EP 3 418 896 A1

(1 9) Europdisches

Patentamt

European
Patent Office
Office européen

des brevets

(11) EP 3 418 896 A1

(12) EUROPEAN PATENT APPLICATION

(43) Date of publication:
26.12.2018 Bulletin 2018/52

(21) Application number: 18170688.8

(22) Date of filing: 03.05.2018

(51) IntClL:

GO6F 11/36 (2006.0)

(84) Designated Contracting States:
AL AT BEBG CH CY CZDE DK EE ES FIFRGB
GRHRHUIEISITLILTLULVMC MKMT NL NO
PL PT RO RS SE SI SK SM TR
Designated Extension States:
BA ME
Designated Validation States:
KH MA MD TN

(30) Priority: 23.06.2017 US 201715632099

(71) Applicant: Accenture Global Solutions Limited
Dublin 4 (IE)

(72) Inventors:

e HALL, Simon
Amsterdam, Noord-Holland 1072BM (NL)
¢ SCHIOPU, Vitalie
Bertrange 8077 (LU)
* VAN DEN HEUVEL, Jeroen
06902 Sophia Antipolis (FR)
* JACQUOT, Adrien
06902 Sophia Antipolis (FR)

(74) Representative: Swindell & Pearson Limited

48 Friar Gate
Derby DE1 1GY (GB)

(54) SELF-LEARNING ROBOTIC PROCESS AUTOMATION

(57) Methods, systems, and apparatus, including
computer programs encoded on a computer storage me-
dium, for a self-learning robotic process automation are
disclosed. In one aspect, a method includes receiving an
automated script that includes one or more commands
and that is configured to interact with graphical elements
that appear on a user interface. The method further in-
cludes executing a command of the one or more com-
mands of the automated script. The method further in-
cludes determining that an error occurred during execu-
tion of the command of the one or more commands of
the automated script. The method further includes deter-
mining a modification for the command by applying a
script repair model. The method further includes execut-
ing the modified command. The method further includes
determining whether the error or another error occurred
during execution of the modified command. The method
further includes determining whether to update the auto-
mated script with the modified command.

300
Z Receive an automated script that includes one or more
commands and that is configured to interact with graphical
elements that appear on a user interface 310

Execute a command of the one or more commands of the
automated script 320

Determine that an error occurred during execution of the
command of the one or more commands of the automated
script 330

Determine a modification for the command by applying, to the
command, a script repair model that is trained using one or
more automated scripts that each include commands and

results that correspond to each command 340

Execute the modified command

1

Determine whether the error or another error occurred during
execution of the modified command

:

Determine whether to update the automated script with the
modified command 370

360

FIG. 3

Printed by Jouve, 75001 PARIS (FR)

1 EP 3 418 896 A1 2

Description
TECHNICAL FIELD

[0001]
learning.

This application generally relates to machine

BACKGROUND

[0002] Manual processes performed on a computer
may be repetitive and time consuming. For example, a
user may send e-mails in response to web form submis-
sions, and for each web form submission, may need to
manually interact with a computer to click buttons to open
a window for composing a new e-mail, click buttons to
copy information from the web form submission into the
window, click keys to write text for a body of the e-mail,
and click buttons to send the e-mail.

SUMMARY

[0003] Front-end scripts typically interact with the user
interface of a system. For example, a front-end script
may locate an icon that is on a screen using computer
vision techniques. The front-end script may select the
icon to initialize the corresponding application or to open
the corresponding document. In contrast, a back-end
script instructs the computing system to open a certain
application using the path of the executable file for the
application. A front-end script may be preferable because
it offers more flexibility than a back-end script. Nearly
every system that a user interacts with has a front-end.
While nearly every system also has a back-end, some
system may not allow other systems to interact with the
back-end to initiate applications and open files.

[0004] Front-end scripts may be more prone to errors.
An error may be caused by an unexpected change to the
user interface. During generation of a script, the system
may capture a screen shot of the portion of the user in-
terface where the user clicks on or touches the user in-
terface. The size of the captured portion may be a fixed
size. During execution of the script, the system may scan
the user interface to locate an area of the screen that
matches the captured portion. If a pop up window ap-
pears on the screen, then the system may be unable to
find an area of the screen that matches the captured por-
tion. In this instance, the system may apply a script repair
model to the error. The system may have previously
trained the script repair model using user interactions,
other scripts, and outcomes from those other scripts. The
script repair model analyzes the error and the screen and
identifies the close button of the pop-up window or the
cancel button of the pop-up window. The script repair
model may instruct the system to select the close button.
[0005] The system may repeat scanning of the user
interface to locate an area of the screen that matches
the captured portion. With the pop-up window closed, the
system may be able to successful locate an area that

10

15

20

25

30

35

40

45

50

55

matches the captured portion. The system may update
the script to include an action to locate the close button
of a pop-up window in the event of an error in locating
the captured portion. The action may be an optional ac-
tion that the system performs if it detects a pop-up win-
dow. In some implementations, the system may also up-
date other scripts. For example, the system may update
other scripts that scan the user interface and to locate
an area of the screen similar to the captured portion. The
system may add a similar optional step to those other
scripts.

[0006] Accordingtoaninnovative aspect of the subject
matter described in this application, a method for self-
learning robotic process automation includes the actions
of receiving, by a computing device, an automated script
that includes one or more commands and that is config-
ured to interact with graphical elements that appear on
a user interface; executing, by the computing device, a
command of the one or more commands of the automat-
ed script; determining, by the computing device, that an
error occurred during execution of the command of the
one or more commands of the automated script; in re-
sponse to determining that an error occurred during ex-
ecution of the command, determining, by the computing
device, a modification for the command by applying, to
the command, a script repair model that is trained using
one or more automated scripts that each include com-
mands and results that correspond to each command;
executing, by the computing device, the modified com-
mand; determining, by the computing device, whether
the error or another error occurred during execution of
the modified command; and based on determining
whether the error or the other error occurred during ex-
ecution of the modified command, determining whether
to update the automated script with the modified com-
mand.

[0007] These and otherimplementations can each op-
tionally include one or more of the following features. The
action of determining, by the computing device, whether
the error or another error occurred during execution of
the modified command includes determining that the er-
ror or the other error occurred during execution of the
modified command. The action of determining whether
to update the automated script with the modified com-
mand includes determining not to update the automated
script with the modified command. The actions further
include determining, by the computing device, an addi-
tional modification for the command based on the appli-
cation of the script repair model to the command. The
actions further include, based on determining that the
error or the other error occurred during execution of the
modified command, updating the script repair model us-
ing data indicating that the error or the other error oc-
curred during execution of the modified command. The
action of determining, by the computing device, whether
the error or another error occurred during execution of
the modified command includes determining that the er-
ror or the other error did not occur during execution of

3 EP 3 418 896 A1 4

the modified command.

[0008] The action of determining whetherto update the
automated script with the modified command includes
determining to update the automated script with the mod-
ified command. The actions further include determining
that the error or the other error did not occur during ex-
ecution of the modified command, updating the script re-
pair model using data indicating that the error or the other
error did not occur during execution of the modified com-
mand. The actions further include identifying another au-
tomated script that includes another command that is
similar to the command of the automated script; and up-
dating the other command of the other automated script
with the modified command. The action of executing the
command of the one or more commands of the automat-
ed script includes analyzing, using computer vision, a
screen capture of the user interface; based on analyzing
the screen capture of the user interface, identifying, in
the user interface, an area of the screen that likely match-
es a graphical element that is specified by the automated
script; and selecting, by the computing device, the area
of the screen that matches the graphical element that is
specified by the automated script.

