	12%		
P425		49%	7%		
P426		25%	3%		
P427		67%	20%		
P428		61%	14%		
P435			4%	2%	
P436			15%	4%	
P472		47%	27%		
P484		45%	24%		
P485		80%	60%		
P486		79%	68%		

	Relative activity				
	72°C/65°C	74°C/65°C	76°C/65°C	78°C/65°C	
P202	109%	96%	26%	2%	
P287	107%	96%	42%	3%	
P380	101%	97%	78%	7%	

	Relative active	vity	
	76°C/65°C	78°C/65°C	79°C/65°C
P202	26%	2%	
P380	32%	7%	
P388	68%		
P398	51%	19%	
P403	70%	46%	
P408	92%	57%	
P423	87%	73%	
P430	90%	79%	
P431	93%	95%	
P443	100%	62%	
P444	77%	71%	
P448	81%	60%	
P449	70%	60%	
P450	73%		

(continued)

	Relative activity			
	76°C/65°C	78°C/65°C	79°C/65°C	
P470	84%	68%		
P481	89%	63%		
P482	78%	59%		
P483	62%	35%		
P493	87%	71%	33%	
P507	88%	74%	38%	

15 **EXAMPLE 15: Enzyme thermostability measurement (TSA)**

[0496] The thermo-stability measured as melting temperature (Tm) was determined as described in example 9. [0497] Purified enzyme was diluted with 50 mM sodium acetate pH 5.0 or 4.3 to 0.5 mg/ml and mixed with the equal volume of SYPRO Orange (Invitrogen) diluted with Milli-Q water. Thirty microliters of mixture solution was transfer to LightCycler 480 Multiwell Plate 96 (Roche Diagnostics) and the plate was sealed.

Equipment parameters of TSA:

[0498]

Apparatus: LightCycler 480 Real-Time PCR System (Roche Applied Science)

Scan rate: 0.02°C/sec Scan range: 37 - 96°C Scan rate: 1.26°C/min Integration time: 0.5 sec Excitation wave length 465 nm Emission wave length 580 nm

[0499] The obtained fluorescence signal was normalized into a range of 0 and 1. The Melting temperature (Tm) was 35 defined as the temperature where the normalized value is closest to 0.5.Tm analysis by TSA

	Tm (°C)		
	pH 4.3	pH 5.0	
SEQ ID NO: 9	69	68	
P202	75.7	76.07	
P199	75.05	75.5	
P213	78.55	78.7	
P225	80.29	80.74	
P216	72.68	73.49	
P217	73.08	74.1	
P218	72.05	72.65	
P219	72.11	72.89	
P252	71.53	72.08	
P303	72.58	73.54	
P380	75.5	76.7	
P370	74.1	74.6	

116

5

10

20

25

30

40

45

50

(continued)

	Tm (°C)		
	pH 4.3	pH 5.0	
P379	72.2	73.2	
P368	73.4	73.9	
P385	73.5	73.3	
P408	77.2	78.5	
P423	71.6	74.7	
P425	71.7	72.7	
P470	80.1	80.3	
P472	76.2	75.7	

EXAMPLE 16: Saccharification test of selected variants

[0500] Maltodextrin which dextrose equivalent (DE) was adjusted to 11 was prepared from a conventional starch liquefaction process using corn starch and spray-dried for this experiment. The maltodextrin powder was dissolved in hot milliQ water and the pH was adjusted by HCl/NaOH to be 4.3 at 65°C, and then the solid was adjusted to 40% dry solid (DS) by measuring refractive index (RI) of the syrup. The syrup was conducted in 25ml glass vial, and saccharification was started at 65°C by adding 2ml enzyme mixture containing purified glucoamylase JGA098 and pullulanase so that the final dosage of glucoamylase was 0.194AGU/gDS and that of pullulanase was 5.3 or 10.7ug/gDS. The samples were incubated at 65°C with stirring and were sampled at different time points. At each sampling, 0.75ml of the syrup was heat-inactivated at 100°C for 15min, and then diluted 6-fold with distilled water and filtered through 0.2μm nylon syringe filter prior to HPLC analysis. Twenty microliter of the syrup sample was applied to HPX-87C column (Bio-Rad) equilibrated with distilled water at flow rate of 0.5ml/min at 85°C, and glucose and other oligosaccharides were fractionated under isocratic conditions and detected by a RI detector. Glucose yield (%DX) was calculated as the percentage of glucose peak area in total area detected. The enzyme dosages and the %DX against incubation time were shown in the Table below.

%DX of the syrup at different time points

	PromozymeD2	P256	P240	PromozymeD2	P256	P240
Time [hr]	5.3 ug/gDS	5.3 ug/gDS	5.3 ug/gDS	10.7ug/gDS	10.7ug/gDS	10.7ug/gDS
8	62.7	62.4	62.8	63.6	63.3	63.3
16	79.7	80.8	81.1	83.1	83.0	83.8
24	86.7	87.8	88.8	90.5	90.7	91.3
36	91.3	92.5	93.3	94.5	94.9	95.2
48	93.5	94.5	95.1	95.8	96.1	95.9
60	94.5	95.4	95.7	96.0	96.3	96.2
72	95.0	95.6	95.8	96.1	96.2	96.2
90	95.2	95.7	95.7	95.9	96.1	96.0

[0501] The invention described and claimed herein is not to be limited in scope by the specific aspects herein disclosed, since these aspects are intended as illustrations of several aspects of the invention. Any equivalent aspects are intended to be within the scope of this invention. Indeed, various modifications of the invention in addition to those shown and described herein will become apparent to those skilled in the art from the foregoing description. Such modifications are also intended to fall within the scope of the appended claims. In the case of conflict, the present disclosure including definitions will control.

SEQUENCE LISTING

	<110> Novozymes A/S	
5	<120> PULLULANASE VARIANTS AND POLYNUCLEOTIDES ENCODING SAME	
	<130> 12744-WO-PCT	
	<160> 28	
10	<170> PatentIn version 3.5	
15	<210> 1 <211> 2586 <212> DNA <213> Hybrid- Bacillus deramificans and Bacillus acidopullulyticus	
	<400> 1 atgtccctaa tacgttctag gtataatcat tttgtcattc tttttactgt cgccataatg	60
	tttctaacag tttgtttccc cgcttataaa gctttagcag attctacctc gacagaagtc	120
20	attgtgcatt atcatcgttt tgattctaac tatgcaaatt gggatctatg gatgtggcca	180
	tatcaaccag ttaatggtaa tggagcagca tacgagtttt ctggaaagga tgattttggc	240
25	gttaaagcag atgttcaagt gcctggggat gatacacagg taggtctgat tgtccgtaca	300
	aatgattgga gccaaaaaaa tacatcagac gatctccata ttgatctgac aaaggggcat	360
	gaaatatgga ttgttcaggg ggatcccaat atttattaca atctgagtga tgcgcaggct	420
30	gcagcgactc caaaggtttc gaatgcgtat ttggataatg aaaaaacagt attggcaaag	480
	ctaactaatc caatgacatt atcagatgga tcaagcggct ttacggttac agataaaaca	540
	acaggggaac aaattccagt taccgctgca acaaatgcga actcagcctc ctcgtctgag	600
35	cagacagact tggttcaatt gacgttagcc agtgcaccgg atgtttccca tacaatacaa	660
	gtaggagcag ccggttatga agcagtcaat ctcataccac gaaatgtatt aaatttgcct	720
	cgttattatt acagcggaaa tgatttaggt aacgtttatt caaataaggc aacggccttc	780
40	cgtgtatggg ctccaactgc ttcggatgtc caattacttt tatacaatag tgaaacagga	840
	cctgtaacca aacagcttga aatgcaaaag agtgataacg gtacatggaa actgaaggtc	900
	cctggtaatc tgaaaaattg gtattatctc tatcaggtaa cggtgaatgg gaagacacaa	960
45	acagecytty accettatyt geytyetatt teagteaaty caacacytyy tatgatayte	1020
	gatttagaag atacgaatcc tcctggatgg aaagaagatc atcaacagac acctgcgaac	1080
50	ccagtggatg aagtaatcta cgaagtgcat gtgcgtgatt tttcgattga tgctaattca	1140
	ggcatgaaaa ataaagggaa atatettgee tttacagaac atggcacaaa aggeeetgat	1200
	aacgtgaaaa cgggtattga tagtttgaag gaattaggaa tcaatgctgt tcaattacag	1260
55	ccgattgaag aatttaacag cattgatgaa acccaaccaa atatgtataa ctggggctat	1320
	gacccaagaa actacaacgt ccctgaagga gcgtatgcaa ctacaccaga aggaacggct	1380

	cgcattaccc	agttaaagca	actgattcaa	agcattcata	aagatcggat	tgctatcaat	1440
	atggatgtgg	tctataacca	tacctttaac	gtaggagtgt	ctgattttga	taagattgtt	1500
5	ccgcaatact	attatcggac	agacagcgca	ggtaattata	cgaacggctc	aggtgtaggt	1560
	aatgaaattg	cgaccgagcg	tccgatggtc	caaaagttcg	ttctggattc	tgttaaatat	1620
	tgggtaaagg	aataccatat	cgacggcttc	cgtttcgatc	ttatggctct	tttaggaaaa	1680
10	gacaccatgg	ccaaaatatc	aaaagagctt	catgctatta	atcctggcat	tgtcctgtat	1740
	ggagaaccat	ggactggcgg	tacctctgga	ttatcaagcg	accaactcgt	tacgaaaggt	1800
15	cagcaaaagg	gcttgggaat	tggcgtgttt	aatgacaatt	tacgaaacgc	gttggacggc	1860
	aatgtctttg	attcttccgc	tcaaggtttt	gcgacaggtg	caacaggctt	aactgatgca	1920
	attaagaatg	gcgttgaggg	gagtattaat	gactttacct	cttcaccagg	tgagacaatt	1980
20	aactatgtca	caagtcatga	taactacacc	ctttgggaca	aaatagccct	aagcaaccct	2040
	aatgattccg	aagcggatcg	gattaaaatg	gatgaactcg	cacaagcagt	tgttatgacc	2100
	tcacaaggtg	ttccattcat	gcaaggcggg	gaagaaatgc	ttcgtacaaa	aggcggcaac	2160
25	gacaatagtt	ataatgcagg	cgatacggtc	aatgagtttg	attggagcag	gaaagctcaa	2220
	tatccagatg	ttttcaacta	ttatagcggg	ctaatccacc	ttcgtcttga	tcacccagcc	2280
30	ttccgcatga	cgacagctaa	tgaaatcaat	agccacctcc	aattcctaaa	tagtccagag	2340
	aacacagtgg	cctatgaatt	aactgatcat	gttaataaag	acaaatgggg	aaatatcatt	2400
	gttgtttata	acccaaataa	aactgcagca	accattaatt	tgccgagcgg	gaaatgggca	2460
35	atcaatgcta	cgagcggtaa	ggtaggagaa	tccacccttg	gtcaagcaga	gggaagtgtt	2520
	caagtcccag	gtatatctat	gatgatcctt	catcaagagg	taagcccaga	ccacggtaaa	2580
40	aagtaa						2586

40

45

<210> 2 <211> 861 <212> PRT <213> Hybrid- Bacillus deramificans and Bacillus acidopullulyticus

<400> 2

Met Ser Leu Ile Arg Ser Arg Tyr Asn His Phe Val Ile Leu Phe Thr 10

50

Val Ala Ile Met Phe Leu Thr Val Cys Phe Pro Ala Tyr Lys Ala Leu 20

55

Ala Asp Ser Thr Ser Thr Glu Val Ile Val His Tyr His Arg Phe Asp 40

	Ser	Asn 50	Tyr	Ala	Asn	Trp	Asp 55	Leu	Trp	Met	Trp	Pro 60	Tyr	Gln	Pro	Val
5	Asn 65	Gly	Asn	Gly	Ala	Ala 70	Tyr	Glu	Phe	Ser	Gly 75	Lys	Asp	Asp	Phe	Gly 80
10	Val	Lys	Ala	Asp	Val 85	Gln	Val	Pro	Gly	Asp 90	Asp	Thr	Gln	Val	Gly 95	Leu
	Ile	Val	Arg	Thr 100	Asn	Asp	Trp	Ser	Gln 105	Lys	Asn	Thr	Ser	As p 110	Asp	Leu
15	His	Ile	Asp 115	Leu	Thr	Lys	Gly	His 120	Glu	Ile	Trp	Ile	Val 125	Gln	Gly	Asp
20	Pro	Asn 130	Ile	Tyr	Tyr	Asn	Leu 135	Ser	Asp	Ala	Gln	Ala 140	Ala	Ala	Thr	Pro
25	Lys 145	Val	Ser	Asn	Ala	Tyr 150	Leu	Asp	Asn	Glu	Lys 155	Thr	Val	Leu	Ala	Lys 160
	Leu	Thr	Asn	Pro	Met 165	Thr	Leu	Ser	Asp	Gly 170	Ser	Ser	Gly	Phe	Thr 175	Val
30	Thr	Asp	Lys	Thr 180	Thr	Gly	Glu	Gln	Ile 185	Pro	Val	Thr	Ala	Ala 190	Thr	Asn
35	Ala	Asn	Ser 195	Ala	Ser	Ser	Ser	Glu 200	Gln	Thr	Asp	Leu	Val 205	Gln	Leu	Thr
40	Leu	Ala 210	Ser	Ala	Pro	Asp	Val 215	Ser	His	Thr	Ile	Gln 220	Val	Gly	Ala	Ala
	Gly 225	Tyr	Glu	Ala	Val	Asn 230	Leu	Ile	Pro	Arg	Asn 235	Val	Leu	Asn	Leu	Pro 240
45	Arg	Tyr	Tyr	Tyr	Ser 245	Gly	Asn	Asp	Leu	Gly 250	Asn	Val	Tyr	Ser	A sn 255	Lys
50	Ala	Thr	Ala	Phe 260	Arg	Val	Trp	Ala	Pro 265	Thr	Ala	Ser	Asp	Val 270	Gln	Leu
	Leu	Leu	Tyr 275	Asn	Ser	Glu	Thr	Gly 280	Pro	Val	Thr	Lys	Gln 285	Leu	Glu	Met
55	Gln	Lys 290	Ser	Asp	Asn	Gly	Thr 295	Trp	Lys	Leu	Lys	Val 300	Pro	Gly	Asn	Leu

	Lys 305	Asn	Trp	Tyr	Tyr	Leu 310	Tyr	Gln	Val	Thr	Val 315	Asn	Gly	Lys	Thr	Gln 320
5	Thr	Ala	Val	Asp	Pro 325	Tyr	Val	Arg	Ala	Ile 330	Ser	Val	Asn	Ala	Thr 335	Arg
10	Gly	Met	Ile	Val 340	Asp	Leu	Glu	Asp	Thr 345	Asn	Pro	Pro	Gly	Trp 350	Lys	Glu
	Asp	His	Gln 355	Gln	Thr	Pro	Ala	Asn 360	Pro	Val	Asp	Glu	Val 365	Ile	Tyr	Glu
15	Val	His 370	Val	Arg	Asp	Phe	Ser 375	Ile	Asp	Ala	Asn	Ser 380	Gly	Met	Lys	Asn
20	Lys 385	Gly	Lys	Tyr	Leu	Ala 390	Phe	Thr	Glu	His	Gly 395	Thr	Lys	Gly	Pro	Asp 400
25	Asn	Val	Lys	Thr	Gly 405	Ile	Asp	Ser	Leu	Lys 410	Glu	Leu	Gly	Ile	Asn 415	Ala
	Val	Gln	Leu	Gln 420	Pro	Ile	Glu	Glu	Phe 425	Asn	Ser	Ile	Asp	Glu 430	Thr	Gln
30	Pro	Asn	Met 435	Tyr	Asn	Trp	Gly	Tyr 440	Asp	Pro	Arg	Asn	Tyr 445	Asn	Val	Pro
35	Glu	Gly 450	Ala	Tyr	Ala	Thr	Thr 455	Pro	Glu	Gly	Thr	Ala 460	Arg	Ile	Thr	Gln
40	Leu 465	Lys	Gln	Leu	Ile	Gln 470	Ser	Ile	His	Lys	Asp 475	Arg	Ile	Ala	Ile	Asn 480
40	Met	Asp	Val	Val	Tyr 485	Asn	His	Thr	Phe	Asn 490	Val	Gly	Val	Ser	Asp 495	Phe
45	Asp	Lys	Ile	Val 500	Pro	Gln	Tyr	Tyr	Tyr 505	Arg	Thr	Asp	Ser	Ala 510	Gly	Asn
50	Tyr	Thr	Asn 515	Gly	Ser	Gly	Val	Gly 520	Asn	Glu	Ile	Ala	Thr 525	Glu	Arg	Pro
	Met	Val 530	Gln	Lys	Phe	Val	Leu 535	Asp	Ser	Val	Lys	Tyr 540	Trp	Val	Lys	Glu
55	Tyr 545	His	Ile	Asp	Gly	Phe 550	Arg	Phe	Asp	Leu	Met 555	Ala	Leu	Leu	Gly	Lys 560

	Asp	Thr	Met	Ala	Lys 565	Ile	Ser	Lys	Glu	Leu 570	His	Ala	Ile	Asn	Pro 575	Gly
5	Ile	Val	Leu	Tyr 580	Gly	Glu	Pro	Trp	Thr 585	Gly	Gly	Thr	Ser	Gly 590	Leu	Ser
10	Ser	Asp	Gln 595	Leu	Val	Thr	Lys	Gly 600	Gln	Gln	Lys	Gly	Leu 605	Gly	Ile	Gly
	Val	Phe 610	Asn	Asp	Asn	Leu	Arg 615	Asn	Ala	Leu	Asp	Gly 620	Asn	Val	Phe	Asp
15	Ser 625	Ser	Ala	Gln	Gly	Phe 630	Ala	Thr	Gly	Ala	Thr 635	Gly	Leu	Thr	Asp	Ala 640
20	Ile	Lys	Asn	Gly	Val 645	Glu	Gly	Ser	Ile	As n 650	Asp	Phe	Thr	Ser	Ser 655	Pro
25	Gly	Glu	Thr	Ile 660	Asn	Tyr	Val	Thr	Ser 665	His	Asp	Asn	Tyr	Thr 670	Leu	Trp
	Asp	Lys	Ile 675	Ala	Leu	Ser	Asn	Pro 680	Asn	Asp	Ser	Glu	Ala 685	Asp	Arg	Ile
30	Lys	Met 690	Asp	Glu	Leu	Ala	Gln 695	Ala	Val	Val	Met	Thr 700	Ser	Gln	Gly	Val
35	Pro 705	Phe	Met	Gln	Gly	Gly 710	Glu	Glu	Met	Leu	Arg 715	Thr	Lys	Gly	Gly	Asn 720
40	Asp	Asn	Ser	Tyr	Asn 725	Ala	Gly	Asp	Thr	Val 730	Asn	Glu	Phe	Asp	Trp 735	Ser
	Arg	Lys	Ala	Gln 740	Tyr	Pro	Asp	Val	Phe 745	Asn	Tyr	Tyr	Ser	Gly 750	Leu	Ile
45	His	Leu	A rg 755	Leu	Asp	His	Pro	A la 760	Phe	Arg	Met	Thr	Thr 765	Ala	Asn	Glu
50	Ile	As n 770	Ser	His	Leu	Gln	Phe 775	Leu	Asn	Ser	Pro	Glu 780	Asn	Thr	Val	Ala
	Tyr 785	Glu	Leu	Thr	Asp	His 790	Val	Asn	Lys	Asp	Lys 795	Trp	Gly	Asn	Ile	Ile 800
55	Val	Val	Tyr	Asn	Pro	Asn	Lys	Thr	Ala	Ala	Thr	Ile	Asn	Leu	Pro	Ser

		805	810	815
5	Gly Lys Trp Ala 820		er Gly Lys Val Gly Glu 25 830	
	Leu Gly Gln Ala 835	Glu Gly Ser Val Gl 840	ln Val Pro Gly Ile Ser 8 4 5	Met Met
10	Ile Leu His Gln 850	Glu Val Ser Pro As 855	sp His Gly Lys Lys 860	
15	<210> 3 <211> 828 <212> PRT <213> Hybrid- E	Bacillus deramifica	ans and Bacillus acido	pullulyticus
	<400> 3			
20	Asp Ser Thr Ser 1	Thr Glu Val Ile Va 5	al His Tyr His Arg Phe 10	Asp Ser 15
25	Asn Tyr Ala Asn 20	Trp Asp Leu Trp Me	et Trp Pro Tyr Gln Pro 5 30	Val Asn
30	Gly Asn Gly Ala 35	Ala Tyr Glu Phe Se 40	er Gly Lys Asp Asp Phe 45	Gly Val
	Lys Ala Asp Val 50	Gln Val Pro Gly As 55	sp Asp Thr Gln Val Gly 60	Leu Ile
35	Val Arg Thr Asn 65	Asp Trp Ser Gln Ly 70	ys Asn Thr Ser Asp Asp 75	Leu His 80
40	Ile Asp Leu Thr	Lys Gly His Glu II 85	le Trp Ile Val Gln Gly 90	Asp Pro 95
	Asn Ile Tyr Tyr 100	-	la Gln Ala Ala Ala Thr 05 110	_
45	Val Ser Asn Ala 115	Tyr Leu Asp Asn Gl	lu Lys Thr Val Leu Ala 125	Lys Leu
50	Thr Asn Pro Met 130	Thr Leu Ser Asp GI 135	ly Ser Ser Gly Phe Thr 140	Val Thr
55	Asp Lys Thr Thr 145	Gly Glu Gln Ile Pr 150	ro Val Thr Ala Ala Thr 155	Asn Ala 160
30	Asn Ser Ala Ser	Ser Ser Glu Gln Th	hr Asp Leu Val Gln Leu	Thr Leu

					165					170					175	
5	Ala	Ser	Ala	Pro 180	Asp	Val	Ser	His	Thr 185	Ile	Gln	Val	Gly	Ala 190	Ala	Gly
10	Tyr	Glu	Ala 195	Val	Asn	Leu	Ile	Pro 200	Arg	Asn	Val	Leu	Asn 205	Leu	Pro	Arg
	Tyr	Tyr 210	Tyr	Ser	Gly	Asn	Asp 215	Leu	Gly	Asn	Val	Tyr 220	Ser	Asn	Lys	Ala
15	Thr 225	Ala	Phe	Arg	Val	Trp 230	Ala	Pro	Thr	Ala	Ser 235	Asp	Val	Gln	Leu	Leu 240
20	Leu	Tyr	Asn	Ser	Glu 245	Thr	Gly	Pro	Val	Thr 250	Lys	Gln	Leu	Glu	Met 255	Gln
	Lys	Ser	Asp	Asn 260	Gly	Thr	Trp	Lys	Leu 265	Lys	Val	Pro	Gly	Asn 270	Leu	Lys
25	Asn	Trp	Tyr 275	Tyr	Leu	Tyr	Gln	Val 280	Thr	Val	Asn	Gly	Lys 285	Thr	Gln	Thr
30	Ala	Val 290	Asp	Pro	Tyr	Val	Arg 295	Ala	Ile	Ser	Val	Asn 300	Ala	Thr	Arg	Gly
35	Met 305	Ile	Val	Asp	Leu	Glu 310	Asp	Thr	Asn	Pro	Pro 315	Gly	Trp	Lys	Glu	Asp 320
	His	Gln	Gln	Thr	Pro 325		Asn	Pro		Asp 330		Val	Ile	Tyr	Glu 335	Val
40	His	Val	Arg	Asp 340	Phe	Ser	Ile	Asp	Ala 345	Asn	Ser	Gly	Met	Lys 350	Asn	Lys
45	Gly	Lys	Tyr 355	Leu	Ala	Phe	Thr	Glu 360	His	Gly	Thr	Lys	Gly 365	Pro	Asp	Asn
50	Val	Lys 370	Thr	Gly	Ile	Asp	Ser 375	Leu	Lys	Glu	Leu	Gly 380	Ile	Asn	Ala	Val
	Gln 385	Leu	Gln	Pro	Ile	Glu 390	Glu	Phe	Asn	Ser	Ile 395	Asp	Glu	Thr	Gln	Pro 400
55	Asn	Met	Tyr	Asn	Trp 405	Gly	Tyr	Asp	Pro	Arg 410	Asn	Tyr	Asn	Val	Pro 415	Glu

	Gly	Ala	Tyr	Ala 420	Thr	Thr	Pro	Glu	Gly 425	Thr	Ala	Arg	Ile	Thr 430	Gln	Leu
5	Lys	Gln	Leu 435	Ile	Gln	Ser	Ile	His 440	Lys	Asp	Arg	Ile	Ala 445	Ile	Asn	Met
10	Asp	Val 450	Val	Tyr	Asn	His	Thr 455	Phe	Asn	Val	Gly	Val 460	Ser	Asp	Phe	Asp
	Lys 465	Ile	Val	Pro	Gln	Tyr 470	Tyr	Tyr	Arg	Thr	Asp 475	Ser	Ala	Gly	Asn	Tyr 480
15	Thr	Asn	Gly	Ser	Gly 485	Val	Gly	Asn	Glu	Ile 490	Ala	Thr	Glu	Arg	Pro 495	Met
20	Val	Gln	Lys	Phe 500	Val	Leu	Asp	Ser	Val 505	Lys	Tyr	Trp	Val	Lys 510	Glu	Tyr
25	His	Ile	Asp 515	Gly	Phe	Arg	Phe	Asp 520	Leu	Met	Ala	Leu	Leu 525	Gly	Lys	Asp
	Thr	Met 530	Ala	Lys	Ile	Ser	Lys 535	Glu	Leu	His	Ala	Ile 540	Asn	Pro	Gly	Ile
30	Val 545	Leu	Tyr	Gly	Glu	Pro 550	Trp	Thr	Gly	Gly	Thr 555	Ser	Gly	Leu	Ser	Ser 560
35	Asp	Gln	Leu	Val	Thr 565	Lys	Gly	Gln	Gln	Lys 570	Gly	Leu	Gly	Ile	Gly 575	Val
40	Phe	Asn	Asp	Asn 580	Leu	Arg	Asn	Ala	Leu 585	Asp	Gly	Asn	Val	Phe 590	Asp	Ser
40	Ser	Ala	Gln 595	Gly	Phe	Ala	Thr	Gly 600	Ala	Thr	Gly	Leu	Thr 605	Asp	Ala	Ile
45	Lys	Asn 610	Gly	Val	Glu	Gly	Ser 615	Ile	Asn	Asp	Phe	Thr 620	Ser	Ser	Pro	Gly
50	Glu 625	Thr	Ile	Asn	Tyr	Val 630	Thr	Ser	His	Asp	Asn 635	Tyr	Thr	Leu	Trp	Asp 640
	Lys	Ile	Ala	Leu	Ser 645	Asn	Pro	Asn	Asp	Ser 650	Glu	Ala	Asp	Arg	Ile 655	Lys
55	Met	Asp	Glu	Leu 660	Ala	Gln	Ala	Val	Val 665	Met	Thr	Ser	Gln	Gly 670	Val	Pro

