

(11) **EP 3 434 143 A1**

(12)

EUROPEAN PATENT APPLICATION

(43) Date of publication:

30.01.2019 Bulletin 2019/05

(51) Int Cl.: A45D 40/00 (2006.01)

(21) Application number: 18185846.5

(22) Date of filing: 26.07.2018

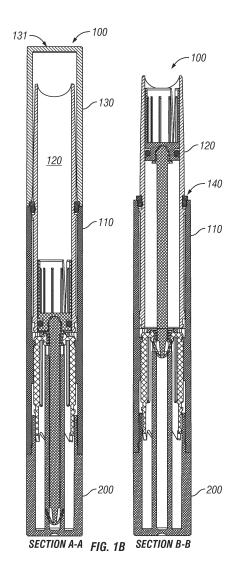
(84) Designated Contracting States:

AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

Designated Extension States:

BA ME

Designated Validation States:


KH MA MD TN

(30) Priority: 26.07.2017 US 201762537229 P

- (71) Applicant: Derik (JiangSu) Industrial Co., Ltd 213245 Jin Tan Chang Zhou City (CN)
- (72) Inventor: Zhang, Shaoxiang
 JinTan ChangZhou City, 213245 (CN)
- (74) Representative: Dilg, Haeusler, Schindelmann Patentanwaltsgesellschaft mbH Leonrodstrasse 58 80636 München (DE)

(54) DISPENSER FOR STORING AND ADVANCING A PRODUCT

(57)A dispenser (100) with a hollow body (110), a sleeve (120), a cap (130) and sealing element (140) is disclosed. The hollow body (110) is open at both ends (111, 113) with sealing surfaces (116a, 116b) proximal to a first end (111). The sleeve (120) is fixed to and extends beyond the hollow body (110). The sleeve (120) is arranged with a complementary region (125) proximal to the sealing surfaces (116a, 116b). The cap (130) has a closed end (131) and an opposed open end (133) defined by a wall (132) with an irregular surface (135) proximal to the open end (133). A sealing element (140) is located in a cavity (150) defined by the sealing surfaces (116a, 116b) of the hollow body (110), the complementary region (125) of the sleeve (120) and the irregular surface (135) of the cap (130). The sealing element (140) is arranged with sets of surfaces (141, 142) that are in contact with respective surfaces (127, 125) of the sleeve (120) and the body (110) at all times and is further in contact with a third set of surfaces when the cap (130) is attached to the sleeve (120).

EP 3 434 143 A1

Description

Technical Field

⁵ **[0001]** The present dispenser relates, in general, to a container suitable for storing and controllably advancing a product from within the container.

Background

[0002] Commercially available traditional lipstick cartridges are arranged with covers which are held to and removable from the cartridge. Recently introduced formulations for lipsticks include volatile silicones. While available cartridge type assemblies are generally sufficient to keep the cover in place, such arrangements permit evaporation of the volatile silicones from the lipstick products stored in the cartridge.

[0003] Accordingly, there may be a need to provide an improved and consistently reproducible dispenser for increasing the useful life of lipsticks and other products that contain one or more volatile components while still providing easy access and controllable advancement of a product stored in the body of the cartridge.

Summary

15

30

35

40

[0004] An embodiment of a dispenser includes a hollow body, a sleeve, a cap and a sealing element. The hollow body is open at each end and has an inner surface with an engagement feature located between the opposed ends. The hollow body has sealing surfaces proximal to one of the open ends. The sleeve is fixed to and extends beyond the hollow body. The sleeve has opposed open ends and an outer surface with a complimentary region. The cap has a closed end and an opposed open end defined by a wall with an irregular surface proximal to the open end. The sealing element is located in a cavity defined by the sealing surfaces of the hollow body, the complimentary region of the sleeve and the irregular surface of the cap.

[0005] The dispenser is further arranged with a cup located in the sleeve. Some embodiments of the cup include an outer surface that defines a channel that receives a second sealing element. The second sealing element is made from a compliant material and is arranged to interfere with opposed surfaces of the sleeve and the cup. In the illustrated embodiments, the second sealing element is arranged in the shape of a torus. However, the shape of the second sealing element is not so limited. When provided in the shape of a torus, the radius of a cross-section of the torus should be long enough to provide interference regions along opposed surfaces of the cup and the sleeve. These opposed interference regions further prevent unintentional evaporation or outgassing of any number of volatile ingredients contained in a product housed in the sleeve. These additional seals are separate from and not affected by separation of the wall of the cap from the combination of the sleeve and the body. The additional or supplemental seals add to the effectiveness of the improved dispenser to increase the useful life of product formulations that contain volatile silicones or other ingredients that outgas and or evaporate when exposed to air at atmospheric pressure.