[0009] The action of determining the modification for
the command includes adjusting a size of the area of the
screen that likely matches the graphical element that is
specified by the automated script. The action of deter-
mining, by the computing device, a modification for the
command by applying, to the command, a script repair
model that is trained using one or more automated scripts
that each include commands and results that correspond
to each command includes classifying, by the script re-
pair model, the error that occurred during execution of
the command of the one or more commands of the au-
tomated script; and, based on the classification of the
error, determining the modification for the command by
applying, to the command, the script repair model. The
action of executing, by the computing device, the modi-
fied command includes simulating, by the computing de-
vice, the modified command. The action of determining,
by the computing device, whether the error or another
erroroccurred during execution of the modified command
includes determining whether the error or the other error
occurred during simulation of the modified command.
[0010] The action of determining, by the computing de-
vice, a modification for the command by applying, to the
command, a script repair model that is trained using one
or more automated scripts that each include commands
and results that correspond to each command includes
determining, by applying the script repair model to the
command, for each of one or more candidate modifica-
tions, a repair confidence score that reflects a likelihood
that applying a respective candidate modification to the
command will correct the error; and based on the repair
confidence scores, selecting, from among the one or
more candidate modifications, the modification for the
command. The action of determining whether to update
the automated script with the modified command in-

10

15

20

25

30

35

40

45

50

55

cludes determining whether to update the automated
script with the modified command using machine learn-
ing.

[0011] Other implementations of this aspect include
corresponding systems, apparatus, and computer pro-
grams recorded on computer storage devices, each con-
figured to perform the operations of the methods.
[0012] Particularimplementations ofthe subject matter
described in this specification can be implemented so as
to realize one or more of the following advantages. A
system may perform and correct automated front-end
scripts. The system may save computing resources by
updating other scripts when an error is detected and cor-
rectin one script. The system does not need to encounter
an error before correcting the error.

[0013] The details of one or more implementations of
the subject matter described in this specification are set
forth in the accompanying drawings and the description
below. Other features, aspects, and advantages of the
subject matter willbecome apparent from the description,
the drawings, and the claims.

BRIEF DESCRIPTION OF THE DRAWINGS
[0014]

FIGS. 1A and 1B illustrate example graphical inter-
faces of a system during capture, execution, and
modification of an automated script.

FIG. 2 illustrates an example system for capturing,
executing, and modifying automated scripts.

FIG. 3 illustrates an example process for capturing,
executing, and modifying automated scripts.

FIG. 4 illustrates an example of a computing device
and a mobile computing device.

[0015] Like reference numbers and designationsin the
various drawings indicate like elements.

DETAILED DESCRIPTION

[0016] FIGS. 1A and 1B illustrate example graphical
interfaces 100a, 100b, 100c, and 100d of a system 100
during capture, execution, and modification of an auto-
mated script. Briefly, and as described in more detail be-
low, the graphical interfaces 100a graphical interface
100a illustrates the system 100 capturing a command of
a script. Graphical interface 100b illustrates a change to
the graphical interface 100b. Graphical interface 100c
illustrates the system 100 executing and detecting an
error in the script. Graphical interface 100d illustrates the
system 100 modifying and updating the script to correct
the error by applying a script repair model and cropping
an image captured during generation of the script.

[0017] Inthe example shown in FIG. 1A, the graphical

5 EP 3 418 896 A1 6

interface 100a represents the view presented by the sys-
tem 100 to the user. The graphical interface 100a may
include icons and menus that the user can interact with
and select to perform various actions. For example, the
user may select the icon 102a to launch an application
to find a restaurant. The icon 102a may include a label
104athatdescribesthe icon 102a as the restaurant finder
icon. The user may select the icon106a to launch an ap-
plication to find a park. The icon 106a may include alabel
108athat describes the icon 106a as the park finder icon.
The user may select the icon 110a to launch an applica-
tionto view the train schedule. The icon 110a may include
a label 112a that describes the icon 110a as the train
schedule icon.

[0018] The graphical interface 100a may also include
a menu button 114a. The user may select the menu but-
ton 114a to display the menu 116a. The menu 116a may
include additional icons that the user can interact with
and select to perform additional actions. For example,
the user can select icon 118a to launch an application
that displays a bike map. The icon 118a may include a
label 120a that describes the icon 118a as the bike map
icon. The user may select icon 122a to launch an appli-
cation to display the user’s contacts. The icon 122a may
include a label 124a that describes the icon 122a as a
contacts icon. The user may select icon 126a to launch
a mail application. The icon 126a may include a label
128a that describes the icon as a mail icon. The user
interface 100a may also include date and time informa-
tion 136a and tray icons 138a.

[0019] The user may generate a script by interacting
with the graphical interface 100a. The interactions may
include clicking a button on a mouse, touching a display,
typing on a keyboard, providing voice input, or providing
input through any other similar input device. The system
100 stores data related to the script based on where and
how the user interacts with the graphical interface 100a.
The user may generate a script that include any action
or series of actions that the user can perform with the
graphical interface 100a.

[0020] In the example shown in user interface 100a,
the user may be creating a script for selecting and send-
ing a contact from the contacts application. One of the
actions of that script may involve the selection of the icon
122a. With the system 100a recording and generating
the script, the user may, initially, select the menu button
114a by hovering the mouse pointer 130a over the button
114aand clicking the mouse. The system 100 may record
data reflecting the user’s interaction with menu button
114a.

[0021] With the menu 116a open, the user may select
the contacts icon 122a. The user may hover the mouse
pointer 130a over the icon 122a and click the mouse. In
some implementations, the user may tap the icon 122a
with the user’s finger in instances where the user inter-
face 100a appears on a touch screen. The clicking of the
mouse or the tapping of the finger may trigger the system
100 to record a corresponding action. The recorded data

10

15

20

25

30

35

40

45

50

55

may include the screen coordinates of the mouse pointer
130a when the user clicked the mouse. The recorded
data may also include a screen capture around the area
132a of the mouse pointer 130a when the user clicked
the mouse.

[0022] The captured area 132a may be a fixed area
around the mouse pointer 130a. The size of the captured
area 132a may correspond to the icons that a user typi-
cally selects. In this instance, the size of the captured
area 132a may match the size of the icons 102a, 106a,
and 110a. The size of the captured area 132a may be
consistent across other systems that use the same op-
erating system as the system 100. Other operating sys-
tems may have primary icons that are a different size
than icons 102a, 106a, and 110a. In some implementa-
tions, the size of the captured area 132a may be defined
by the user. For example, the user may select a size for
any captured area. As another example, the user may
select the size of the captured area 132a each time the
user clicks the mouse or taps the screen.

[0023] In some implementations, the size of the cap-
tured area 132a may depend on the location of the mouse
pointer 130a when the user clicked the mouse. For ex-
ample, if the mouse pointer 130a is within the menu 11643,
then the captured area 132a may be similar in size to the
icons 118a, 122a, and 126a. If the mouse pointer 130a
is outside the menu 116a, then the captured area may
be similar in size to the icons 102a, 106a, and 110a.
[0024] In the example shown in FIG. 1A, the captured
area 132a is a constant shape. The system 100 records
the image 134a and a selection of the image 134a as an
action in the script. In some implementations, the system
100 may store the coordinates of the mouse pointer 130a
when the user selected the area of the image 134a. The
system 100 may record additional actions as the user
interacts with the user interface 100a. The system 100
may store the image 134a, the data related to image
134a, and other images and corresponding information
as the script.

[0025] Inthe example shown in FIG. 1A, the graphical
interface 100b represents another view presented by the
system 100 to the user. The graphical interface 100b may
include similar features and icons as the graphical inter-
face 100b. For example, icons 102b, 106b, and 110b
may be similartoicons 102a, 106a, and 110a of graphical
interface 100a. Icons 118b, 122b, and 126b may be sim-
ilar to icons 118a, 122a, and 126a of graphical interface
100a. The graphical interface 100b may include button
114b that the user may select to display the menu 116b
and may include date and time information 136b and tray
icons 138b.