	PHE	Met	675	СТУ	GIY	GIU	GIU	680	Leu	Arg	IIIE	туѕ	685	СТУ	ASII	Asp	
5	Asn	Ser 690	Tyr	Asn	Ala	Gly	Asp 695	Thr	Val	Asn	Glu	Phe 700	Asp	Trp	Ser	Arg	
10	Lys 705	Ala	Gln	Tyr	Pro	As p 710	Val	Phe	Asn	Tyr	Tyr 715	Ser	Gly	Leu	Ile	His 720	
	Leu	Arg	Leu	Asp	His 725	Pro	Ala	Phe	Arg	Met 730	Thr	Thr	Ala	Asn	Glu 735	Ile	
15	Asn	Ser	His	Leu 740	Gln	Phe	Leu	Asn	Ser 745	Pro	Glu	Asn	Thr	Val 750	Ala	Tyr	
20	Glu	Leu	Thr 755	Asp	His	Val	Asn	Lys 760	Asp	Lys	Trp	Gly	Asn 765	Ile	Ile	Val	
25	Val	Tyr 770	Asn	Pro	Asn	Lys	Thr 775	Ala	Ala	Thr	Ile	As n 780	Leu	Pro	Ser	Gly	
	Lys 785	Trp	Ala	Ile	Asn	Ala 790	Thr	Ser	Gly	Lys	Val 795	Gly	Glu	Ser	Thr	Leu 800	
30	Gly	Gln	Ala	Glu	Gly 805	Ser	Val	Gln	Val	Pro 810	Gly	Ile	Ser	Met	Met 815	Ile	
35	Leu	His	Gln	Glu 820	Val	Ser	Pro	Asp	His 825	Gly	Lys	Lys					
40	<210 <211 <212 <213	L> 2 2> [2874 ONA	llus	dera	amifi	icans	3									
	<400 atgg		-	aacta	attt	a to	gtgtg	gttta	a agt	gttt	gct	tagi	tgttg	gac o	ctggg	gatttt	60
45	aato	gtaaa	aag q	ggcaa	atcto	gc to	catgo	etgat	ggg	gagca	acga	caa	cgato	cat 1	tgtc	cactat	120
	tttc	egaad	ctg d	ctggt	gatt	a to	caaco	ettg	g agt	ctat	gga	tgt	ggaat	ga a	aggaç	ggagt	180
50	ggag	gatga	aat a	atgat	ttta	aa co	gggad	cagat	tca	atato	gggg	aagt	tagad	caa 1	tgttt	ccatc	240
	ccaç	ggaaa	acc o	caagt	cago	gt ag	ggaat	tato	gtt	cgca	actc	aaga	attgo	gac (caag	gatgtg	300
	agco	gctga	acc d	gctad	catao	ga tt	taaq	gcaaa	a gga	acato	gagg	tate	ggcto	ggt (ccaaç	ggaaac	360
55	agco	caaat	tt t	cctat	aato	ga aa	aagga	tgct	gaa	agato	gccg	ctaa	aacco	egc 1	tgtaa	agcaac	420
	gctt	attt	ag a	atgct	tcaa	aa co	caagt	ttta	a gtt	aago	ctta	gcca	aacco	jtt 1	tacad	ctcggt	480

	gaaggagcaa	gcggcttcac	ggttcatgat	gacaccgtaa	ataaggatat	cccagtgaca	540
	tctgtgacgg	atgcaagtct	tggtcaaaat	gtaaccgctg	ttttggcagg	taccttccaa	600
5	catatttttg	gaggttccga	ttgggcacct	gataatcaca	gtactttatt	aaaaaaggtg	660
	aataacaatc	tctatcaatt	ctcaggagat	cttcctgaag	gaaactacca	atataaagtg	720
	gctttaaatg	atagctggaa	taatccgagt	tacccttcaa	acaatatcga	tttaaccgta	780
10	ccaacaggcg	gtgcccatgt	caccttttcc	tatgtcccct	caacgcatgc	cgtctacgac	840
	agtattaaca	accctggcgc	cgatttacct	gtaaatggca	gcggggttaa	aacggatctc	900
	gtgacggtta	ctctagggga	agatccagat	gtgagccata	ctctgtccat	tcaaacagat	960
15	ggctatcaag	caaagcaggt	gatatctcgt	aatgtgcttg	attcatcaca	gtattactat	1020
	tcaggagatg	atcttggaaa	tacctataca	cataaagcaa	ctacctttaa	ggtctgggca	1080
20	cctacttcta	ctcaagtaaa	tgttcttctt	tataatagtg	caacgggttc	tgtaacaaaa	1140
20	accgtaccta	tgacggcatc	gggccatggt	gtgtgggaag	caacggttaa	tcaaaacctt	1200
	gaaaattggt	attacatgta	tgaggtaaca	ggccaaggct	ctacccgaac	ggctgttgat	1260
25	ccttatgcaa	ctgcgattgc	accaaatgga	acgagaggca	tgattgtgga	cctggctaaa	1320
	acagatcctg	ctggctggaa	cagtgataaa	catattacgc	caaagaatat	agaagatgag	1380
	gtcatctatg	aaatggatgt	ccgtgacttt	tccattgacc	ctaattcggg	tatgaaaaat	1440
30	aaagggaagt	atttggctct	tacagaaaaa	ggaacaaagg	gccctgacaa	cgtaaagacg	1500
	gggatagatt	ccttaaaaca	acttgggatt	actcatgttc	agcttatgcc	tgttttcgca	1560
	tttaacagtg	tcgatgaaac	tgatccaacc	caagataatt	ggggttatga	ccctcgcaac	1620
35	tatgatgttc	ctgaagggca	gtatgctaca	aatgcgaatg	gtacggctcg	tataaaagag	1680
	tttaaggaaa	tggttctttc	actccatcgt	gaacacattg	gggttaacat	ggatgttgtc	1740
	tataatcata	cctttgccac	gcaaatctct	gacttcgata	aaattgtacc	agaatattat	1800
40	taccgtacgg	atgatgcagg	taattatacc	aacggatcag	gtactggaaa	tgaaatcgca	1860
	gccgaaaggc	caatggttca	aaaatttatt	attgattccc	ttaagtattg	ggtcaatgag	1920
	tatcatattg	acggcttccg	ttttgactta	atggcgctgc	ttggaaaaga	cacgatgtcg	1980
15	aaagctgcct	cggagcttca	tgctattaat	ccaggaattg	cactttacgg	tgagccatgg	2040
	acgggtggaa	cctctgcact	gccagaagat	cagcttctga	caaaaggagc	tcaaaaaggc	2100
50	atgggagtag	cggtgtttaa	tgacaattta	cgaaacgcgt	tggacggcaa	tgtctttgat	2160
,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	tetteegete	aaggttttgc	gacaggtgca	acaggcttaa	ctgatgcaat	taagaatggc	2220
	gttgagggga	gtattaatga	ctttacctct	tcaccaggtg	agacaattaa	ctatgtcaca	2280
55	agtcatgata	actacaccct	ttgggacaaa	atagccctaa	gcaaccctaa	tgattccgaa	2340
	gcggatcgga	ttaaaatgga	tgaactcgca	caagcagttg	ttatgacctc	acaaggtgtt	2400

	ccattcatgc aaggcgggga agaaatgctt cgtacaaaag gcggcaacga caatagttat	2460
	aatgcaggcg atacggtcaa tgagtttgat tggagcagga aagctcaata tccagatgtt	2520
5	ttcaactatt atagcgggct aatccacctt cgtcttgatc acccagcctt ccgcatgacg	2580
	acagctaatg aaatcaatag ccacctccaa ttcctaaata gtccagagaa cacagtggcc	2640
	tatgaattaa ctgatcatgt taataaagac aaatggggaa atatcattgt tgtttataac	2700
10	ccaaataaaa ctgcagcaac cattaatttg ccgagcggga aatgggcaat caatgctacg	2760
	agcggtaagg taggagaatc cacccttggt caagcagagg gaagtgtcca agtaccaggt	2820
15	atatctatga tgatccttca tcaagaggta agcccagacc acggtaaaaa gtaa	2874
20	<210> 5 <211> 957 <212> PRT <213> Bacillus deramificans	
	< 4 00> 5	
25	Met Ala Lys Lys Leu Ile Tyr Val Cys Leu Ser Val Cys Leu Val Leu 1 5 10 15	
	Thr Trp Ala Phe Asn Val Lys Gly Gln Ser Ala His Ala Asp Gly Ser 20 25 30	
30	Thr Thr Ile Ile Val His Tyr Phe Arg Pro Ala Gly Asp Tyr Gln 35 40 45	
35	Pro Trp Ser Leu Trp Met Trp Pro Glu Gly Gly Ser Gly Ala Glu Tyr 50 55 60	
	Asp Phe Asn Gly Thr Asp Ser Tyr Gly Glu Val Ala Asn Val Ser Ile 65 70 75 80	
40	Pro Gly Asn Pro Ser Gln Val Gly Ile Ile Val Arg Thr Gln Asp Trp 85 90 95	
45	Thr Lys Asp Val Ser Ala Asp Arg Tyr Ile Asp Leu Ser Lys Gly His 100 105 110	
50	Glu Val Trp Leu Val Gln Gly Asn Ser Gln Ile Phe Tyr Asn Glu Lys 115 120 125	
	Asp Ala Glu Asp Ala Ala Lys Pro Ala Val Ser Asn Ala Tyr Leu Asp 130 135 140	
55	Ala Ser Asn Gln Val Leu Val Lys Leu Ser Gln Pro Phe Thr Leu Gly 145 150 155 160	

	Glu	Gly	Ala	Ser	Gly 165	Phe	Thr	Val	His	Asp 170	Asp	Thr	Val	Asn	Lys 175	Asp
5	Ile	Pro	Val	Thr 180	Ser	Val	Thr	Asp	Ala 185	Ser	Leu	Gly	Gln	Asn 190	Val	Thr
10	Ala	Val	Leu 195	Ala	Gly	Thr	Phe	Gln 200	His	Ile	Phe	Gly	Gly 205	Ser	Asp	Trp
15	Ala	Pro 210	Asp	Asn	His	Ser	Thr 215	Leu	Leu	Lys	Lys	Val 220	Asn	Asn	Asn	Leu
	Tyr 225	Gln	Phe	Ser	Gly	Asp 230	Leu	Pro	Glu	Gly	As n 235	Tyr	Gln	Tyr	Lys	Val 240
20	Ala	Leu	Asn	Asp	Ser 245	Trp	Asn	Asn	Pro	Ser 250	Tyr	Pro	Ser	Asn	Asn 255	Ile
25	Asp	Leu	Thr	Val 260	Pro	Thr	Gly	Gly	Ala 265	His	Val	Thr	Phe	Ser 270	Tyr	Val
	Pro	Ser	Thr 275	His	Ala	Val	Tyr	Asp 280	Ser	Ile	Asn	Asn	Pro 285	Gly	Ala	Asp
30	Leu	Pro 290	Val	Asn	Gly	Ser	Gly 295	Val	Lys	Thr	Asp	Leu 300	Val	Thr	Val	Thr
35	Leu 305	Gly	Glu	Asp	Pro	Asp 310	Val	Ser	His	Thr	Leu 315	Ser	Ile	Gln	Thr	Asp 320
40	Gly	Tyr	Gln	Ala	Lys 325	Gln	Val	Ile	Ser	Arg 330	Asn	Val	Leu	Asp	Ser 335	Ser
	Gln	Tyr	Tyr	Tyr 340	Ser	Gly	Asp	Asp	Leu 345	Gly	Asn	Thr	Tyr	Thr 350	His	Lys
45	Ala	Thr	Thr 355	Phe	Lys	Val	Trp	Ala 360	Pro	Thr	Ser	Thr	Gln 365	Val	Asn	Val
50	Leu	Leu 370	Tyr	Asn	Ser	Ala	Thr 375	Gly	Ser	Val	Thr	Lys 380	Thr	Val	Pro	Met
55	Thr 385	Ala	Ser	Gly	His	Gly 390	Val	Trp	Glu	Ala	Thr 395	Val	Asn	Gln	Asn	Leu 400
	Glu	Asn	Trp	Tyr	Tyr	Met	Tyr	Glu	Val	Thr	Gly	Gln	Gly	Ser	Thr	Arg

					403					410					415	
5	Thr	Ala	Val	Asp 420	Pro	Tyr	Ala	Thr	Ala 425	Ile	Ala	Pro	Asn	Gly 430	Thr	Arg
10	Gly	Met	Ile 435	Val	Asp	Leu	Ala	Lys 440	Thr	Asp	Pro	Ala	Gly 445	Trp	Asn	Ser
10	Asp	Lys 450	His	Ile	Thr	Pro	Lys 455	Asn	Ile	Glu	Asp	Glu 460	Val	Ile	Tyr	Glu
15	Met 465	Asp	Val	Arg	Asp	Phe 470	Ser	Ile	Asp	Pro	Asn 475	Ser	Gly	Met	Lys	Asn 480
20	Lys	Gly	Lys	Tyr	Leu 485	Ala	Leu	Thr	Glu	Lys 490	Gly	Thr	Lys	Gly	Pro 495	Asp
	Asn	Val	Lys	Thr 500	Gly	Ile	Asp	Ser	Leu 505	Lys	Gln	Leu	Gly	Ile 510	Thr	His
25	Val	Gln	Leu 515	Met	Pro	Val	Phe	Ala 520	Phe	Asn	Ser	Val	Asp 525	Glu	Thr	Asp
30	Pro	Thr 530	Gln	Asp	Asn	Trp	Gly 535	Tyr	Asp	Pro	Arg	Asn 540	Tyr	Asp	Val	Pro
35	Glu 545	Gly	Gln	Tyr	Ala	Thr 550	Asn	Ala	Asn	Gly	Thr 555	Ala	Arg	Ile	Lys	Glu 560
	Phe	Lys	Glu	Met	Val 565	Leu	Ser	Leu	His	Arg 570	Glu	His	Ile	Gly	Val 575	Asn
40	Met	Asp	Val	Val 580	Tyr	Asn	His	Thr	Phe 585	Ala	Thr	Gln	Ile	Ser 590	Asp	Phe
45	Asp	Lys	Ile 595	Val	Pro	Glu	Tyr	Tyr 600	Tyr	Arg	Thr	Asp	Asp 605	Ala	Gly	Asn
50	Tyr	Thr 610	Asn	Gly	Ser	Gly	Thr 615	Gly	Asn	Glu	Ile	Ala 620	Ala	Glu	Arg	Pro
	Met 625	Val	Gln	Lys	Phe	Ile 630	Ile	Asp	Ser	Leu	Lys 635	Tyr	Trp	Val	Asn	Glu 640
55	Tyr	His	Ile	Asp	Gly 645	Phe	Arg	Phe	Asp	Leu 650	Met	Ala	Leu	Leu	Gly 655	Lys

	Asp	Thr	Met	Ser 660	Lys	Ala	Ala	Ser	Glu 665	Leu	His	Ala	Ile	As n 670	Pro	Gly
5	Ile	Ala	Leu 675	Tyr	Gly	Glu	Pro	Trp 680	Thr	Gly	Gly	Thr	Ser 685	Ala	Leu	Pro
10	Glu	Asp 690	Gln	Leu	Leu	Thr	Lys 695	Gly	Ala	Gln	Lys	Gly 700	Met	Gly	Val	Ala
	Val 705	Phe	Asn	Asp	Asn	Leu 710	Arg	Asn	Ala	Leu	Asp 715	Gly	Asn	Val	Phe	Asp 720
15	Ser	Ser	Ala	Gln	Gly 725	Phe	Ala	Thr	Gly	Ala 730	Thr	Gly	Leu	Thr	Asp 735	Ala
20	Ile	Lys	Asn	Gly 740	Val	Glu	Gly	Ser	Ile 745	Asn	Asp	Phe	Thr	Ser 750	Ser	Pro
25	Gly	Glu	Thr 755	Ile	Asn	Tyr	Val	Thr 760	Ser	His	Asp	Asn	Tyr 765	Thr	Leu	Trp
	Asp	Lys 770	Ile	Ala	Leu	Ser	As n 775	Pro	Asn	Asp	Ser	Glu 780	Ala	Asp	Arg	Ile
30	Lys 785	Met	Asp	Glu	Leu	A la 790	Gln	Ala	Val	Val	Met 795	Thr	Ser	Gln	Gly	Val 800
35	Pro	Phe	Met	Gln	Gly 805	Gly	Glu	Glu	Met	Leu 810	Arg	Thr	Lys	Gly	Gly 815	Asn
40	Asp	Asn	Ser	Tyr 820	Asn	Ala	Gly	Asp	Thr 825	Val	Asn	Glu	Phe	Asp 830	Trp	Ser
40	Arg	Lys	Ala 835	Gln	Tyr	Pro	Asp	Val 840	Phe	Asn	Tyr	Tyr	Ser 845	Gly	Leu	Ile
45	His	Leu 850	Arg	Leu	Asp	His	Pro 855	Ala	Phe	Arg	Met	Thr 860	Thr	Ala	Asn	Glu
50	Ile 865	Asn	Ser	His	Leu	Gln 870	Phe	Leu	Asn	Ser	Pro 875	Glu	Asn	Thr	Val	Ala 880
	Tyr	Glu	Leu	Thr	Asp 885	His	Val	Asn	Lys	Asp 890	Lys	Trp	Gly	Asn	Ile 895	Ile
55	Val	Val	Tyr	Asn 900	Pro	Asn	Lys	Thr	Ala 905	Ala	Thr	Ile	Asn	Leu 910	Pro	Ser

	Gly Lys	Trp Ala 915	Ile Ası	n Ala	Thr 920	Ser	Gly	Lys	Val	Gly 925	Glu	Ser	Thr
5	Leu Gly 930	Gln Ala	Glu Gly	935	Val	Gln	Val	Pro	Gly 940	Ile	Ser	Met	Met
10	Ile Leu 945	His Gln	Glu Val 950		Pro	Asp	His	Gly 955	Lys	Lys			
15		6 928 PRT Bacillus	deramii	fican									
	<400>	6											
20	Asp Gly 1	Ser Thr	Thr Thi	: Ile	Ile	Val	His 10	Tyr	Phe	Arg	Pro	Ala 15	Gly
	Asp Tyr	Gln Pro 20	Trp Se	Leu	Trp	Met 25	Trp	Pro	Glu	Gly	Gly 30	Ser	Gly
25	Ala Glu	Tyr Asp 35	Phe Ası	Gly	Thr 40	Asp	Ser	Tyr	Gly	Glu 45	Val	Ala	Asn
30	Val Ser 50	Ile Pro	Gly Ası	Pro 55	Ser	Gln	Val	Gly	Ile 60	Ile	Val	Arg	Thr
35	Gln Asp 65	Trp Thr	Lys Asp	Val	Ser	Ala	Asp	Arg 75	Tyr	Ile	Asp	Leu	Ser 80
	Lys Gly	His Glu	Val Trp 85	Leu	Val	Gln	Gly 90	Asn	Ser	Gln	Ile	Phe 95	Tyr
40	Asn Glu	Lys Asp 100	Ala Glu	a Asp	Ala	Ala 105	Lys	Pro	Ala	Val	Ser 110	Asn	Ala
45	Tyr Leu	Asp Ala	Ser Ası	n Gln	Val 120	Leu	Val	Lys	Leu	Ser 125	Gln	Pro	Phe
50	Thr Leu 130	Gly Glu	Gly Ala	Ser 135	Gly	Phe	Thr	Val	His 140	Asp	Asp	Thr	Val
	Asn Lys 145	Asp Ile	Pro Val		Ser	Val	Thr	Asp 155	Ala	Ser	Leu	Gly	Gln 160
55	Asn Val	Thr Ala	Val Let 165	ı Ala	Gly	Thr	Phe 170	Gln	His	Ile	Phe	Gly 175	Gly

	Ser	Asp	Trp	Ala 180	Pro	Asp	Asn	His	Ser 185	Thr	Leu	Leu	Lys	Lys 190	Val	Asn
5	Asn	Asn	Leu 195	Tyr	Gln	Phe	Ser	Gly 200	Asp	Leu	Pro	Glu	Gly 205	Asn	Tyr	Gln
10	Tyr	Lys 210	Val	Ala	Leu	Asn	Asp 215	Ser	Trp	Asn	Asn	Pro 220	Ser	Tyr	Pro	Ser
	Asn 225	Asn	Ile	Asp	Leu	Thr 230	Val	Pro	Thr	Gly	Gly 235	Ala	His	Val	Thr	Phe 240
15	Ser	Tyr	Val	Pro	Ser 245	Thr	His	Ala	Val	Tyr 250	Asp	Ser	Ile	Asn	As n 255	Pro
20	Gly	Ala	Asp	Leu 260	Pro	Val	Asn	Gly	Ser 265	Gly	Val	Lys	Thr	Asp 270	Leu	Val
25	Thr	Val	Thr 275	Leu	Gly	Glu	Asp	Pro 280	Asp	Val	Ser	His	Thr 285	Leu	Ser	Ile
	Gln	Thr 290	Asp	Gly	Tyr	Gln	Ala 295	Lys	Gln	Val	Ile	Ser 300	Arg	Asn	Val	Leu
30	Asp 305	Ser	Ser	Gln	Tyr	Tyr 310	Tyr	Ser	Gly	Asp	Asp 315	Leu	Gly	Asn	Thr	Tyr 320
35	Thr	His	Lys	Ala	Thr 325	Thr	Phe	Lys	Val	Trp 330	Ala	Pro	Thr	Ser	Thr 335	Gln
40	Val	Asn	Val	Leu 340	Leu	Tyr	Asn	Ser	Ala 345	Thr	Gly	Ser	Val	Thr 350	Lys	Thr
40	Val	Pro	Met 355	Thr	Ala	Ser	Gly	His 360	Gly	Val	Trp	Glu	Ala 365	Thr	Val	Asn
45	Gln	As n 370	Leu	Glu	Asn	Trp	Tyr 375	Tyr	Met	Tyr	Glu	Val 380	Thr	Gly	Gln	Gly
50	Ser 385	Thr	Arg	Thr	Ala	Val 390	Asp	Pro	Tyr	Ala	Thr 395	Ala	Ile	Ala	Pro	Asn 400
	Gly	Thr	Arg	Gly	Met 405	Ile	Val	Asp	Leu	Ala 410	Lys	Thr	Asp	Pro	Ala 415	Gly
55	Trp	Asn	Ser	Asp 420	Lys	His	Ile	Thr	Pro 425	Lys	Asn	Ile	Glu	Asp 430	Glu	Val

	Ile	Tyr	Glu 435	Met	Asp	Val	Arg	Asp 440	Phe	Ser	Ile	Asp	Pro 445	Asn	Ser	Gly
5	Met	Lys 4 50	Asn	Lys	Gly	Lys	Tyr 455	Leu	Ala	Leu	Thr	Glu 460	Lys	Gly	Thr	Lys
10	Gly 465	Pro	Asp	Asn	Val	Lys 470	Thr	Gly	Ile	Asp	Ser 475	Leu	Lys	Gln	Leu	Gly 480
	Ile	Thr	His	Val	Gln 485	Leu	Met	Pro	Val	Phe 490	Ala	Phe	Asn	Ser	Val 495	Asp
15	Glu	Thr	Asp	Pro 500	Thr	Gln	Asp	Asn	Trp 505	Gly	Tyr	Asp	Pro	Arg 510	Asn	Tyr
20	Asp	Val	Pro 515	Glu	Gly	Gln	Tyr	Ala 520	Thr	Asn	Ala	Asn	Gly 525	Thr	Ala	Arg
25	Ile	Lys 530	Glu	Phe	Lys	Glu	Met 535	Val	Leu	Ser	Leu	His 540	Arg	Glu	His	Ile
	Gly 545	Val	Asn	Met	Asp	Val 550	Val	Tyr	Asn	His	Thr 555	Phe	Ala	Thr	Gln	Ile 560
30	Ser	Asp	Phe	Asp	Lys 565	Ile	Val	Pro	Glu	Tyr 570	Tyr	Tyr	Arg	Thr	Asp 575	Asp
35	Ala	Gly	Asn	Tyr 580	Thr	Asn	Gly	Ser	Gly 585	Thr	Gly	Asn	Glu	Ile 590	Ala	Ala
40	Glu	Arg	Pro 595	Met	Val	Gln	Lys	Phe 600	Ile	Ile	Asp	Ser	Leu 605	Lys	Tyr	Trp
	Val	Asn 610	Glu	Tyr	His	Ile	As p 615	Gly	Phe	Arg	Phe	Asp 620	Leu	Met	Ala	Leu
45	Leu 625	Gly	Lys	Asp	Thr	Met 630	Ser	Lys	Ala	Ala	Ser 635	Glu	Leu	His	Ala	Ile 640
50	Asn	Pro	Gly	Ile	Ala 645	Leu	Tyr	Gly	Glu	Pro 650	Trp	Thr	Gly	Gly	Thr 655	Ser
	Ala	Leu	Pro	Glu 660	Asp	Gln	Leu	Leu	Thr 665	Lys	Gly	Ala	Gln	Lys 670	Gly	Met
55	Gly	Val	Ala	Val	Phe	Asn	Asp	Asn	Leu	Arg	Asn	Ala	Leu	Asp	Gly	Asn

5	Val	Phe 690	Asp	Ser	Ser	Ala	Gln 695	Gly	Phe	Ala	Thr	Gly 700	Ala	Thr	Gly	Leu
10	Thr 705	Asp	Ala	Ile	Lys	As n 710	Gly	Val	Glu	Gly	Ser 715	Ile	Asn	Asp	Phe	Thr 720
	Ser	Ser	Pro	Gly	Glu 725	Thr	Ile	Asn	Tyr	Val 730	Thr	Ser	His	Asp	Asn 735	Tyr
15	Thr	Leu	Trp	Asp 740	Lys	Ile	Ala	Leu	Ser 745	Asn	Pro	Asn	Asp	Ser 750	Glu	Ala
20	Asp	Arg	Ile 755	Lys	Met	Asp	Glu	Leu 760	Ala	Gln	Ala	Val	Val 765	Met	Thr	Ser
25	Gln	Gly 770	Val	Pro	Phe	Met	Gln 775	Gly	Gly	Glu	Glu	Met 780	Leu	Arg	Thr	Lys
	Gly 785	Gly	Asn	Asp	Asn	Ser 790	Tyr	Asn	Ala	Gly	Asp 795	Thr	Val	Asn	Glu	Phe 800
30	Asp	Trp	Ser	Arg	Lys 805	Ala	Gln	Tyr	Pro	Asp 810	Val	Phe	Asn	Tyr	Tyr 815	Ser
35	Gly	Leu	Ile	His 820	Leu	Arg	Leu	Asp	His 825	Pro	Ala	Phe	Arg	Met 830	Thr	Thr
40	Ala	Asn	Glu 835	Ile	Asn	Ser	His	Leu 840	Gln	Phe	Leu	Asn	Ser 845	Pro	Glu	Asn
40	Thr	Val 850	Ala	Tyr	Glu	Leu	Thr 855	Asp	His	Val	Asn	Lys 860	Asp	Lys	Trp	Gly
45	Asn 865	Ile	Ile	Val	Val	Tyr 870	Asn	Pro	Asn	Lys	Thr 875	Ala	Ala	Thr	Ile	Asn 880
50	Leu	Pro	Ser	Gly	Lys 885	Trp	Ala	Ile	Asn	Ala 890	Thr	Ser	Gly	Lys	Val 895	Gly
	Glu	Ser	Thr	Leu 900	Gly	Gln	Ala	Glu	Gly 905	Ser	Val	Gln	Val	Pro 910	Gly	Ile
55	Ser	Met	Met 915	Ile	Leu	His	Gln	Glu 920	Val	Ser	Pro	Asp	His 925	Gly	Lys	Lys

<210>

<211> 2586 <212> DNA <213> Bacillus acidopullulyticus 5 <400> 60 atgtccctaa tacgttctag gtataatcat tttgtcattc tttttactgt cgccataatg 120 tttctaacag tttgtttccc cgcttataaa gctttagcag attctacctc gacagaagtc 10 attgtgcatt atcatcgttt tgattctaac tatgcaaatt gggatctatg gatgtggcca 180 tatcaaccag ttaatggtaa tggagcagca tacgagtttt ctggaaagga tgattttggc 240 300 gttaaagcag atgttcaagt gcctggggat gatacacagg taggtctgat tgtccgtaca 15 aatgattgga gccaaaaaaa tacatcagac gatctccata ttgatctgac aaaggggcat 360 gaaatatgga ttgttcaggg ggatcccaat atttattaca atctgagtga tgcgcaggct 420 gcagcgactc caaaggtttc gaatgcgtat ttggataatg aaaaaacagt attggcaaag 480 20 ctaactaatc caatgacatt atcagatgga tcaagcggct ttacggttac agataaaaca 540 acaggggaac aaattccagt taccgctgca acaaatgcga actcagcctc ctcgtctgag 600 660 25 gtaggagcag ccggttatga agcagtcaat ctcataccac gaaatgtatt aaatttgcct 720 cgttattatt acagcggaaa tgatttaggt aacgtttatt caaataaggc aacggccttc 780 cgtgtatggg ctccaactgc ttcggatgtc caattacttt tatacaatag tgaaacagga 840 30 cctgtaacca aacagcttga aatgcaaaag agtgataacg gtacatggaa actgaaggtc 900 960 cctggtaatc tgaaaaattg gtattatctc tatcaggtaa cggtgaatgg gaagacacaa 35 acagoogttg accottatgt gogtgotatt toagtcaatg caacaogtgg tatgatagto 1020 gatttagaag atacgaatcc tcctggatgg aaagaagatc atcaacagac acctgcgaac 1080 ccagtggatg aagtaatcta cgaagtgcat gtgcgtgatt tttcgattga tgctaattca 1140 40 ggcatgaaaa ataaagggaa atatettgee tttacagaae atggcacaaa aggeeetgat 1200 1260 aacgtgaaaa cgggtattga tagtttgaag gaattaggaa tcaatgctgt tcaattacag 1320 ccgattgaag aatttaacag cattgatgaa acccaaccaa atatgtataa ctggggctat 45 gacccaagaa actacaacgt ccctgaagga gcgtatgcaa ctacaccaga aggaacggct 1380 cgcattaccc agttaaagca actgattcaa agcattcata aagatcggat tgctatcaat 1440 atggatgtgg tctataacca tacctttaac gtaggagtgt ctgattttga taagattgtt 1500 50 ccgcaatact attatcggac agacagcgca ggtaattata cgaacggctc aggtgtaggt 1560 aatgaaattg cgaccgagcg tccgatggtc caaaagttcg ttctggattc tgttaaatat 1620 1680 tgggtaaagg aataccatat cgacggcttc cgtttcgatc ttatggctct tttaggaaaa 55