[0006] An alternative embodiment of the dispenser includes a cup with an annularly arranged and integral feature that slidingly contacts an opposed surface of the sleeve to provide either an alternative moveable seal between the cup and the sleeve or a supplemental seal. An alternative seal is characterized by a moveable element that remains in contact with the sleeve as the cup and the product supported therein is controllably advanced or retracted along the longitudinal axis of the dispenser. Such an alternative seal may be provided in addition to the second sealing element and the first sealing element.

45 Brief Description of the Drawings

[0007] Embodiments of the dispenser can be better understood with reference to the following drawings. The components in the drawings are not necessarily to scale, emphasis instead being placed upon clearly illustrating the structures and principles of operation of the assemblies.

FIG. 1A includes top, front and bottom views of an embodiment of a dispenser.

FIG. 1B includes cross-sectional views of the dispenser of FIG. 1A in the direction of line A - A and in the direction of line B - B.

FIG. 1C includes an exploded view of the components of the dispenser introduced in FIG. 1A and FIG. 1B.

FIG. 2A includes top, front, bottom and side views of the sleeve illustrated in FIG. 1B and FIG. 1C.

55

50

- FIG. 2B includes cross-sectional views in the direction of lines A A and B B, respectively, and a perspective view of the sleeve illustrated in FIG. 1B, FIG. 1C and FIG. 2A.
- FIG. 3A includes top, front and bottom views of the hollow body illustrated in FIG. 1A, FIG. 1B and FIG. 1C.
- FIG. 3B includes cross-sectional views in the direction of lines A A and B B, respectively, and a perspective view of the hollow body illustrated in FIG. 1A, FIG. 1B, FIG. 1C and FIG. 3A.
- FIG. 4A includes top, front and bottom views of the cap illustrated in FIG. 1A, FIG. 1B and FIG. 1C.
- FIG. 4B includes a perspective view of the cap illustrated in FIG. 1A, FIG. 1B, FIG. 1C and FIG. 4A.
- FIG. 4C includes a cross-sectional view in the direction of line A A of the cap illustrated in FIG. 4A.
- FIG. 4D includes a detailed view of surfaces along the inner surface of the wall of the cap as illustrated in FIG. 4C.
 - FIG. 5 includes top, front, and bottom plan views as well as a perspective and a cross-sectional view of an embodiment of the sealing element of FIG. 1B and FIG. 1C.
- FIG. 6 includes top, front, side, and bottom plan views as well as perspective and cross-sectional views in the direction of line A A and line B B of the cup illustrated in FIG. 1B and FIG. 1C.
 - FIG. 7 includes rear, top, front, and side plan views as well as a cross-sectional view of a second sealing element illustrated in FIG. 1B and FIG. 1C.
 - FIG. 8 includes a cross-sectional view of the dispenser illustrated in FIG. 1A, FIG. 1B, and FIG. 1C with detailed views of a first interface and a second interface.
 - FIG. 9 includes top, front, bottom, perspective, and cross-sectional views as well as a detailed view of an embodiment of the rod illustrated in FIG. 1B and FIG. 1C.
 - FIG. 10 includes top, front, side, bottom, perspective and cross-sectional views of an embodiment of the driver illustrated in FIG. 1B and FIG. 1C.
 - FIG. 11 includes top, front, side, bottom, perspective and cross-sectional views of an embodiment of the manipulator illustrated in FIG. 1B and FIG. 1C.
 - FIG. 12 includes a cross-sectional view of an alternative embodiment of a dispenser with a detailed view of an alternative second interface.

Overview of Embodiments

5

10

25

30

35

40

45

50

- **[0008]** Aspects of an improved dispenser are described generally before addressing the illustrated embodiments. The illustrations include exemplary embodiments of the components of the improved dispenser assembly. Particular or select components may be interchanged in some circumstances to accommodate varied assembly practices. For example, it may be desirable to load the product from one end of the sleeve rather than the other end of the sleeve.
- **[0009]** When it is desirable to fill the cup and volume of the sleeve from the open end that extends beyond the hollow body, the improved dispenser may be arranged with a modified hollow body absent a cross member and a second sealing element located between the cup and the inward surface of the sleeve. As indicated, the cup may have an integral structure such as a band that is arranged along its perimeter to interfere with the inner surface of the sleeve. One or more such bands or extensions may extend from the cup to provide supplemental interference seals to prevent evaporation of the product into the hollow body beyond the cup.
- **[0010]** The improved dispenser may be used to provide for extended storage as well as temporary access to cosmetic products containing pigments, oils, waxes and emollients. As indicated, some of these products may contain one or more volatile components and or water that easily evaporate. While described in association with the storage and use of a cosmetic product such as a lip stick, it should be understood that alternative products such as a glue stick may be provided in the dispenser.
- [0011] In the illustrated embodiments, the dispenser is assembled from a hollow body, a sleeve that extends beyond

