FIELD OF THE INVENTION
[0001] The present invention relates to a grinding machine, and particularly to a grinding
machine that forms a positive pressure environment between a grinding machine body
and a grinding disc to eliminate invasion of dust and moisture.
BACKGROUND OF THE INVENTION
[0002] In current grinding machines, associated industrialists commonly provide a dust sucking
structure on the grinding machines. The dust sucking structure sucks dust generated
during a process of grinding a material under grinding, as disclosed in
TW 439616,
CN 1748939,
US 6,802,766,
US 7,722,438,
JP5760892,
JP5696488,
JP5682410,
JP2014217920,
JP2014124752,
JP2014039975,
JP2012210691,
EP2479001,
EP3028811 and
EP2611573 patents.
[0003] However, in the above implementation method, dust may be inappropriately accumulated
on a grinding disc and a transmission member of a power assembly. As a result, friction
is constantly produced between the transmission member and dust to cause a temperature
rise in the transmission member, which disfavors long-term implementation.
[0004] Further, a grinding environment of the grinding machine is not limited to only dry
grinding but also includes wet grinding. If wet grinding is performed using conventional
technologies of the above patents, moisture or water, which is not easy to clean,
may be drawn by the dust and enter the grinding machine. If the grinding machine is
disassembled to allow moisture or water to evaporate each time the grinding machine
is used after grinding, more grinding machines need to be purchased in order to use
the grinding machines in turn, leading to increased costs. Further, disassembling
the grinding machines also causes a waste in working hours. In addition, industries
today are gradually evolving into implementation conducted by robots, and working
hours of the robots may be reduced if grinding machines installed on the robots need
to be disassembled from the robots in the long run.
SUMMARY OF THE INVENTION
[0005] It is a primary object of the present invention to solve issues of the susceptibility
to effects of a grinding environment and inappropriate accumulation of dust of a conventional
dust sucking structure.
[0006] To achieve the above object, the present invention provides a grinding machine including
a grinding machine body and a grinding disc connected to the grinding machine body.
The grinding machine body is provided with a pressure cavity at a position facing
the grinding disc, and a gas intake pipe corresponding to the pressure cavity. A pressure
release gap in communication with the pressure cavity is formed between the grinding
machine body and the grinding disc. The gas intake pipe induces a high-pressure gas
into the pressure cavity. The pressure cavity receives an effect of the high-pressure
gas to cause its internal pressure to be greater than the pressure outside the grinding
machine body, such that the pressure cavity becomes a positive-pressure environment.
The pressure cavity is in communication with the pressure release gap to allow the
high-pressure gas to be continually released via the pressure release gap, so as to
prohibit external dust from entering the pressure cavity.
[0007] In one embodiment, the gas intake pipe is connected to an external gas source, and
receives the high-pressure gas from the external gas source.
[0008] In one embodiment, the grinding machine body includes a host housing and a cover
body connected to the host housing. The gas intake pipe is disposed on the cover body,
which defines the pressure cavity and has its one side facing the grinding disc appear
hollow to allow the high-pressure gas to flow towards the pressure release gap.
[0009] In one embodiment, the cover body includes a first end connected to the host housing
and a second end facing the grinding disc. The size of the second end is greater than
the size of the first end.
[0010] In one embodiment, the grinding machine body includes a connecting member, which
is disposed in the cover body and causes the grinding disc to be linked with a power
assembly disposed in the host housing.
[0011] In one embodiment, the grinding machine body includes the host housing and a gas
guiding pipe. The host housing includes a cavity for disposing the power assembly,
a gas intake channel in communication with the cavity and receiving the high-pressure
gas from the external gas source, and a gas output channel in communication with the
cavity and discharging the high-pressure gas out of the cavity. The gas guiding pipe
has its two ends respectively connected to the gas output channel and the gas intake
channel to guide the high-pressure gas into the pressure cavity.
[0012] In one embodiment, the grinding machine body includes a regulating valve connected
to the gas output channel and the gas guiding pipe.
[0013] In one embodiment, the grinding machine body includes a coupling tube. The coupling
tube includes a first channel connected to the gas output channel and the gas guiding
pipe, and a second channel branched from and in communication with the first channel
and causing a part of the high-pressure gas to be released.
[0014] In one embodiment, the coupling tube includes a deflation control member disposed
in the second channel. The deflation control member includes a plug body and a through
hole disposed on the plug body.