1740

gacaccatgg ccaaaatatc aaaagagctt catgctatta atcctggcat tgtcctgtat

	ggagaaccat	ggactggcgg	tacctctgga	ttatcaagcg	accaactcgt	tacgaaaggt	1800
	cagcaaaagg	gcttgggaat	tggcgtattc	aacgataata	ttcggaacgg	actcgatggt	1860
5	aacgtttttg	ataaatcggc	acaaggattt	gcaacaggag	atccaaacca	agttaatgtc	1920
	attaaaaatg	gagttatggg	aagtatttca	gatttcactt	cggcacctag	cgaaaccatt	1980
	aactatgtaa	caagccatga	taatatgaca	ttgtgggata	aaattagcgc	aagtaatccg	2040
10	aacgatacac	aagcagatcg	aattaagatg	gatgaattgg	ctcaagctgt	ggtatttact	2100
	tcacaagggg	taccatttat	gcaaggtgga	gaagaaatgc	tgcggacaaa	aggcggtaat	2160
15	gataatagtt	acaatgccgg	ggatagcgtg	aatcagttcg	attggtcaag	aaaagcacaa	2220
	tttgaaaatg	tattcgacta	ctattcttgg	ttgattcatc	tacgtgataa	tcacccagca	2280
	ttccgtatga	cgacagcgga	tcaaatcaaa	caaaatctca	ctttcttgga	tagcccaacg	2340
20	aacactgtag	catttgaatt	aaaaaatcat	gccaatcatg	ataaatggaa	aaacattata	2400
	gttatgtata	atccaaataa	aactgcacaa	actctcactc	taccaagtgg	aaattggaca	2460
	attgtaggat	taggcaatca	agtaggtgag	aaatcactag	gccatgtaaa	tggcacggtt	2520
25	gaggtgccag	ctcttagtac	gatcattctt	catcagggta	catctgaaga	tgtcattgat	2580
	caaaat						2586
30							

³⁰ <210> 8

<211> 862

<212> PRT

<213> Bacillus acidopullulyticus

35 <400> 8

50

Met Ser Leu Ile Arg Ser Arg Tyr Asn His Phe Val Ile Leu Phe Thr 1 5 10 15

- Val Ala Ile Met Phe Leu Thr Val Cys Phe Pro Ala Tyr Lys Ala Leu 20 25 30
- Ala Asp Ser Thr Ser Thr Glu Val Ile Val His Tyr His Arg Phe Asp
 45 40 45
 - Ser Asn Tyr Ala Asn Trp Asp Leu Trp Met Trp Pro Tyr Gln Pro Val 50 55 60

Asn Gly Asn Gly Ala Ala Tyr Glu Phe Ser Gly Lys Asp Asp Phe Gly 65 70 75 80

Val Lys Ala Asp Val Gln Val Pro Gly Asp Asp Thr Gln Val Gly Leu 85 90 95

	Ile	Val	Arg	Thr 100	Asn	Asp	Trp	Ser	Gln 105	Lys	Asn	Thr	Ser	Asp 110	Asp	Leu
5	His	Ile	Asp 115	Leu	Thr	Lys	Gly	His 120	Glu	Ile	Trp	Ile	Val 125	Gln	Gly	Asp
10	Pro	Asn 130	Ile	Tyr	Tyr	Asn	Leu 135	Ser	Asp	Ala	Gln	Ala 140	Ala	Ala	Thr	Pro
	Lys 145	Val	Ser	Asn	Ala	Туг 150	Leu	Asp	Asn	Glu	Lys 155	Thr	Val	Leu	Ala	Lys 160
15	Leu	Thr	Asn	Pro	Met 165	Thr	Leu	Ser	Asp	Gly 170	Ser	Ser	Gly	Phe	Thr 175	Val
20	Thr	Asp	Lys	Thr 180	Thr	Gly	Glu	Gln	Ile 185	Pro	Val	Thr	Ala	Ala 190	Thr	Asn
25	Ala	Asn	Ser 195	Ala	Ser	Ser	Ser	Glu 200	Gln	Thr	Asp	Leu	Val 205	Gln	Leu	Thr
	Leu	Ala 210	Ser	Ala	Pro	Asp	Val 215	Ser	His	Thr	Ile	Gln 220	Val	Gly	Ala	Ala
30	Gly 225	Tyr	Glu	Ala	Val	Asn 230	Leu	Ile	Pro	Arg	Asn 235	Val	Leu	Asn	Leu	Pro 240
35	Arg	Tyr	Tyr	Tyr	Ser 245	Gly	Asn	Asp	Leu	Gly 250	Asn	Val	Tyr	Ser	Asn 255	Lys
40	Ala	Thr	Ala	Phe 260	Arg	Val	Trp	Ala	Pro 265	Thr	Ala	Ser	Asp	Val 270	Gln	Leu
40	Leu	Leu	Tyr 275	Asn	Ser	Glu	Thr	Gly 280	Pro	Val	Thr	Lys	Gln 285	Leu	Glu	Met
45	Gln	Lys 290	Ser	Asp	Asn	Gly	Thr 295	Trp	Lys	Leu	Lys	Val 300	Pro	Gly	Asn	Leu
50	Lys 305	Asn	Trp	Tyr	Tyr	Leu 310	Tyr	Gln	Val	Thr	Val 315	Asn	Gly	Lys	Thr	Gln 320
	Thr	Ala	Val	Asp	Pro 325	Tyr	Val	Arg	Ala	Ile 330	Ser	Val	Asn	Ala	Thr 335	Arg
55	Gly	Met	Ile	Val 340	Asp	Leu	Glu	Asp	Thr 345	Asn	Pro	Pro	Gly	Trp 350	Lys	Glu

	Asp	His	Gln 355	Gln	Thr	Pro	Ala	Asn 360	Pro	Val	Asp	Glu	Val 365	Ile	Tyr	Glu
5	Val	His 370	Val	Arg	Asp	Phe	Ser 375	Ile	Asp	Ala	Asn	Ser 380	Gly	Met	Lys	Asn
10	Lys 385	Gly	Lys	Tyr	Leu	Ala 390	Phe	Thr	Glu	His	Gly 395	Thr	Lys	Gly	Pro	Asp 400
	Asn	Val	Lys	Thr	Gly 405	Ile	Asp	Ser	Leu	Lys 410	Glu	Leu	Gly	Ile	Asn 415	Ala
15	Val	Gln	Leu	Gln 420	Pro	Ile	Glu	Glu	Phe 425	Asn	Ser	Ile	Asp	Glu 430	Thr	Gln
20	Pro	Asn	Met 435	Tyr	Asn	Trp	Gly	Tyr 440	Asp	Pro	Arg	Asn	Tyr 445	Asn	Val	Pro
25	Glu	Gly 450	Ala	Tyr	Ala	Thr	Thr 455	Pro	Glu	Gly	Thr	Ala 460	Arg	Ile	Thr	Gln
	Leu 465	Lys	Gln	Leu	Ile	Gln 470	Ser	Ile	His	Lys	Asp 475	Arg	Ile	Ala	Ile	Asn 480
30	Met	Asp	Val	Val	Tyr 485	Asn	His	Thr	Phe	A sn 490	Val	Gly	Val	Ser	Asp 495	Phe
35	Asp	Lys	Ile	Val 500	Pro	Gln	Tyr	Tyr	Tyr 505	Arg	Thr	Asp	Ser	Ala 510	Gly	Asn
40	Tyr	Thr		Gly		_					Ile		Thr 525	Glu	Arg	Pro
40	Met	Val 530	Gln	Lys	Phe	Val	Leu 535	Asp	Ser	Val	Lys	Tyr 540	Trp	Val	Lys	Glu
45	Tyr 545	His	Ile	Asp	Gly	Phe 550	Arg	Phe	Asp	Leu	Met 555	Ala	Leu	Leu	Gly	Lys 560
50	Asp	Thr	Met	Ala	Lys 565	Ile	Ser	Lys	Glu	Leu 570	His	Ala	Ile	Asn	Pro 575	Gly
	Ile	Val	Leu	Tyr 580	Gly	Glu	Pro	Trp	Thr 585	Gly	Gly	Thr	Ser	Gly 590	Leu	Ser
55	Ser	Asp	Gln 595	Leu	Val	Thr	Lys	Gly 600	Gln	Gln	Lys	Gly	Leu 605	Gly	Ile	Gly

	Val	Phe 610	Asn	Asp	Asn	Ile	Arg 615	Asn	Gly	Leu	Asp	Gly 620	Asn	Val	Phe	Asp
5	Lys 625	Ser	Ala	Gln	Gly	Phe 630	Ala	Thr	Gly	Asp	Pro 635	Asn	Gln	Val	Asn	Val 640
10	Ile	Lys	Asn	Gly	Val 645	Met	Gly	Ser	Ile	Ser 650	Asp	Phe	Thr	Ser	Ala 655	Pro
45	Ser	Glu	Thr	Ile 660	Asn	Tyr	Val	Thr	Ser 665	His	Asp	Asn	Met	Thr 670	Leu	Trp
15	Asp	Lys	Ile 675	Ser	Ala	Ser	Asn	Pro 680	Asn	Asp	Thr	Gln	Ala 685	Asp	Arg	Ile
20	Lys	Met 690	Asp	Glu	Leu	Ala	Gln 695	Ala	Val	Val	Phe	Thr 700	Ser	Gln	Gly	Val
25	Pro 705	Phe	Met	Gln	Gly	Gly 710	Glu	Glu	Met	Leu	A rg 715	Thr	Lys	Gly	Gly	Asn 720
	Asp	Asn	Ser	Tyr	Asn 725	Ala	Gly	Asp	Ser	Val 730	Asn	Gln	Phe	Asp	Trp 735	Ser
30	Arg	Lys	Ala	Gln 740	Phe	Glu	Asn	Val	Phe 745	Asp	Tyr	Tyr	Ser	Trp 750	Leu	Ile
35	His	Leu	Arg 755	Asp	Asn	His	Pro	Ala 760	Phe	Arg	Met	Thr	Thr 765	Ala	Asp	Gln
40	Ile	Lys 770	Gln	Asn	Leu	Thr	Phe 775	Leu	Asp	Ser	Pro	Thr 780	Asn	Thr	Val	Ala
	Phe 785	Glu	Leu	Lys	Asn	His 790	Ala	Asn	His	Asp	Lys 795	Trp	Lys	Asn	Ile	Ile 800
45	Val	Met	Tyr	Asn	Pro 805	Asn	Lys	Thr	Ala	Gln 810	Thr	Leu	Thr	Leu	Pro 815	Ser
50	Gly	Asn	Trp	Thr 820	Ile	Val	Gly	Leu	Gly 825	Asn	Gln	Val	Gly	Glu 830	Lys	Ser
	Leu	Gly	His 835	Val	Asn	Gly	Thr	Val 840	Glu	Val	Pro	Ala	Leu 845	Ser	Thr	Ile
55	Ile	Leu	His	Gln	Gly	Thr	Ser	Glu	Asp	Val	Ile	Asp	Gln	Asn		

	03	·		·	,,,,				000				
5	<210> <211> <212> <213>	9 829 PRT Bacillus	s acid	dopull	lulytic	us							
	<400>	9											
10	Asp Se	r Thr Se	Thr 5	Glu V	/al Ile	Val	His 10	Tyr	His	Arg	Phe	Asp 15	Ser
15	Asn Ty	r Ala Ası 20	1 Trp	Asp L	Leu Trp	Met 25	Trp	Pro	Tyr	Gln	Pro 30	Val	Asn
	Gly As:	n Gly Ala 35	a Ala	Tyr G	Glu Phe 40	Ser	Gly	Lys	Asp	Asp 45	Phe	Gly	Val
20	Lys Al	a Asp Vai	l Gln		Pro Gly	Asp	Asp	Thr	Gln 60	Val	Gly	Leu	Ile
25	Val Arc	g Thr Ası	a Asp	Trp S	Ser Gln	Lys		Thr 75	Ser	Asp	Asp	Leu	His 80
30	Ile As	p Leu Th	Lys 85	Gly H	His Glu	Ile	Trp 90	Ile	Val	Gln	Gly	Asp 95	Pro
	Asn Il	e Tyr Ty: 100		Leu S	Ser Asp	Ala 105	Gln .	Ala	Ala	Ala	Thr 110	Pro	Lys
35	Val Se	r Asn Ala 115	a Tyr	Leu A	Asp Asn 120		Lys	Thr	Val	Leu 125	Ala	Lys	Leu
40	Thr As:	n Pro Met O	: Thr	Leu S	_	Gly	Ser		Gly 140		Thr	Val	Thr
	Asp Ly	s Thr Th	Gly	Glu G 150	Gln Ile	Pro		Thr 155	Ala	Ala	Thr	Asn	Ala 160
45	Asn Se	r Ala Se	s Ser 165	Ser G	Glu Gln	Thr	Asp : 170	Leu	Val	Gln	Leu	Thr 175	Leu
50	Ala Se	r Ala Pro 180		Val S	Ser His	Thr 185	Ile	Gln	Val	Gly	Ala 190	Ala	Gly
55	Tyr Gl	u Ala Va i 195	Asn	Leu I	lle Pro 200	_	Asn	Val	Leu	As n 205	Leu	Pro	Arg
	Tyr Ty	r Tyr Se	Gly	Asn A	Asp Leu	Gly	Asn '	Val	Tyr	Ser	Asn	Lys	Ala

				_		_		_	_,		_				_	_
5	225	Ala	Pne	Arg	Val	230	Ala	Pro	Thr	Ala	235	Asp	Val	GIn	Leu	Leu 240
10	Leu	Tyr	Asn	Ser	Glu 245	Thr	Gly	Pro	Val	Thr 250	Lys	Gln	Leu	Glu	Met 255	Gln
	Lys	Ser	Asp	Asn 260	Gly	Thr	Trp	Lys	Leu 265	Lys	Val	Pro	Gly	As n 270	Leu	Lys
15	Asn	Trp	Tyr 275	Tyr	Leu	Tyr	Gln	Val 280	Thr	Val	Asn	Gly	Lys 285	Thr	Gln	Thr
20	Ala	Val 290	Asp	Pro	Tyr	Val	Arg 295	Ala	Ile	Ser	Val	Asn 300	Ala	Thr	Arg	Gly
	Met 305	Ile	Val	Asp	Leu	Glu 310	Asp	Thr	Asn	Pro	Pro 315	Gly	Trp	Lys	Glu	Asp 320
25	His	Gln	Gln	Thr	Pro 325	Ala	Asn	Pro	Val	Asp 330	Glu	Val	Ile	Tyr	Glu 335	Val
30	His	Val	Arg	Asp 340	Phe	Ser	Ile	Asp	Ala 345	Asn	Ser	Gly	Met	Lys 350	Asn	Lys
35	Gly	Lys	Tyr 355	Leu	Ala	Phe	Thr	Glu 360	His	Gly	Thr	Lys	Gly 365	Pro	Asp	Asn
	Val	Lys 370	Thr	Gly	Ile	Asp	Ser 375	Leu	Lys	Glu	Leu	Gly 380	Ile	Asn	Ala	Val
40	Gln 385	Leu	Gln	Pro	Ile	Glu 390	Glu	Phe	Asn	Ser	Ile 395	Asp	Glu	Thr	Gln	Pro 400
45	Asn	Met	Tyr	Asn	Trp 405	Gly	Tyr	Asp	Pro	Arg 410	Asn	Tyr	Asn	Val	Pro 415	Glu
50	Gly	Ala	Tyr	Ala 420	Thr	Thr	Pro	Glu	Gly 425	Thr	Ala	Arg	Ile	Thr 430	Gln	Leu
	Lys	Gln	Leu 435	Ile	Gln	Ser	Ile	His 440	Lys	Asp	Arg	Ile	Ala 445	Ile	Asn	Met
55	Asp	Val 450	Val	Tyr	Asn	His	Thr 455	Phe	Asn	Val	Gly	Val 460	Ser	Asp	Phe	Asp

	Lys 465	Ile	Val	Pro	Gln	Tyr 470	Tyr	Tyr	Arg	Thr	Asp 475	Ser	Ala	Gly	Asn	Tyr 480
5	Thr	Asn	Gly	Ser	Gly 485	Val	Gly	Asn	Glu	Ile 490	Ala	Thr	Glu	Arg	Pro 495	Met
10	Val	Gln	Lys	Phe 500	Val	Leu	Asp	Ser	Val 505	Lys	Tyr	Trp	Val	Lys 510	Glu	Tyr
	His	Ile	As p 515	Gly	Phe	Arg	Phe	Asp 520	Leu	Met	Ala	Leu	Leu 525	Gly	Lys	Asp
15	Thr	Met 530	Ala	Lys	Ile	Ser	Lys 535	Glu	Leu	His	Ala	Ile 540	Asn	Pro	Gly	Ile
20	Val 545	Leu	Tyr	Gly	Glu	Pro 550	Trp	Thr	Gly	Gly	Thr 555	Ser	Gly	Leu	Ser	Ser 560
25	Asp	Gln	Leu	Val	Thr 565	Lys	Gly	Gln	Gln	Lys 570	Gly	Leu	Gly	Ile	Gly 575	Val
	Phe	Asn	Asp	A sn 580	Ile	Arg	Asn	Gly	Leu 585	Asp	Gly	Asn	Val	Phe 590	Asp	Lys
30	Ser	Ala	Gln 595	Gly	Phe	Ala	Thr	Gly 600	Asp	Pro	Asn	Gln	Val 605	Asn	Val	Ile
35	Lys	Asn 610	Gly	Val	Met	Gly	Ser 615	Ile	Ser	Asp	Phe	Thr 620	Ser	Ala	Pro	Ser
	Glu 625	Thr	Ile	Asn	Tyr	Val 630	Thr	Ser	His	Asp	Asn 635	Met	Thr	Leu	Trp	Asp 640
40	Lys	Ile	Ser	Ala	Ser 645	Asn	Pro	Asn	Asp	Thr 650	Gln	Ala	Asp	Arg	Ile 655	Lys
45	Met	Asp	Glu	Leu 660	Ala	Gln	Ala	Val	Val 665	Phe	Thr	Ser	Gln	Gly 670	Val	Pro
50	Phe	Met	Gln 675	Gly	Gly	Glu	Glu	Met 680	Leu	Arg	Thr	Lys	Gly 685	Gly	Asn	Asp
	Asn	Ser 690	Tyr	Asn	Ala	Gly	Asp 695	Ser	Val	Asn	Gln	Phe 700	Asp	Trp	Ser	Arg
55	Lys 705	Ala	Gln	Phe	Glu	Asn 710	Val	Phe	Asp	Tyr	Tyr 715	Ser	Trp	Leu	Ile	His 720

	Leu	Arg	Asp	Asn	His 725	Pro	Ala	Phe	Arg	Met 730	Thr	Thr	Ala	Asp	Gln 735	Ile		
5	Lys	Gln	Asn	Leu 740	Thr	Phe	Leu	Asp	Ser 745	Pro	Thr	Asn	Thr	Val 750	Ala	Phe		
10	Glu	Leu	Lys 755	Asn	His	Ala	Asn	His 760	Asp	Lys	Trp	Lys	Asn 765	Ile	Ile	Val		
	Met	Tyr 770	Asn	Pro	Asn	Lys	Thr 775	Ala	Gln	Thr	Leu	Thr 780	Leu	Pro	Ser	Gly		
15	As n 785	Trp	Thr	Ile	Val	Gly 790	Leu	Gly	Asn	Gln	Val 795	Gly	Glu	Lys	Ser	Leu 800		
20	Gly	His	Val	Asn	Gly 805	Thr	Val	Glu	Val	Pro 810	Ala	Leu	Ser	Thr	Ile 815	Ile		
25	Leu	His	Gln	Gly 820	Thr	Ser	Glu	Asp	Val 825	Ile	Asp	Gln	Asn					
25	<210 <211 <212 <213	L> ! 2> !		ficia	al Se	equei	nce											
30	<220 <223)>		er Fi		-												
35	<400 atgi		LO atg (gagct	ctat	a aa	aaatq	gagga	a ggg	gaaco	cgaa	tgto	cccta	aat a	acgti	tctag		59
10		L> 3 2> I																
40	<213 <220 <223)>		ficia er Ri		equer	nce											
45	<400 ttai		l1 cta a	acgc	gttta	aa ti	ttga	atcaa	ı tga	acato	3							37
50	<212)> : L> (2> ! 3> !	61 O NA	ficia	al Se	equei	nce											
	<220 <223		?rime	er Fí	2													
55	<400 atgt			gagct	ctat	ta aa	aaato	gagga	a gg	gaaco	cgaa	tgg	ctaa	aaa a	acta	atttat	5	60

	g	61
5	<210> 13 <211> 36 <212> DNA <213> Artificial Sequence	
10	<220> <223> Primer R2	
	<400> 13 ttattgatta acgcgtttac tttttaccgt ggtctg	36
15	<210> 14 <211> 2760 <212> DNA <213> Bacillus acidopullulyticus	
20	<400> 14	60
20	gcttcttcca cagaggtaat tgtccattac caccgttttg acgcgaatta tgcaaattgg	60
	gatttgtgga tgtggcccta tcagccggta aatgggaatg gggcggccta tgagttcagc	120
25	ggaaccgatg aatttggcgt tacggcagat gtccaggttc caggggataa cacccaggtt	180
	gggctaattg tccgaaaaaa cgactggagc cagaaaaata cacctgacga tctccatatt	240
	gatettteaa aggggeatga agtetggatt aaccaggggg atcetaceat etattacaat	300
30	ttgaacgacg cggaggcagc agcagtacct gctgtttcca atgcctatct ggacaatgaa	360
	aaaactgttc tagcgaaact cagcagcccg atgacattaa cagatggcgc aagcgggttt	420
	accgtaaccg atgaaacaac tggagagcaa atcccggtcg tctctgccga atcggcaaac	480
35	cctgtgactg ctgtccttgt cggggatttc cagcaggcat tgggggcgtc aggaaattgg	540
	togooggatg atgatoacac gaagotttoa aaaatoaatt coaacottta toaatttaca	600
	ggaacgctcc cggcaggtac ctaccaatac aaagtggcat tggaccactc ctggagtgcg	660
40	tcatacccta ataataatgt aaaccttact gtccctgcag gaggtacgaa ggtgactttt	720
	acgtatattc cttcaaccca tcaggtgttt gattcgataa acaatccgga tcagacgttt	780
	ccttcttcct ccgccggcac ccagtcagat cttgttcagc tgacattggc aagtgcgccc	840
45	gatatcacgc atgatttgca ggtcgttgca gacggatata aaggaggtaa aattctgccg	900
	cggaatgttc tgaacctttc gcgctactat tatagcggca atgacctggg caacgtatat	960
	tccaaggatg ccacttcttt cagagtctgg gcgccgactg cttcagatgt agaggtgctt	1020
50	ttatacaata gtgaaacagg tcctttaact aaacaagtta aaatggaaaa aagcgataat	1080
	ggaacatgga agctcgaggt tcccggcaat ctgaaaaatt ggtattatct ctaccaggtg	1140
	acggtaaaca gcaagactca aaccgctgtg gatccatatg tcagggcgat tgctgtgaat	1200
55		
	gccgcaaggg gaatgatcgt ggatttgact gaaacaaacc ctccagggtg gaacggggac	1260

```
1320
     aagcaggaaa ctccttccaa acctgtggat gaagttattt acgaagcaca tgtaagggac
                                                                          1380
     ttttccatcg acccgaattc cggcatgaag aataaaggaa agtatttagc cttcaccgaa
5
     catggcacta agggccctga tcaagtgaaa acgggtgtcg acagtttgaa ggaattggga
                                                                          1440
                                                                          1500
     atcaatgctg tccaattgca gcctgtccag gagtttaaca gcattgatga aacccagcca
                                                                          1560
     aacacttata actggggata tgatccgagg aactacaatg tcccggaagg agcgtatgcc
10
     acaacgccag agggaacggc gcgcattact gaattaaagc agctggttga aagcctgcac
                                                                          1620
                                                                          1680
     cgcgacaaaa tagccgtcaa tatggacgtt gtttataatc acaccttcag tacgctcatt
     tctgattttg ataagattgt tcctcagtat tattaccgga cagatgatgc gggaaactat
                                                                          1740
15
     acaaatggct caggggtcgg caatgaattt gcgaccgaac atccgatggc ccggaaattt
                                                                          1800
     gttcttgact ctcttaaata ttgggtgacg caataccaca ttgatggatt ccgcttcgat
                                                                          1860
20
     ctgatggcgc ttttaggcaa gaatacaatg gcggaagcat cgaaagaact ccatgccatt
                                                                          1920
                                                                          1980
     aatcctggca tcgttttata cggggaacca tggacgggcg gcacctcagg aatcacaggt
                                                                          2040
     gaccaattgc tgacaaaagg cgtccaaaaa ggcttgggaa taggagtgtt caatgataat
25
                                                                          2100
     atccgtaatg gccttgatgg ttctgttttt gatcgggcgg cacaggggtt tgccacaggc
     gatcctaatc aggtggatgt catcaaaaat ggcgtaatgg gaagcatcaa cgattttaca
                                                                          2160
     tcggccccaa gtgaaaccat caactatgta acaagccatg ataatatgac gctttgggat
                                                                          2220
30
                                                                          2280
     aaaattacgg caagcaatcc ggatgattct atggctgacc atattaaaat ggacgagctg
     gcccaggcgg ttgtcttcac ttcgcagggt gtaccgttta tgcagggcgg ggaagaaatg
                                                                          2340
35
     ctccggacca agggcggaaa tgacaacagc tataacgccg gagatcaagt caatcaattt
                                                                          2400
     gactggtcaa gaaaagcgca atataaacaa gtgtttgact attacgccgc tttgattcat
                                                                          2460
     2520
40
     gcgtttttga atagcccgga aaacacggtt gctttcgaac tgaaagatca tgcaaacggc
                                                                          2580
     gataagtgga aaaatatcat cgtgatgtat aacccgaata aaacatccca aacaatcaac
                                                                          2640
     ctgcctgaag ggaattggac aatagaagga ttgggcggcc aatcaggcga aaaatcgctt
                                                                          2700
45
                                                                          2760
     ggccttgtgt cagggaaggt ggatgtaccg gccataagta cgatcgttct gaagcaatag
      <210>
            15
```

50

⁹¹⁹ <211>

<212> PRT

<213> Bacillus acidopullulyticus

<400> 15

Ala Ser Ser Thr Glu Val Ile Val His Tyr His Arg Phe Asp Ala Asn 10

	Tyr	Ala	Asn	Trp 20	Asp	Leu	Trp	Met	Trp 25	Pro	Tyr	Gln	Pro	Val 30	Asn	Gly
5	Asn	Gly	Ala 35	Ala	Tyr	Glu	Phe	Ser 40	Gly	Thr	Asp	Glu	Phe 45	Gly	Val	Thr
10	Ala	Asp 50	Val	Gln	Val	Pro	Gly 55	Asp	Asn	Thr	Gln	Val 60	Gly	Leu	Ile	Val
	Arg 65	Lys	Asn	Asp	Trp	Ser 70	Gln	Lys	Asn	Thr	Pro 75	Asp	Asp	Leu	His	Ile 80
15	Asp	Leu	Ser	Lys	Gly 85	His	Glu	Val	Trp	Ile 90	Asn	Gln	Gly	Asp	Pro 95	Thr
20	Ile	Tyr	Tyr	Asn 100	Leu	Asn	Asp	Ala	Glu 105	Ala	Ala	Ala	Val	Pro 110	Ala	Val
25	Ser	Asn	Ala 115	Tyr	Leu	Asp	Asn	Glu 120	Lys	Thr	Val	Leu	Ala 125	Lys	Leu	Ser
	Ser	Pro 130	Met	Thr	Leu	Thr	Asp 135	Gly	Ala	Ser	Gly	Phe 140	Thr	Val	Thr	Asp
30	Glu 145	Thr	Thr	Gly	Glu	Gln 150	Ile	Pro	Val	Val	Ser 155	Ala	Glu	Ser	Ala	Asn 160
35	Pro	Val	Thr	Ala	Val 165	Leu	Val	Gly	Asp	Phe 170	Gln	Gln	Ala	Leu	Gly 175	Ala
	Ser	Gly	Asn	Trp 180	Ser	Pro	Asp	Asp		His		_		Ser 190	Lys	Ile
40	Asn	Ser	Asn 195	Leu	Tyr	Gln	Phe	Thr 200	Gly	Thr	Leu	Pro	Ala 205	Gly	Thr	Tyr
45	Gln	Tyr 210	Lys	Val	Ala	Leu	Asp 215	His	Ser	Trp	Ser	Ala 220	Ser	Tyr	Pro	Asn
50	Asn 225	Asn	Val	Asn	Leu	Thr 230	Val	Pro	Ala	Gly	Gly 235	Thr	Lys	Val	Thr	Phe 240
	Thr	Tyr	Ile	Pro	Ser 245	Thr	His	Gln	Val	Phe 250	Asp	Ser	Ile	Asn	As n 255	Pro
55	Asp	Gln	Thr	Phe 260	Pro	Ser	Ser	Ser	Ala 265	Gly	Thr	Gln	Ser	Asp 270	Leu	Val