the hollow body, a cap that covers the extended portion of the sleeve (and removable attaches to the sleeve) and a sealing element located in a cavity defined by the sleeve, the hollow body and the cap. Respective complementary features arranged along the outer surface(s) of the sleeve and the inner surface of the hollow body keep the sleeve fixed along interior surfaces of the body. Additional complementary surfaces arranged along the outer surface of the sleeve and the inner surface of the hollow body keep a sealing element fixed in the cavity at an end of the hollow body.

[0012] As illustrated, the hollow body, sleeve, cap and sealing element share a central longitudinal axis along the length of the dispenser from a base end to the cap end. In the example embodiments, the dispenser is cylindrically shaped with the sleeve connected to and extending from an open end of the hollow body. Respective complementary features arranged along the outer surface(s) of the sleeve and the inner surface of the body keep the sleeve fixed to the body.

[0013] The improved dispenser can achieve increased useful storage times for products provided in the dispenser. The increased useful storage times are achievable as long as the cap is reengaged with the sleeve after use. The increased storage times are achievable even after the dispenser has been removed from point of sale packaging and after a portion of the product stored within the dispenser has been used.

10

20

30

35

40

45

50

[0014] The cap has a closed end and an opposed open end defined by a wall with an irregular surface proximal to the open end. The irregular surface of the cap interferes with respective surfaces of the sealing element.

[0015] In addition, when the cap is engaged with the sleeve, the irregular surface of the cap forms a recess between the respective surfaces of the sealing element that are in contact and compressed by the cap. The recess opposes a leading edge of the chamfered surface of the sealing element and provides a space for local displacement of the sealing element.

[0016] Furthermore, the cap includes a rounded edge or transition between an end face and the irregular surface. In the illustrated embodiments the node and the transition are characterized by a rounded surface with a radius having a length such that the repeated contact of the cap against the complementary surfaces of the sealing element is not detrimental to the integrity of the sealing element. Stated another way, the rounded surfaces of the cap do not permanently mar or otherwise damage the sealing element. Moreover, rounded surfaces increase the area of contact of the cap and the sealing element when accompanied by compression.

[0017] As described, the hollow body is arranged with sealing surfaces proximal to a location where the sleeve extends from the hollow body. One of the provided sealing surfaces abuts an end face of the wall of the cap. This sealing surface also abuts the sealing element and more particularly a surface of the base of the sealing element opposed to a junction or corner in a channel of the sleeve.

[0018] A separate and distinct sealing surface of the body faces and interferes with at least a portion of the stem of the sealing element. In the illustrated embodiments, the body is further arranged with a transition surface located between the respective sealing surfaces.

[0019] The sealing element is seated between surfaces of a channel along an outer surface of a sleeve when the sleeve is fixed to the hollow body. The sealing element is also in contact with surfaces of the hollow body. The sealing element is made from a compliant material and arranged to provide compressive interference with the cap when the cap is engaged with the sleeve and at other times along opposed surfaces of the sleeve and the hollow body. The cavity is substantially but not entirely filled by the sealing element. That portion of the cavity not entirely filled by the sealing element is available to receive displaced material of the sealing element when the sealing element is compressed by adjacent surfaces of the dispenser.

[0020] The sealing element has an irregular, generally L-shaped, cross-section. In the illustrated embodiments, the L-shape is inverted such that the base extends over a portion of an end face of the hollow body. The base of the crosssection of the sealing element has a chamfered edge along an outermost surface. The chamfered edge enables the endmost portion of the wall of the cap to contact and compress the outermost surface of the sealing element. An outer wall of the sealing element traverses a dimension of the element from the stem to the base. The outer wall abuts the outer surface of the sleeve. A base of the L-shaped sealing element includes a first axially arranged surface that extends radially from an edge that abuts a corner of a channel in the outer surface of the sleeve. The first axially arranged surface extends beyond the channel in the sleeve to receive a node of the irregular surface of the cap. A second or opposed outer surface of the stem of the sealing element abuts an inner wall of the hollow body. A second axially arranged surface of the sealing element abuts a sealing surface of the hollow body. The base of the L-shaped sealing element has an outermost surface between the first and second axially arranged surfaces. The base portion of the sealing element and the cap are arranged such that a portion of the irregular surface of the cap interferes and compresses the outermost wall of the sealing element in a direction toward the longitudinal axis or center of the dispenser (or radially inward). The stem of the cross-section of the sealing element includes at least a portion that is raised or extends from the opposed surfaces of the stem. For example, in an illustrated embodiment of the sealing element the cross-section at an end portion of the stem is substantially round with a sufficiently long radius that ensures opposed interference regions where the sealing element is compressed by opposed surfaces of the sleeve and the hollow body, respectively.