[0015] According to the disclosed embodiments of the present invention, the present invention
includes following features compared to the prior art. In the present invention, the
pressure cavity becomes a positive-pressure environment because of the high-pressure
gas, and the high-pressure is caused to be discharged via the pressure release gap,
such that not only dust is prohibited from entering the pressure cavity but also the
pressure cavity is kept dry. Further, components of the grinding machine disposed
in the pressure cavity are provided with better heat dissipation. In addition, while
the high-pressure gas is being discharged via the pressure release gap, the high-pressure
gas drives the airflow around the grinding machine to further prohibit the dust from
entering the pressure cavity.
BRIEF DESCRIPTION OF THE DRAWINGS
[0016]
Fig. 1 is a structural schematic diagram of a grinding machine according to an embodiment
of the present invention;
Fig. 2 is a partial sectional structural schematic diagram of a grinding machine according
to an embodiment of the present invention;
Fig. 3 is a first schematic diagram of a high-pressure gas in flow according to an
embodiment of the present invention;
Fig. 4 is a second schematic diagram of a high-pressure gas in flow according to an
embodiment of the present invention;
Fig. 5 is a structural schematic diagram of a grinding machine according to another
embodiment of the present invention;
Fig. 6 is a structural schematic diagram of a grinding machine according to another
embodiment of the present invention;
Fig. 7 is a structural schematic diagram of a grinding machine according to another
embodiment of the present invention;
Fig. 8 is a schematic diagram of a high-pressure gas in flow according to an embodiment
of the present invention; and
Fig. 9 is an enlarged partial schematic diagram of Fig. 8 of the present invention.
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS
[0017] Details and technical contents of the present invention are given with the accompanying
drawings below.
[0018] Referring to Fig. 1 and Fig. 2, the present invention provides a grinding machine
10, which primarily includes a grinding machine body 11 and a grinding disc 12 connected
to the grinding machine body 11. The grinding machine body 11 is provided with a pressure
cavity 13 at a position facing the grinding disc 12, and a gas intake pipe 111 corresponding
to the pressure cavity 13. The gas intake pipe 111 is in communication with the pressure
cavity 13. Further, a lower edge of the grinding machine body 11 is not closely connected
to the grinding disc 12, so as to form a pressure release gap 14 in communication
with the pressure cavity 13. More specifically, the grinding machine body 11 has its
one side facing the grinding disc 12 designed as recessed to form the pressure cavity
13. That is to say, the pressure cavity 13 and the pressure release gap 14 are in
fact in communication. Further, in one embodiment, the grinding machine body 11 includes
a host housing 112 and a cover body 113 connected to the host housing 112. The cover
body 113 is not in close contact with the grinding disc 12, so as to form the pressure
release gap 14. Further, the cover body 113 may appear slightly similar to an umbrella
to define the pressure cavity 13, and has its one side facing the grinding disc 12
appear hollow to cause the pressure cavity 13 to be in direct communication with the
pressure release gap 14. Further, the cover body 113 includes a first end 114 connected
to the host housing 112, and a second end 115 connected to and facing the grinding
disc 12. In one embodiment, the size of the second end 115 is greater than the size
of the first end 114, as shown in Fig. 2. On the other hand, the grinding machine
body 11 includes a connecting member 116, which is disposed at the cover body 113
and causes the grinding disc 12 to be linked with a power assembly 15 disposed in
the host housing 112. Further, the connecting member 116 is installed on a transmission
shaft 151 of the power assembly 15. When the power assembly 15 is activated and rotates,
the transmission shaft 151 drives the connecting member 116 to rotate to further rotate
the grinding disc 12. Further, the connecting member 116 may be a counterweight to
stabilize the rotation of the grinding disc 12 though counterweight.
[0019] The gas intake pipe 111 of the present invention may be connected to an external
gas source (not shown), and induces a high-pressure gas to enter the pressure cavity
13 when the external gas source is activated. At this point, the pressure in the pressure
cavity 13 suddenly becomes greater than the pressure outside the pressure cavity 13
due to the high-pressure gas induced. That is too say, the pressure in the pressure
cavity 13 is greater than the pressure outside the grinding machine body 11. As such,
the pressure cavity 13 becomes a positive-pressure environment. The high-pressure
gas is later continually released via the pressure release gap 14, and a flow of the
gas pressure is as shown in Fig. 3. Referring to Fig. 4, when the high-pressure gas
exists via the pressure release gap 14, gas around the grinding machine body 11 is
driven by the high-pressure gas to flow along the direction of the high-pressure gas.