[0026] The graphical interface 100b includes a change
to the graphical interface 100a. In this instance, the user
may have installed on the system 100 additional software
for an application that displays bus schedules. The
graphical interface 100b includes icon 121b that the user
can select to launch the new application that displays
bus schedules. The icon 121b may be adjacent to a label

7 EP 3 418 896 A1 8

123b that specifies thattheicon 121bis for the bus sched-
ule application.

[0027] As illustrated in graphical interface 100b, the
system 100 placed the bus schedules icon 121b above
the contacts icon 122b and below the bike mapicon 118b.
In some implementations, the user may choose the lo-
cation of the bus schedule icon 121b. For example, the
user may move the bus schedule icon 121b next to the
train schedule icon 110b.

[0028] Including the new icon 121b in the graphical in-
terface 100b may not affect the commands of the stored
script. The script may still include the command related
to image 134b. The image 134b includes a screen cap-
ture of the area around the mouse pointer when the user
clicked the mouse during generation of the script. Includ-
ing the new icon 121b may not change the image 134b.
[0029] In the example shown in FIG. 1B, the graphical
interface 100c represents another view presented by the
system 100 to the user during the execution of the stored
script. The graphical interface 100c may include similar
features and icons as the graphical interfaces 100a and
100b. For example, icons 102c, 106¢, and 110c may be
similar to icons 102a, 106a, and 110a of graphical inter-
face 100a. Icons 118c, 122c, and 126c may be similar
to icons 118a, 122a, and 126a of graphical interface
100a. The graphical interface 100c may include button
114c that the user may select to display the menu 116¢
and may include date and time information 136¢ and tray
icons 138c.

[0030] The user instructs the system 100 to execute
the stored script for selecting and sending a contact from
the contacts application. The system 100 may execute
one or more actions of the script before executing the
action related to selecting the contacts icon 122c. For
example, the script may select the button 114c to display
the menu 116c¢. In performing the action related to se-
lecting the contacts icon 122c, the system may analyze
a screen capture of the graphical interface 100c and at-
tempttolocate a portion of the screen capture that match-
es the image 134c that the system captured when gen-
erating the script.

[0031] The system 100 may perform computer vision
on the screen capture of the graphical interface 100c to
locate a portion of the screen that matches image 134c.
In some implementations, the system 100 may sweep
an area of the screen capture that is near the location
where the user clicked the mouse. For example, the sys-
tem 100 may sweep the area that within two hundred
pixels of the mouse click location, which is around icon
122c.

[0032] In analyzing the screen capture for a portion of
the screen that matches the image 134c, the system 100
may generate image confidence scores thatreflect a like-
lihood that different portion of the screen correspond to
the image 134c. For example, the system 100 may an-
alyze an area of the screen that includes icon 110c. In
this instance, the system 100 may generate an image
confidence score of 0.1. The system 100 may analyze

10

15

20

25

30

35

40

45

50

55

area 133c of the screen capture of the graphical interface
100c. Area 133c may include some similar features to
image 134c such asicon 122c¢, but also includes portions
of the new bus schedule icon 121c. The system may
generate an image confidence score of 0.7. The system
100 may determine that a portion of the screen matches
the image 134c if the image confidence score satisfies a
threshold. For example, if the threshold is 0.8, then nei-
ther the area 133c or the area of the screen that includes
icon 110c have an image confidence score greater the
threshold of 0.8. The system 100 may determine that that
image 134c is not on the graphical interface 100c.
[0033] The system 100 generates an exception 135c
during the execution of the script. The system 100 may
display the exception 135¢ on the graphical interface
100c or may provide another type of indication (e.g., an
audio indication) to the user that the system 100 encoun-
tered an error in executing the script. In some implemen-
tations, the outline of area 133c does not appear on the
graphical interface 100c. Instead, the system 100 com-
pares the area 133c to the image 135c without outlining
the area 133c.

[0034] Inthe example shown in FIG. 1B, the graphical
interface 100d represents another view presented by the
system 100 to the user during the modification of the
stored script. The graphical interface 100d may include
similar features and icons as the graphical interfaces
100a, 100b, and 100c. For example, icons 102d, 106d,
and 110d may be similar to icons 102a, 106a, and 110a
of graphical interface 100a. Icons 118d, 121d, 122d, and
126¢c may be similar toicons 118a, 121b, 122a, and 126a
of graphical interfaces 100a and 100b. The graphical in-
terface 100d may include button 114d that the user may
select to display the menu 116d and may include date
and time information 136d and tray icons 138d.

[0035] The system 100 detected an error in the script
based on being unable to identify a portion of the graph-
ical interface 100c that matched the image 134c. The
system 100 attempts to correct the error by accessing a
script repair model. The script repair model may be
trained to suggest a correction to the script to repair the
error. The script repair model may use neural networks
and machine learning to recommend a correction. The
script repair model may be trained using corrections that
repaired other scripts and attempted corrections that did
not repair other scripts. The training data may include
data related to the outcome of each correction and at-
tempted correction. In some implementations, the train-
ing data may include data related to script actions and
results for those actions that worked properly and did not
generate an error.

[0036] The system 100 applies the script repair model
to the data related to the error. The data related to the
error may include the image 134c, a portion of the graph-
ical interface 100c that had a highest image confidence
score (e.g., area 133c), the coordinates of the mouse
pointer when the system captured the image 134c, and
the coordinates of the portion of the graphical interface

9 EP 3 418 896 A1 10

100c that had a highest image confidence score. The
script repair model may generate one or more candidate
modifications to repair the error. The script repair model
may generate a repair confidence score for each of the
candidate modifications. The repair confidence score
may reflect a likelihood that the candidate modification
will correct the error.

[0037] In the example shown in graphical interface
100d, the system 100 may determine, using the script
repair model, to crop the image 134c. The system 100
may crop the image 134c to generate the cropped image
139d. The scrip repair model may determine the size of
the cropped image 139d by analyzing the location of the
original mouse click and the size of images that are suc-
cessfully matched in the area near the original mouse
click. The system 100 may perform computer vision tech-
niques to identify a whole icon that is located in image
134c and is the size of successfully matched images.
[0038] The system 100 analyzes the graphical inter-
face 100d for the cropped image 139d. The system 100
identifies image portion 137d as a match for the cropped
image 139d. The system 100 continues with the script
and selects the image portion 137d. By selecting the im-
age portion 137d, the system 100 opens the contacts
application and continues performing the actions of the
script.

[0039] FIG. 2 illustrates an example system 200 for
capturing, executing, and modifying automated scripts.
Briefly, and as described in more detail below, the system
200 captures a script based on the interactions that a
user has with a graphical interface. The system 200
stores the script and executes the stored script by per-
forming the actions that the user performed during cap-
turing of the script. The system 200 may generate an
error during execution of a script. The system 200 applies
a script repair model to the error and the script to identify
a modification to repair the script. The system may be
implemented using one or more computing devices.
[0040] Inthe example shownin FIG. 2, the system 200
includes a userinterface 205. The user interface 205 may
include a display to provide visual output to a user. The
user may interact with the user interface 205. For exam-
ple, the user may touch the display in instances where
the display is a touch sensitive display. The user may
move a mouse around the user interface 205 and click
the mouse to provide input to the system 200. Examples
of user interfaces are illustrated in FIGS. 1A and 1B with
graphical interfaces 100a, 100b, 100c, and 100d.
[0041] The system 200 includes a process manager
210. The process manager 210 keeps track of the proc-
esses that are currently running on the system. In some
implementations, the process manager 210 may include
an interface that allows other software modules to query
the process manager 210. For example, the interface
may be an API. The other software modules may receive
a list of processes currently running on the system 200,
how long each process has been running, how much
processing capability each process is using, and how

10

15

20

25

30

35

40

45

50

55

much memory each process is using.