[0021] As described, the sealing element is arranged to abut at least two surfaces of the sleeve. The surfaces of the

sleeve that abut the sealing element intersect at a junction or corner of a channel. That is, the sealing element has respective adjacent surfaces that abut the surfaces of the sleeve proximal to the junction or corner of the channel.

[0022] As further described, the sealing element is compressed along substantially orthogonal surfaces by a curved node along an irregular surface of the cap and an inward facing surface of the cap when the cap is engaged to the sleeve. The edge of the cap proximal to the outermost surface of the sealing element is also curved so that repetitive removal and replacement of the cap does not damage the sealing element proximal to that location.

[0023] As also described, a stem of the sealing element is in contact with and compressed by opposed surfaces of the body and the sleeve partially defining a cavity proximal to the open end of the cap and a complementary end of the hollow body.

[0024] As arranged in the illustrated embodiment, the sealing element has a first end and a second end opposed to the first end. The first end has a first set of adjacent surfaces that contact respective surfaces of the sleeve and a second set of surfaces that contact respective surfaces of the cap. The second end of the sealing element has opposed contact surfaces that contact respective surfaces of the body and the sleeve. The sealing element is further arranged with a second set of adjacent surfaces that contact respective surfaces of the body.

10

20

30

35

40

45

50

55

[0025] The sealing element may be molded from nitrile butadiene rubber or NBR. NBR is a synthetic rubber copolymer of acrylonitrile and butadiene. The polymer's properties vary with the composition of acrylonitrile. Generally, the polymer's resistance to oils, fuels and other chemicals increases with higher percentages of nitrile. Conversely, the polymer's flexibility decreases with such increases in the percentages of acrylonitrile. NBR retains its flexibility over a wide range of temperatures for long periods of time. Most applications requiring resistance to solvents and flexibility over a wide range of temperatures include an acrylonitrile percentage of about 30%.

[0026] An improved seal is created by the interference regions or seals between the cap and the sealing element as well as the interference regions or seals between the sleeve, the body and the sealing element. When the cap is engaged with the sleeve, an irregular surface proximal to an end wall at the open end of the cap interferes or compresses the sealing element at first and second interference regions thereby providing additional seals.

[0027] A first interference region is defined by contact and compression between a local node in the irregular surface of the cap and a substantially planar surface of the sealing element. Opposed forces that result from the compression of the sealing element at the first interference region are in a direction substantially parallel to the longitudinal axis of the dispenser.

[0028] A second interference region is defined by contact between an annular portion of the irregular surface of the cap and the outermost surface of the sealing element. Opposed forces that result from compression of the sealing element at the second interference region are in a direction that radiates substantially orthogonally from the longitudinal axis of the dispenser.

[0029] Third and fourth interference regions are defined by contact between the stem portion of the sealing element and opposed surfaces of the sleeve and the hollow body. Opposed forces that result from the compression at the respective third and fourth interference regions are in a direction that radiates substantially orthogonally from the longitudinal axis of the dispenser.

[0030] In addition to the interference regions where the sealing element is compressed, the sealing element is arranged to substantially but not entirely fill the cavity formed by the sleeve, the hollow body and the cap near the interface of the cap and the body. Stated another way, a portion of the cavity defined by the sleeve, the hollow body and the cap remains unfilled even when the sealing element is present in the cavity. The unfilled portions of the cavity enable deformation of the sealing element at these locations.

[0031] The sealing element has adjacent and substantially orthogonal surfaces that abut a junction of the channel in the outer surface of the sleeve. In addition, a stop surface that extends radially in a direction from the longitudinal axis of the dispenser toward the external surfaces of the hollow body and the cap abuts a face surface of the wall of the hollow body. The relative location of the face surface with respect to the junction between the adjacent and substantially orthogonal surfaces of the channel in the opposed sleeve coupled with the shape and size of the sealing element ensure that the sealing element remains fixed and in contact with the adjacent surfaces of the channel and the body. By fixing the location, shape and size of the sealing element and controlling the relative location of engagement features on the opposed surfaces of the sleeve and the cap the relative tightness of the interference fits can be controlled.

[0032] The interference regions where the sealing element is compressed and remaining regions where the sealing element is in contact or close abutment with the surfaces defining the cavity provide a substantially air-tight set of seals proximal to the location where the sleeve extends from the hollow body.