	Gln	Leu	Thr 275	Leu	Ala	Ser	Ala	Pro 280	Asp	Ile	Thr	His	Asp 285	Leu	Gln	Val
5	Val	Ala 290	Asp	Gly	Tyr	Lys	Gly 295	Gly	Lys	Ile	Leu	Pro 300	Arg	Asn	Val	Leu
10	Asn 305	Leu	Ser	Arg	Tyr	Tyr 310	Tyr	Ser	Gly	Asn	Asp 315	Leu	Gly	Asn	Val	Tyr 320
	Ser	Lys	Asp	Ala	Thr 325	Ser	Phe	Arg	Val	Trp 330	Ala	Pro	Thr	Ala	Ser 335	Asp
15	Val	Glu	Val	Leu 340	Leu	Tyr	Asn	Ser	Glu 3 4 5	Thr	Gly	Pro	Leu	Thr 350	Lys	Gln
20	Val	Lys	Met 355	Glu	Lys	Ser	Asp	Asn 360	Gly	Thr	Trp	Lys	Leu 365	Glu	Val	Pro
25	Gly	Asn 370	Leu	Lys	Asn	Trp	Tyr 375	Tyr	Leu	Tyr	Gln	Val 380	Thr	Val	Asn	Ser
	Lys 385	Thr	Gln	Thr	Ala	Val 390	Asp	Pro	Tyr	Val	Arg 395	Ala	Ile	Ala	Val	Asn 400
30	Ala	Ala	Arg	Gly	Met 405	Ile	Val	Asp	Leu	Thr 410	Glu	Thr	Asn	Pro	Pro 415	Gly
35	Trp	Asn	Gly	Asp 420	Lys	Gln	Glu	Thr	Pro 425	Ser	Lys	Pro	Val	Asp 430	Glu	Val
40	Ile	_	Glu 435				_					_	Pro 445		Ser	Gly
40	Met	Lys 450	Asn	Lys	Gly	Lys	Tyr 455	Leu	Ala	Phe	Thr	Glu 460	His	Gly	Thr	Lys
45	Gly 465	Pro	Asp	Gln	Val	Lys 470	Thr	Gly	Val	Asp	Ser 475	Leu	Lys	Glu	Leu	Gly 480
50	Ile	Asn	Ala	Val	Gln 485	Leu	Gln	Pro	Val	Gln 490	Glu	Phe	Asn	Ser	Ile 495	Asp
	Glu	Thr	Gln	Pro 500	Asn	Thr	Tyr	Asn	Trp 505	Gly	Tyr	Asp	Pro	A rg 510	Asn	Tyr
55	Asn	Val	Pro 515	Glu	Gly	Ala	Tyr	Ala 520	Thr	Thr	Pro	Glu	Gly 525	Thr	Ala	Arg

	Ile	Thr 530	Glu	Leu	Lys	Gln	Leu 535	Val	Glu	Ser	Leu	His 540	Arg	Asp	Lys	Ile
5	Ala 545	Val	Asn	Met	Asp	Val 550	Val	Tyr	Asn	His	Thr 555	Phe	Ser	Thr	Leu	Ile 560
10	Ser	Asp	Phe	Asp	Lys 565	Ile	Val	Pro	Gln	Tyr 570	Tyr	Tyr	Arg	Thr	A sp 575	Asp
	Ala	Gly	Asn	Tyr 580	Thr	Asn	Gly	Ser	Gly 585	Val	Gly	Asn	Glu	Phe 590	Ala	Thr
15	Glu	His	Pro 595	Met	Ala	Arg	Lys	Phe 600	Val	Leu	Asp	Ser	Leu 605	Lys	Tyr	Trp
20	Val	Thr 610	Gln	Tyr	His	Ile	Asp 615	Gly	Phe	Arg	Phe	Asp 620	Leu	Met	Ala	Leu
25	Leu 625	Gly	Lys	Asn	Thr	Met 630	Ala	Glu	Ala	Ser	Lys 635	Glu	Leu	His	Ala	Ile 640
	Asn	Pro	Gly	Ile	Val 645	Leu	Tyr	Gly	Glu	Pro 650	Trp	Thr	Gly	Gly	Thr 655	Ser
30	Gly	Ile	Thr	Gly 660	Asp	Gln	Leu	Leu	Thr 665	Lys	Gly	Val	Gln	Lys 670	Gly	Leu
35	Gly	Ile	Gly 675	Val	Phe	Asn	Asp	Asn 680	Ile	Arg	Asn	Gly	Leu 685	Asp	Gly	Ser
40	Val	Phe 690	Asp	Arg	Ala	Ala	Gln 695	Gly	Phe	Ala	Thr	Gly 700	Asp	Pro	Asn	Gln
	Val 705	Asp	Val	Ile	Lys	A sn 710	Gly	Val	Met	Gly	Ser 715	Ile	Asn	Asp	Phe	Thr 720
45	Ser	Ala	Pro	Ser	Glu 725	Thr	Ile	Asn	Tyr	Val 730	Thr	Ser	His	Asp	Asn 735	Met
50	Thr	Leu	Trp	Asp 740	Lys	Ile	Thr	Ala	Ser 745	Asn	Pro	Asp	Asp	Ser 750	Met	Ala
	Asp	His	Ile 755	Lys	Met	Asp	Glu	Leu 760	Ala	Gln	Ala	Val	Val 765	Phe	Thr	Ser
55	Gln	Gly	Val	Pro	Phe	Met	Gln	Gly	Gly	Glu	Glu	Met	Leu	Arg	Thr	Lys

	773	700
5	ly Gly Asn Asp Asn Ser Tyr Asn Ala Gl 85 790	y Asp Gln Val Asn Gln Phe 795 800
	sp Trp Ser Arg Lys Ala Gln Tyr Lys Gl 805	
10	la Leu Ile His Leu Arg Asn Glu His Pr 820 825	co Ala Phe Arg Met Thr Thr 830
15	la Asp Gln Ile Asn Gln His Leu Ala Ph 835 840	ne Leu Asn Ser Pro Glu Asn 845
20	hr Val Ala Phe Glu Leu Lys Asp His Al 850 855	a Asn Gly Asp Lys Trp Lys
	sn Ile Ile Val Met Tyr Asn Pro Asn Ly 65 870	vs Thr Ser Gln Thr Ile Asn 875 880
25	eu Pro Glu Gly Asn Trp Thr Ile Glu Gl 885 89	
30	lu Lys Ser Leu Gly Leu Val Ser Gly Ly 900 905	ys Val Asp Val Pro Ala Ile 910
	er Thr Ile Val Leu Lys Gln 915	
35	210> 16 211> 928 212> PRT 213> Artificial	
40	220> 223> Hybrid pullulanase	
	400> 16	
45	la Ser Ser Thr Glu Val Ile Val His Ty 5 10	
50	yr Ala Asn Trp Asp Leu Trp Met Trp Pr 20 25	co Tyr Gln Pro Val Asn Gly 30
	sn Gly Ala Ala Tyr Glu Phe Ser Gly Th 35 40	nr Asp Glu Phe Gly Val Thr 45
55	la Asp Val Gln Val Pro Gly Asp Asn Th 50 55	or Gln Val Gly Leu Ile Val 60

	Arg 65	Lys	Asn	Asp	Trp	Ser 70	Gln	Lys	Asn	Thr	Pro 75	Asp	Asp	Leu	His	Ile 80
5	Asp	Leu	Ser	Lys	Gly 85	His	Glu	Val	Trp	Ile 90	Asn	Gln	Gly	Asp	Pro 95	Thr
10	Ile	Tyr	Tyr	Asn 100	Leu	Asn	Asp	Ala	Glu 105	Ala	Ala	Ala	Val	Pro 110	Ala	Val
	Ser	Asn	Ala 115	Tyr	Leu	Asp	Asn	Glu 120	Lys	Thr	Val	Leu	Ala 125	Lys	Leu	Ser
15	Ser	Pro 130	Met	Thr	Leu	Thr	Asp 135	Gly	Ala	Ser	Gly	Phe 140	Thr	Val	Thr	Asp
20	Glu 145	Thr	Thr	Gly	Glu	Gln 150	Ile	Pro	Val	Val	Ser 155	Ala	Glu	Ser	Ala	Asn 160
25	Pro	Val	Thr	Ala	Val 165	Leu	Val	Gly	Asp	Phe 170	Gln	Gln	Ala	Leu	Gly 175	Ala
	Ser	Gly	Asn	Trp 180	Ser	Pro	Asp	Asp	Asp 185	His	Thr	Lys	Leu	Ser 190	Lys	Ile
30	Asn	Ser	Asn 195	Leu	Tyr	Gln	Phe	Thr 200	Gly	Thr	Leu	Pro	Ala 205	Gly	Thr	Tyr
35	Gln	Tyr 210	Lys	Val	Ala	Leu	Asp 215	His	Ser	Trp	Ser	A la 220	Ser	Tyr	Pro	Asn
40	Asn 225	Asn	Val	Asn	Leu	Thr 230	Val	Pro	Ala	Gly	Gly 235	Thr	Lys	Val	Thr	Phe 240
	Thr	Tyr	Ile	Pro	Ser 245	Thr	His	Gln	Val	Phe 250	Asp	Ser	Ile	Asn	A sn 255	Pro
45	Asp	Gln	Thr	Phe 260	Pro	Ser	Ser	Ser	Ala 265	Gly	Thr	Gln	Ser	Asp 270	Leu	Val
50	Gln	Leu	Thr 275	Leu	Ala	Ser	Ala	Pro 280	Asp	Ile	Thr	His	Asp 285	Leu	Gln	Val
55	Val	Ala 290	Asp	Gly	Tyr	Lys	Gly 295	Gly	Lys	Ile	Leu	Pro 300	Arg	Asn	Val	Leu
55	Asn	Leu	Pro	Arg	Tyr	Tyr	Tyr	Ser	Gly	Asn	Asp	Leu	Gly	Asn	Val	Tyr

	305			310					315					320
5	Ser Asn	Lys Ala	Thr .	Ala	Phe	Arg	Val	Trp 330	Ala	Pro	Thr	Ala	Ser 335	Asp
10	Val Gln	Leu Leu 340	Leu	Tyr	Asn	Ser	Glu 345	Thr	Gly	Pro	Val	Thr 350	Lys	Gln
	Leu Glu	Met Gln 355	Lys	Ser	Asp	Asn 360	Gly	Thr	Trp	Lys	Leu 365	Lys	Val	Pro
15	Gly Asn 370	Leu Lys	Asn	Trp	Tyr 375	Tyr	Leu	Tyr	Gln	Val 380	Thr	Val	Asn	Gly
20	Lys Thr 385	Gln Thr		Val 390	Asp	Pro	Tyr	Val	Arg 395	Ala	Ile	Ser	Val	Asn 400
25	Ala Thr	Arg Gly	Met 405	Ile	Val	Asp	Leu	Glu 410	Asp	Thr	Asn	Pro	Pro 415	Gly
25	Trp Lys	Glu Asp 420	His	Gln	Gln	Thr	Pro 425	Ala	Asn	Pro	Val	Asp 430	Glu	Val
30	Ile Tyr	Glu Val 435	His	Val	Arg	Asp 440	Phe	Ser	Ile	Asp	Ala 445	Asn	Ser	Gly
35	Met Lys 450	Asn Lys	Gly	Lys	Tyr 455	Leu	Ala	Phe	Thr	Glu 460	His	Gly	Thr	Lys
	Gly Pro 465	Asp Asn		Lys 470	Thr	Gly	Ile	Asp	Ser 475	Leu	Lys	Glu	Leu	Gly 480
40	Ile Asn	Ala Val	Gln :	Leu	Gln	Pro	Ile	Glu 490	Glu	Phe	Asn	Ser	Ile 495	Asp
45	Glu Thr	Gln Pro 500	Asn 1	Met	Tyr	Asn	Trp 505	Gly	Tyr	Asp	Pro	Arg 510	Asn	Tyr
50	Asn Val	Pro Glu 515	Gly .	Ala	Tyr	Ala 520	Thr	Thr	Pro	Glu	Gly 525	Thr	Ala	Arg
	Ile Thr 530	Gln Leu	Lys	Gln	Leu 535	Ile	Gln	Ser	Ile	His 540	Lys	Asp	Arg	Ile
55	Ala Ile 545	Asn Met	_	Val 550	Val	Tyr	Asn	His	Thr 555	Phe	Ala	Thr	Gln	Ile 560

	Ser	Asp	Phe	Asp	Lys 565	Ile	Val	Pro	Glu	Tyr 570	Tyr	Tyr	Arg	Thr	Asp 575	Asp
5	Ala	Gly	Asn	Tyr 580	Thr	Asn	Gly	Ser	Gly 585	Thr	Gly	Asn	Glu	Ile 590	Ala	Ala
10	Glu	Arg	Pro 595	Met	Val	Gln	Lys	Phe 600	Ile	Ile	Asp	Ser	Leu 605	Lys	Tyr	Trp
	Val	Asn 610	Glu	Tyr	His	Ile	Asp 615	Gly	Phe	Arg	Phe	Asp 620	Leu	Met	Ala	Leu
15	Leu 625	Gly	Lys	Asp	Thr	Met 630	Ser	Lys	Ala	Ala	Ser 635	Glu	Leu	His	Ala	Ile 640
20	Asn	Pro	Gly	Ile	Ala 645	Leu	Tyr	Gly	Glu	Pro 650	Trp	Thr	Gly	Gly	Thr 655	Ser
25	Ala	Leu	Pro	Glu 660	Asp	Gln	Leu	Leu	Thr 665	Lys	Gly	Ala	Gln	Lys 670	Gly	Met
	Gly	Val	Ala 675	Val	Phe	Asn	Asp	Asn 680	Leu	Arg	Asn	Ala	Leu 685	Asp	Gly	Asn
30	Val	Phe 690	Asp	Ser	Ser	Ala	Gln 695	Gly	Phe	Ala	Thr	Gly 700	Ala	Thr	Gly	Leu
35	Thr 705	Asp	Ala	Ile	Lys	A sn 710	Gly	Val	Glu	Gly	Ser 715	Ile	Asn	Asp	Phe	Thr 720
40	Ser	Ser	Pro	Gly	Glu 725	Thr	Ile	Asn	Tyr	Val 730	Thr	Ser	His	Asp	As n 735	Tyr
70	Thr	Leu	Trp	Asp 740	Lys	Ile	Ala	Leu	Ser 745	Asn	Pro	Asn	Asp	Ser 750	Glu	Ala
45	Asp	Arg	Ile 755	Lys	Met	Asp	Glu	Leu 760	Ala	Gln	Ala	Val	Val 765	Met	Thr	Ser
50	Gln	Gly 770	Val	Pro	Phe	Met	Gln 775	Gly	Gly	Glu	Glu	Met 780	Leu	Arg	Thr	Lys
	Gly 785	Gly	Asn	Asp	Asn	Ser 790	Tyr	Asn	Ala	Gly	Asp 795	Thr	Val	Asn	Glu	Phe 800
55	Asp	Trp	Ser	Arg	Lys 805	Ala	Gln	Tyr	Pro	Asp 810	Val	Phe	Asn	Tyr	туг 815	Ser

	Gly Leu Ile His Leu Arg Leu Asp His Pro Ala Phe Arg Met Thr Thr 820 825 830
5	Ala Asn Glu Ile Asn Ser His Leu Gln Phe Leu Asn Ser Pro Glu Asn 835 840 845
10	Thr Val Ala Tyr Glu Leu Thr Asp His Val Asn Lys Asp Lys Trp Gly 850 855 860
15	Asn Ile Ile Val Val Tyr Asn Pro Asn Lys Thr Ala Ala Thr Ile Asn 865 870 875 880
	Leu Pro Ser Gly Lys Trp Ala Ile Asn Ala Thr Ser Gly Lys Val Gly 885 890 895
20	Glu Ser Thr Leu Gly Gln Ala Glu Gly Ser Val Gln Val Pro Gly Ile 900 905 910
25	Ser Met Met Ile Leu His Gln Glu Val Ser Pro Asp His Gly Lys Lys 915 920 925
30	<210> 17 <211> 928 <212> PRT <213> Artificial
	<220> <223> Hybrid pullulanase
35	<400> 17
	Ala Ser Ser Thr Glu Val Ile Val His Tyr His Arg Phe Asp Ala Asn 1 5 10 15
40	Tyr Ala Asn Trp Asp Leu Trp Met Trp Pro Tyr Gln Pro Val Asn Gly 20 25 30
45	Asn Gly Ala Ala Tyr Glu Phe Ser Gly Thr Asp Glu Phe Gly Val Thr 35 40 45
50	Ala Asp Val Gln Val Pro Gly Asp Asn Thr Gln Val Gly Leu Ile Val 50 55 60
	Arg Lys Asn Asp Trp Ser Gln Lys Asn Thr Pro Asp Asp Leu His Ile 65 70 75 80
55	Asp Leu Ser Lys Gly His Glu Val Trp Ile Asn Gln Gly Asp Pro Thr 85 90 95

	Ile	Tyr	Tyr	Asn 100	Leu	Asn	Asp	Ala	Glu 105	Ala	Ala	Ala	Val	Pro 110	Ala	Val
5	Ser	Asn	Ala 115	Tyr	Leu	Asp	Asn	Glu 120	Lys	Thr	Val	Leu	Ala 125	Lys	Leu	Ser
10	Ser	Pro 130	Met	Thr	Leu	Thr	Asp 135	Gly	Ala	Ser	Gly	Phe 140	Thr	Val	Thr	Asp
	Glu 145	Thr	Thr	Gly	Glu	Gln 150	Ile	Pro	Val	Val	Ser 155	Ala	Glu	Ser	Ala	Asn 160
15	Pro	Val	Thr	Ala	Val 165	Leu	Val	Gly	Asp	Phe 170	Gln	Gln	Ala	Leu	Gly 175	Ala
20	Ser	Gly	Asn	Trp 180	Ser	Pro	Asp	Asp	As p 185	His	Thr	Lys	Leu	Ser 190	Lys	Ile
25	Asn	Ser	Asn 195	Leu	Tyr	Gln	Phe	Thr 200	Gly	Thr	Leu	Pro	Ala 205	Gly	Thr	Tyr
	Gln	Tyr 210	Lys	Val	Ala	Leu	Asp 215	His	Ser	Trp	Ser	Ala 220	Ser	Tyr	Pro	Asn
30	Asn 225	Asn	Val	Asn	Leu	Thr 230	Val	Pro	Ala	Gly	Gly 235	Thr	Lys	Val	Thr	Phe 240
35	Thr	Tyr	Ile	Pro	Ser 245	Thr	His	Gln	Val	Phe 250	Asp	Ser	Ile	Asn	A sn 255	Pro
40	Asp	Gln	Thr	Phe 260	Pro	Ser			Ala 265		Thr	Gln		Asp 270		Val
70	Gln	Leu	Thr 275	Leu	Ala	Ser	Ala	Pro 280	Asp	Ile	Thr	His	Asp 285	Leu	Gln	Val
45	Val	Ala 290	Asp	Gly	Tyr	Lys	Gly 295	Gly	Lys	Ile	Leu	Pro 300	Arg	Asn	Val	Leu
50	Asn 305	Leu	Pro	Arg	Tyr	Tyr 310	Tyr	Ser	Gly	Asn	Asp 315	Leu	Gly	Asn	Val	Tyr 320
	Ser	Asn	Lys	Ala	Thr 325	Ala	Phe	Arg	Val	Trp 330	Ala	Pro	Thr	Ala	Ser 335	Asp
55	Val	Gln	Leu	Leu 340	Leu	Tyr	Asn	Ser	Glu 3 4 5	Thr	Gly	Pro	Val	Thr 350	Lys	Gln

	Leu	Glu	Met 355	Gln	Lys	Ser	Asp	Asn 360	Gly	Thr	Trp	Lys	Leu 365	Lys	Val	Pro
5	Gly	Asn 370	Leu	Lys	Asn	Trp	Tyr 375	Tyr	Leu	Tyr	Gln	Val 380	Thr	Val	Asn	Gly
10	Lys 385	Thr	Gln	Thr	Ala	Val 390	Asp	Pro	Tyr	Val	Arg 395	Ala	Ile	Ser	Val	Asn 400
	Ala	Thr	Arg	Gly	Met 405	Ile	Val	Asp	Leu	Glu 410	Asp	Thr	Asn	Pro	Pro 415	Gly
15	Trp	Lys	Glu	Asp 420	His	Gln	Gln	Thr	Pro 425	Ala	Asn	Pro	Val	Asp 430	Glu	Val
20	Ile	Tyr	Glu 435	Val	His	Val	Arg	Asp 440	Phe	Ser	Ile	Asp	Ala 445	Asn	Ser	Gly
25	Met	Lys 450	Asn	Lys	Gly	Lys	Tyr 455	Leu	Ala	Phe	Thr	Glu 460	His	Gly	Thr	Lys
	Gly 465	Pro	Asp	Asn	Val	Lys 470	Thr	Gly	Ile	Asp	Ser 475	Leu	Lys	Glu	Leu	Gly 480
30	Ile	Asn	Ala	Val	Gln 485	Leu	Gln	Pro	Ile	Glu 490	Glu	Phe	Asn	Ser	Ile 495	Asp
35	Glu	Thr	Gln	Pro 500	Asn	Met	Tyr	Asn	Trp 505	Gly	Tyr	Asp	Pro	Arg 510	Asn	Tyr
	Asn	Val	Pro 515	Glu	Gly	Ala	Tyr	A la 520	Thr	Thr	Pro	Glu	Gly 525	Thr	Ala	Arg
40	Ile	Thr 530	Gln	Leu	Lys	Gln	Leu 535	Ile	Gln	Ser	Ile	His 540	Lys	Asp	Arg	Ile
45	Ala 545	Ile	Asn	Met	Asp	Val 550	Val	Tyr	Asn	His	Thr 555	Phe	Ser	Thr	Leu	Ile 560
50	Ser	Asp	Phe	Asp	Lys 565	Ile	Val	Pro	Gln	Tyr 570	Tyr	Tyr	Arg	Thr	Asp 575	Asp
	Ala	Gly	Asn	Tyr 580	Thr	Asn	Gly	Ser	Gly 585	Val	Gly	Asn	Glu	Phe 590	Ala	Thr
55	Glu	His	Pro 595	Met	Ala	Arg	Lys	Phe 600	Val	Leu	Asp	Ser	Leu 605	Lys	Tyr	Trp

	Val	Thr 610	Gln	Tyr	His	Ile	Asp 615	Gly	Phe	Arg	Phe	Asp 620	Leu	Met	Ala	Leu
5	Leu 625	Gly	Lys	Asn	Thr	Met 630	Ala	Glu	Ala	Ser	Lys 635	Glu	Leu	His	Ala	Ile 640
10	Asn	Pro	Gly	Ile	Val 645	Leu	Tyr	Gly	Glu	Pro 650	Trp	Thr	Gly	Gly	Thr 655	Ser
	Gly	Ile	Thr	Gly 660	Asp	Gln	Leu	Leu	Thr 665	Lys	Gly	Val	Gln	Lys 670	Gly	Leu
15	Gly	Ile	Gly 675	Val	Phe	Asn	Asp	Asn 680	Leu	Arg	Asn	Ala	Leu 685	Asp	Gly	Asn
20	Val	Phe 690	Asp	Ser	Ser	Ala	Gln 695	Gly	Phe	Ala	Thr	Gly 700	Ala	Thr	Gly	Leu
25	Thr 705	Asp	Ala	Ile	Lys	Asn 710	Gly	Val	Glu	Gly	Ser 715	Ile	Asn	Asp	Phe	Thr 720
	Ser	Ser	Pro	Asn	Glu 725	Thr	Ile	Asn	Tyr	Val 730	Thr	Ser	His	Asp	Asn 735	Tyr
30	Thr	Leu	Trp	Asp 740	Lys	Ile	Ala	Leu	Ser 745	Asn	Pro	Asn	Asp	Ser 750	Glu	Ala
35	Asp	Arg	Ile 755	Lys	Met	Asp	Glu	Leu 760	Ala	Gln	Ala	Val	Val 765	Met	Thr	Ser
40	Gln	Gly 770	Val	Pro	Phe	Met	Gln 775	Gly	Gly	Glu	Glu	Me t 780	Leu	Arg	Thr	Lys
	Gly 785	Gly	Asn	Asp	Asn	Ser 790	Tyr	Asn	Ala	Gly	Asp 795	Thr	Val	Asn	Glu	Phe 800
45	Asp	Trp	Ser	Arg	Lys 805	Ala	Gln	Tyr	Pro	Asp 810	Val	Phe	Asn	Tyr	Tyr 815	Ser
50	Gly	Leu	Ile	His 820	Leu	Arg	Leu	Asp	His 825	Pro	Ala	Phe	Arg	Met 830	Thr	Thr
	Ala	Asn	Glu 835	Ile	Asn	Ser	His	Leu 840	Gln	Phe	Leu	Asn	Ser 845	Pro	Glu	Asn
55	Thr	Val	Ala	Tyr	Glu	Leu	Thr	Asp	His	Val	Asn	Lys	Asp	Lys	Trp	Gly

5	Asn Ile Ile Val Val Tyr Asn Pro Asn Lys Thr Ala Ala Thr Ile Asn 865 870 875 880
	Leu Pro Ser Gly Lys Trp Ala Ile Asn Ala Thr Ser Gly Lys Val Gly 885 890 895
10	Glu Ser Thr Leu Gly Gln Ala Glu Gly Ser Val Gln Val Pro Gly Ile 900 905 910
15	Ser Met Met Ile Leu His Gln Glu Val Ser Pro Asp His Gly Lys Lys 915 920 925
20	<210> 18 <211> 2586 <212> DNA <213> Artificial
	<220> <223> Hybrid pullulanase
25	<400> 18 atgtccctaa tacgttctag gtataatcat tttgtcattc tttttactgt cgccataatg 60
	tttctaacag tttgtttccc cgcttataaa gctttagcag attctacctc gacagaagtc 120
30	attgtgcatt atcatcgttt tgattctaac tatgcaaatt gggatctatg gatgtggcca 180
	tatcaaccag ttaatggtaa tggagcagca tacgagtttt ctggaaagga tgattttggc 240
	gttaaagcag atgttcaagt gcctggggat gatacacagg taggtctgat tgtccgtaca 300
35	aatgattgga gccaaaaaa tacatcagac gatctccata ttgatctgac aaaggggcat 360
	gaaatatgga ttgttcaggg ggatcccaat atttattaca atctgagtga tgcgcaggct 420
	gcagcgactc caaaggtttc gaatgcgtat ttggataatg aaaaaacagt attggcaaag 480
40	ctaactaatc caatgacatt atcagatgga tcaagcggct ttacggttac agataaaaca 540
	acaggggaac aaattccagt taccgctgca acaaatgcga actcagcctc ctcgtctgag 600
45	cagacagact tggttcaatt gacgttagcc agtgcaccgg atgtttccca tacaatacaa
	gtaggagcag ccggttatga agcagtcaat ctcataccac gtaatgtgct tgattcatca 720
	cagtattact attcaggaga tgatcttgga aatacctata cacataaagc aactaccttt 780
50	aaggtctggg cacctacttc tactcaagta aatgttcttc tttataatag tgcaacgggt 840
	tetgtaacaa aaacegtace tatgaeggea tegggecatg gtgtgtggga ageaacggtt 900
	aatcaaaacc ttgaaaattg gtattacatg tatgaggtaa caggccaagg ctctacccga 960
55	acggctgttg atccttatgc aactgcgatt gcaccaaatg gaacgagagg catgattgtg 1020
	gacctggcta aaacagatcc tgctggctgg aacagtgata aacatattac gccaaagaat 1080

	atagaagatg	aggtcatcta	tgaaatggat	gtccgtgact	tttccattga	ccctaattcg	1140
	ggtatgaaaa	ataaagggaa	gtatttggct	cttacagaaa	aaggaacaaa	gggccctgac	1200
5	aacgtaaaga	cggggataga	ttccttaaaa	caacttggga	ttactcatgt	tcagcttatg	1260
	cctgttttcg	catttaacag	tgtcgatgaa	actgatccaa	cccaagataa	ttggggttat	1320
	gaccctcgca	actatgatgt	tcctgaaggg	cagtatgcta	caaatgcgaa	tggtacggct	1380
10	cgtataaaag	agtttaagga	aatggttctt	tcactccatc	gtgaacacat	tggggttaac	1440
	atggatgttg	tctataatca	tacctttgcc	acgcaaatct	ctgacttcga	taaaattgta	1500
15	ccagaatatt	attaccgtac	ggatgatgca	ggtaattata	ccaacggatc	aggtactgga	1560
15	aatgaaatcg	cagccgaaag	gccaatggtt	caaaaattta	ttattgattc	ccttaagtat	1620
	tgggtcaatg	agtatcatat	tgacggcttc	cgttttgact	taatggcgct	gcttggaaaa	1680
20	gacacgatgt	cgaaagctgc	ctcggagctt	catgctatta	atccaggaat	tgcactttac	1740
	ggtgagccat	ggacgggtgg	aacctctgca	ctgccagaag	atcagcttct	gacaaaagga	1800
	gctcaaaaag	gcatgggagt	agcggtgttt	aatgacaatt	tacgaaacgc	gttggacggc	1860
25	aatgtctttg	attcttccgc	tcaaggtttt	gcgacaggtg	caacaggctt	aactgatgca	1920
	attaagaatg	gcgttgaggg	gagtattaat	gactttacct	cttcaccagg	tgagacaatt	1980
	aactatgtca	caagtcatga	taactacacc	ctttgggaca	aaatagccct	aagcaaccct	2040
30	aatgattccg	aagcggatcg	gattaaaatg	gatgaactcg	cacaagcagt	tgttatgacc	2100
	tcacaaggtg	ttccattcat	gcaaggcggg	gaagaaatgc	ttcgtacaaa	aggcggcaac	2160
25	gacaatagtt	ataatgcagg	cgatacggtc	aatgagtttg	attggagcag	gaaagctcaa	2220
35	tatccagatg	ttttcaacta	ttatagcggg	ctaatccacc	ttcgtcttga	tcacccagcc	2280
	ttccgcatga	cgacagctaa	tgaaatcaat	agccacctcc	aattcctaaa	tagtccagag	2340
40	aacacagtgg	cctatgaatt	aactgatcat	gttaataaag	acaaatgggg	aaatatcatt	2400
	gttgtttata	acccaaataa	aactgcagca	accattaatt	tgccgagcgg	gaaatgggca	2460
	atcaatgcta	cgagcggtaa	ggtaggagaa	tccacccttg	gtcaagcaga	gggaagtgtc	2520
45	caagtaccag	gtatatctat	gatgatcctt	catcaagagg	taagcccaga	ccacggtaaa	2580
	aagtaa						2586
	<210> 19						
50	Z211\ 961						