[0042] The system 200 includes ascriptgenerator215.
The script generator 215 may be configured to monitory
the user interface 205 and the process manager 210 to
identify actions performed by a user during recording of
a script. The script generator 215 may also be configured
to monitor the input devices such as the mouse, touch
screen, keyboard, or other input devices. In some imple-
mentations, the script generator 215 may be configured
to only monitor the input devices and the user interface
205. In this instance, the script generator 215 may not
have access to the process manager 210.

[0043] The user provides an instruction to the script
generator 215 to begin recording and generating a script.
The script generator 215 may begin monitoring the user
interface 205 and the processor manager 210. The script
generator 215 may record the input provided by the user,
the processes running on the system 200, and the graph-
ics displayed on the user interface 205. For example, the
script generator 215 may record the user clicking the
mouse at a particular spot on the screen. The script gen-
erator 215 may record the coordinates ofthe mouse when
clicked, a screen capture of the user interface 205 during
the mouse click, the timing of the mouse click, e.g., a
timestamp, the processes running after the mouse click,
and any other similar information. The script generator
215 may record similar information during each input
event. An input event may include a mouse click, touch
screen press, keyboard press, or other similar event.
[0044] The script generator 215 may store a script in
the script storage 220. The script may be based on the
recorded data. Forthe example of the mouse click action,
the stored action may include the mouse coordinates, an
area of the screen around the mouse click, the elapsed
time since the previous action, and any process that likely
was initiated by the mouse click. A subsequent action for
an event such as a keyboard event may include the key
pressed on the keyboard, the time elapsed since the
mouse click action, and any processes that likely were
initiated by the keyboard press. For the keyboard event,
the script generator 215 may also compare a screen cap-
ture of the screen before the keyboard press and after
the keyboard press. The script generator 215 may be
able to determine a location of the cursor by identifying
the location of the change in the user interface 205. In
this instance, the script generator 215 may store a screen
capture of an area of the screen where the cursor was
located and where the user likely entered text.

[0045] The script execution module 225 may access
the script storage 220 to retrieve a script for execution.
The script execution module 225 may receive input from
a user to retrieve and execute a particular script. For ex-
ample, the user may request that the system 200 perform
the script related to updating the user’s contacts. The
user may name the scripts and may request a particular
script by name.

[0046] The script execution module 225 performs the
actions of the specified script. The script execution mod-

11 EP 3 418 896 A1 12

ule 225 may navigate the cursor to a portion of the screen
that matched the captured image and click the mouse.
The script execution module 225 may select a series of
keys after clicking the mouse on an area of the screen
that matched a captured image, which may have placed
a cursor at that location.

[0047] Insome instances, the script execution module
225 may encounter an error. The error detector 230 may
be configured to analyze the actions performed by the
script execution module 225 to determine whether an
error or exception occurred. In some instances, the script
execution module 225 may generate the error if the script
execution module 225 is unable to perform an action. For
example, the script execution module 225 may be unable
to locate an area of the user interface 205 that matches
the image of the screen captured by the script generator
215. In this instance, the script execution module 225
may generate the error.

[0048] The error detector 230 may provide error data
to the computer vision module 235. The computer vision
module 235 may be configured to analyze the screen for
a location that likely matches the screen captured by the
script generator 215. The computer vision module 235
may provide functionality on top of the matching that the
script execution module 225 performs. For example, the
computer vision module 235 may analyze the text and
images of the screen captured by the script generator
215 and compare the text and images to the user inter-
face. The computer vision module 235 may identify the
letter "conta" in the captured image. The computer vision
module 235 may sweep the user interface for the text
"conta." The computer vision module 235 may perform
edge detection to detect shapes in the captured image
and sweep the user interface for similar shapes. The
computer vision module 235 may provide data identifying
an area of user interface that likely corresponds to the
image captured by the script generator 215.

[0049] The command classifier 240 may be configured
to classify the type of command or action that generated
the error. Some example types may include selecting an
icon with a mouse, selecting an icon by touching the
screen, typing on the keyboard, scrolling the mouse,
clicking and dragging the mouse, or any other similar
type of action or command. To classify the command,
the command classifier 240 may analyze the input for
the corresponding command or action. For example, sin-
gle or double clicking the mouse on an area with strong
edges may likely indicate that the user clicked on anicon.
Using the mouse wheel may likely indicate that the user
is scrolling an area of the screen. The command classifier
240 may identify a likely command type and provide that
command type to the command modifier 255.

[0050] The error classifier 245 may be configured to
classify the type of error generated by the error detector
230. Some example types may include animage location
error, an errorinitializing a process, an unexpected result,
or any other similar error. To classify an error, the error
classifier 245 may analyze the parameters of the action

10

15

20

25

30

35

40

45

50

55

and any error generated by the error detector 230. For
example, an error locating a portion of the screen that
corresponds to a captured image may be an image lo-
cation error. An error may be related to performing an
action that the system 200 expects to open a word
processing application and the action does not change
the processes running on the system 200. The error clas-
sifier 245 may identify the type of error and provide the
error type to the command modifier 255.

[0051] The process analyzer 250 may be configured
to monitor the processes that are running during execu-
tion of the script. The process analyzer 250 may access
the processes through the process manager 210 and
compare the processes to the processes expected during
execution of the script. When the error detector 230 de-
tects an error, the process analyzer 250 may identify any
processes that should have been running or any proc-
esses that should not be running or both. The process
analyzer 250 may analyze the processes during the ac-
tions before the error detector 230 identified the error.
The process analyzer 250 may analyze the processes
immediately before and after the error detector 230 iden-
tified the error. The process analyzer 250 may provide
the process data to the command modifier 255.

[0052] The command modifier 255 receives data from
the computer vision module 235, the command classifier
240, the error classifier 245, and the process analyzer
250 and applies a script repair model that is stored in the
script repair model storage 260. The system generates
and trains the script repair models using previous data
inputted into the system 200. The previous data may in-
clude actions thata user has taken to perform a particular
task. For example, the data may include actions taken
by a user to initiate an application to open a bus schedule
application. The data may include multiple series of ac-
tions that different users have taken to open a bus sched-
ule application. Some may include opening the bus
schedule application from a menu or from the desktop.
Some may include closing a pop up window. The previ-
ous data may include previous actions and processes
that the system 200 has performed.

[0053] The system 200 may identify the application
opened by the user by performing computer vision on
portions of the user interface or by monitoring the proc-
esses or both. The previous data may include modifica-
tions that the system 200 has applied to other scripts and
the outcomes of those modifications. For example, the
system 200 may have previously cropped an image and
compared the cropped image to the current user inter-
face. The system 200 may train the script repair model
using the image crop data and the result that followed,
whether the following result included an error or not. The
system 200 may also have script repair models that are
configured for different types of error and commands. A
specific type of error identified by the error classifier 245
may cause the command modifier 255 to access a script
repair model for the identified type of error. A specific
type of command identified by the command classifier

13 EP 3 418 896 A1 14

240 may cause the command modifier 255 to access a
script repair model for the identified type of command.
The system may use neural networks and machine learn-
ing to generate and train the script repair models.
[0054] The command modifier 255 applies the script
repair model to the data from the computer vision module
235, the command classifier 240, the error classifier 245,
and the process analyzer 250. The command modifier
255 generates one or more candidate modifications. Fol-
lowing the example from FIGS. 1A and 1B, the candidate
modifications may include cropping image 134c, lower-
ing a threshold image score to identify the portion of the
user interface 100c that best matches the image 134c,
and performing optical character recognition on the im-
age 134c and the user interface 100c. The command
modifier 255 provides the candidate modifications to the
modification scoring module 265 to generate a repair
confidence score for each of the candidate modifications.
The repair confidence score may reflect a likelihood that
the candidate modification will correct the error in the
script. The maodification scoring module 265 may use da-
ta generated from applying the script repair models to
generate the repair confidence scores.