[0033] Embodiments of the dispenser may be arranged to be filled or loaded with a product from a first or top end. Alternative embodiments may be filled or loaded from an opposed or base end of the dispenser.

[0034] A top loading embodiment of the dispenser provides first and second sealing elements that together with surfaces of the cap, sleeve, cup and body encapsulate a product loaded in the cup and the sleeve in an air-tight manner.

[0035] In this regard, the cup is located within the sleeve and has an outward surface with surfaces that compliment respective inward facing surfaces of the sleeve. A second sealing element may be arranged in a second cavity formed

by the complimentary surfaces of the cup and the sleeve. The second sealing element is made from a compliant material such as but not limited to NBR. The second sealing element is arranged to interfere or contact at least opposed surfaces of the cup and the sleeve.

[0036] Alternative embodiments may be arranged with a single sealing element with a supplemental or additional interference fit at a separate location between the cup and the sleeve. The sealing element in the cavity defined by the sleeve, the body and the cap provides a first substantially air-tight interface. The supplemental or additional interference fit between the cup and the sleeve provides a second substantially air-tight interface.

[0037] However embodied, the improved dispenser reliably and repeatedly provides a substantially air-tight enclosure that prolongs the useful life of lipsticks or other products that may be formulated with one or more volatile silicones or other compounds that evaporate or outgas at atmospheric pressure over typical temperatures that the products provided in the improved dispenser are likely to encounter.

[0038] The cap, sleeve, body and base elements can be made of thermoplastic polymers such as acrylonitrile butadiene styrene (ABS). A rod, screw and biasing element enclosed within the base element and responsible for moving the cup along the longitudinal axis of the dispenser can be made of various plastics including polyoxymethylene (POM). The cup can be made of other plastics including, for example, polybutylene terephthalate (PBT).

[0039] It should be noted that elements described in association with different embodiments may be combined as may be desired.

Detailed Description of Illustrated Embodiments

[0040] FIG. 1A includes top, front (side) and bottom plan views and FIG. 1B includes respective cross-sectional views of an embodiment of a dispenser 100. As shown in the front plan view of FIG. 1A, the dispenser 100 includes a hollow body 110 with a manipulator 200 extending from a base end and a cap 130 attached to a sleeve 120 (hidden from view in FIG. 1A at an opposed end of the hollow body 110. Each of the hollow body 110, the manipulator 200 and the cap 130 are cylindrically shaped and arranged about a central or longitudinal axis 102.

[0041] As illustrated in FIG. 1A and Section A - A of FIG. 1B, the cap 130 has a closed end 131 and an opposed open end that abuts an uppermost surface of the hollow body 110. The cap 130 has a closed end 131 or face with a chamfered edge about the perimeter at the top end of the dispenser 100. The cap 130 is otherwise hollow with an annular wall that surrounds that portion of a sleeve 120 that is coupled within and that extends beyond the hollow body 110. The inner surface of the annular wall of the cap 130 is arranged with one or more structures or features proximal to the open end that are located to encounter and readily engage or disengage complimentary surfaces or features provided along an outer surface of the sleeve 120 outside of the hollow body 110 as may be desired. An inward facing surface of the wall of the cap closely interferes with and engages a series of nubs 129 (FIG. 2A, FIG. 2B) distributed radially along an outward facing surface of the sleeve 120. The cap 130 can be manually disengaged from the sleeve 120 of the dispenser 100 by grasping the cap 130 and one or both of the hollow body 110 and the manipulator 200 and applying opposed external forces along directions substantially parallel to the longitudinal axis 102 of the dispenser 100.

[0042] The hollow body 110 is further illustrated and described in association with the various views presented in FIG. 3A and FIG. 3B. The sleeve 120 is further illustrated and described in association with the various views presented in FIG. 2A and FIG. 2B. The cap 130 is further illustrated and described in association with the embodiments presented in FIG. 4A - FIG. 4D.

[0043] As illustrated in FIG. 1A and Section A - A and Section B - B of FIG. 1B, the manipulator 200 has a closed end and an opposed or open end that extends beyond the lower most end and into a volume defined by the hollow body 110. A complementary annularly arranged recess along the inward facing surface of the wall of the hollow body 110 closely interferes with and engages an annular ring that extends radially away from a central axis of the manipulator 200. The base or manipulator 200 has a closed end with a chamfered edge about the perimeter end that defines the opposed end of the dispenser 100. The surface 201 (FIG. 11) at the closed end of the manipulator 200 may be arranged with one or more designs or features. In the illustrated embodiment, the surface 201 has a centrally located circular depression. As illustrated in the cross-sectional views in FIG. 1B, the manipulator 200 is arranged with an extension or annular wall 220 with features located along the outward facing surface that permanently engage respective features arranged along an inner wall or surface of the hollow body 110. These respective complementary features of the manipulator 200 and the hollow body 110 permit rotation of the manipulator 200 in both clockwise and anti-clockwise rotations about the longitudinal axis 102 of the dispenser 100.