⁵⁰

<211> 861 <212> PRT <213> Artificial

<220>

<223> Hybrid pullulanase

<400> 19

	Met 1	Ser	Leu	Ile	Arg 5	Ser	Arg	Tyr	Asn	His 10	Phe	Val	Ile	Leu	Phe 15	Thr
5	Val	Ala	Ile	Met 20	Phe	Leu	Thr	Val	Cys 25	Phe	Pro	Ala	Tyr	Lys 30	Ala	Leu
10	Ala	Asp	Ser 35	Thr	Ser	Thr	Glu	Val 40	Ile	Val	His	Tyr	His 45	Arg	Phe	Asp
	Ser	Asn 50	Tyr	Ala	Asn	Trp	Asp 55	Leu	Trp	Met	Trp	Pro 60	Tyr	Gln	Pro	Val
15	Asn 65	Gly	Asn	Gly	Ala	Ala 70	Tyr	Glu	Phe	Ser	Gly 75	Lys	Asp	Asp	Phe	Gly 80
20	Val	Lys	Ala	Asp	Val 85	Gln	Val	Pro	Gly	Asp 90	Asp	Thr	Gln	Val	Gly 95	Leu
25	Ile	Val	Arg	Thr 100	Asn	Asp	Trp	Ser	Gln 105	Lys	Asn	Thr	Ser	Asp 110	Asp	Leu
	His	Ile	Asp 115	Leu	Thr	Lys	Gly	His 120	Glu	Ile	Trp	Ile	Val 125	Gln	Gly	Asp
30	Pro	Asn 130	Ile	Tyr	Tyr	Asn	Leu 135	Ser	Asp	Ala	Gln	Ala 140	Ala	Ala	Thr	Pro
35	Lys 145	Val	Ser	Asn	Ala	Туг 150	Leu	Asp	Asn	Glu	Lys 155	Thr	Val	Leu	Ala	Lys 160
40	Leu	Thr	Asn	Pro	Met 165	Thr	Leu	Ser	Asp	Gly 170	Ser	Ser	Gly	Phe	Thr 175	Val
40	Thr	Asp	Lys	Thr 180	Thr	Gly	Glu	Gln	Ile 185	Pro	Val	Thr	Ala	Ala 190	Thr	Asn
45	Ala	Asn	Ser 195	Ala	Ser	Ser	Ser	Glu 200	Gln	Thr	Asp	Leu	Val 205	Gln	Leu	Thr
50	Leu	Ala 210	Ser	Ala	Pro	Asp	Val 215	Ser	His	Thr	Ile	Gln 220	Val	Gly	Ala	Ala
	Gly 225	Tyr	Glu	Ala	Val	Asn 230	Leu	Ile	Pro	Arg	As n 235	Val	Leu	Asp	Ser	Ser 240
55	Gln	Tyr	Tyr	Tyr	Ser 245	Gly	Asp	Asp	Leu	Gly 250	Asn	Thr	Tyr	Thr	His 255	Lys

	Ala	Thr	Thr	Phe 260	Lys	Val	Trp	Ala	Pro 265	Thr	Ser	Thr	Gln	Val 270	Asn	Val
5	Leu	Leu	Tyr 275	Asn	Ser	Ala	Thr	Gly 280	Ser	Val	Thr	Lys	Thr 285	Val	Pro	Met
10	Thr	Ala 290	Ser	Gly	His	Gly	Val 295	Trp	Glu	Ala	Thr	Val 300	Asn	Gln	Asn	Leu
45	Glu 305	Asn	Trp	Tyr	Tyr	Met 310	Tyr	Glu	Val	Thr	Gly 315	Gln	Gly	Ser	Thr	Arg 320
15	Thr	Ala	Val	Asp	Pro 325	Tyr	Ala	Thr	Ala	Ile 330	Ala	Pro	Asn	Gly	Thr 335	Arg
20	Gly	Met	Ile	Val 340	Asp	Leu	Ala	Lys	Thr 345	Asp	Pro	Ala	Gly	Trp 350	Asn	Ser
25	Asp	Lys	His 355	Ile	Thr	Pro	Lys	Asn 360	Ile	Glu	Asp	Glu	Val 365	Ile	Tyr	Glu
	Met	Asp 370	Val	Arg	Asp	Phe	Ser 375	Ile	Asp	Pro	Asn	Ser 380	Gly	Met	Lys	Asn
30	Lys 385	Gly	Lys	Tyr	Leu	Ala 390	Leu	Thr	Glu	Lys	Gly 395	Thr	Lys	Gly	Pro	Asp 400
35	Asn	Val	Lys	Thr	Gly 405	Ile	Asp	Ser	Leu	Lys 410	Gln	Leu	Gly	Ile	Thr 415	His
40	Val	Gln	Leu	Met 420	Pro	Val	Phe	Ala	Phe 425	Asn	Ser	Val	Asp	Glu 430	Thr	Asp
	Pro	Thr	Gln 435	Asp	Asn	Trp	Gly	Tyr 440	Asp	Pro	Arg	Asn	Tyr 445	Asp	Val	Pro
45	Glu	Gly 450	Gln	Tyr	Ala	Thr	Asn 455	Ala	Asn	Gly	Thr	Ala 460	Arg	Ile	Lys	Glu
50	Phe 465	Lys	Glu	Met	Val	Leu 470	Ser	Leu	His	Arg	Glu 475	His	Ile	Gly	Val	Asn 480
55	Met	Asp	Val	Val	Tyr 485	Asn	His	Thr	Phe	Ala 490	Thr	Gln	Ile	Ser	Asp 495	Phe
	Asp	Lys	Ile	Val	Pro	Glu	Tyr	Tyr	Tyr	Arg	Thr	Asp	Asp	Ala	Gly	Asn

				500					505					310		
5	Tyr	Thr	Asn 515	Gly	Ser	Gly	Thr	Gly 520	Asn	Glu	Ile	Ala	Ala 525	Glu	Arg	Pro
10	Met	Val 530	Gln	Lys	Phe	Ile	Ile 535	Asp	Ser	Leu	Lys	Tyr 540	Trp	Val	Asn	Glu
	Tyr 545	His	Ile	Asp	Gly	Phe 550	Arg	Phe	Asp	Leu	Met 555	Ala	Leu	Leu	Gly	Lys 560
15	Asp	Thr	Met	Ser	Lys 565	Ala	Ala	Ser	Glu	Leu 570	His	Ala	Ile	Asn	Pro 575	Gly
20	Ile	Ala	Leu	Tyr 580	Gly	Glu	Pro	Trp	Thr 585	Gly	Gly	Thr	Ser	Ala 590	Leu	Pro
	Glu	Asp	Gln 595	Leu	Leu	Thr	Lys	Gly 600	Ala	Gln	Lys	Gly	Met 605	Gly	Val	Ala
25	Val	Phe 610	Asn	Asp	Asn	Leu	Arg 615	Asn	Ala	Leu	Asp	Gly 620	Asn	Val	Phe	Asp
30	Ser 625	Ser	Ala	Gln	Gly	Phe 630	Ala	Thr	Gly	Ala	Thr 635	Gly	Leu	Thr	Asp	Ala 640
35	Ile	Lys	Asn	Gly	Val 645	Glu	Gly	Ser	Ile	Asn 650	Asp	Phe	Thr	Ser	Ser 655	Pro
	Gly	Glu	Thr	Ile 660	Asn	Tyr	Val	Thr	Ser 665	His	Asp	Asn	Tyr	Thr 670	Leu	Trp
40	Asp	Lys	Ile 675	Ala	Leu	Ser	Asn	Pro 680	Asn	Asp	Ser	Glu	Ala 685	Asp	Arg	Ile
45	Lys	Met 690	Asp	Glu	Leu	Ala	Gln 695	Ala	Val	Val	Met	Thr 700	Ser	Gln	Gly	Val
50	Pro 705	Phe	Met	Gln	Gly	Gly 710	Glu	Glu	Met	Leu	A rg 715	Thr	Lys	Gly	Gly	Asn 720
	Asp	Asn	Ser	Tyr	Asn 725	Ala	Gly	Asp	Thr	Val 730	Asn	Glu	Phe	Asp	Trp 735	Ser
55	Arg	Lys	Ala	Gln 740	Tyr	Pro	Asp	Val	Phe 745	Asn	Tyr	Tyr	Ser	Gly 750	Leu	Ile

	His	Leu	755	Leu	Asp	His	Pro	760	Phe	Arg	Met	Thr	765	Ala	Asn	GLu
5	Ile	As n 770	Ser	His	Leu	Gln	Phe 775	Leu	Asn	Ser	Pro	Glu 780	Asn	Thr	Val	Ala
10	Tyr 785	Glu	Leu	Thr	Asp	His 790	Val	Asn	Lys	Asp	Lys 795	Trp	Gly	Asn	Ile	Ile 800
	Val	Val	Tyr	Asn	Pro 805	Asn	Lys	Thr	Ala	Ala 810	Thr	Ile	Asn	Leu	Pro 815	Ser
15	Gly	Lys	Trp	Ala 820	Ile	Asn	Ala	Thr	Ser 825	Gly	Lys	Val	Gly	Glu 830	Ser	Thr
20	Leu	Gly	Gln 835	Ala	Glu	Gly	Ser	Val 840	Gln	Val	Pro	Gly	Ile 845	Ser	Met	Met
	Ile	Leu 850	His	Gln	Glu	Val	Ser 855	Pro	Asp	His	Gly	Lys 860	Lys			
25	<210 <211 <212 <213	1> 9 2> 1	20 928 PRT Artii	ficia	al											
30	<220 <223	3> 1	Hybri	id pı	ıllu:	Lanas	se									
35			20 Ser	Thr		Val	Ile	Val	His		His	Arg	Phe	Asp		Asn
	1				5					10					15	
40	Tyr	Ala	Asn	Trp 20	Asp	Leu	Trp	Met	Trp 25	Pro	Tyr	Gln	Pro	Val 30	Asn	Gly
	Asn	Gly	Ala 35	Ala	Tyr	Glu	Phe	Ser 40	Gly	Thr	Asp	Glu	Phe 45	Gly	Val	Thr
45	Ala	Asp 50	Val	Gln	Val	Pro	Gly 55	Asp	Asn	Thr	Gln	Val 60	Gly	Leu	Ile	Val
50	Arg 65	Lys	Asn	Asp	Trp	Ser 70	Gln	Lys	Asn	Thr	Pro 75	Asp	Asp	Leu	His	Ile 80
	Asp	Leu	Ser	Lys	Gly 85	His	Glu	Val	Trp	Ile 90	Asn	Gln	Gly	Asp	Pro 95	Thr
55	Ile	Tyr	Tyr	Asn	Leu	Asn	Asp	Ala	Glu	Ala	Ala	Ala	Val	Pro	Ala	Val

				100					103					110		
5	Ser	Asn	Ala 115	Tyr	Leu	Asp	Asn	Glu 120	Lys	Thr	Val	Leu	Ala 125	Lys	Leu	Ser
10	Ser	Pro 130	Met	Thr	Leu	Thr	Asp 135	Gly	Ala	Ser	Gly	Phe 140	Thr	Val	Thr	Asp
	Glu 145	Thr	Thr	Gly	Glu	Gln 150	Ile	Pro	Val	Val	Ser 155	Ala	Glu	Ser	Ala	Asn 160
15	Pro	Val	Thr	Ala	Val 165	Leu	Val	Gly	Asp	Phe 170	Gln	Gln	Ala	Leu	Gly 175	Ala
20	Ser	Gly	Asn	Trp 180	Ser	Pro	Asp	Asp	Asp 185	His	Thr	Lys	Leu	Ser 190	Lys	Ile
0.5	Asn	Ser	Asn 195	Leu	Tyr	Gln	Phe	Thr 200	Gly	Thr	Leu	Pro	Ala 205	Gly	Thr	Tyr
25	Gln	Tyr 210	Lys	Val	Ala	Leu	Asp 215	His	Ser	Trp	Ser	Ala 220	Ser	Tyr	Pro	Asn
30	Asn 225	Asn	Val	Asn	Leu	Thr 230	Val	Pro	Ala	Gly	Gly 235	Thr	Lys	Val	Thr	Phe 240
35	Thr	Tyr	Ile	Pro	Ser 245	Thr	His	Gln	Val	Phe 250	Asp	Ser	Ile	Asn	As n 255	Pro
	Asp	Gln	Thr	Phe 260	Pro	Ser	Ser	Ser	Ala 265	Gly	Thr	Gln	Ser	Asp 270	Leu	Val
40	Gln	Leu	Thr 275	Leu	Ala	Ser	Ala	Pro 280	Asp	Ile	Thr	His	Asp 285	Leu	Gln	Val
45	Val	Ala 290	Asp	Gly	Tyr	Lys	Gly 295	Gly	Lys	Ile	Leu	Pro 300	Arg	Asn	Val	Leu
50	Asn 305	Leu	Pro	Arg	Tyr	Tyr 310	Tyr	Ser	Gly	Asn	Asp 315	Leu	Gly	Asn	Val	Tyr 320
	Ser	Asn	Lys	Ala	Thr 325	Ala	Phe	Arg	Val	Trp 330	Ala	Pro	Thr	Ala	Ser 335	Asp
55	Val	Gln	Leu	Leu 340	Leu	Tyr	Asn	Ser	Glu 3 4 5	Thr	Gly	Pro	Val	Thr 350	Lys	Gln

	Leu	Glu	Met 355	Gln	Lys	Ser	Asp	Asn 360	Gly	Thr	Trp	Lys	Leu 365	Lys	Val	Pro
5	Gly	Asn 370	Leu	Lys	Asn	Trp	Tyr 375	Tyr	Leu	Tyr	Gln	Val 380	Thr	Val	Asn	Gly
10	Lys 385	Thr	Gln	Thr	Ala	Val 390	Asp	Pro	Tyr	Val	Arg 395	Ala	Ile	Ser	Val	Asn 400
	Ala	Thr	Arg	Gly	Met 405	Ile	Val	Asp	Leu	Glu 410	Asp	Thr	Asn	Pro	Pro 415	Gly
15	Trp	Lys	Glu	Asp 420	His	Gln	Gln	Thr	Pro 425	Ala	Asn	Pro	Val	Asp 430	Glu	Val
20	Ile	Tyr	Glu 435	Val	His	Val	Arg	Asp 440	Phe	Ser	Ile	Asp	Ala 445	Asn	Ser	Gly
25	Met	Lys 450	Asn	Lys	Gly	Lys	Tyr 455	Leu	Ala	Phe	Thr	Glu 460	His	Gly	Thr	Lys
	Gly 465	Pro	Asp	Gly	Val	Lys 470	Thr	Gly	Ile	Asp	Ser 475	Leu	Lys	Glu	Leu	Gly 480
30	Ile	Asn	Ala	Val	Gln 485	Leu	Gln	Pro	Ile	Glu 490	Glu	Phe	Ala	Ser	Ile 495	Asp
35	Glu	Thr	Gln	Pro 500	Asn	Met	Tyr	Asn	Trp 505	Gly	Tyr	Asp	Pro	Arg 510	Asn	Tyr
	Asn	Val	Pro 515	Glu	Gly	Ala	Tyr	A la 520	Thr	Thr	Pro	Glu	Gly 525	Thr	Ala	Arg
40	Ile	Thr 530	Gln	Leu	Lys	Gln	Leu 535	Ile	Gln	Ser	Ile	His 540	Lys	Asp	Arg	Ile
45	Ala 545	Ile	Asn	Met	Asp	Val 550	Val	Tyr	Asn	His	Thr 555	Phe	Ser	Thr	Leu	Ile 560
50	Ser	Asp	Phe	Asp	Lys 565	Ile	Val	Pro	Gln	Tyr 570	Tyr	Tyr	Arg	Thr	Asp 575	Asp
	Ala	Gly	Asn	Tyr 580	Thr	Asn	Gly	Ser	Gly 585	Val	Gly	Asn	Glu	Phe 590	Ala	Thr
55	Glu	His	Pro 595	Met	Ala	Arg	Lys	Phe 600	Val	Leu	Asp	Ser	Leu 605	Lys	Tyr	Trp

	Val	Thr 610	Gln	Tyr	His	Ile	Asp 615	Gly	Phe	Arg	Phe	Asp 620	Leu	Met	Ala	Leu
5	Leu 625	Gly	Lys	Asn	Thr	Met 630	Ala	Glu	Ala	Ser	Lys 635	Glu	Leu	His	Ala	Ile 640
10	Asn	Pro	Gly	Ile	Val 645	Leu	Tyr	Gly	Glu	Pro 650	Trp	Thr	Gly	Gly	Thr 655	Ser
	Gly	Ile	Thr	Gly 660	Asp	Gln	Leu	Leu	Thr 665	Lys	Gly	Val	Gln	Lys 670	Gly	Leu
15	Gly	Ile	Gly 675	Val	Phe	Asn	Asp	Asn 680	Leu	Arg	Asn	Ala	Leu 685	Asp	Gly	Asn
20	Val	Phe 690	Asp	Ser	Ser	Ala	Gln 695	Gly	Phe	Ala	Thr	Gly 700	Ala	Thr	Gly	Leu
25	Thr 705	Asp	Ala	Ile	Lys	Arg 710	Gly	Val	Glu	Gly	Ser 715	Ile	Asn	Asp	Phe	Thr 720
	Ser	Ser	Pro	Ser	Glu 725	Thr	Ile	Asn	Tyr	Val 730	Ser	Cys	His	Asp	Asn 735	Tyr
30	Thr	Leu	Trp	Asp 740	Lys	Ile	Ala	Leu	Ser 745	Asn	Pro	Asn	Asp	Ser 750	Glu	Ala
35	Asp	Arg	Ile 755	Lys	Met	Asp	Glu	Leu 760	Ala	Gln	Ala	Val	Val 765	Met	Thr	Ser
40	Gln	Gly 770	Val	Pro	Phe	Met	Gln 775	Gly	Gly	Glu	Glu	Met 780	Leu	Arg	Thr	Lys
40	Gly 785	Gly	Asn	Asp	Asn	Ser 790	Tyr	Asn	Ala	Gly	Asp 795	Thr	Val	Asn	Glu	Phe 800
45	Asp	Trp	Ser	Arg	Lys 805	Ala	Gln	Tyr	Pro	Asp 810	Val	Phe	Asn	Tyr	Tyr 815	Ser
50	Gly	Leu	Ile	His 820	Leu	Arg	Leu	Asp	His 825	Pro	Ala	Phe	Arg	Met 830	Thr	Thr
	Ala	Asn	Glu 835	Ile	Asn	Ser	His	Leu 840	Gln	Phe	Leu	Asn	Ser 845	Pro	Glu	Asn
55	Thr	Val 850	Ala	Tyr	Glu	Leu	Thr 855	Asp	His	Val	Asn	Lys 860	Asp	Lys	Trp	Gly

	Asn Ile 865	e Ile	Val V		Cyr 370	Asn	Pro	Asn	Lys	Thr 875	Ala	Ala	Thr	Ile	As n 880
5	Leu Pro	Ser	_	ys 1 885	ľrp	Ala	Ile	Asn	A la 890	Thr	Ser	Gly	Lys	Val 895	Gly
10	Glu Se		Leu G 900	Sly (3ln	Ala	Glu	Gly 905	Ser	Val	Gln	Val	Pro 910	Gly	Ile
15	Ser Me	915	Ile I	Leu H	His	Gln	Glu 920	Val	Ser	Pro	Asp	His 925	Gly	Lys	Lys
	<210> <211> <212> <213>	21 828 PRT Artif	icial	-											
20	<220> <223> <400>	Hybri	d pul	.lula	anas	e									
25	Asp Se:	21 r Thr	Ser T		Glu	Val	Ile	Val	His 10	Tyr	His	Arg	Phe	Asp 15	Ser
30	Asn Ty		Asn T 20	rp A	Asp	Leu	Trp	Met 25	Trp	Pro	Tyr	Gln	Pro 30	Val	Asn
35	Gly As	n Gly 35	Ala A	Ala T	ſyr	Glu	Phe 40	Ser	Gly	Lys	Asp	Asp 45	Phe	Gly	Val
	Lys Ala	a Asp	Val G	Gln V		Pro 55	Gly	Asp	Asp	Thr	Gln 60	Val	Gly	Leu	Ile
40	Val Arc	g Thr	Asn A	_	Crp 70	Ser	Gln	Lys	Asn	Thr 75	Ser	Asp	Asp	Leu	His 80
45	Ile As	o Leu		ys G 35	∃ly	His	Glu	Ile	Trp 90	Ile	Val	Gln	Gly	Asp 95	Pro
50	Asn Ile		Tyr A 100	Asn I	Leu	Ser	Asp	Ala 105	Gln	Ala	Ala	Ala	Thr 110	Pro	Lys
	Val Se	r Asn 115	Ala T	yr I	Leu	Asp	Asn 120	Glu	Lys	Thr	Val	Leu 125	Ala	Lys	Leu
55	Thr Ass		Met I	hr I		Ser 135	Asp	Gly	Ser	Ser	Gly 140	Phe	Thr	Val	Thr

	Asp 145	Lys	Thr	Thr	Gly	Glu 150	Gln	Ile	Pro	Val	Thr 155	Ala	Ala	Thr	Asn	Ala 160
5	Asn	Ser	Ala	Ser	Ser 165	Ser	Glu	Gln	Thr	Asp 170	Leu	Val	Gln	Leu	Thr 175	Leu
10	Ala	Ser	Ala	Pro 180	Asp	Val	Ser	His	Thr 185	Ile	Gln	Val	Gly	Ala 190	Ala	Gly
	Tyr	Glu	Ala 195	Val	Asn	Leu	Ile	Pro 200	Arg	Asn	Val	Leu	Asp 205	Ser	Ser	Gln
15	Tyr	Tyr 210	Tyr	Ser	Gly	Asp	Asp 215	Leu	Gly	Asn	Thr	Tyr 220	Thr	His	Lys	Ala
20	Thr 225	Thr	Phe	Lys	Val	Trp 230	Ala	Pro	Thr	Ser	Thr 235	Gln	Val	Asn	Val	Leu 240
25	Leu	Tyr	Asn	Ser	Ala 245	Thr	Gly	Ser	Val	Thr 250	Lys	Thr	Val	Pro	Met 255	Thr
	Ala	Ser	Gly	His 260	Gly	Val	Trp	Glu	Ala 265	Thr	Val	Asn	Gln	As n 270	Leu	Glu
30	Asn	Trp	Tyr 275	Tyr	Met	Tyr	Glu	Val 280	Thr	Gly	Gln	Gly	Ser 285	Thr	Arg	Thr
35	Ala	Val 290	Asp	Pro	Tyr	Ala	Thr 295	Ala	Ile	Ala	Pro	As n 300	Gly	Thr	Arg	Gly
40	Met 305	Ile	Val	Asp	Leu	Ala 310	Lys	Thr	Asp	Pro	Ala 315	Gly	Trp	Asn	Ser	Asp 320
	Lys	His	Ile	Thr	Pro 325	Lys	Asn	Ile	Glu	Asp 330	Glu	Val	Ile	Tyr	Glu 335	Met
45	Asp	Val	Arg	Asp 340	Phe	Ser	Ile	Asp	Pro 345	Asn	Ser	Gly	Met	Lys 350	Asn	Lys
50	Gly	Lys	Tyr 355	Leu	Ala	Leu	Thr	Glu 360	Lys	Gly	Thr	Lys	Gly 365	Pro	Asp	Gly
	Val	Lys 370	Thr	Gly	Ile	Asp	Ser 375	Leu	Lys	Gln	Leu	Gly 380	Ile	Thr	His	Val
55	Gln 385	Leu	Met	Pro	Val	Phe 390	Ala	Phe	Ala	Ser	Val 395	Asp	Glu	Thr	Asp	Pro 400

	Thr	Gln	Asp	Asn	Trp 405	Gly	Tyr	Asp	Pro	Arg 410	Asn	Tyr	Asp	Val	Pro 415	Glu
5	Gly	Gln	Tyr	Ala 420	Thr	Asn	Ala	Asn	Gly 425	Thr	Ala	Arg	Ile	Lys 430	Glu	Phe
10	Lys	Glu	Met 435	Val	Leu	Ser	Leu	His 440	Arg	Glu	His	Ile	Gly 445	Val	Asn	Met
15	Asp	Val 450	Val	Tyr	Asn	His	Thr 455	Phe	Ala	Thr	Gln	Ile 460	Ser	Asp	Phe	Asp
10	Lys 465	Ile	Val	Pro	Glu	Tyr 470	Tyr	Tyr	Arg	Thr	Asp 475	Asp	Ala	Gly	Asn	Tyr 480
20	Thr	Asn	Gly	Ser	Gly 485	Thr	Gly	Asn	Glu	Ile 490	Ala	Ser	Glu	Arg	Pro 495	Met
25	Val	Gln	Lys	Phe 500	Ile	Ile	Asp	Ser	Leu 505	Lys	Tyr	Trp	Val	Asn 510	Glu	Tyr
	His	Ile	Asp 515	Gly	Phe	Arg	Phe	Asp 520	Leu	Met	Ala	Leu	Leu 525	Gly	Lys	Asp
30	Thr	Met 530	Ser	Lys	Ala	Ala	Ser 535	Glu	Leu	His	Ala	Ile 540	Asn	Pro	Gly	Ile
35	Ala 545	Leu	Tyr	Gly	Glu	Pro 550	Trp	Thr	Gly	Gly	Thr 555	Ser	Ala	Leu	Pro	Glu 560
40	Asp	Gln	Leu	Leu	Thr 565	Lys	Gly	Ala	Gln	Lys 570	Gly	Met	Gly	Val	Ala 575	Val
	Phe	Asn	Asp	As n 580	Leu	Arg	Asn	Ala	Leu 585	Asp	Gly	Asn	Val	Phe 590	Asp	Ser
45	Ser	Ala	Gln 595	Gly	Phe	Ala	Thr	Gly 600	Ala	Thr	Gly	Leu	Thr 605	Asp	Ala	Ile
50	Lys	Asn 610	Gly	Val	Glu	Gly	Ser 615	Ile	Asn	Asp	Phe	Thr 620	Ser	Ser	Pro	Gly
55	Glu 625	Thr	Ile	Asn	Tyr	Val 630	Thr	Ser	His	Asp	Asn 635	Tyr	Thr	Leu	Trp	Asp 640
	Lys	Ile	Ala	Leu	Ser	Asn	Pro	Asn	Asp	Ser	Glu	Ala	Asp	Arg	Ile	Lys

		645	650	655
5		eu Ala Gln Ala V 60	al Val Met Thr Ser 665	Gln Gly Val Pro 670
	Phe Met Gln G 675		et Leu Arg Thr Lys 80	Gly Gly Asn Asp 685
10	Asn Ser Tyr As	sn Ala Gly Asp T 695	hr Val Asn Glu Phe 700	Asp Trp Ser Arg
15	Lys Ala Gln Ty 705	yr Pro As p Val P 710	he Asn Tyr Tyr Ser 715	Gly Leu Ile His 720
20	Leu Arg Leu As	sp His Pro Ala P 725	he Arg Met Thr Thr 730	Ala Asn Glu Ile 735
		eu Gln Phe Leu A 40	sn Ser Pro Glu Asn 745	Thr Val Ala Tyr 750
25	Glu Leu Thr As		ys Asp Lys Trp Gly 60	Asn Ile Ile Val 765
30	Val Tyr Asn Pr 770	ro Asn Lys Thr A 775	la Ala Thr Ile Asn 780	Leu Pro Ser Gly
	Lys Trp Ala II	le Asn Ala Thr S 790	er Gly Lys Val Gly 795	Glu Ser Thr Leu 800
35	Gly Gln Ala G	lu Gly Ser Val G 805	ln Val Pro Gly Ile 810	Ser Met Met Ile 815
40		lu Val Ser Pro A 20	sp His Gly Lys Lys 825	
45	<210> 22 <211> 928 <212> PRT <213> Artific	cial		
	<220> <223> Hybrid	pullulanase		
50	<400> 22			
	Asp Gly Ser Th	hr Thr Thr Ile I 5	le Val His Tyr Phe 10	Arg Pro Ala Gly 15
55	Asp Tyr Gln P		rp Met Trp Pro Glu 25	Gly Gly Ser Gly