[0055] In some implementations, the command modi-
fier 255 may access a user interface generator 270 to
propose the candidate modifications to the user. The user
interface generator 270 may present the candidate mod-
ifications and request that the user select one of the can-
didate modifications. Alternatively or additionally, the us-
erinterface generator 270 may request that the user sug-
gest a modification. Following the example from FIGS.
1A and 1B, the user may suggest that the command mod-
ifier 255 modify the script so that the script searches the
user interface 100c for the term "contacts." In some im-
plementations, the command modifier 255 may apply a
modification to the command and execute the modified
command. The userinterface generator 270 may request
confirmation from the user whether the modified com-
mand corrected the error. In some implementations, the
command modifier may simulate the modified command
using, in some instances, deep learning techniques or
planning techniques or both.

[0056] In some implementations, the command modi-
fier 255 accesses the modified command simulator 275.
The modified command simulator 275 may be configured
to simulate the candidate modifications. Following the
example from FIGS. 1A and 1B, the modified command
simulator 275 may be able to crop image 134c, lower a
threshold image score to identify the portion of the user
interface 100c that best matches the image 134c, and
perform optical character recognition on the image 134c
and the user interface 100c¢ without modifying the script.
The modified command simulator 275 may be configured
to identify which of the simulated modified commands
generate an error. The modified command simulator 275
may be able to simulate commands that the system 200
performs after the command that generated the error.
For example, the modified command simulator 275 may

10

15

20

25

30

35

40

45

50

55

simulate cropping the image 134c and simulate the sub-
sequent actions of the script. The modified command
simulator 275 may be able to identify any errors in sub-
sequentactions. There may be instances where the mod-
ified command may not generate an error but subsequent
actions generate error suggesting that the command
modification may not have been the correct modification
to repair the script.

[0057] The command modifier 255 selects one of the
candidate modifications based on applying a script repair
model and on data from the modification scoring module
265 and the user interface generator 270. In some im-
plementations, the command modifier 255 receives ad-
ditional data from the modified command simulator 275
and uses that data to selecta modification. The command
modifier 255 may select the candidate modification with
the highest repair confidence score, the candidate mod-
ification selected by the user, or a candidate modification
identified by the modified command simulator 275.
[0058] The command modifier 255 applies the modifi-
cation to the command that generated the error and up-
dates the script. The system 200 may execute the mod-
ified command and determine whether the modified com-
mand generates a new error. In some implementations,
the command modifier 255 may identify other scripts with
similar commands and apply the modification to those
scripts. For example, the command modifier 255 may
identify other scripts that search for images that include
image 139d. The command modifier 255 may use com-
puter vision techniques to identify the images. The com-
mand modifier 255 may modify the corresponding com-
mands by cropping those images to be similar to image
139d.

[0059] FIG. 3 illustrates an example process 300 for
capturing, executing, and modifying automated scripts.
In general, the process 300 captures and executes au-
tomated scripts. In some instances, the automated script
may generate an error. In those instances, the process
300 modifies the script to fix the error. The process 300
will be described as being performed by a computer sys-
tem comprising one or more computers, for example, the
system 200 as shown in FIG. 2.

[0060] The system receives an automated script that
includes one or more commands and that is configured
to interact with graphical elements that appear on a user
interface (310). The script may include images for the
system to match to corresponding portions of the user
interface. For example, the script may include images of
icons to select for opening a contacts application and
accessing a particular contact. The scripts may be gen-
erated by a user requesting that the system record a
script.

[0061] The system executes a command of the one or
more commands of the automated script (320). In some
implementations, the system analyzes using computer
vision, a screen capture of the user interface. The system
identifies, in the user interface, an area of the screen that
likely matches a graphical element that is specified by

15 EP 3 418 896 A1 16

the automated script. The system selects the area of the
screen that matches the graphical element that is spec-
ified by the automated script. For example, the system
may execute a command to identify and select a portion
of the user interface that matches an image included in
the script. The system determines that an error occurred
during execution of the command of the one or more
commands of the automated script (330). For example,
the system may not be able to identify a portion of the
user interface that matches an image included in the
script.

[0062] The system, in response to determining that an
error occurred during execution of the command, deter-
mines a modification for the command by applying, to
the command, a script repair model that is trained using
one or more automated scripts that each include com-
mands and results that correspond to each command
(340). In some implementations the system trains the
script repair model using inputs provided by different us-
ers and across different systems. The system also trains
the script repair model using results of those inputs. In
some implementations, the script repair model uses neu-
ral networks and the system trains the script repair model
using machine learning. In some implementations, the
system learns the script repair model that describes a
modification for an action. This script repair model may
be, forexample, a neural network or other machine learn-
ing algorithm. The system may use the script repair to
simulate subsequent actions from any command. The
system may use planning techniques on the script repair
model to select a repair script or modification. In some
implementations, the modification includes cropping an
image included in the script and attempting to match the
cropped image to the user interface.

[0063] In some implementations, the system deter-
mines for each of one or more candidate modifications,
a repair confidence score that reflects a likelihood that
applying a respective candidate modification to the com-
mand will correct the error. For example, the system may
determine that the repair confidence score for cropping
the image is 0.9 and the repair confidence score is 0.7
for selecting the portion of the user interface that best
matches the image despite not generating an image
match score that satisfies a threshold. The system may
select the modification by selectin the modification with
the highest repair confidence score.

[0064] In some implementations, the system classifies
the command or the error that occurred during execution
of the command of the one or more commands of the
automated script. The system may apply a script repair
model that matches the command type or error type. For
example, the system may apply different script repair
models for different commands such as selecting an icon
with a mouse, selecting an icon by touching the screen,
typing on the keyboard, scrolling the mouse, or clicking
and dragging the mouse. In some implementations, the
system may present the modification to the user and re-
quest confirmation. The system may receive confirma-

10

15

20

25

30

35

40

45

50

55

tion and apply the modification.

[0065] The system executes the modified command
(350). In some implementations, the system simulates
the modified command. The system determines whether
the error or another error occurred during execution of
the modified command (360). In some implementations,
the system determines whether the error or the other
error occurred during simulation of the modified com-
mand.

[0066] The system based on determining whether the
error or the other error occurred during execution of the
modified command, determines whether to update the
automated script with the modified command (370). In
some implementations, the system determines that the
error or another error occurred during execution of the
modified command. In this instance, the system may de-
termine not to update the automated script with the mod-
ified command. The system may determine an additional
modification for the command based on the application
of the script repair model to the command and retry the
additional modification. In some implementations, the
system updates the script repair model using data indi-
cating that the error or the other error occurred during
execution of the modified command. For example, the
system may update the script repair model to prevent the
script repair model from applying the modification to sim-
ilar commands.

[0067] In some implementations, the system deter-
mines that the error or the other error did not occur during
execution of the modified command. In this instance, the
system may update the update the automated script with
the modified command to indicate that the modification
was successful. The system may update the script repair
model with data indicating that the modification was suc-
cessful. The system may also update other similar com-
mands of other scripts with the modification.

[0068] FIG.4 shows anexample of acomputing device
400 and a mobile computing device 450 that can be used
to implement the techniques described here. The com-
puting device 400 is intended to represent various forms
of digital computers, such as laptops, desktops, worksta-
tions, personal digital assistants, servers, blade servers,
mainframes, and other appropriate computers. The mo-
bile computing device 450 is intended to represent vari-
ous forms of mobile devices, such as personal digital
assistants, cellular telephones, smart-phones, and other
similar computing devices. The components shown here,
their connections and relationships, and their functions,
are meant to be examples only, and are not meant to be
limiting.