[0044] As can be observed in FIG. 1B, the manipulator 200 is further arranged with a centrally located shaft 230 that extends from the inner surface of the closed end of the manipulator 200 beyond the annular wall 220 which respectively extends beyond the base portion 210. As illustrated in FIG. 1C and FIG. 11, the shaft 230 has an oblong shape with opposed flat side walls located between arcuate or rounded end portions. As can be observed in FIG. 1B, the centrally located shaft 230 receives and guides complementary planar surfaces of a rod 400.

[0045] Section A - A of FIG. 1B shows the dispenser 100 with the rod 400 in a first or retracted position. In contrast,

6

20

35

30

40

50

45

Section B - B of FIG. 1B shows the dispenser **100** with the cap **130** removed and with the rod **400** in a second or fully extended position.

[0046] As illustrated in FIG. 1B, a driver 300 is fixedly arranged in a volume defined by the hollow body 110 proximal to and extending beyond an open end of the intermediate portion 220 (FIG. 11) of the manipulator 200. The driver 300 is arranged with a centrally located threaded opening, the threads of which complement the respective threads arranged along opposed portions of a shaft of the rod 400. In some arrangements, a lubricant may be applied to the surface of the threads in the centrally located threaded opening of the driver. In some other arrangements, a lubricant may be applied to the surface of the threaded portion of the rod 400. In still other alternative arrangements one or more lubricants may be applied along surface of both the driver 300 and the rod 400. The driver 300 is illustrated and further described in association with the various views of FIG. 10. The rod 400 is illustrated and further described in association with the views of FIG. 9.

10

15

20

30

35

40

45

50

55

[0047] Similarly, a lubricant may be applied along the inner facing surface of the sleeve 120 to permit the abutting surface or surfaces of the cup 160 to move with reduced friction and consequently less resistance along the sleeve 120. Accordingly, rotation of the manipulator 200 about the longitudinal axis 102 of the dispenser 100 in a first direction results in the rotation and translation of the rod 400 and the cup 160 along the longitudinal axis 102 such that the cup 160 advances toward an opening in the sleeve 120. When the cap 130 is removed from the dispenser 100 and when a product is fixed within the volume defined by the cup 160, the product, which may be a cosmetic such as a lipstick, a glue stick, etc., can be advanced beyond the opposed open end of the sleeve 120. Conversely, rotation of the manipulator 200 about the longitudinal axis 102 of the dispenser 100 in a second direction, opposite of the first direction, results in translation of the rod 400, the cup 160 and remaining product in the cup 160 in a direction toward the manipulator 200. As a result, the product provided in the dispenser 100 can be controllably adjusted via rotation of the manipulator 200 to extend and/or retract a product inserted and fixed to the cup 160. With the cap 130 removed, such a product can be extended such that a desired portion of the product extends beyond the sleeve 120. When so extended, an operator of the dispenser 100 can apply the product to one or more surfaces, as may be desired, before controllably retracting the product into the volume of the sleeve 120 by rotating the manipulator 200 with respect to the hollow body 110. Thereafter and as described, the operator may reengage the open end of the cap 130 over the exposed portion of the sleeve 120. [0048] In some arrangements (not shown) an adhesive may be applied along the inner surfaces of the cup 160 and/or along the outer surface of the product over a distance corresponding roughly to the length of the cup along the longitudinal axis 102 of the dispenser 100 to fix or hold the product in the cup 160. Such an adhesive may be cured or treated with one or more of temperature, ultraviolet radiation, pressure etc.

[0049] As illustrated in the cross sectional views of FIG. 1B, a first sealing element 140 is located in a channel defined by an outer surface of the sleeve 120 and an opposed inward facing surface of the hollow body 110. As described, the first sealing element is made from a material that compresses to form an interference fit in the channel. In addition, the first sealing element 140 is arranged to abut an end surface of the hollow body 110 and an opposed surface of a channel arranged in the outward facing surface of the sleeve 120. Furthermore, the first sealing element 140 is arranged with a base end that extends radially beyond the outer surface of the sleeve 120 to provide additional surfaces for the wall of the cap 130 to compress when the cap 130 is fixedly engaged with the sleeve 120. A first interface or interface region is located at the junction formed by the opposed end faces of the wall of the cap 130 and the wall of the hollow body 110 which junction overlaps or is in registration with the channel in the sleeve 120.