	Ala	GLu	Tyr 35	Asp	Phe	Asn	GLY	Thr 40	Asp	Ser	Tyr	GTA	GIu 45	Val	Ala	Asn
5	Val	Ser 50	Ile	Pro	Gly	Asn	Pro 55	Ser	Gln	Val	Gly	Ile 60	Ile	Val	Arg	Thr
10	Gln 65	Asp	Trp	Thr	Lys	Asp 70	Val	Ser	Ala	Asp	Arg 75	Tyr	Ile	Asp	Leu	Ser 80
	Lys	Gly	His	Glu	Val 85	Trp	Leu	Val	Gln	Gly 90	Asn	Ser	Gln	Ile	Phe 95	Tyr
15	Asn	Glu	Lys	Asp 100	Ala	Glu	Asp	Ala	Ala 105	Lys	Pro	Ala	Val	Ser 110	Asn	Ala
20	Tyr	Leu	Asp 115	Ala	Ser	Asn	Gln	Val 120	Leu	Val	Lys	Leu	Ser 125	Gln	Pro	Phe
25	Thr	Leu 130	Gly	Glu	Gly	Ala	Ser 135	Gly	Phe	Thr	Val	His 140	Asp	Asp	Thr	Val
	Asn 145	Lys	Asp	Ile	Pro	Val 150	Thr	Ser	Val	Thr	Asp 155	Ala	Ser	Leu	Gly	Gln 160
30	Asn	Val	Thr	Ala	Val 165	Leu	Ala	Gly	Thr	Phe 170	Gln	His	Ile	Phe	Gly 175	Gly
35	Ser	Asp	Trp	Ala 180	Pro	Asp	Asn	His	Ser 185	Thr	Leu	Leu	Lys	Lys 190	Val	Asn
40	Asn	Asn	Leu 195	Tyr	Gln	Phe	Ser	Gly 200	Asp	Leu	Pro	Glu	Gly 205	Asn	Tyr	Gln
	Tyr	Lys 210	Val	Ala	Leu	Asn	Asp 215	Ser	Trp	Asn	Asn	Pro 220	Ser	Tyr	Pro	Ser
45	Asn 225	Asn	Ile	Asp	Leu	Thr 230	Val	Pro	Thr	Gly	Gly 235	Ala	His	Val	Thr	Phe 240
50	Ser	Tyr	Val	Pro	Ser 245	Thr	His	Ala	Val	Tyr 250	Asp	Ser	Ile	Asn	Asn 255	Pro
55	Gly	Ala	Asp	Leu 260	Pro	Val	Asn	Gly	Ser 265	Gly	Val	Lys	Thr	Asp 270	Leu	Val
	Thr	Val	Thr	Leu	Gly	Glu	Asp	Pro	Asp	Val	Ser	His	Thr	Leu	Ser	Ile

5	Gln	Thr 290	Asp	Gly	Tyr	Gln	Ala 295	Lys	Gln	Val	Ile	Ser 300	Arg	Asn	Val	Leu
10	Asp 305	Ser	Ser	Gln	Tyr	Tyr 310	Tyr	Ser	Gly	Asp	Asp 315	Leu	Gly	Asn	Thr	Tyr 320
	Thr	His	Lys	Ala	Thr 325	Thr	Phe	Lys	Val	Trp 330	Ala	Pro	Thr	Ser	Thr 335	Gln
15	Val	Asn	Val	Leu 340	Leu	Tyr	Asn	Ser	Ala 345	Thr	Gly	Ser	Val	Thr 350	Lys	Thr
20	Val	Pro	Met 355	Thr	Ala	Ser	Gly	His 360	Gly	Val	Trp	Glu	Ala 365	Thr	Val	Asn
25	Gln	Asn 370	Leu	Glu	Asn	Trp	Tyr 375	Tyr	Met	Tyr	Glu	Val 380	Thr	Gly	Gln	Gly
	Ser 385	Thr	Arg	Thr	Ala	Val 390	Asp	Pro	Tyr	Ala	Thr 395	Ala	Ile	Ala	Pro	Asn 400
30	Gly	Thr	Arg	Gly	Met 405	Ile	Val	Asp	Leu	Ala 410	Lys	Thr	Asp	Pro	Ala 415	Gly
35	Trp	Asn	Ser	Asp 420	Lys	His	Ile	Thr	Pro 425	Lys	Asn	Ile	Glu	Asp 430	Glu	Val
40	Ile	Tyr	Glu 435	Met	Asp	Val	Arg	Asp 440	Phe	Ser	Ile	Asp	Pro 445	Asn	Ser	Gly
40	Met	Lys 450	Asn	Lys	Gly	Lys	Tyr 455	Leu	Ala	Leu	Thr	Glu 460	Lys	Gly	Thr	Lys
45	Gly 465	Pro	Asp	Gly	Val	Lys 470	Thr	Gly	Ile	Asp	Ser 475	Leu	Lys	Gln	Leu	Gly 480
50	Ile	Thr	His	Val	Gln 485	Leu	Met	Pro	Val	Phe 490	Ala	Phe	Ala	Ser	Val 495	Asp
	Glu	Thr	Asp	Pro 500	Thr	Gln	Asp	Asn	Trp 505	Gly	Tyr	Asp	Pro	Arg 510	Asn	Tyr
55	Asp	Val	Pro 515	Glu	Gly	Gln	Tyr	Ala 520	Thr	Asn	Ala	Asn	Gly 525	Thr	Ala	Arg

	Ile	Lys 530	Glu	Phe	Lys	Glu	Met 535	Val	Leu	Ser	Leu	His 540	Arg	Glu	His	Ile
5	Gly 545	Val	Asn	Met	Asp	Val 550	Val	Tyr	Asn	His	Thr 555	Phe	Ala	Thr	Gln	Ile 560
10	Ser	Asp	Phe	Asp	Lys 565	Ile	Val	Pro	Glu	Tyr 570	Tyr	Tyr	Arg	Thr	Asp 575	Asp
	Ala	Gly	Asn	Tyr 580	Thr	Asn	Gly	Ser	Gly 585	Thr	Gly	Asn	Glu	Ile 590	Ala	Ala
15	Glu	Arg	Pro 595	Met	Val	Gln	Lys	Phe 600	Ile	Ile	Asp	Ser	Leu 605	Lys	Tyr	Trp
20	Val	Asn 610	Glu	Tyr	His	Ile	Asp 615	Gly	Phe	Arg	Phe	Asp 620	Leu	Met	Ala	Leu
25	Leu 625	Gly	Lys	Asp	Thr	Met 630	Ser	Lys	Ala	Ala	Ser 635	Glu	Leu	His	Ala	Ile 640
	Asn	Pro	Gly	Ile	Ala 645	Leu	Tyr	Gly	Glu	Pro 650	Trp	Thr	Gly	Gly	Thr 655	Ser
30	Ala	Leu	Pro	Glu 660	Asp	Gln	Leu	Leu	Thr 665	Lys	Gly	Ala	Gln	Lys 670	Gly	Met
35	Gly	Val	Ala 675	Val	Phe	Asn	Asp	Asn 680	Leu	Arg	Asn	Ala	Leu 685	Asp	Gly	Asn
40	Val	Phe 690	Asp	Ser	Ser	Ala	Gln 695	Gly	Phe	Ala	Thr	Gly 700	Ala	Thr	Gly	Leu
40	Thr 705	Asp	Ala	Ile	Lys	Arg 710	Gly	Val	Glu	Gly	Ser 715	Ile	Asn	Asp	Phe	Thr 720
45	Ser	Ser	Pro	Ser	Glu 725	Thr	Ile	Asn	Tyr	V al 730	Thr	Ser	His	Asp	As n 735	Tyr
50	Thr	Leu	Trp	Asp 740	Lys	Ile	Ala	Leu	Ser 745	Asn	Pro	Asn	Asp	Ser 750	Glu	Ala
	Asp	Arg	Ile 755	Lys	Met	Asp	Glu	Leu 760	Ala	Gln	Ala	Val	Val 765	Met	Thr	Ser
55	Gln	Gly 770	Val	Pro	Phe	Met	Gln 775	Gly	Gly	Glu	Glu	Met 780	Leu	Arg	Thr	Lys

	Gly Gly Asn Asp Asn Ser Tyr Asn Ala Gly Asp Thr Val Asn Glu Phe 785 790 795 800	
5	Asp Trp Ser Arg Lys Ala Gln Tyr Pro Asp Val Phe Asn Tyr Tyr Ser 805 810 815	:
10	Gly Leu Ile His Leu Arg Leu Asp His Pro Ala Phe Arg Met Thr Thr 820 825 830	:
15	Ala Asn Glu Ile Asn Ser His Leu Gln Phe Leu Asn Ser Pro Glu Asn 835 840 845	1
	Thr Val Ala Tyr Glu Leu Thr Asp His Val Asn Lys Asp Lys Trp Gly 850 860	,
20	Asn Ile Ile Val Val Tyr Asn Pro Asn Lys Thr Ala Ala Thr Ile Asn 865 870 875 880	
25	Leu Pro Ser Gly Lys Trp Ala Ile Asn Ala Thr Ser Gly Lys Val Gly 885 890 895	,
30	Glu Ser Thr Leu Gly Gln Ala Glu Gly Ser Val Gln Val Pro Gly Ile 900 905 910	÷
	Ser Met Met Ile Leu His Gln Glu Val Ser Pro Asp His Gly Lys Lys 915 920 925	;
35	<210> 23 <211> 828 <212> PRT <213> Artificial	
40	<220> <223> Hybrid pullulanase	
45	<pre><400> 23 Asp Ser Thr Ser Thr Glu Val Ile Val His Tyr His Arg Phe Asp Ser 1</pre>	:
50	Asn Tyr Ala Asn Trp Asp Leu Trp Met Trp Pro Tyr Gln Pro Val Asn 20 25 30	ì
	Gly Asn Gly Ala Ala Tyr Glu Phe Ser Gly Lys Asp Asp Phe Gly Val	•
55	Lys Ala Asp Val Gln Val Pro Gly Asp Asp Thr Gln Val Gly Leu Ile 50 55 60	÷

	Val 65	Arg	Thr	Asn	Asp	Trp 70	Ser	Gln	Lys	Asn	Thr 75	Ser	Asp	Asp	Leu	His 80
5	Ile	Asp	Leu	Thr	Lys 85	Gly	His	Glu	Ile	Trp 90	Ile	Val	Gln	Gly	Asp 95	Pro
10	Asn	Ile	Tyr	Tyr 100	Asn	Leu	Ser	Asp	Ala 105	Gln	Ala	Ala	Ala	Thr 110	Pro	Lys
	Val	Ser	Asn 115	Ala	Tyr	Leu	Asp	Asn 120	Glu	Lys	Thr	Val	Leu 125	Ala	Lys	Leu
15	Thr	Asn 130	Pro	Met	Thr	Leu	Ser 135	Asp	Gly	Ser	Ser	Gly 140	Phe	Thr	Val	Thr
20	Asp 145	Lys	Thr	Thr	Gly	Glu 150	Gln	Ile	Pro	Val	Thr 155	Ala	Ala	Thr	Asn	Ala 160
25	Asn	Ser	Ala	Ser	Ser 165	Ser	Glu	Gln	Thr	Asp 170	Leu	Val	Gln	Leu	Thr 175	Leu
	Ala	Ser	Ala	Pro 180	Asp	Val	Ser	His	Thr 185	Ile	Gln	Val	Gly	Ala 190	Ala	Gly
30	Tyr	Glu	Ala 195	Val	Asn	Leu	Ile	Pro 200	Arg	Asn	Val	Leu	Asp 205	Ser	Ser	Gln
35	Tyr	Tyr 210	Tyr	Ser	Gly	Asp	Asp 215	Leu	Gly	Asn	Thr	Tyr 220	Thr	His	Lys	Ala
	Thr 225	Thr	Phe	Lys	Val	Trp 230		Pro	Thr	Ser	Thr 235	Gln	Val	Asn	Val	Leu 240
40	Leu	Tyr	Asn	Ser	Ala 245	Thr	Gly	Ser	Val	Thr 250	Lys	Thr	Val	Pro	Met 255	Thr
45	Ala	Ser	Gly	His 260	Gly	Val	Trp	Glu	Ala 265	Thr	Val	Asn	Gln	Asn 270	Leu	Glu
50	Asn	Trp	Tyr 275	Tyr	Met	Tyr	Glu	Val 280	Thr	Gly	Gln	Gly	Ser 285	Thr	Arg	Thr
	Ala	Val 290	Asp	Pro	Tyr	Ala	Thr 295	Ala	Ile	Ala	Pro	As n 300	Gly	Thr	Arg	Gly
55	Met 305	Ile	Val	Asp	Leu	Ala 310	Lys	Thr	Asp	Pro	Ala 315	Gly	Trp	Asn	Ser	Asp 320

	Lys	His	Ile	Thr	Pro 325	Lys	Asn	Ile	Glu	Asp 330	Glu	Val	Ile	Tyr	Glu 335	Met
5	Asp	Val	Arg	Asp 340	Phe	Ser	Ile	Asp	Pro 345	Asn	Ser	Gly	Met	Lys 350	Asn	Lys
10	Gly	Lys	Tyr 355	Leu	Ala	Leu	Thr	Glu 360	Lys	Gly	Thr	Lys	Gly 365	Pro	Asp	Gly
-	Val	Lys 370	Thr	Gly	Ile	Asp	Ser 375	Leu	Lys	Gln	Leu	Gly 380	Ile	Thr	His	Val
15	Gln 385	Leu	Met	Pro	Val	Phe 390	Ala	Phe	Ala	Ser	Val 395	Asp	Glu	Thr	Asp	Pro 400
20	Thr	Gln	Asp	Asn	Trp 405	Gly	Tyr	Asp	Pro	Arg 410	Asn	Tyr	Asp	Val	Pro 415	Glu
25	Gly	Gln	Tyr	Ala 420	Thr	Asn	Ala	Asn	Gly 425	Thr	Ala	Arg	Ile	Lys 430	Glu	Phe
	Lys	Glu	Met 435	Val	Leu	Ser	Leu	His 440	Arg	Glu	His	Ile	Gly 445	Val	Asn	Met
30	Asp	Val 450	Val	Tyr	Asn	His	Thr 455	Phe	Ala	Thr	Gln	Ile 460	Ser	Asp	Phe	Asp
35	Lys 465	Ile	Val	Pro	Glu	Tyr 470	Tyr	Tyr	Arg	Thr	Asp 475	Asp	Ala	Gly	Asn	Tyr 480
40	Thr	Asn	Gly	Ser	Gly 485	Thr	Gly	Asn	Glu	Ile 490	Ala	Ala	Glu	Arg	Pro 495	Met
40	Val	Gln	Lys	Phe 500	Ile	Ile	Asp	Ser	Leu 505	Lys	Tyr	Trp	Val	Asn 510	Glu	Tyr
45	His	Ile	Asp 515	Gly	Phe	Arg	Phe	Asp 520	Leu	Met	Ala	Leu	Leu 525	Gly	Lys	Asp
50	Thr	Met 530	Ser	Lys	Ala	Ala	Ser 535	Glu	Leu	His	Ala	Ile 540	Asn	Pro	Gly	Ile
	Ala 545	Leu	Tyr	Gly	Glu	Pro 550	Trp	Thr	Gly	Gly	Thr 555	Ser	Ala	Leu	Pro	Glu 560
55	Asp	Gln	Leu	Leu	Thr 565	Lys	Gly	Ala	Gln	Lys 570	Gly	Met	Gly	Val	Ala 575	Val

	Phe	Asn	Asp	Asn 580	Leu	Arg	Asn	Ala	Leu 585	Asp	Gly	Asn	Val	Phe 590	Asp	Ser
5	Ser	Ala	Gln 595	Gly	Phe	Ala	Thr	Gly 600	Ala	Thr	Gly	Leu	Thr 605	Asp	Ala	Ile
10	Lys	Arg 610	Gly	Val	Glu	Gly	Ser 615	Ile	Asn	Asp	Phe	Thr 620	Ser	Ser	Pro	Ser
45	Glu 625	Thr	Ile	Asn	Tyr	Val 630	Thr	Ser	His	Asp	As n 635	Tyr	Thr	Leu	Trp	Asp 640
15	Lys	Ile	Ala	Leu	Ser 645	Asn	Pro	Asn	Asp	Ser 650	Glu	Ala	Asp	Arg	Ile 655	Lys
20	Met	Asp	Glu	Leu 660	Ala	Gln	Ala	Val	Val 665	Met	Thr	Ser	Gln	Gly 670	Val	Pro
25	Phe	Met	Gln 675	Gly	Gly	Glu	Glu	Met 680	Leu	Arg	Thr	Lys	Gly 685	Gly	Asn	Asp
	Asn	Ser 690	Tyr	Asn	Ala	Gly	Asp 695	Thr	Val	Asn	Glu	Phe 700	Asp	Trp	Ser	Arg
30	Lys 705	Ala	Gln	Tyr	Pro	Asp 710	Val	Phe	Asn	Tyr	Tyr 715	Ser	Gly	Leu	Ile	His 720
35	Leu	Arg	Leu	Asp	His 725	Pro	Ala	Phe	Arg	Met 730	Thr	Thr	Ala	Asn	Glu 735	Ile
40	Asn	Ser	His	Leu 740	Gln	Phe	Leu	Asn	Ser 745	Pro	Glu	Asn	Thr	Val 750	Ala	Tyr
	Glu	Leu	Thr 755	Asp	His	Val	Asn	Lys 760	Asp	Lys	Trp	Gly	Asn 765	Ile	Ile	Val
45	Val	Tyr 770	Asn	Pro	Asn	Lys	Thr 775	Ala	Ala	Thr	Ile	Asn 780	Leu	Pro	Ser	Gly
50	Lys 785	Trp	Ala	Ile	Asn	Ala 790	Thr	Ser	Gly	Lys	Val 795	Gly	Glu	Ser	Thr	Leu 800
55	Gly	Gln	Ala	Glu	Gly 805	Ser	Val	Gln	Val	Pro 810	Gly	Ile	Ser	Met	Met 815	Ile
55	Leu	His	Gln	Glu	Val	Ser	Pro	Asp	His	Gly	Lys	Lys				

			820					623							
5	<210> <211> <212> <213>	24 928 PRT Arti:	ficia	al											
10	<220> <223> <400>	Hybr:	id pı	ıllul	lanas	se									
45	Ala Se	r Ser	Thr	Glu 5	Val	Ile	Val	His	Tyr 10	His	Arg	Phe	Asp	Ala 15	Asn
15	Tyr Ala	a Asn	Trp 20	Asp	Leu	Trp	Met	Trp 25	Pro	Tyr	Gln	Pro	Val 30	Asn	Gly
20	Asn Gl	y Ala 35	Ala	Tyr	Glu	Phe	Ser 40	Gly	Thr	Asp	Glu	Phe 45	Gly	Val	Thr
25	Ala As ₁ 50	o Val	Gln	Val	Pro	Gly 55	Asp	Asn	Thr	Gln	Val 60	Gly	Leu	Ile	Val
	Arg Ly:	s Asn	Asp	Trp	Ser 70	Gln	Lys	Asn	Thr	Pro 75	Asp	Asp	Leu	His	Ile 80
30	Asp Le	ı Ser	Lys	Gly 85	His	Glu	Val	Trp	Ile 90	Asn	Gln	Gly	Asp	Pro 95	Thr
35	Ile Ty	r Tyr	Asn 100	Leu	Asn	Asp	Ala	Glu 105	Ala	Ala	Ala	Val	Pro 110	Ala	Val
40	Ser As	n Ala 115	Tyr	Leu	Asp	Asn	Glu 120	Lys	Thr	Val	Leu	Ala 125	Lys	Leu	Ser
	Ser Pro		Thr	Leu	Thr	Asp 135	Gly	Ala	Ser	Gly	Phe 140	Thr	Val	Thr	Asp
45	Glu Th	r Thr	Gly	Glu	Gln 150	Ile	Pro	Val	Val	Ser 155	Ala	Glu	Ser	Ala	Asn 160
50	Pro Va	l Thr	Ala	Val 165	Leu	Val	Gly	Asp	Phe 170	Gln	Gln	Ala	Leu	Gly 175	Ala
	Ser Gl	y Asn	Trp 180	Ser	Pro	Asp	Asp	As p 185	His	Thr	Lys	Leu	Ser 190	Lys	Ile
55	Asn Se	r Asn 195	Leu	Tyr	Gln	Phe	Thr 200	Gly	Thr	Leu	Pro	Ala 205	Gly	Thr	Tyr

	Gln	Tyr 210	Lys	Val	Ala	Leu	Asp 215	His	Ser	Trp	Ser	Ala 220	Ser	Tyr	Pro	Asn
5	Asn 225	Asn	Val	Asn	Leu	Thr 230	Val	Pro	Ala	Gly	Gly 235	Thr	Lys	Val	Thr	Phe 240
10	Thr	Tyr	Ile	Pro	Ser 245	Thr	His	Gln	Val	Phe 250	Asp	Ser	Ile	Asn	Asn 255	Pro
	Asp	Gln	Thr	Phe 260	Pro	Ser	Ser	Ser	Ala 265	Gly	Thr	Gln	Ser	Asp 270	Leu	Val
15	Gln	Leu	Thr 275	Leu	Ala	Ser	Ala	Pro 280	Asp	Ile	Thr	His	Asp 285	Leu	Gln	Val
20	Val	Ala 290	Asp	Gly	Tyr	Lys	Gly 295	Gly	Lys	Ile	Leu	Pro 300	Arg	Asn	Val	Leu
25	Asn 305	Leu	Pro	Arg	Tyr	Tyr 310	Tyr	Ser	Gly	Asn	Asp 315	Leu	Gly	Asn	Val	Tyr 320
	Ser	Asn	Lys	Ala	Thr 325	Ala	Phe	Arg	Val	Trp 330	Ala	Pro	Thr	Ala	Ser 335	Asp
30	Val	Gln	Leu	Leu 340	Leu	Tyr	Asn	Ser	Glu 345	Thr	Gly	Pro	Val	Thr 350	Lys	Gln
35	Leu	Glu	Met 355	Gln	Lys	Ser	Asp	Asn 360	Gly	Thr	Trp	Lys	Leu 365	Lys	Val	Pro
40	Gly	Asn 370	Leu	Lys	Asn	Trp	Tyr 375	Tyr	Leu	Tyr	Gln	Val 380	Thr	Val	Asn	Gly
	Lys 385	Thr	Gln	Thr	Ala	Val 390	Asp	Pro	Tyr	Val	A rg 395	Ala	Ile	Ser	Val	Asn 400
45	Ala	Thr	Arg	Gly	Met 405	Ile	Val	Asp	Leu	Glu 410	Asp	Thr	Asn	Pro	Pro 415	Gly
50	Trp	Lys	Glu	Asp 420	His	Gln	Gln	Thr	Pro 425	Ala	Asn	Pro	Val	Asp 430	Glu	Val
	Ile	Tyr	Glu 435	Val	His	Val	Arg	Asp 440	Phe	Ser	Ile	Asp	Ala 445	Asn	Ser	Gly
55	Met	Lys	Asn	Lys	Gly	Lys	Tyr	Leu	Ala	Phe	Thr	Glu	His	Gly	Thr	Lys

	Gly	Pro	Asp	Gly	Val	Lys	Thr	Gly	Ile	Asp	Ser	Leu	Lys	Glu	Leu	Gly
5	465		_			470				_	475					480
	Ile	Asn	Ala	Val	Gln 485	Leu	Gln	Pro	Ile	Glu 490	Glu	Phe	Ala	Ser	Ile 495	Asp
10	Glu	Thr	Gln	Pro 500	Asn	Met	Tyr	Asn	Trp 505	Gly	Tyr	Asp	Pro	Arg 510	Asn	Tyr
15	Asn	Val	Pro 515	Glu	Gly	Ala	Tyr	Ala 520	Thr	Thr	Pro	Glu	Gly 525	Thr	Ala	Arg
20	Ile	Thr 530	Gln	Leu	Lys	Gln	Leu 535	Ile	Gln	Ser	Ile	His 540	Lys	Asp	Arg	Ile
	Ala 545	Ile	Asn	Met	Asp	Val 550	Val	Tyr	Asn	His	Thr 555	Phe	Asn	Val	Gly	Val 560
25	Ser	Asp	Phe	Asp	Lys 565	Ile	Val	Pro	Gln	Tyr 570	Tyr	Tyr	Arg	Thr	Asp 575	Ser
30	Ala	Gly	Asn	Tyr 580	Thr	Asn	Gly	Ser	Gly 585	Val	Gly	Asn	Glu	Ile 590	Ala	Ser
35	Glu	Arg	Pro 595	Met	Val	Gln	Lys	Phe 600	Val	Leu	Asp	Ser	Val 605	Lys	Tyr	Trp
	Val	Lys 610	Glu	Tyr	His	Ile	Asp 615	Gly	Phe	Arg	Phe	Asp 620	Leu	Met	Ala	Leu
40	Leu 625	Gly	Lys	Asp	Thr	Met 630	Ala	Lys	Ile	Ser	Lys 635	Glu	Leu	His	Ala	Ile 640
45	Asn	Pro	Gly	Ile	Val 645	Leu	Tyr	Gly	Glu	Pro 650	Trp	Thr	Gly	Gly	Thr 655	Ser
50	Gly	Leu	Ser	Ser 660	Asp	Gln	Leu	Val	Thr 665	Lys	Gly	Gln	Gln	Lys 670	Gly	Leu
	Gly	Ile	Gly 675	Val	Phe	Asn	Asp	As n 680	Leu	Arg	Asn	Ala	Leu 685	Asp	Gly	Asn
55	Val	Phe 690	Asp	Ser	Ser	Ala	Gln 695	Gly	Phe	Ala	Thr	Gly 700	Ala	Thr	Gly	Leu

	Thr Asy	o Ala :	Ile Lys	Arg (Gly	Val	Glu	Gly	Ser 715	Ile	Asn	Asp	Phe	Thr 720
5	Ser Se	r Pro	Ser Glu 725	Thr :	Ile	Asn	Tyr	Val 730	Ser	Cys	His	Asp	As n 735	Tyr
10	Thr Le		Asp Lys 740	Ile i	Ala	Leu	Ser 745	Asn	Pro	Asn	Asp	Ser 750	Glu	Ala
	Asp Ar	g Ile : 755	Lys Met	Asp (Glu	Leu 760	Ala	Gln	Ala	Val	Val 765	Met	Thr	Ser
15	Gln Gl		Pro Phe		Gln 775	Gly	Gly	Glu	Glu	Met 780	Leu	Arg	Thr	Lys
20	Gly Gl 785	y Asn i	Asp Asn	Ser ! 790	Tyr	Asn	Ala	Gly	As p 795	Thr	Val	Asn	Glu	Phe 800
25	Asp Tr	o Ser i	Arg Lys 805	Ala (Gln	Tyr	Pro	Asp 810	Val	Phe	Asn	Tyr	Tyr 815	Ser
25	Gly Le		His Leu 820	Arg :	Leu	Asp	His 825	Pro	Ala	Phe	Arg	Met 830	Thr	Thr
30	Ala As	n Glu : 835	Ile Asn	Ser	His	Leu 840	Gln	Phe	Leu	Asn	Ser 845	Pro	Glu	Asn
35	Thr Va 85		Tyr Glu		Thr 855	Asp	His	Val	Asn	Lys 860	Asp	Lys	Trp	Gly
	Asn Il 865	e Ile '	Val Val	Tyr 2	Asn	Pro	Asn	Lys	Thr 875	Ala	Ala	Thr	Ile	Asn 880
40	Leu Pr	o Ser (Gly Lys 885	Trp i	Ala	Ile	Asn	A la 890	Thr	Ser	Gly	Lys	Val 895	Gly
45	Glu Se		Leu Gly 900	Gln i	Ala	Glu	Gly 905	Ser	Val	Gln	Val	Pro 910	Gly	Ile
	Ser Me	t Met : 915	Ile Leu	His (Gln	Glu 920	Val	Ser	Pro	Asp	His 925	Gly	Lys	Lys
50	<212>		ini-1											
55	<213> <220> <223>		d pullu	Lanas	e									