[0069] The computingdevice400 includes a processor
402, a memory 404, a storage device 406, a high-speed
interface 408 connecting to the memory 404 and multiple
high-speed expansion ports 410, and a low-speed inter-
face 412 connecting to a low-speed expansion port 414
and the storage device 406. Each of the processor 402,
the memory 404, the storage device 406, the high-speed
interface 408, the high-speed expansion ports 410, and

17 EP 3 418 896 A1 18

the low-speed interface 412, are interconnected using
various busses, and may be mounted on a common
motherboard or in other manners as appropriate. The
processor 402 can process instructions for execution
within the computing device 400, including instructions
stored in the memory 404 or on the storage device 406
to display graphical information for a GUI on an external
input/output device, such as a display 416 coupled to the
high-speed interface 408. In other implementations, mul-
tiple processors and/or multiple buses may be used, as
appropriate, along with multiple memories and types of
memory. Also, multiple computing devices may be con-
nected, with each device providing portions of the nec-
essary operations (e.g., as a server bank, a group of
blade servers, or a multiprocessor system).

[0070] The memory 404 stores information within the
computing device 400. In some implementations, the
memory 404 is a volatile memory unit or units. In some
implementations, the memory 404 is a non-volatile mem-
ory unit or units. The memory 404 may also be another
form of computer-readable medium, such as a magnetic
or optical disk.

[0071] The storage device 406 is capable of providing
mass storage for the computing device 400. In some im-
plementations, the storage device 406 may be or contain
a computer-readable medium, such as a floppy disk de-
vice, a hard disk device, an optical disk device, or a tape
device, a flash memory or other similar solid state mem-
ory device, or an array of devices, including devices in a
storage area network or other configurations. Instruc-
tions can be stored in an information carrier. The instruc-
tions, when executed by one or more processing devices
(for example, processor 402), perform one or more meth-
ods, such as those described above. The instructions
can also be stored by one or more storage devices such
as computer- or machine-readable mediums (for exam-
ple, the memory 404, the storage device 406, or memory
on the processor 402).

[0072] The high-speed interface 408 manages band-
width-intensive operations for the computing device 400,
while the low-speed interface 412 manages lower band-
width-intensive operations. Such allocation of functions
is an example only. In some implementations, the high-
speed interface 408 is coupled to the memory 404, the
display 416 (e.g., through a graphics processor or accel-
erator), and to the high-speed expansion ports 410,
which may accept various expansion cards. In the imple-
mentation, the low-speed interface 412 is coupled to the
storage device 406 and the low-speed expansion port
414. The low-speed expansion port 414, which may in-
clude various communication ports (e.g., USB, Blue-
tooth, Ethernet, wireless Ethernet) may be coupled to
one or more input/output devices, such as a keyboard,
apointing device, a scanner, or a networking device such
as a switch or router, e.g., through a network adapter.
[0073] The computing device 400 may be implement-
ed in a number of different forms, as shown in the figure.
Forexample, it may be implemented as a standard server

10

15

20

25

30

35

40

45

50

55

10

420, or multiple times in a group of such servers. In ad-
dition, it may be implemented in a personal computer
such as a laptop computer 422. It may also be imple-
mented as partof arack server system 424. Alternatively,
components from the computing device 400 may be com-
bined with other components in a mobile device, such as
a mobile computing device 450. Each of such devices
may contain one or more of the computing device 400
and the mobile computing device 450, and an entire sys-
tem may be made up of multiple computing devices com-
municating with each other.

[0074] The mobile computing device 450 includes a
processor 452, a memory 464, an input/output device
such as a display 454, a communication interface 466,
and a transceiver 468, among other components. The
mobile computing device 450 may also be provided with
a storage device, such as a micro-drive or other device,
to provide additional storage. Each of the processor 452,
the memory 464, the display 454, the communication in-
terface 466, and the transceiver 468, are interconnected
using various buses, and several of the components may
be mounted on a common motherboard or in other man-
ners as appropriate.

[0075] The processor 452 can execute instructions
within the mobile computing device 450, including in-
structions stored in the memory 464. The processor 452
may be implemented as a chipset of chips that include
separate and multiple analog and digital processors. The
processor 452 may provide, for example, for coordination
of the other components of the mobile computing device
450, such as control of user interfaces, applications run
by the mobile computing device 450, and wireless com-
munication by the mobile computing device 450.

[0076] The processor 452 may communicate with a
user through a control interface 458 and a display inter-
face 456 coupled to the display 454. The display 454 may
be, forexample,a TFT (Thin-Film-Transistor Liquid Crys-
tal Display) display or an OLED (Organic Light Emitting
Diode) display, or other appropriate display technology.
The display interface 456 may comprise appropriate cir-
cuitry for driving the display 454 to present graphical and
other information to a user. The control interface 458 may
receive commands from a user and convert them for sub-
mission to the processor 452. In addition, an external
interface 462 may provide communication with the proc-
essor 452, so as to enable near area communication of
the mobile computing device 450 with other devices. The
external interface 462 may provide, for example, forwired
communication in some implementations, or for wireless
communication in other implementations, and multiple
interfaces may also be used.

[0077] The memory 464 stores information within the
mobile computing device 450. The memory 464 can be
implemented as one or more of a computer-readable me-
dium or media, a volatile memory unit or units, or a non-
volatile memory unit or units. An expansion memory 474
may also be provided and connected to the mobile com-
puting device 450 through an expansion interface 472,

19 EP 3 418 896 A1 20

which may include, for example, a SIMM (Single In Line
Memory Module) card interface. The expansion memory
474 may provide extra storage space for the mobile com-
puting device 450, or may also store applications or other
information for the mobile computing device 450. Spe-
cifically, the expansion memory 474 may include instruc-
tions to carry out or supplement the processes described
above, and may include secure information also. Thus,
for example, the expansion memory 474 may be provide
as a security module for the mobile computing device
450, and may be programmed with instructions that per-
mit secure use of the mobile computing device 450. In
addition, secure applications may be provided via the
SIMM cards, along with additional information, such as
placing identifying information on the SIMM card in anon-
hackable manner.

[0078] The memory may include, for example, flash
memory and/or NVRAM memory (non-volatile random
access memory), as discussed below. In some imple-
mentations, instructions are stored in an information car-
rier. that the instructions, when executed by one or more
processing devices (for example, processor 452), per-
form one or more methods, such as those described
above. The instructions can also be stored by one or
more storage devices, such as one or more computer-
or machine-readable mediums (for example, the memory
464, the expansion memory 474, or memory on the proc-
essor 452). In some implementations, the instructions
can be received in a propagated signal, for example, over
the transceiver 468 or the external interface 462.
[0079] The mobile computing device 450 may commu-
nicate wirelessly through the communication interface
466, which may include digital signal processing circuitry
where necessary. The communication interface 466 may
provide for communications under various modes or pro-
tocols, such as GSM voice calls (Global System for Mo-
bile communications), SMS (Short Message Service),
EMS (Enhanced Messaging Service), or MMS messag-
ing (Multimedia Messaging Service), CDMA (code divi-
sion multiple access), TDMA (time division multiple ac-
cess), PDC (Personal Digital Cellular), WCDMA (Wide-
band Code Division Multiple Access), CDMA2000, or
GPRS (General Packet Radio Service), among others.
Such communication may occur, for example, through
the transceiver 468 using a radio-frequency. In addition,
short-range communication may occur, such as using a
Bluetooth, WiFi, or other such transceiver. In addition, a
GPS (Global Positioning System) receiver module 470
may provide additional navigation- and location-related
wireless data to the mobile computing device 450, which
may be used as appropriate by applications running on
the mobile computing device 450.

[0080] The mobile computing device 450 may also
communicate audibly using an audio codec 460, which
may receive spoken information from a user and convert
it to usable digital information. The audio codec 460 may
likewise generate audible sound for a user, such as
through a speaker, e.g., in a handset of the mobile com-

10

15

20

25

30

35

40

45

50

55

1"

puting device 450. Such sound may include sound from
voice telephone calls, may include recorded sound (e.g.,
voice messages, music files, etc.) and may also include
sound generated by applications operating on the mobile
computing device 450.