[0050] As further shown in the cross-sectional views of FIG. 1B, a second sealing element 170 is located in a channel defined by an outward facing surface near the base of the cup 160. The second sealing element 170 is also made from a material that compresses when in contact with the surfaces of the channel and the inward facing surface of the wall of the sleeve 120. When appropriately arranged, the second sealing element 170 interferes with and compresses along opposed surfaces of the channel in the cup 160 as well as with the intersecting wall of the channel and the opposed inward facing surface of the sleeve 120, while also permitting the cup 160 to be advanced and retracted within the volume of the hollow sleeve 120. The second sealing element 170 substantially prevents and may eliminate the passage of volatile compounds that may be outgassing from a product in the cup 160 of the dispenser 100 beyond the cup 160 in a direction toward the manipulator 120.

[0051] When the cap 130 is disengaged from the sleeve 120, the first sealing element remains fixed in the channel in the sleeve 120 and is in contact with opposed surfaces that are substantially orthogonal to the longitudinal axis 102 of the dispenser 100 as well as with opposed surfaces that are substantially parallel to the longitudinal axis 102. Accordingly, the first interface region is characterized by at least surface to surface contact between the first sealing element 140 and corresponding surfaces of the sleeve 120 and the hollow body 110 over four areas.

[0052] When the cap is engaged with the sleeve, the first sealing element 140 is in contact with and further compressed by adjacent curved surfaces of the wall of the cap 130. In the closed configuration, the first interface region is further characterized by at additional surface to surface contact with the wall of the cap 130 and corresponding surfaces of the first sealing element. Thus, the combination of the cap 130 and the first sealing element 140 and the complementary surfaces of the sleeve 120 and the hollow body 110 substantially prevent and may eliminate passage of volatile com-

pounds or even water vapor when a water based product is provided in the cup 160 from escaping from the dispenser 100. [0053] FIG. 1C includes an exploded view of the components of the dispenser 100 introduced in the plan views of FIG. 1A and the cross-sectional views of FIG. 1B. The cap 130, sleeve, 120, first sealing element 140, cup 160 and the second sealing element 170 are shown along the left-most side of FIG. 1C. In the illustrated embodiment, a first end of the sleeve 120 enters the hollow body 110 through end 111 and complimentary features arranged along the outer surface of the sleeve 120 and the inward facing surface of the hollow body 110 engage each other as an end face of the sleeve 120 abuts a central member of the hollow body 110.

[0054] As further shown in FIG. 1C, the manipulator 200, driver 300, hollow body 110 and threaded rod 400 are illustrated along the right-most side of FIG. 1C. In the illustrated embodiment, the driver 300 is inserted at the open opposed end 113 into the volume of the hollow body 110. Complementary structures arranged along the outer surface of the driver 300 and the inward facing surface of the hollow body 110 guide the driver 300 into fixed engagement with the hollow body 110 as a ring and the end surface of the driver 300 closely abut a recess and spokes of the central member of the hollow body 110.

10

20

30

35

45

50

55

[0055] A head end 412 of the threaded rod 400 is introduced through open end 113 of the hollow body 110 such that the head end 412 extends beyond the threaded opening in the driver 300 and the head end 412 engages a seat 610 in the base end of the cup 160. The shaft 230 of the manipulator 200 is aligned with the opposed end of the threaded rod 400 and the fins 414 thereof are deflected or biased inward by the wall of the shaft 230. The shaft 230 and the annularly arranged wall of the extension portion 220 of the manipulator 200 enter the hollow body 110 from opposed end 113 and are advanced such that features along the outward facing surface of the extension portion 220 are guided by complementary structures along the inward facing surface of the driver 300. As further indicated in FIG. 1C., the wall of the extension portion 220 advances between the outward facing surface of the driver 300 and the inward facing surface of the hollow body 110 until complementary structures arranged along the extension portion 220 and the inward facing surface of the hollow body 110 engage one another proximal to the end 113.

[0056] FIG. 3A includes top, front and bottom views of the hollow body 110 illustrated in FIG. 1A, FIG. 1B and FIG. 1C. The top plan view illustrates the uppermost end wall 111 of the hollow body 110 and the spokes and inner ring of the central member. The bottom plan view illustrates an opposed end wall and an opposed surface of the spokes and inner ring of the central member. The top and bottom plan views of FIG. 3A further show that the central member forms a centrally located hole which permits passage of the threaded rod 400 from a first side to an opposed side of the interior of the hollow body 110. The central member traverses the volume of the hollow body 110 approximately midway between end 111 and opposed end 113.