As a result, the flow of the airflow of the grinding disc 12 becomes even more obvious
to further substantially prohibit dust generated during an operation of the grinding
machine 10 from entering the pressure cavity 13. Further, in the present invention,
the high-pressure gas is caused to enter the pressure cavity 13, such that moisture
or water seeping into the pressure cavity 13 is blown dry by the high-pressure gas
when the grinding machine 10 performs wet grinding. Thus, the pressure cavity 13 of
the grinding machine 10 can be appropriately kept dry to prevent a part of the components
of the grinding machine 10 from corrosion caused by accumulated moisture or water.
Further, through such design of the present invention, the grinding machine 10 is
adaptable to various grinding environments (e.g., wet grinding or dry grinding), so
as to reduce the frequency of post-implementation equipment maintenance and to be
readily installed to a mechanical arm (not shown). Further, through the above technical
solution, the transmission shaft 151 and nearby structures may be blown by the high-pressure
gas during a grinding process, such that thermal exchange may be performed to prevent
heat from accumulating on the transmission shaft 151 and the nearby structures.
[0020] Although the grinding machine 10 implemented by a pneumatic approach is illustrated
in Fig. 1 as an example, it should be noted that the embodiments of the present invention
are not limited to the pneumatic grinding machine 10, and may be applied to the grinding
machine 10 implemented by an electric approach.
[0021] In addition to the circular form depicted in Fig. 1 to Fig. 4, the grinding disc
12 of the present invention may also be implemented in a square form, as shown in
Fig. 5. When the grinding disc 12 is in a square form, implementation concepts are
the same and shall be omitted herein.
[0022] Referring to Fig. 6 and Fig. 8, the host housing 112 includes a cavity 117 for disposing
the power assembly 15, an gas intake channel 118 connected to the cavity 117 and for
receiving the high-pressure gas from the external gas source, and a gas output channel
119 in communication with the cavity 117 and for discharging the high-pressure gas
out of the cavity 117. The gas intake channel 118 receives the high-pressure gas into
the cavity 117. The high-pressure gas drives the power assembly 15 to rotate, which
further drives the grinding disc 12 to rotate for grinding. Further, in addition to
the foregoing gas intake approach, in one embodiment, the grinding machine body 11
includes a gas guiding pipe 16, which has its two ends respectively connected to the
gas output channel 119 and the gas intake pipe 111. The gas guiding pipe 16 receives
the high-pressure gas discharged from the gas output channel 119, and guides the high-pressure
gas into the pressure cavity 13. As such, the high-pressure gas is effectively utilized
to prevent the high-pressure gas from becoming waste gas after only a one-time operation.
[0023] Referring to Fig.6, the grinding machine body 11 may further include a regulating
valve 17, which is connected between the gas output channel 119 and the gas guiding
pipe 16. Through the regulating valve 17, the amount of the high-pressure gas entering
the pressure cavity 13 through the gas guiding pipe 16 is controlled. Further, there
are numerous types of the regulating valve 17, and associated details shall be omitted
herein. During an application process of the regulating valve 17, as shown in Fig.
8, the regulating valve 17 may release a part of the high-pressure gas to reduce the
amount of the high-pressure gas entering the gas guiding pipe 16. Referring to Fig.
7 to Fig. 9, in one embodiment, the grinding machine body 11 may further include a
coupling tube 18. The coupling tube 18 includes a first channel 181 connected to the
gas output channel 119 and the gas guiding pipe 16, and a second channel 182 branched
from and remaining in communication with the first channel 181 and allowing a part
of the high-pressure to be released. More specifically, an inner channel diameter
of the second channel 182 affects the releasable amount of the high-pressure gas.
In one embodiment, a deflation control member 183 is disposed in the second channel
182. The deflation control member 183 includes a plug body 184 and a through hole
185 disposed on the plug body 184. The aperture size of the through hole 185 determines
a pressure release status of the deflation control member 183. When the aperture of
the through hole 185 is larger, the deflation control member 183 releases a larger
amount of the high-pressure gas and reduces the amount of the high-pressure gas entering
the gas guiding pipe 16. Conversely, when the aperture of the through hole 185 is
smaller, the deflation control member 183 is incapable of discharging a large amount
of the high-pressure gas, such that the amount of the high-pressure gas entering the
gas guiding pipe 16 is larger than that when the aperture of the through hole 185
is larger.