	<40	0> 2	25													
5	Ala 1	Ser	Ser	Thr	Glu 5	Val	Ile	Val	His	Tyr 10	His	Arg	Phe	Asp	Ala 15	Asn
	Tyr	Ala	Asn	Trp 20	Asp	Leu	Trp	Met	Trp 25	Pro	Tyr	Gln	Pro	Val 30	Asn	Gly
10	Asn	Gly	Ala 35	Ala	Tyr	Glu	Phe	Ser 40	Gly	Thr	Asp	Glu	Phe 45	Gly	Val	Thr
15	Ala	Asp 50	Val	Gln	Val	Pro	Gly 55	Asp	Asn	Thr	Gln	Val 60	Gly	Leu	Ile	Val
20	Arg 65	Lys	Asn	Asp	Trp	Ser 70	Gln	Lys	Asn	Thr	Pro 75	Asp	Asp	Leu	His	Ile 80
	Asp	Leu	Ser	Lys	Gly 85	His	Glu	Val	Trp	Ile 90	Asn	Gln	Gly	Asp	Pro 95	Thr
25	Ile	Tyr	Tyr	Asn 100	Leu	Asn	Asp	Ala	Glu 105	Ala	Ala	Ala	Val	Pro 110	Ala	Val
30	Ser	Asn	Ala 115	Tyr	Leu	Asp	Asn	Glu 120	Lys	Thr	Val	Leu	Ala 125	Lys	Leu	Ser
35	Ser	Pro 130	Met	Thr	Leu	Thr	Asp 135	Gly	Ala	Ser	Gly	Phe 140	Thr	Val	Thr	Asp
	Glu 145	Thr	Thr	Gly	Glu	Gln 150	Ile	Pro	Val	Val	Ser 155	Ala	Glu	Ser	Ala	Asn 160
40	Pro	Val	Thr	Ala	Val 165	Leu	Val	Gly	Asp	Phe 170	Gln	Gln	Ala	Leu	Gly 175	Ala
45	Ser	Gly	Asn	Trp 180	Ser	Pro	Asp	Asp	Asp 185	His	Thr	Lys	Leu	Ser 190	Lys	Ile
50	Asn	Ser	Asn 195	Leu	Tyr	Gln	Phe	Thr 200	Gly	Thr	Leu	Pro	Ala 205	Gly	Thr	Tyr
	Gln	Tyr 210	Lys	Val	Ala	Leu	Asp 215	His	Ser	Trp	Ser	Ala 220	Ser	Tyr	Pro	Asn

Asn Asn Val Asn Leu Thr Val Pro Ala Gly Gly Thr Lys Val Thr Phe 225 230 235 240

	Thr	Tyr	Ile	Pro	Ser 245	Thr	His	Gln	Val	Phe 250	Asp	Ser	Ile	Asn	As n 255	Pro
5	Asp	Gln	Thr	Phe 260	Pro	Ser	Ser	Ser	Ala 265	Gly	Thr	Gln	Ser	Asp 270	Leu	Val
10	Gln	Leu	Thr 275	Leu	Ala	Ser	Ala	Pro 280	Asp	Ile	Thr	His	Asp 285	Leu	Gln	Val
	Val	Ala 290	Asp	Gly	Tyr	Lys	Gly 295	Gly	Lys	Ile	Leu	Pro 300	Arg	Asn	Val	Leu
15	Asn 305	Leu	Pro	Arg	Tyr	Tyr 310	Tyr	Ser	Gly	Asn	Asp 315	Leu	Gly	Asn	Val	Tyr 320
20	Ser	Asn	Lys	Ala	Thr 325	Ala	Phe	Arg	Val	Trp 330	Ala	Pro	Thr	Ala	Ser 335	Asp
25	Val	Gln	Leu	Leu 340	Leu	Tyr	Asn	Ser	Glu 345	Thr	Gly	Pro	Val	Thr 350	Lys	Gln
	Leu	Glu	Met 355	Gln	Lys	Ser	Asp	Asn 360	Gly	Thr	Trp	Lys	Leu 365	Lys	Val	Pro
30	Gly	Asn 370	Leu	Lys	Asn	Trp	Tyr 375	Tyr	Leu	Tyr	Gln	Val 380	Thr	Val	Asn	Gly
35	Lys 385	Thr	Gln	Thr	Ala	Val 390	Asp	Pro	Tyr	Val	Arg 395	Ala	Ile	Ser	Val	Asn 400
40	Ala	Thr	Arg	Gly	Met 405	Ile	Val	Asp	Leu	Glu 410	Asp	Thr	Asn	Pro	Pro 415	Gly
40	Trp	Lys	Glu	Asp 420	His	Gln	Gln	Thr	Pro 425	Ala	Asn	Pro	Val	Asp 430	Glu	Val
45	Ile	Tyr	Glu 435	Val	His	Val	Arg	Asp 440	Phe	Ser	Ile	Asp	Ala 445	Asn	Ser	Gly
50	Met	Lys 450	Asn	Lys	Gly	Lys	Tyr 455	Leu	Ala	Phe	Thr	Glu 460	His	Gly	Thr	Lys
	Gly 465	Pro	Asp	Gly	Val	Lys 470	Thr	Gly	Ile	Asp	Ser 475	Leu	Lys	Glu	Leu	Gly 480
55	Ile	Asn	Ala	Val	Gln 485	Leu	Gln	Pro	Ile	Glu 490	Glu	Phe	Ala	Ser	Ile 495	Asp

	Glu	Thr	Gln	Pro 500	Asn	Met	Tyr	Asn	Trp 505	Gly	Tyr	Asp	Pro	Arg 510	Asn	Tyr
5	Asn	Val	Pro 515	Glu	Gly	Ala	Tyr	Ala 520	Thr	Thr	Pro	Glu	Gly 525	Thr	Ala	Arg
10	Ile	Thr 530	Gln	Leu	Lys	Gln	Leu 535	Ile	Gln	Ser	Ile	His 540	Lys	Asp	Arg	Ile
	Ala 545	Ile	Asn	Met	Asp	Val 550	Val	Tyr	Asn	His	Thr 555	Phe	Ala	Thr	Gln	Ile 560
15	Ser	Asp	Phe	Asp	Lys 565	Ile	Val	Pro	Glu	Tyr 570	Tyr	Tyr	Arg	Thr	Asp 575	Asp
20	Ala	Gly	Asn	Tyr 580	Thr	Asn	Gly	Ser	Gly 585	Thr	Gly	Asn	Glu	Ile 590	Ala	Ala
25	Glu	Arg	Pro 595	Met	Val	Gln	Lys	Phe 600	Ile	Ile	Asp	Ser	Leu 605	Lys	Tyr	Trp
	Val	Asn 610	Glu	Tyr	His	Ile	Asp 615	Gly	Phe	Arg	Phe	Asp 620	Leu	Met	Ala	Leu
30	Leu 625	Gly	Lys	Asp	Thr	Met 630	Ser	Lys	Ala	Ala	Ser 635	Glu	Leu	His	Ala	Ile 640
35	Asn	Pro	Gly	Ile	Ala 645	Leu	Tyr	Gly	Glu	Pro 650	Trp	Thr	Gly	Gly	Thr 655	Ser
40	Ala	Leu	Pro	Glu 660	Asp	Gln	Leu	Leu	Thr 665	Lys	Gly	Ala	Gln	Lys 670	Gly	Met
40	Gly	Val	Ala 675	Val	Phe	Asn	Asp	Asn 680	Leu	Arg	Asn	Ala	Leu 685	Asp	Gly	Asn
45	Val	Phe 690	Asp	Ser	Ser	Ala	Gln 695	Gly	Phe	Ala	Thr	Gly 700	Ala	Thr	Gly	Leu
50	Thr 705	Asp	Ala	Ile	Lys	Arg 710	Gly	Val	Glu	Gly	Ser 715	Ile	Asn	Asp	Phe	Thr 720
	Ser	Ser	Pro	Ser	Glu 725	Thr	Ile	Asn	Tyr	Val 730	Ser	Суѕ	His	Asp	As n 735	Tyr
55	Thr	Leu	Trp	Asp 740	Lys	Ile	Ala	Leu	Ser 745	Asn	Pro	Asn	Asp	Ser 750	Glu	Ala

	Asp Ar	g Ile 755		Met	Asp	Glu	Leu 760	Ala	Gln	Ala	Val	Val 765	Met	Thr	Ser
5	Gln Gl 77		Pro	Phe	Met	Gln 775	Gly	Gly	Glu	Glu	Met 780	Leu	Arg	Thr	Lys
10	Gly Gl 785	y Asn	Asp	Asn	Ser 790	Tyr	Asn	Ala	Gly	Asp 795	Thr	Val	Asn	Glu	Phe 800
15	Asp Tr	p Ser	Arg	Lys 805	Ala	Gln	Tyr	Pro	Asp 810	Val	Phe	Asn	Tyr	Tyr 815	Ser
70	Gly Le	u Ile	His 820	Leu	Arg	Leu	Asp	His 825	Pro	Ala	Phe	Arg	Met 830	Thr	Thr
20	Ala As	n Glu 835	Ile	Asn	Ser	His	Leu 840	Gln	Phe	Leu	Asn	Ser 845	Pro	Glu	Asn
25	Thr Va		Tyr	Glu	Leu	Thr 855	Asp	His	Val	Asn	Lys 860	Asp	Lys	Trp	Gly
20	Asn Il 865	e Ile	Val	Val	Tyr 870	Asn	Pro	Asn	Lys	Thr 875	Ala	Ala	Thr	Ile	Asn 880
30	Leu Pr	o Ser	Gly	Lys 885	Trp	Ala	Ile	Asn	Ala 890	Thr	Ser	Gly	Lys	Val 895	Gly
35	Glu Se	r Thr	Leu 900	Gly	Gln	Ala	Glu	Gly 905	Ser	Val	Gln	Val	Pro 910	Gly	Ile
40	Ser Me	t Met 915	Ile	Leu	His	Gln	Glu 920	Val	Ser	Pro	Asp	His 925	Gly	Lys	Lys
45	<210><211><211><212><213>	26 928 PRT Arti	ficia	al											
	<220> <223>	Hybr			Lanas	se									
50	<400>	26													
	Ala Se 1	r Ser	Thr	Glu 5	Val	Ile	Val	His	Tyr 10	His	Arg	Phe	Asp	Ala 15	Asn
55	Tyr Al	a Asn	Trp 20	Asp	Leu	Trp	Met	Trp 25	Pro	Tyr	Gln	Pro	Val 30	Asn	Gly

	Asn	GTĀ	A1a 35	Ala	Tyr	GLu	Phe	Ser 40	СТĀ	Thr	Asp	GLu	Phe 45	СТĀ	Val	Thr
5	Ala	Asp 50	Val	Gln	Val	Pro	Gly 55	Asp	Asn	Thr	Gln	Val 60	Gly	Leu	Ile	Val
10	Arg 65	Lys	Asn	Asp	Trp	Ser 70	Gln	Lys	Asn	Thr	Pro 75	Asp	Asp	Leu	His	Ile 80
	Asp	Leu	Ser	Lys	Gly 85	His	Glu	Val	Trp	Ile 90	Asn	Gln	Gly	Asp	Pro 95	Thr
15	Ile	Tyr	Tyr	Asn 100	Leu	Asn	Asp	Ala	Glu 105	Ala	Ala	Ala	Val	Pro 110	Ala	Val
20	Ser	Asn	Ala 115	Tyr	Leu	Asp	Asn	Glu 120	Lys	Thr	Val	Leu	Ala 125	Lys	Leu	Ser
25	Ser	Pro 130	Met	Thr	Leu	Thr	Asp 135	Gly	Ala	Ser	Gly	Phe 140	Thr	Val	Thr	Asp
	Glu 145	Thr	Thr	Gly	Glu	Gln 150	Ile	Pro	Val	Val	Ser 155	Ala	Glu	Ser	Ala	Asn 160
30	Pro	Val	Thr	Ala	Val 165	Leu	Val	Gly	Asp	Phe 170	Gln	Gln	Ala	Leu	Gly 175	Ala
35	Ser	Gly	Asn	Trp 180	Ser	Pro	Asp	Asp	Asp 185	His	Thr	Lys	Leu	Ser 190	Lys	Ile
40	Asn	Ser	Asn 195	Leu	Tyr	Gln	Phe	Thr 200	Gly	Thr	Leu	Pro	Ala 205	Gly	Thr	Tyr
40	Gln	Tyr 210	Lys	Val	Ala	Leu	Asp 215	His	Ser	Trp	Ser	Ala 220	Ser	Tyr	Pro	Asn
45	A sn 225	Asn	Val	Asn	Leu	Thr 230	Val	Pro	Ala	Gly	Gly 235	Thr	Lys	Val	Thr	Phe 240
50	Thr	Tyr	Ile	Pro	Ser 245	Thr	His	Gln	Val	Phe 250	Asp	Ser	Ile	Asn	Asn 255	Pro
	Asp	Gln	Thr	Phe 260	Pro	Ser	Ser	Ser	Ala 265	Gly	Thr	Gln	Ser	Asp 270	Leu	Val
55	Gln	Leu	Thr 275	Leu	Ala	Ser	Ala	Pro 280	Asp	Ile	Thr	His	Asp 285	Leu	Gln	Val

	Val	Ala 290	Asp	Gly	Tyr	Lys	Gly 295	Gly	Lys	Ile	Leu	Pro 300	Arg	Asn	Val	Leu
5	Asn 305	Leu	Pro	Arg	Tyr	Tyr 310	Tyr	Ser	Gly	Asn	Asp 315	Leu	Gly	Asn	Val	Tyr 320
10	Ser	Asn	Lys	Ala	Thr 325	Ala	Phe	Arg	Val	Trp 330	Ala	Pro	Thr	Ala	Ser 335	Asp
	Val	Gln	Leu	Leu 340	Leu	Tyr	Asn	Ser	Glu 345	Thr	Gly	Pro	Val	Thr 350	Lys	Gln
15	Leu	Glu	Met 355	Gln	Lys	Ser	Asp	Asn 360	Gly	Thr	Trp	Lys	Leu 365	Lys	Val	Pro
20	Gly	Asn 370	Leu	Lys	Asn	Trp	Tyr 375	Tyr	Leu	Tyr	Gln	Val 380	Thr	Val	Asn	Gly
25	Lys 385	Thr	Gln	Thr	Ala	Val 390	Asp	Pro	Tyr	Val	Arg 395	Ala	Ile	Ser	Val	Asn 400
	Ala	Thr	Arg	Gly	Met 405	Ile	Val	Asp	Leu	Glu 410	Asp	Thr	Asn	Pro	Pro 415	Gly
30	Trp	Lys	Glu	Asp 420	His	Gln	Gln	Thr	Pro 425	Ala	Asn	Pro	Val	Asp 430	Glu	Val
35	Ile	Tyr	Glu 435	Val	His	Val	Arg	Asp 440	Phe	Ser	Ile	Asp	Ala 445	Asn	Ser	Gly
40	Met	Lys 450	Asn	Lys	Gly	Lys	Tyr 455	Leu	Ala	Phe	Thr	Glu 460	His	Gly	Thr	Lys
	Gly 465	Pro	Asp	Gly	Val	Lys 470	Thr	Gly	Ile	Asp	Ser 475	Leu	Lys	Glu	Leu	Gly 480
45	Ile	Asn	Ala	Val	Gln 485	Leu	Gln	Pro	Ile	Glu 490	Glu	Phe	Ala	Ser	Ile 495	Asp
50	Glu	Thr	Gln	Pro 500	Asn	Met	Tyr	Asn	Trp 505	Gly	Tyr	Asp	Pro	Arg 510	Asn	Tyr
	Asn	Val	Pro 515	Glu	Gly	Ala	Tyr	Ala 520	Thr	Thr	Pro	Glu	Gly 525	Thr	Ala	Arg
55	Ile	Thr	Glu	Phe	Lys	Gln	Leu	Ile	Gln	Ser	Ile	His	Lys	Asp	Arg	Ile

5	Ala 545	Ile	Asn	Met	Asp	Val 550	Val	Tyr	Asn	His	Thr 555	Phe	Ser	Thr	Leu	Ile 560
40	Ser	Asp	Phe	Asp	Lys 565	Ile	Val	Pro	Gln	Tyr 570	Tyr	Tyr	Arg	Thr	Asp 575	Asp
10	Ala	Gly	Asn	Tyr 580	Thr	Asn	Gly	Ser	Gly 585	Val	Gly	Asn	Glu	Phe 590	Ala	Thr
15	Glu	His	Pro 595	Met	Ala	Arg	Lys	Phe 600	Val	Leu	Asp	Ser	Leu 605	Lys	Tyr	Trp
20	Val	Thr 610	Gln	Tyr	His	Ile	Asp 615	Gly	Phe	Arg	Phe	Asp 620	Leu	Met	Ala	Leu
	Leu 625	Gly	Lys	Asn	Thr	Met 630	Ala	Glu	Ala	Ser	Lys 635	Glu	Leu	His	Ala	Ile 640
25	Asn	Pro	Gly	Ile	Val 645	Leu	Tyr	Gly	Glu	Pro 650	Trp	Thr	Gly	Gly	Thr 655	Ser
30	Gly	Ile	Thr	Gly 660	Asp	Gln	Leu	Leu	Thr 665	Lys	Gly	Val	Gln	Lys 670	Gly	Leu
35	Gly	Ile	Gly 675	Val	Phe	Asn	Asp	Asn 680	Leu	Arg	Asn	Ala	Leu 685	Asp	Gly	Asn
	Val	Phe 690	Asp	Ser	Ser	Ala	Gln 695	Gly	Phe	Ala	Thr	Gly 700	Ala	Thr	Gly	Leu
40	Thr 705	Asp	Ala	Ile	Lys	A rg 710	Gly	Val	Glu	Gly	Ser 715	Ile	Asn	Asp	Phe	Thr 720
45	Ser	Ser	Pro	Ser	Glu 725	Thr	Ile	Asn	Tyr	Val 730	Ser	Cys	His	Asp	Asn 735	Tyr
50	Thr	Leu	Trp	Asp 740	Lys	Ile	Ala	Leu	Ser 745	Asn	Pro	Asn	Asp	Ser 750	Glu	Ala
	Asp	Arg	Ile 755	Lys	Met	Asp	Glu	Leu 760	Ala	Gln	Ala	Val	Val 765	Met	Thr	Ser
55	Gln	Gly 770	Val	Pro	Phe	Met	Gln 775	Gly	Gly	Glu	Glu	Met 780	Leu	Arg	Thr	Lys

	Gly G1 785	Ly Asn	Asp	Asn	Ser 790	Tyr	Asn	Ala	Gly	Asp 795	Thr	Val	Asn	Glu	Phe 800
5	Asp Ti	rp Ser	_	Lys 805	Ala	Gln	Tyr	Pro	Asp 810	Val	Phe	Asn	Tyr	Tyr 815	Ser
10	Gly Le	eu Ile	His 820	Leu	Arg	Leu	Asp	His 825	Pro	Ala	Phe	Arg	Met 830	Thr	Thr
	Ala As	sn Glu 835	Ile	Asn	Ser	His	Leu 840	Gln	Phe	Leu	Asn	Ser 845	Pro	Glu	Asn
15	Thr Va	al Ala 50	Tyr	Glu	Leu	Thr 855	Asp	His	Val	Asn	Lys 860	Asp	Lys	Trp	Gly
20	Asn II 865	le Ile	Val	Val	Tyr 870	Asn	Pro	Asn	Lys	Thr 875	Ala	Ala	Thr	Ile	Asn 880
	Leu Pı	ro Ser	_	Lys 885	Trp	Ala	Ile	Asn	A la 890	Thr	Ser	Gly	Lys	V al 895	Gly
25	Glu S€	er Thr	Leu 900	Gly	Gln	Ala	Glu	Gly 905	Ser	Val	Gln	Val	Pro 910	Gly	Ile
30	Ser Me	et Met 915	Ile	Leu	His	Gln	Glu 920	Val	Ser	Pro	Asp	His 925	Gly	Lys	Lys
35	<210><211><211><212><213>	27 928 PRT Arti	ficia	1											
	<220> <223>	Hybr	id pu	ıllul	Lanas	se									
40	<400>	27													
	Ala Se	er Ser	Thr	Glu 5	Val	Ile	Val	His	Tyr 10	His	Arg	Phe	Asp	Ala 15	Asn
45	Tyr Al	La Asn	Trp 20	Asp	Leu	Trp	Met	Trp 25	Pro	Tyr	Gln	Pro	Val 30	Asn	Gly
50	Asn G	Ly Ala 35	Ala	Tyr	Glu	Phe	Ser 40	Gly	Thr	Asp	Glu	Phe 45	Gly	Val	Thr
55	Ala As		Gln	Val	Pro	Gly 55	Asp	Asn	Thr	Gln	Val 60	Gly	Leu	Ile	Val
	Arg Ly	ys Asn	Asp	Trp	Ser	Gln	Lys	Asn	Thr	Pro	Asp	Asp	Leu	His	Ile

	65					70					75					80
5	Asp	Leu	Ser	Lys	Gly 85	His	Glu	Val	Trp	Ile 90	Asn	Gln	Gly	Asp	Pro 95	Thr
10	Ile	Tyr	Tyr	Asn 100	Leu	Asn	Asp	Ala	Glu 105	Ala	Ala	Ala	Val	Pro 110	Ala	Val
	Ser	Asn	Ala 115	Tyr	Leu	Asp	Asn	Glu 120	Lys	Thr	Val	Leu	Ala 125	Lys	Leu	Ser
15	Ser	Pro 130	Met	Thr	Leu	Thr	Asp 135	Gly	Ala	Ser	Gly	Phe 140	Thr	Val	Thr	Asp
20	Glu 145	Thr	Thr	Gly	Glu	Gln 150	Ile	Pro	Val	Val	Ser 155	Ala	Glu	Ser	Ala	Asn 160
0.5	Pro	Val	Thr	Ala	Val 165	Leu	Val	Gly	Asp	Phe 170	Gln	Gln	Ala	Leu	Gly 175	Ala
25	Ser	Gly	Asn	Trp 180	Ser	Pro	Asp	Asp	Asp 185	His	Thr	Lys	Leu	Ser 190	Lys	Ile
30	Asn	Ser	Asn 195	Leu	Tyr	Gln	Phe	Thr 200	Gly	Thr	Leu	Pro	Ala 205	Gly	Thr	Tyr
35	Gln	Tyr 210	Lys	Val	Ala	Leu	Asp 215	His	Ser	Trp	Ser	Ala 220	Ser	Tyr	Pro	Asn
	Asn 225	Asn	Val	Asn	Leu	Thr 230		Pro	Ala	Gly	Gly 235		Lys	Val	Thr	Phe 240
40	Thr	Tyr	Ile	Pro	Ser 245	Thr	His	Gln	Val	Phe 250	Asp	Ser	Ile	Asn	Asn 255	Pro
45	Asp	Gln	Thr	Phe 260	Pro	Ser	Ser	Ser	Ala 265	Gly	Thr	Gln	Ser	Asp 270	Leu	Val
50	Gln	Leu	Thr 275	Leu	Ala	Ser	Ala	Pro 280	Asp	Ile	Thr	His	Asp 285	Leu	Gln	Val
	Val	Ala 290	Asp	Gly	Tyr	Lys	Gly 295	Gly	Lys	Ile	Leu	Pro 300	Arg	Asn	Val	Leu
55	Asn 305	Leu	Pro	Arg	Tyr	Tyr 310	Tyr	Ser	Gly	Asn	Asp 315	Leu	Gly	Asn	Val	Tyr 320

	Ser	Asn	Lys	Ala	Thr 325	Ala	Phe	Arg	Val	Trp 330	Ala	Pro	Thr	Ala	Ser 335	Asp
5	Val	Gln	Leu	Leu 340	Leu	Tyr	Asn	Ser	Glu 345	Thr	Gly	Pro	Val	Thr 350	Lys	Gln
10	Leu	Glu	Met 355	Gln	Lys	Ser	Asp	Asn 360	Gly	Thr	Trp	Lys	Leu 365	Lys	Val	Pro
	Gly	Asn 370	Leu	Lys	Asn	Trp	Tyr 375	Tyr	Leu	Tyr	Gln	Val 380	Thr	Val	Asn	Gly
15	Lys 385	Thr	Gln	Thr	Ala	Val 390	Asp	Pro	Tyr	Val	Arg 395	Ala	Ile	Ser	Val	Asn 400
20	Ala	Thr	Arg	Gly	Met 405	Ile	Val	Asp	Leu	Glu 410	Asp	Thr	Asn	Pro	Pro 415	Gly
25	Trp	Lys	Glu	Asp 420	His	Gln	Gln	Thr	Pro 425	Ala	Asn	Pro	Val	Asp 430	Glu	Val
	Ile	Tyr	Glu 435	Val	His	Val	Arg	Asp 440	Phe	Ser	Ile	Asp	Ala 445	Asn	Ser	Gly
30	Met	Lys 450	Asn	Lys	Gly	Lys	Tyr 455	Leu	Ala	Phe	Thr	Glu 460	His	Gly	Thr	Lys
35	Gly 465	Pro	Asp	Gly	Val	Lys 470	Thr	Gly	Ile	Asp	Ser 475	Leu	Lys	Glu	Leu	Gly 480
40	Ile	Asn	Ala	Val	Gln 485	Leu	Gln	Pro	Ile	Glu 490	Glu	Phe	Ala	Ser	Ile 495	Asp
40	Glu	Thr	Gln	Pro 500	Asn	Met	Tyr	Asn	Trp 505	Gly	Tyr	Asp	Pro	Arg 510	Asn	Tyr
45	Asn	Val	Pro 515	Glu	Gly	Ala	Tyr	Ala 520	Thr	Thr	Pro	Glu	Gly 525	Thr	Ala	Arg
50	Ile	Thr 530	Glu	Phe	Lys	Gln	Leu 535	Ile	Gln	Ser	Ile	His 540	Lys	Asp	Arg	Ile
	Ala 545	Ile	Asn	Met	Asp	Val 550	Val	Tyr	Asn	His	Thr 555	Phe	Ala	Thr	Gln	Ile 560
55	Ser	Asp	Phe	Asp	Lys 565	Ile	Val	Pro	Glu	Tyr 570	Tyr	Tyr	Arg	Thr	Asp 575	Asp

	Ala	Gly	Asn	Tyr 580	Thr	Asn	Gly	Ser	Gly 585	Thr	Gly	Asn	Glu	Ile 590	Ala	Ala
5	Glu	Arg	Pro 595	Met	Val	Gln	Lys	Phe 600	Ile	Ile	Asp	Ser	Leu 605	Lys	Tyr	Trp
10	Val	Asn 610	Glu	Tyr	His	Ile	Asp 615	Gly	Phe	Arg	Phe	Asp 620	Leu	Met	Ala	Leu
	Leu 625	Gly	Lys	Asp	Thr	Met 630	Ser	Lys	Ala	Ala	Ser 635	Glu	Leu	His	Ala	Ile 640
15	Asn	Pro	Gly	Ile	Ala 645	Leu	Tyr	Gly	Glu	Pro 650	Trp	Thr	Gly	Gly	Thr 655	Ser
20	Ala	Leu	Pro	Glu 660	Asp	Gln	Leu	Leu	Thr 665	Lys	Gly	Ala	Gln	Lys 670	Gly	Met
25	Gly	Val	Ala 675	Val	Phe	Asn	Asp	Asn 680	Leu	Arg	Asn	Ala	Leu 685	Asp	Gly	Asn
	Val	Phe 690	Asp	Ser	Ser	Ala	Gln 695	Gly	Phe	Ala	Thr	Gly 700	Ala	Thr	Gly	Leu
30	Thr 705	Asp	Ala	Ile	Lys	A rg 710	Gly	Val	Glu	Gly	Ser 715	Ile	Asn	Asp	Phe	Thr 720
35	Ser	Ser	Pro	Ser	Glu 725	Thr	Ile	Asn	Tyr	Val 730	Ser	Cys	His	Asp	Asn 735	Tyr
40	Thr	Leu	Trp	Asp 740	Lys	Ile	Ala	Leu	Ser 745	Asn	Pro	Asn	Asp	Ser 750	Glu	Ala
40	Asp	Arg	Ile 755	Lys	Met	Asp	Glu	Leu 760	Ala	Gln	Ala	Val	Val 765	Met	Thr	Ser
45	Gln	Gly 770	Val	Pro	Phe	Met	Gln 775	Gly	Gly	Glu	Glu	Met 780	Leu	Arg	Thr	Lys
50	Gly 785	Gly	Asn	Asp	Asn	Ser 790	Tyr	Asn	Ala	Gly	Asp 795	Thr	Val	Asn	Glu	Phe 800
	Asp	Trp	Ser	Arg	Lys 805	Ala	Gln	Tyr	Pro	Asp 810	Val	Phe	Asn	Tyr	Tyr 815	Ser
55	Gly	Leu	Ile	His 820	Leu	Arg	Leu	Asp	His 825	Pro	Ala	Phe	Arg	Met 830	Thr	Thr