[0081] The mobile computing device 450 may be im-
plemented in a number of different forms, as shown in
the figure. For example, it may be implemented as a cel-
lular telephone 480. It may also be implemented as part
of a smart-phone 582, personal digital assistant, or other
similar mobile device.

[0082] Various implementations of the systems and
techniques described here can be realized in digital elec-
tronic circuitry, integrated circuitry, specially designed
ASICs (application specific integrated circuits), computer
hardware, firmware, software, and/or combinations
thereof. These various implementations can include im-
plementation in one or more computer programs that are
executable and/or interpretable on a programmable sys-
tem including at least one programmable processor,
which may be special or general purpose, coupled to
receive data and instructions from, and to transmit data
and instructions to, a storage system, at least one input
device, and at least one output device.

[0083] These computer programs (also known as pro-
grams, software, software applications or code) include
machine instructions for a programmable processor, and
can be implemented in a high-level procedural and/or
object-oriented programming language, and/or in as-
sembly/machine language. As used herein, the terms
machine-readable medium and computer-readable me-
dium refer to any computer program product, apparatus
and/or device (e.g., magnetic discs, optical disks, mem-
ory, Programmable Logic Devices (PLDs)) used to pro-
vide machine instructions and/or data to a programmable
processor, including a machine-readable medium that
receives machine instructions as a machine-readable
signal. The term machine-readable signal refers to any
signal used to provide machine instructions and/or data
to a programmable processor.

[0084] To provide for interaction with a user, the sys-
tems and techniques described here can be implemented
on a computer having adisplay device (e.g., a CRT (cath-
ode ray tube) or LCD (liquid crystal display) monitor) for
displaying information to the user and a keyboard and a
pointing device (e.g., a mouse or a trackball) by which
the user can provide input to the computer. Other kinds
of devices can be used to provide for interaction with a
user as well; for example, feedback provided to the user
can be any form of sensory feedback (e.g., visual feed-
back, auditory feedback, or tactile feedback); and input
from the user can be received in any form, including
acoustic, speech, or tactile input.

[0085] The systems and techniques described here
can be implemented in a computing system that includes
a back end component (e.g., as a data server), or that
includes a middleware component (e.g., an application
server), or that includes a front end component (e.g., a

21 EP 3 418 896 A1 22

client computer having a graphical user interface or a
Web browser through which a user can interact with an
implementation of the systems and techniques described
here), or any combination of such back end, middleware,
or front end components. The components of the system
can be interconnected by any form or medium of digital
data communication (e.g., a communication network).
Examples of communication networks include a local ar-
ea network (LAN), a wide area network (WAN), and the
Internet.

[0086] The computing system can include clients and
servers. A client and server are generally remote from
each other and typically interact through a communica-
tion network. The relationship of client and server arises
by virtue of computer programs running on the respective
computers and having a client-server relationship to each
other.

[0087] Although a few implementations have been de-
scribed in detail above, other modifications are possible.
For example, while a client application is described as
accessing the delegate(s), in other implementations the
delegate(s) may be employed by other applications im-
plemented by one or more processors, such as an ap-
plication executing on one or more servers. In addition,
the logic flows depicted in the figures do not require the
particular order shown, or sequential order, to achieve
desirable results. In addition, other actions may be pro-
vided, or actions may be eliminated, from the described
flows, and other components may be added to, or re-
moved from, the described systems. Accordingly, other
implementations are within the scope of the following
claims.

Claims
1. A computer-implemented method comprising:

receiving, by a computing device, an automated
script thatincludes one or more commands and
that is configured to interact with graphical ele-
ments that appear on a user interface;
executing, by the computing device, acommand
of the one or more commands of the automated
script;

determining, by the computing device, that an
error occurred during execution of the command
of the one or more commands of the automated
script;

in response to determining that an error oc-
curred during execution of the command, deter-
mining, by the computing device, a modification
for the command by applying, to the command,
a script repair model that is trained using one or
more automated scripts that each include com-
mands and results that correspond to each com-
mand;

executing, by the computing device, the modi-

10

15

20

25

30

35

40

45

50

55

12

fied command;

determining, by the computing device, whether
the error or another error occurred during exe-
cution of the modified command; and

based on determining whether the error or the
other error occurred during execution of the
modified command, determining whether to up-
date the automated script with the modified com-
mand.

2. The method of claim 1, wherein:

determining, by the computing device, whether
the error or another error occurred during exe-
cution of the modified command comprises:
determining that the error or the other error oc-
curred during execution of the modified com-
mand,

determining whether to update the automated
script with the modified command comprises:
determining not to update the automated script
with the modified command, and

the method comprises:

determining, by the computing device, an addi-
tional modification for the command based on
the application of the script repair model to the
command.

3. The method of claim 2, comprising:
based on determining that the error or the other error
occurred during execution of the modified command,
updating the scriptrepair model using data indicating
that the error or the other error occurred during ex-
ecution of the modified command.

4. The method of any of the preceding claims, wherein:

determining, by the computing device, whether
the error or another error occurred during exe-
cution of the modified command comprises:
determining that the error or the other error did
not occur during execution of the modified com-
mand,

determining whether to update the automated
script with the modified command comprises:
determining to update the automated script with
the modified command.

5. The method of claim 4, comprising:
determining that the error or the other error did not
occur during execution of the modified command,
updating the scriptrepair model using data indicating
that the error or the other error did not occur during
execution of the modified command.

6. The method of claim 4 or 5, comprising:

identifying another automated script that in-

23 EP 3 418 896 A1 24

cludes another command that is similar to the
command of the automated script; and
updating the other command of the other auto-
mated script with the modified command.

The method of any of the preceding claims, wherein:

executing the command of the one or more com-
mands of the automated script comprises:

analyzing, using computer vision, a screen
capture of the user interface;

based on analyzing the screen capture of
the user interface, identifying, in the user
interface, an area of the screen that likely
matches a graphical element that is speci-
fied by the automated script; and
selecting, by the computing device, the area
of the screen that matches the graphical el-
ement that is specified by the automated
script, and

determining the modification for the command
comprises:

adjusting a size of the area of the screen that
likely matches the graphical element that is
specified by the automated script.

The method of any of the preceding claims, wherein
determining, by the computing device, a modification
for the command by applying, to the command, a
script repair model that is trained using one or more
automated scripts that each include commands and
results that correspond to each command compris-
es:

classifying, by the script repair model, the error
that occurred during execution of the command
of the one or more commands of the automated
script; and

based on the classification of the error, deter-
mining the modification for the command by ap-
plying, to the command, the script repair model.

9. The method of any of the preceding claims, wherein:

executing, by the computing device, the modi-
fied command comprises:

simulating, by the computing device, the modi-
fied command, and

determining, by the computing device, whether
the error or another error occurred during exe-
cution of the modified command comprises:
determining whether the error or the other error
occurred during simulation of the modified com-
mand.

10. The method of any of the preceding claims, wherein

10

15

20

25

30

35

40

45

50

55

13

1.

determining, by the computing device, a modification
for the command by applying, to the command, a
script repair model that is trained using one or more
automated scripts that each include commands and
results that correspond to each command compris-
es:

determining, by applying the script repair model
to the command, for each of one or more can-
didate modifications, a repair confidence score
that reflects a likelihood that applying a respec-
tive candidate modification to the command will
correct the error; and

based on the repair confidence scores, select-
ing, fromamong the one or more candidate mod-
ifications, the modification for the command.

The method of any of the preceding claims, wherein
determining whether to update the automated script
with the modified command comprises:

determining whether to update the automated script
with the modified command using machine learning.