[0024] In summary there is disclosed a grinding machine 10 including a grinding machine
body 11 and a grinding disc 12 connected to the grinding machine body 11. The grinding
machine body 11 is provided with a pressure cavity 13 at a position facing the grinding
disc 12 and a gas intake pipe 111 corresponding to the pressure cavity 13. A pressure
release gap 14 in communication with the pressure cavity 13 is formed between the
grinding machine body 11 and the grinding disc 12. The gas intake pipe 111 induces
a high-pressure gas into the pressure cavity 13, which receives an effect of the high-pressure
gas to become a positive-pressure environment. The high-pressure gas is continually
released via the pressure release gap 14 to prohibit external dust from entering the
pressure cavity 13. Thus, the grinding machine 10 is capable of preventing dust from
accumulating in the pressure cavity 13 as well as effectively preventing moisture
from entering the pressure cavity 13 when the grinding machine 10 is applied for wet
grinding.
1. A grinding machine (10), comprising a grinding machine body (11) and a grinding disc
(12), being characterized that:
the grinding machine body (11) is provided with a pressure cavity (13) at a position
facing the grinding disc (12) and a gas intake pipe (111) corresponding to the pressure
cavity (13), a pressure release gap (14) in communication with the pressure cavity
(13) is formed between the grinding machine body (11) and the grinding disc (12),
the gas intake pipe (111) induces a high-pressure gas into the pressure cavity (13),
the pressure cavity (13) receives an effect of the high-pressure gas to cause a pressure
therein to be greater than a pressure outside the grinding machine body (11) such
that the pressure cavity (13) becomes a positive-pressure environment, and the pressure
cavity (13) is in communication with the pressure release gap (14) to cause the high-pressure
gas to be continually released via the pressure release gap (14), thereby prohibiting
external dust from entering the pressure cavity (13).
2. The grinding machine (10) of claim 1, wherein the gas intake pipe (111) is connected
to an external gas source and receives the high-pressure gas from the external gas
source.
3. The grinding machine (10) of claim 2, wherein the grinding machine body (11) comprises
a host housing (112) and a cover body (113) connected to the host housing (112), the
gas intake pipe (111) is disposed on the cover body (113), and the cover body (113)
defines the pressure cavity (13) and has its one side facing the grinding disc (12)
appear hollow to allow the high-pressure gas to flow towards the pressure release
gap (14).
4. The grinding machine (10) of claim 3, wherein the cover body (113) comprises a first
end (114) connected to the host housing (112) and a second end (115) facing the grinding
disc (12), and a size of the second end (115) is greater than a size of the first
end (114).
5. The grinding machine (10) of claim 3 or 4, wherein the grinding machine body (11)
comprises a connecting member (116), which is disposed at the cover body (113) and
causes the grinding disc (12) to be linked with a power assembly (15) disposed in
the host housing (112).
6. The grinding machine (10) of one of the preceding claims, wherein the grinding machine
body (11) comprises a host housing (112) and a gas guiding pipe (16), the host housing
(112) comprises a cavity (117) for disposing a power assembly (15), a gas intake channel
(118) in communication with the cavity (117) and for receiving the high-pressure gas
from an external gas source, and a gas output channel (119) in communication with
the cavity (117) and for discharging the high-pressure gas out of the cavity (117),
and two ends of the gas guiding pipe (16) are respectively connected to the gas output
channel (119) and the gas intake pipe (111) to guide the high-pressure gas into the
pressure cavity (13).
7. The grinding machine (10) of claim 6, wherein the grinding machine body (11) comprises
a regulating valve (17) connected between the gas output channel (119) and the gas
guiding pipe (16).
8. The grinding machine (10) of claim 6 or 7, wherein the grinding machine body (11)
comprises a coupling tube (18), which comprises a first channel (181) connected to
the gas output channel (119) and the gas guiding pipe (16) and a second channel (182)
branched from and in communication with the first channel (181) and allowing a part
of the high-pressure gas to be released.
9. The grinding machine (10) of claim 8, wherein the coupling tube (18) comprises a deflation
control member (183) disposed in the second channel (182), and the deflation control
member (183) comprises a plug body (184) and a through hole (185) disposed on the
plug body (184).
10. The grinding machine (10) of one of the claims 6-9, wherein the grinding machine body
(11) comprises a cover body (113) connected to the host housing (112), the gas intake
pipe (111) is disposed on the cover body (113), and the cover body (113) defines the
pressure cavity (13) and has its one side facing the grinding disc (12) appear hollow
to allow the high-pressure gas to flow towards the pressure release gap (14).
11. The grinding machine (10) of claim 10, wherein the cover body (113) comprises a first
end (114) connected to the host housing (112) and a second end (115) facing the grinding
disc (12), and a size of the second end (115) is greater than a size of the first
end (114).
12. The grinding machine (10) of the claims 6-11, wherein the grinding machine body (11)
comprises a connecting member (116), which is disposed at a cover body (113) and causes
the grinding disc (12) to be linked with the power assembly (15) disposed in the host
housing (112).