	Ala A	sn Glu 835		Asn	Ser	His	Leu 840	Gln	Phe	Leu	Asn	Ser 845	Pro	Glu	Asn
5		al Ala 50	Tyr	Glu	Leu	Thr 855	Asp	His	Val	Asn	Lys 860	Asp	Lys	Trp	Gly
10	Asn I 865	le Ile	Val	Val	Tyr 870	Asn	Pro	Asn	Lys	Thr 875	Ala	Ala	Thr	Ile	Asn 880
15	Leu P	ro Ser	Gly	Lys 885	Trp	Ala	Ile	Asn	Ala 890	Thr	Ser	Gly	Lys	Val 895	Gly
	Glu S	er Thr	900	Gly	Gln	Ala	Glu	Gly 905	Ser	Val	Gln	Val	Pro 910	Gly	Ile
20	Ser M	et Met 915		Leu	His	Gln	Glu 920	Val	Ser	Pro	Asp	His 925	Gly	Lys	Lys
25	<210><211><211><212><213>	828 PRT	ficia	al											
30	<220> <223> <400>	-	id o	£ P0(08 aı	nd CI) fr	om P3	306						
35		zo er Thr	Ser	Thr 5	Glu	Val	Ile	Val	His 10	Tyr	His	Arg	Phe	Asp 15	Ser
	Asn T	yr Ala	Asn 20	Trp	Asp	Leu	Trp	Met 25	Trp	Pro	Tyr	Gln	Pro 30	Val	Asn
40	Gly A	sn Gly 35	Ala	Ala	Tyr	Glu	Phe 40	Ser	Gly	Lys	Asp	Asp 45	Phe	Gly	Val
45	Lys A	la Asr O	Val	Gln	Val	Pro 55	Gly	Asp	Asp	Thr	Gln 60	Val	Gly	Leu	Ile
50	5					55					60				
	Val A 65	0	Asn	Asp	Trp 70	55 Ser	Gln	Lys	Asn	Thr 75	60 Ser	Asp	Asp	Leu	His 80

	Val	Ser	Asn 115	Ala	Tyr	Leu	Asp	Asn 120	Glu	Lys	Thr	Val	Leu 125	Ala	Lys	Leu
5	Thr	Asn 130	Pro	Met	Thr	Leu	Ser 135	Asp	Gly	Ser	Ser	Gly 140	Phe	Thr	Val	Thr
10	Asp 145	Lys	Thr	Thr	Gly	Glu 150	Gln	Ile	Pro	Val	Thr 155	Ala	Ala	Thr	Asn	Ala 160
	Asn	Ser	Ala	Ser	Ser 165	Ser	Glu	Gln	Thr	Asp 170	Leu	Val	Gln	Leu	Thr 175	Leu
15	Ala	Ser	Ala	Pro 180	Asp	Val	Ser	His	Thr 185	Ile	Gln	Val	Gly	Ala 190	Ala	Gly
20	Tyr	Glu	Ala 195	Val	Asn	Leu	Ile	Pro 200	Arg	Asn	Val	Leu	Asn 205	Leu	Pro	Arg
25	Tyr	Tyr 210	Tyr	Ser	Gly	Asn	Asp 215	Leu	Gly	Asn	Val	Tyr 220	Ser	Asn	Lys	Ala
	Thr 225	Ala	Phe	Arg	Val	Trp 230	Ala	Pro	Thr	Ala	Ser 235	Asp	Val	Gln	Leu	Leu 240
30	Leu	Tyr	Asn	Ser	Glu 245	Thr	Gly	Pro	Val	Thr 250	Lys	Gln	Leu	Glu	Met 255	Gln
35	Lys	Ser	Asp	Asn 260	Gly	Thr	Trp	Lys	Leu 265	Lys	Val	Pro	Gly	Asn 270	Leu	Lys
40	Asn	Trp	Tyr 275	Tyr	Leu	Tyr	Gln	Val 280	Thr	Val	Asn	Gly	Lys 285	Thr	Gln	Thr
40	Ala	Val 290	Asp	Pro	Tyr	Val	Arg 295	Ala	Ile	Ser	Val	Asn 300	Ala	Thr	Arg	Gly
45	Met 305	Ile	Val	Asp	Leu	Glu 310	Asp	Thr	Asn	Pro	Pro 315	Gly	Trp	Lys	Glu	Asp 320
50	His	Gln	Gln	Thr	Pro 325	Ala	Asn	Pro	Val	Asp 330	Glu	Val	Ile	Tyr	Glu 335	Val
	His	Val	Arg	Asp 340	Phe	Ser	Ile	Asp	Ala 345	Asn	Ser	Gly	Met	Lys 350	Asn	Lys
55	Gly	Lys	Tyr 355	Leu	Ala	Phe	Thr	Glu 360	His	Gly	Thr	Lys	Gly 365	Pro	Asp	Gly

	Val	Lys 370	Thr	Gly	Ile	Asp	Ser 375	Leu	Lys	Glu	Leu	Gly 380	Ile	Asn	Ala	Val
5	Gln 385	Leu	Gln	Pro	Ile	Glu 390	Glu	Phe	Ala	Ser	Ile 395	Asp	Glu	Thr	Gln	Pro 400
10	Asn	Met	Tyr	Asn	Trp 405	Gly	Tyr	Asp	Pro	Arg 410	Asn	Tyr	Asn	Val	Pro 415	Glu
45	Gly	Ala	Tyr	Ala 420	Thr	Thr	Pro	Glu	Gly 425	Thr	Ala	Arg	Ile	Thr 430	Glu	Phe
15	Lys	Gln	Leu 435	Ile	Gln	Ser	Ile	His 440	Lys	Asp	Arg	Ile	Ala 445	Ile	Asn	Met
20	Asp	Val 450	Val	Tyr	Asn	His	Thr 455	Phe	Ala	Thr	Gln	Ile 460	Ser	Asp	Phe	Asp
25	Lys 465	Ile	Val	Pro	Glu	Tyr 470	Tyr	Tyr	Arg	Thr	Asp 475	Asp	Ala	Gly	Asn	Tyr 480
	Thr	Asn	Gly	Ser	Gly 485	Thr	Gly	Asn	Glu	Ile 490	Ala	Ala	Glu	Arg	Pro 495	Met
30	Val	Gln	Lys	Phe 500	Ile	Ile	Asp	Ser	Leu 505	Lys	Tyr	Trp	Val	Asn 510	Glu	Tyr
35	His	Ile	Asp 515	Gly	Phe	Arg	Phe	Asp 520	Leu	Met	Ala	Leu	Leu 525	Gly	Lys	Asp
40	Thr	Met 530	Ser	Lys	Ala	Ala	Ser 535	Glu	Leu	His	Ala	Ile 540	Asn	Pro	Gly	Ile
	Ala 545	Leu	Tyr	Gly	Glu	Pro 550	Trp	Thr	Gly	Gly	Thr 555	Ser	Ala	Leu	Pro	Glu 560
45	Asp	Gln	Leu	Leu	Thr 565	Lys	Gly	Ala	Gln	Lys 570	Gly	Met	Gly	Val	Ala 575	Val
50	Phe	Asn	Asp	Asn 580	Leu	Arg	Asn	Ala	Leu 585	Asp	Gly	Asn	Val	Phe 590	Asp	Ser
55	Ser	Ala	Gln 595	Gly	Phe	Ala	Thr	Gly 600	Ala	Thr	Gly	Leu	Thr 605	Asp	Ala	Ile
	Lys	Arg	Gly	Val	Glu	Gly	Ser	Ile	Asn	Asp	Phe	Thr	Ser	Ser	Pro	Ser

620

615

610

5	Glu 625	Thr	Ile	Asn	Tyr	Val 630	Ser	Cys	His	Asp	Asn 635	Tyr	Thr	Leu	Trp	Asp 640
10	Lys	Ile	Ala	Leu	Ser 645	Asn	Pro	Asn	Asp	Ser 650	Glu	Ala	Asp	Arg	Ile 655	Lys
	Met	Asp	Glu	Leu 660	Ala	Gln	Ala	Val	Val 665	Met	Thr	Ser	Gln	Gly 670	Val	Pro
15	Phe	Met	Gln 675	Gly	Gly	Glu	Glu	Met 680	Leu	Arg	Thr	Lys	Gly 685	Gly	Asn	Asp
20	Asn	Ser 690	Tyr	Asn	Ala	Gly	Asp 695	Thr	Val	Asn	Glu	Phe 700	Asp	Trp	Ser	Arg
25	Lys 705	Ala	Gln	Tyr	Pro	Asp 710	Val	Phe	Asn	Tyr	Tyr 715	Ser	Gly	Leu	Ile	His 720
	Leu	Arg	Leu	Asp	His 725	Pro	Ala	Phe	Arg	Met 730	Thr	Thr	Ala	Asn	Glu 735	Ile
30	Asn	Ser	His	Leu 740	Gln	Phe	Leu	Asn	Ser 745	Pro	Glu	Asn	Thr	Val 750	Ala	Tyr
35	Glu	Leu	Thr 755	Asp	His	Val	Asn	Lys 760	Asp	Lys	Trp	Gly	Asn 765	Ile	Ile	Val
40	Val	Tyr 770	Asn	Pro	Asn	Lys	Thr 775	Ala	Ala	Thr	Ile	Asn 780	Leu	Pro	Ser	Gly
	Lys 785	Trp	Ala	Ile	Asn	A la 790	Thr	Ser	Gly	Lys	Val 795	Gly	Glu	Ser	Thr	Leu 800
15	Gly	Gln	Ala	Glu	Gly 805	Ser	Val	Gln	Val	Pro 810	Gly	Ile	Ser	Met	Met 815	Ile
50	Leu	His	Gln	Glu 820	Val	Ser	Pro	Asp	His 825	Gly	Lys	Lys				

Claims

1. A pullulanase variant comprising the substitutions N368G+N393A+A492S,A, using SEQ ID NO: 3 for numbering wherein the variant has pullulanase activity; and wherein the variant has at least 85%, at least 90%, at least 95%, at least 96%, at least 97%, at least 98%, or at least 99%, or 100% sequence identity to the polypeptide of SEQ ID NO: 21.

- 2. The variant according to claim 1, wherein the variant has increased thermoactivity.
- 3. The variant according to claim 1-2, wherein the variant has increased specific activity toward starch or maltodextrin compared to any of SEQ ID NO: 3, SEQ ID NO:6, SEQ ID NO:9, SEQ ID NO:16, or SEQ ID NO:17.
- 4. The variants according to claim 1, wherein the variant is selected from SEQ ID NO: 21 or a pullulanase having at least 85%, at least 90%, at least 95%, at least 96%, at least 97%, at least 98%, or at least 99%, or 100% sequence identity to the polypeptide of SEQ ID NO: 21.
- 5. A composition comprising the variant pullulanase of any of claims 1- 4.

5

25

35

40

45

50

55

- **6.** The composition according to claim 5, further comprising one or more enzymes selected from the group consisting of: glucoamylase, alpha-amylase, beta-amylase, and protease.
- 7. The composition according to any of claims 5 and 6, comprising a variant pullulanase of any of claims 1-4 and: i) a glucoamylase, an alpha-amylase and a protease; ii) an alpha-amylase and a protease; iii) a glucoamylase and an alpha-amylase; iv) a beta-amylase; or v) a glucoamylase.
- **8.** A use of a variant pullulanase of any of claims 1-4 for production of a syrup and/ or a fermentation product, e.g., ethanol, from a starch containing material.
 - 9. The use according to claim 8 wherein the starch material is gelatinized or un-gelatinized starch material.
 - 10. A polynucleotide encoding the variant pullulanase of any of claims 1-4.
 - 11. A nucleic acid construct comprising the polynucleotide of claim 10.
 - 12. An expression vector comprising the polynucleotide of claim 10.
- 30 **13.** A host cell comprising the polynucleotide of claim 10.
 - 14. A whole broth formulation or cell culture composition comprising a variant pullulanase of any of claims 1-4.

197

EUROPEAN SEARCH REPORT

Application Number EP 18 18 2098

	DOCUMENTS CONSID				
Category	Citation of document with ir of relevant passa	ndication, where appropriate, ages		Relevant o claim	CLASSIFICATION OF THE APPLICATION (IPC)
X A	WO 01/51620 A2 (NOV SVENDSEN ALLAN [DK] [DK]; VEDEL B) 19 J * the whole documen * example 3; sequen * page 47, lines 25 * page 46, lines 4- -& DATABASE Geneseq	; ANDERSEN CARSTEN uly 2001 (2001-07-19 t * ces * -35; claims * 15 *	9)	-15	INV. C12N9/44 C12P19/02 C12P19/16 C12P7/06
Α	N446S.", XP002738363, retrieved from EBI GSP:AAE05704 Database accession * Sequence informat the whole document XUGUO DUAN ET AL: Thermostability and of Bacillus deramif Site-Directed Mutag APPLIED AND ENVIRON vol. 79, no. 13, 26 April 2013 (2013 4072-4077, XP055182	ans pullulanase variancession no. no. AAE05704 ion for W00151620; "Improving the Catalytic Efficiences Pullulanase by enesis", MENTAL MICROBIOLOGY, -04-26), pages 284, I: 10.1128/AEM.00457	1- '	-15	TECHNICAL FIELDS SEARCHED (IPC) C12N A23L C12P
Α	CN 102 876 650 A (U 16 January 2013 (20 * page 1; claims *		1-	·15	
	The present search report has t	peen drawn up for all claims			
	Place of search	Date of completion of the sea	ırch		Examiner
	Munich	17 October 20	18	Mad	ruga, Jaime
X : part Y : part docu A : tech O : non	ATEGORY OF CITED DOCUMENTS icularly relevant if taken alone icularly relevant if combined with another and the same category inclogical background written disclosure rmediate document	L : document	ent docume ing date cited in the cited for oth	nt, but publis application er reasons	

page 1 of 2

EUROPEAN SEARCH REPORT

Application Number EP 18 18 2098

5

10	
15	
20	
25	
30	
35	
40	
45	
50	

2
(P04C01)
503 03.82 (
EPO FORM 1

55

	DOCUMENTS CONSIDE			
Category	Citation of document with ind of relevant passag		Relevant to claim	CLASSIFICATION OF THE APPLICATION (IPC)
×	US 6 350 599 B1 (SVE 26 February 2002 (20 * the whole document * columns 11-12, 2;	02-02-26)	1-15	
(WO 00/01796 A2 (NOVO 13 January 2000 (200 * the whole document * claim 17; examples	0-01-13)	1-15	
				TECHNICAL FIELDS SEARCHED (IPC)
	The present search report has be	en drawn up for all claims		
	Place of search	Date of completion of the search		Examiner
	Munich	17 October 2018	, Mai	druga, Jaime
X : part Y : part docu A : tech O : non	ATEGORY OF CITED DOCUMENTS icularly relevant if taken alone icularly relevant if combined with anothe unent of the same category nological background written disclosure mediate document	T : theory or princ E : earlier patent after the filing o r D : document cite L : document cite	iple underlying the document, but publ	invention lished on, or

page 2 of 2

ANNEX TO THE EUROPEAN SEARCH REPORT ON EUROPEAN PATENT APPLICATION NO.

EP 18 18 2098

5

This annex lists the patent family members relating to the patent documents cited in the above-mentioned European search report. The members are as contained in the European Patent Office EDP file on The European Patent Office is in no way liable for these particulars which are merely given for the purpose of information.

17-10-2018

10	Patent document cited in search report	Publication date	Patent family member(s)	Publication date
15	WO 0151620 A2	19-07-2001	AU 2663801 A EP 1250423 A2 US 2004082028 A1 US 2005287537 A1 WO 0151620 A2	24-07-2001 23-10-2002 29-04-2004 29-12-2005 19-07-2001
	CN 102876650 A	16-01-2013	CN 102876650 A CN 103484443 A	16-01-2013 01-01-2014
25	US 6350599 B1	26-02-2002	AR 028198 A1 AT 407199 T EP 2042593 A2 US 6350599 B1 US 2004048247 A1 US 2009075356 A1 US 2011129877 A1	30-04-2003 15-09-2008 01-04-2009 26-02-2002 11-03-2004 19-03-2009 02-06-2011
30 35	WO 0001796 A2	13-01-2000	AT 412739 T AU 4897199 A CA 2332697 A1 CN 1309701 A DK 1092014 T3 EP 1092014 A2 EP 2216401 A1 JP 2002519054 A	15-11-2008 24-01-2000 13-01-2000 22-08-2001 02-02-2009 18-04-2001 11-08-2010 02-07-2002
40			MX PA00012491 A WO 0001796 A2	02-07-2002 13-01-2000
45				
50				
55 05 05 05 05 05 05 05 05 05 05 05 05 0				

C For more details about this annex : see Official Journal of the European Patent Office, No. 12/82

REFERENCES CITED IN THE DESCRIPTION

This list of references cited by the applicant is for the reader's convenience only. It does not form part of the European patent document. Even though great care has been taken in compiling the references, errors or omissions cannot be excluded and the EPO disclaims all liability in this regard.

Patent documents cited in the description

- US 6074854 A [0006] [0072] [0250] [0466]
- US 5817498 A [0006] [0072] [0250] [0466]
- WO 2009075682 A [0006] [0072] [0250] [0466]
- EP 13176791 A [0072]
- US 20040171154 A [0276]
- WO 9517413 A [0279]
- WO 9522625 A [0279]
- US 5223409 A [0279]
- WO 9206204 A [0279]
- WO 9943835 A [0286] [0466]
- WO 9600787 A [0287] [0334]
- WO 0056900 A [0287]
- US 6011147 A [0287]
- WO 9425612 A [0293]
- WO 9533836 A [0304]
- WO 2010039889 A [0311]
- WO 0024883 A [0317]
- EP 238023 A [0334]
- WO 9015861 A [0349]
- WO 2010096673 A [0349]
- WO 9919467 A [0352] [0369] [0431] [0432] [0433]
- WO 2013006756 A [0353] [0361] [0442]
- WO 2003048353 A [0354]
- WO 2011072191 A [0354]
- US 6358726 B1 [0356]
- WO 2012088303 A [0356]
- WO 2011127802 A [0357] [0449]
- WO 2013036526 A [0357] [0449]
- WO 2013053801 A [0357] [0449]
- WO 2011066576 A [0358] [0450]
- WO 2011068803 A [0359] [0360] [0361] [0451]
 [0452]
- US 3912590 A [0369] [0380]
- EP 252730 A [0369] [0380]
- EP 063909 A [0369] [0380]
- WO 9628567 A [0369]
- US 5231017 A [0370]
- US 4335208 A [0377]

- US 4316956 A [0385]
- US 6358726 B [0392]
- WO 2004085627 A [0411]
- WO 2010074577 A [0412]
- US 20080014620 A [0412]
- WO 2009109633 A [0413]
- WO 9623873 A [0432]
- WO 9623874 A [0432] [0435]
- WO 9741213 A [0432]
- WO 0060059 A [0432]
- WO 0210355 A [0432]
- US 6093562 A [0432]
- US 6187576 B [0432]
- US 6297038 B [0432]
- WO 8901969 A [0436]
- WO 2004055178 A [0437]
- WO 2004033178 A [0437]
 WO 2005003311 A [0440]
- US 20050054071 A [0440] [0442]
- WO 2006069290 A [0440] [0441]
- US 316535 A [0441]
- EP 140410 A [0445]
- WO 9200381 A [0448]
- WO 0004136 A [0448]
- WO 0104273 A [0448]
- WO 8402921 A [0448]US 4727026 A [0448]
- WO 9928448 A [0448]
- US RE32153 E [0448]
- US 4587215 A [0448]
- US 20120214196 A [0448]
- EP 135138 A **[0453]**
- WO 8601831 A [0453]
- WO 2006069289 A [0453]
- US 2007066618 W [0453]
- WO 2005045018 A [0453]
- US 4598048 A [0458]
- US 4604355 A [0458]
- US 6162628 A [0458]

Non-patent literature cited in the description

- MARCHLER-BAUER. Nucleic acids research, 2011, vol. 39, D225-229 [0017]
- NEEDLEMAN; WUNSCH. J. Mol. Biol., 1970, vol. 48, 443-453 [0049] [0061]
- RICE et al. EMBOSS: The European Molecular Biology Open Software Suite. Trends Genet., 2000, vol. 16, 276-277 [0049] [0061]
- RICE et al. EMBOSS: The European Molecular Biology Open Software Suite, 2000 [0050]
- EDGAR. Nucleic Acids Research, 2004, vol. 32, 1792-1797 [0062]
- KATOH; KUMA. Nucleic Acids Research, 2002, vol. 30, 3059-3066 [0062]

- KATOH et al. Nucleic Acids Research, 2005, vol. 33, 511-518 [0062]
- **KATOH**; **TOH**. *Bioinformatics*, 2007, vol. 23, 372-374 [0062]
- KATOH et al. Methods in Molecular Biology, 2009, vol. 537, 39-64 [0062]
- KATOH; TOH. Bioinformatics, 2010, vol. 26, 1899-1900 [0062]
- THOMPSON et al. Nucleic Acids Research, 1994, vol. 22, 4673-4680 [0062]
- LINDAHL; ELOFSSON. J. Mol. Biol., 2000, vol. 295, 613-615 [0063]
- ATSCHUL et al. Nucleic Acids Res., 1997, vol. 25, 3389-3402 [0063]
- JONES. J. Mol. Biol., 1999, vol. 287, 797-815 [0063]
- MCGUFFIN; JONES. Bioinformatics, 2003, vol. 19, 874-881 [0063]
- **GOUGH et al.** *J. Mol. Biol.*, 2000, vol. 313, 903-919 [0063]
- HOLM; SANDER. Proteins, 1998, vol. 33, 88-96 [0064]
- SHINDYALOV; BOURNE. Protein Engineering, 1998, vol. 11, 739-747 [0064]
- HOLM; PARK. Bioinformatics, 2000, vol. 16, 566-567 [0064]
- H. NEURATH; R.L. HILL. The Proteins. Academic Press, 1979 [0247]
- CUNNINGHAM; WELLS. Science, 1989, vol. 244, 1081-1085 [0249]
- **HILTON et al.** *J. Biol. Chem.*, 1996, vol. 271, 4699-4708 **[0249]**
- DE VOS et al. Science, 1992, vol. 255, 306-312 [0249]
- SMITH et al. J. Mol. Biol., 1992, vol. 224, 899-904
- WLODAVER et al. FEBS Lett., 1992, vol. 309, 59-64
 [0249]
- SAMBROOK et al. Molecular Cloning, A Laboratory Manual. Cold Spring Harbor, 1989 [0256]
- **COOPER et al.** *EMBO J.*, 1993, vol. 12, 2575-2583 **[0263]**
- DAWSON et al. Science, 1994, vol. 266, 776-779
 [0263]
- MARTIN et al. J. Ind. Microbiol. Biotechnol., 2003, vol. 3, 568-576 [0264]
- **SVETINA et al.** *J. Biotechnol.*, 2000, vol. 76, 245-251 [0264]
- RASMUSSEN-WILSON et al. Appl. Environ. Microbiol., 1997, vol. 63, 3488-3493 [0264]
- WARD et al. Biotechnology, 1995, vol. 13, 498-503
 [0264]
- CONTRERAS et al. Biotechnology, 1991, vol. 9, 378-381 [0264]
- EATON et al. *Biochemistry*, 1986, vol. 25, 505-512 [0264]
- COLLINS-RACIE et al. Biotechnology, 1995, vol. 13, 982-987 [0264]

- CARTER et al. Proteins: Structure, Function, and Genetics, 1989, vol. 6, 240-248 [0264]
- STEVENS. Drug Discovery World, 2003, vol. 4, 35-48
 [0264]
- SCHERER; DAVIS. Proc. Natl. Acad. Sci. USA, 1979, vol. 76, 4949-4955 [0275]
- **BARTON et al.** *Nucleic Acids Res.,* 1990, vol. 18, 7349-4966 [0275]
- STORICI et al. Nature Biotechnol., 2001, vol. 19, 773-776 [0276]
- KREN et al. Nat. Med., 1998, vol. 4, 285-290 [0276]
- CALISSANO; MACINO. Fungal Genet. Newslett., 1996, vol. 43, 15-16 [0276]
- TIAN et al. Nature, 2004, vol. 432, 1050-1054 [0278]
- REIDHAAR-OLSON; SAUER. Science, 1988, vol. 241, 53-57 [0279]
- BOWIE; SAUER. Proc. Natl. Acad. Sci. USA, 1989, vol. 86, 2152-2156 [0279]
- **LOWMAN et al.** *Biochemistry,* 1991, vol. 30, 10832-10837 **[0279]**
- DERBYSHIRE et al. Gene, 1986, vol. 46, 145 [0279]
- NER et al. DNA, 1988, vol. 7, 127 [0279]
- **NESS et al.** *Nature Biotechnology,* 1999, vol. 17, 893-896 **[0280]**
- AGAISSE; LERECLUS. Molecular Microbiology, 1994, vol. 13, 97-107 [0286]
- EGON et al. Gene, 1988, vol. 69, 301-315 [0286]
- VILLA-KAMAROFF et al. Proc. Natl. Acad. Sci. USA, 1978, vol. 75, 3727-3731 [0286]
- DEBOER et al. Proc. Natl. Acad. Sci. USA, 1983, vol. 80, 21-25 [0286]
- GILBERT et al. Scientific American, 1980, vol. 242, 74-94 [0286]
- ROMANOS et al. Yeast, 1992, vol. 8, 423-488 [0288]
- **HUE et al.** *Journal of Bacteriology,* 1995, vol. 177, 3465-3471 [0293]
- **GUO**; **SHERMAN.** *Mol. Cellular Biol.*, 1995, vol. 15, 5983-5990 **[0299]**
- SIMONEN; PALVA. Microbiological Reviews, 1993, vol. 57, 109-137 [0301]
- GEMS et al. Gene, 1991, vol. 98, 61-67 [0317]
- CULLEN et al. Nucleic Acids Res., 1987, vol. 15, 9163-9175 [0317]
- CHANG; COHEN. Mol. Gen. Genet., 1979, vol. 168, 111-115 [0326]
- YOUNG; SPIZIZEN. J. Bacteriol., 1961, vol. 81, 823-829 [0326]
- DUBNAU; DAVIDOFF-ABELSON. J. Mol. Biol., 1971, vol. 56, 209-221 [0326]
- SHIGEKAWA; DOWER. Biotechniques, 1988, vol. 6, 742-751 [0326]
- KOEHLER; THORNE. J. Bacteriol., 1987, vol. 169, 5271-5278 [0326]
- HANAHAN. J. Mol. Biol., 1983, vol. 166, 557-580
 [0326]
- **DOWER et al.** *Nucleic Acids Res.*, 1988, vol. 16, 6127-6145 [0326]

- **GONG et al.** *Folia Microbiol. (Praha),* 2004, vol. 49, 399-405 **[0326]**
- MAZODIER et al. J. Bacteriol., 1989, vol. 171, 3583-3585 [0326]
- BURKE et al. *Proc. Natl. Acad. Sci. USA*, 2001, vol. 98, 6289-6294 [0326]
- CHOI et al. J. Microbiol. Methods, 2006, vol. 64, 391-397 [0326]
- PINEDO; SMETS. Appl. Environ. Microbiol., 2005, vol. 71, 51-57 [0326]
- PERRY; KURAMITSU. Infect. Immun., 1981, vol. 32, 1295-1297 [0326]
- CATT; JOLLICK. Microbios, 1991, vol. 68, 189-207
 [0326]
- BUCKLEY et al. Appl. Environ. Microbiol., 1999, vol. 65, 3800-3804 [0326]
- CLEWELL. Microbiol. Rev., 1981, vol. 45, 409-436
 [0326]
- HAWKSWORTH et al. Ainsworth and Bisby's Dictionary of The Fungi. CAB International, University Press, 1995 [0328]
- Soc. App. Bacteriol. Symposium Series No. 9. 1980 [0329]
- YELTON et al. Proc. Natl. Acad. Sci. USA, 1984, vol. 81, 1470-1474 [0334]
- CHRISTENSEN et al. Bio/Technology, 1988, vol. 6, 1419-1422 [0334]
- MALARDIER et al. Gene, 1989, vol. 78, 147-156
 [0334]

- Guide to Yeast Genetics and Molecular Biology.
 BECKER; GUARENTE. Methods in Enzymology.
 Academic Press, Inc, vol. 194, 182-187 [0334]
- ITO et al. J. Bacteriol., 1983, vol. 153, 163 [0334]
- HINNEN et al. Proc. Natl. Acad. Sci. USA, 1978, vol. 75, 1920 [0334]
- Protein Purification. VCH Publishers, 1989 [0341]
- GORINSTEIN; LII. Starch/Stärke, 1992, vol. 44 (12), 461-466 [0390]
- Appl. Microbiol. Biotech., vol. 77, 61-86 [0408]
- KANEKO et al. Molecular-cloning and determination of the nucleotide-sequence of a gene encoding an acid-stable alpha-amylase from Aspergillus kawachil. J. Ferment. Bioeng., 1996, vol. 81, 292-298
 [0438]
- **BOEL et al.** *EMBO J.,* 1984, vol. 3 (5), 1097-1102 **[0448]**
- HATA et al. Agric. Biol. Chem., 1991, vol. 55 (4), 941-949 [0448]
- CHEN et al. Prot. Eng., 1996, vol. 9, 499-505 [0448]
- CHEN et al. Prot. Eng., 1995, vol. 8, 575-582 [0448]
- CHEN et al. Biochem. J., 1994, vol. 301, 275-281 [0448]
- FIEROBE et al. Biochemistry, 1996, vol. 35, 8698-8704 [0448]
- LI et al. Prot. Eng., 1997, vol. 10, 1199-1204 [0448]
- NAGASAKA et al. Appl. Microbiol. Biotechnol., 1998, vol. 50, 323-330 [0448]
- FOGARTY; KELLY. Progress in Industrial Microbiology, 1979, vol. 15, 112-115 [0457]