12. A system comprising:

one or more computers; and

one or more storage devices storing instructions
that are operable, when executed by the one or
more computers, to cause the one or more com-
puters to perform operations comprising:

receiving, by a computing device, an auto-
mated script thatincludes one or more com-
mands and that is configured to interact with
graphical elements that appear on a user
interface;

executing, by the computing device, a com-
mand of the one or more commands of the
automated script;

determining, by the computing device, that
an error occurred during execution of the
command of the one or more commands of
the automated script;

in response to determining that an error oc-
curred during execution of the command,
determining, by the computing device, a
modification for the command by applying,
to the command, a script repair model that
is trained using one or more automated
scripts that each include commands and re-
sults that correspond to each command;
executing, by the computing device, the
modified command;

determining, by the computing device,
whether the error or another error occurred
during execution of the modified command;
and

based on determining whether the error or

13.

14.

15.

25 EP 3 418 896 A1

the other error occurred during execution of
the modified command, determining wheth-
er to update the automated script with the
modified command.

The system of claim 12, wherein the instructions are
operable, when executed by the one or more com-
puters, to cause the one or more computers to per-
form operations defined in one or more of claims 2
to 11.

Computer program instructions executable by one
or more computers which, upon such execution,
cause the one or more computers to perform oper-
ations comprising:

receiving, by a computing device, an automated
script thatincludes one or more commands and
that is configured to interact with graphical ele-
ments that appear on a user interface;
executing, by the computing device, acommand
of the one or more commands of the automated
script;

determining, by the computing device, that an
error occurred during execution of the command
of the one or more commands of the automated
script;

in response to determining that an error oc-
curred during execution of the command, deter-
mining, by the computing device, a modification
for the command by applying, to the command,
a script repair model that is trained using one or
more automated scripts that each include com-
mands and results that correspond to each com-
mand;

executing, by the computing device, the modi-
fied command;

determining, by the computing device, whether
the error or another error occurred during exe-
cution of the modified command; and

based on determining whether the error or the
other error occurred during execution of the
modified command, determining whether to up-
date the automated script with the modified com-
mand.

The computer program instructions of claim 14,
wherein upon execution of the computer program
instructions, such execution causes the one or more
computers to perform operations as defined in one
or more of claims 2 to 11.

10

15

20

25

30

35

40

45

50

55

14

26

EP 3 418 896 A1

Script Capture

102a

-—_

TS 106a g 110a
7-x

Restaurant Park Train
Finder ‘1 Finder ‘j_ Schedule
104a 108a 112a

?1186 q120a 51163
r @f
| 122a| s 132a - 1942
|
I A {1300 |5 1262
LS

138a 136a
——128a

Go 1\5_1143 ¥ LA July 1,2017 10:21 AM

Change to User Interface

S

102b 106b 110b
7 A

Restaurant Park Train
Finder Finder Schedule ,1

C1180<104b 108b 112b
e —120b
&
5_121b 5 116b
; I | Bus Schedule!
| 122b [123b
) | Com=]
T 1%k " 124b
DY
138b 136b
——128b

Go les114b

YN July 1,2017 4:21 PM

FIG. 1A

15

S 100

100b

EP 3 418 896 A1

Script Execution and Error 100c 5100
102¢ r—\S1060 110¢
1 A=
=)
Restaurant Park Train S 135¢
Finder ‘1 Finder ,1 Schedule ,1 FERERS
C 118¢ & 104¢ 108¢ 112c found

— 120c
o == @
121c5133c 51160 | |
ji-; Pl=
I 1220 123c |]

26" '124c

138¢ E 136¢

~—128¢
1\5_1140 | July 2, 2017 11:54 AM
5100
Script Modification 100d
102d(—\S106d ” 110d
6 A=f | B
\=/
Restaurant Park Train
Finder Finder Schedule
C 1180"7- 104d__ v>-10801 v>-11201 3_139d

) e &
G |Bus Schedule!
=3 137d ~123d

122d

|' ')
LW)| =56q
== - 124d

[g 138d S136d

~——128d
Go |« 5 114d v | July 2, 2017 11:54 AM

FIG. 1B

16

EP 3 418 896 A1

¢ Ol4

JozAleuy

$S9201d

0s¢ Iq

JolyisselD

Jou3

JalIpo sz 5
uBWWO
ez S|P 0
[—
8INpo|A Buloos | soeinwis |
| PUBLUWIOD |
UOREJUIPON
L Paupon
g9z
Jojesausn) w_mmo_\/_ 714
soeplaU| L_m 9y
Jasn 1duos
(1714

00 W

JalJIsse|D

puewwo)

9|NPOIAN

abelo)s
duog
<
0z
8|NPON
i ._oww._m._ﬁm_mo uonnoex3y ._OMM.“._mocmm@
1duos !
cmmw 144 61z
/Nlcvm

UOISIA

Jeyndwo)

1[4

Jobeuep
$S800.1d

ENW

eoepa|
Jasn

17

3002

EP 3 418 896 A1

Receive an automated script that includes one or more
commands and that is configured to interact with graphical
elements that appear on a user interface 210

1

Execute a command of the one or more commands of the
automated script 320

1

Determine that an error occurred during execution of the
command of the one or more commands of the automated

script 330

1

Determine a modification for the command by applying, to the
command, a script repair model that is trained using one or
more automated scripts that each include commands and

results that correspond to each command 340

1

Execute the modified command

<O
Ch
o

l

Determine whether the error or another error occurred during
execution of the modified command

2
o

6

l

Determine whether to update the automated script with the
modified command 370

FIG. 3

18

EP 3 418 896 A1

400 Z

416

FIG. 4

19

10

15

20

25

30

35

40

45

50

55

EP 3 418 896 A1

9

Européisches
Patentamt

European
Patent Office

Office européen
des brevets

[

EPO FORM 1503 03.82 (P04C01)

EUROPEAN SEARCH REPORT

Application Number

EP 18 17 0688

DOCUMENTS CONSIDERED TO BE RELEVANT
Categor Citation of document with indication, where appropriate, Relevant CLASSIFICATION OF THE
gory of relevant passages to claim APPLICATION (IPC)
A US 2014/244831 Al (BERKOVITCH IDO [IL] ET |1-15 INV.
AL) 28 August 2014 (2014-08-28) GO6F11/36
* paragraphs [0032] - [0034] *
A US 2016/342501 Al (VENKATESAN RAJESH [IN] |1-15
ET AL) 24 November 2016 (2016-11-24)
* paragraphs [0030] - [0039] *
A US 2009/288070 Al (COHEN AYAL [IL] ET AL) |1-15
19 November 2009 (2009-11-19)
* paragraphs [0027] - [0031] *
TECHNICAL FIELDS
SEARCHED (IPC)
GOG6F
The present search report has been drawn up for all claims
Place of search Date of completion of the search Examiner
Munich 4 September 2018 Engmann, Steffen

CATEGORY OF CITED DOCUMENTS

X : particularly relevant if taken alone

Y : particularly relevant if combined with another
document of the same category

A : technological background

O : non-written disclosure

P : intermediate document

T : theory or principle underlying the invention

E : earlier patent document, but published on, or
after the filing date

D : document cited in the application

L : document cited for other reasons

& : member of the same patent family, corresponding
document

20

10

15

20

25

30

35

40

45

50

55

EPO FORM P0459

EP 3 418 896 A1

ANNEX TO THE EUROPEAN SEARCH REPORT
ON EUROPEAN PATENT APPLICATION NO. EP 18 17 0688

This annex lists the patent family members relating to the patent documents cited in the above-mentioned European search report.
The members are as contained in the European Patent Office EDP file on
The European Patent Office is in no way liable for these particulars which are merely given for the purpose of information.

04-09-2018
Patent document Publication Patent family Publication
cited in search report date member(s) date

US 2014244831 Al 28-08-2014 NONE

For more details about this annex : see Official Journal of the European Patent Office, No. 12/82

21

	bibliography
	abstract
	description
	claims
	drawings
	search report