[0057] FIG. 3B includes cross-sectional views in the direction of lines A - A and B - B, respectively, and a perspective view of the hollow body 110 illustrated in FIGs. 1A - 1C and FIG. 3A. As illustrated in Section A - A of FIG. 3B, the observable portion of the inner surface 112 is arranged with an annular engagement feature or transverse appendage 115, which engages a complementary annular recess in the outer surface of the driver 300. A guide member is arranged along the length of the observable portion of the inner surface 112 substantially parallel to the longitudinal axis 102 of the dispenser 100. The guide member extends from a partial transverse appendage nearly to the end 111 of the hollow body. The guide member of the hollow body 110 is received in a channel formed by opposed complementary guide members 176b arranged on the outer surface of the sleeve 120. The guide members 176b, which form opposed openings proximal to guide ends 172, direct the complementary guide member of the hollow body 110 to parallel guide members 176a further arranged along the outer surface of the sleeve 120.

[0058] As illustrated in Section B - B of FIG. 3B, the inner surface 112 of the hollow body 110 varies proximal to end 113 to receive and engage an annular appendage arranged along the outer surface of the extension portion 220 of the manipulator 200. Similarly, the inner surface 112 of the hollow body is shaped or contoured proximal to end 111 to receive the sleeve 120 and a portion of the first sealing element 140. An end face of the hollow body forms a first annular sealing surface 116a with a radial sealing surface 116b connected to the sealing surface 116a by a chamfered annular transition surface 117. As further illustrated in Section B - B of FIG. 3B, a guide member is arranged along the length of the observable portion of the inner surface 112 substantially parallel to the longitudinal axis 102 of the dispenser 100. The guide member extends from a corresponding transverse appendage approximately half the distance to end 113 of the hollow body 110. This guide member of the hollow body 110 is received in a channel formed by opposed complementary guide members 314 arranged along the surface of the driver 300. The guide members 314 direct the complementary guide member of the hollow body 110 to properly orient the driver 300 in the hollow body 110.

[0059] In the illustrated embodiment presented in the various views of FIG. 2A and FIG. 2B, the sleeve 120 is a hollow cylinder that is tapered at a first open end 121 and not tapered at an opposed open end 123. The outer surface 122 of the sleeve 120 is arranged with an annular guide 174 with a chamfered leading edge and an adjacent channel 175. The chamfered leading edge enables easy introduction of the open end 123 to the volume enclosed by the hollow body 110. The adjacent channel 175 provides an optional engagement surface for fixedly engaging the sleeve 120 in the hollow body 110. The outer surface 122 further includes an annular recess or channel or complementary region 124 arranged approximately midway along the length between end 121 and opposed end 123. The channel 124 receives a stem

portion of the first sealing element **140**. The channel or complementary region **124** is defined by an annular transverse surface **125** and an adjacent annular surface **127** that intersect each other at junction **126**.

[0060] A set of nubs or pips 129 are arranged annularly about the surface 122 proximal to the channel 124. The nubs 129 engage an annular recess arranged along the inner surface of the wall of the cap 130 when the open end of the cap 130 is placed over the sleeve 120.

[0061] As also observed in FIG. 2A and FIG. 2B, the sleeve 120 is arranged with an annular guide or band 177 that contact and slide along the inward facing surface 112 of the hollow body 110 with guide element 176. As further observed in FIG. 1B, the annular guide or band 177 forms a border of the cavity where the sealing element 140 is located. The guide element 176 includes a first portion 176b with opposed appendages that extend beyond the surface 122 at that get closer to each other as they traverse the length of the sleeve 120 from end 123 toward a second portion 176a. This second portion 176a is characterized by opposed appendages that are substantially parallel to each other and parallel with the longitudinal axis 102 of the dispenser 100.

10

20

30

35

45

50

55

[0062] As observed in the various views illustrated in FIG. 5, the first sealing element 140 is generally shaped like a ring with a cross-section shaped like an inverted letter L. The inner diameter of the first sealing element 140 is arranged to contact the base or intersecting surface 127 of the channel 124 in the outer surface of the sleeve 120. As shown in the various views, in addition to the inward facing surface 141, the base portion of the inverted L has an adjacent surface 142, a chamfered edge 143, an outer most surface 144 and an adjacent surface 146 that is opposed to and substantially parallel with the surface 142. As further shown in the illustrated embodiment, the stem portion of the first sealing element 140 is characterized by an end that is arranged to provide a substantially round outer surface.

[0063] FIG. 4A includes top, front and bottom plan views of the cap 130 illustrated in FIGs. 1A - 1C. In the illustrated embodiment, the cap 130 is cylindrically shaped with a closed end 131 and an opposed open end 133. A chamfered edge connects the surface at the closed end 131 to the wall 132 of the cap 130. At the opposed open end 133 of the cap 130, as can be observed in Section A - A, the inner surface of the wall 132 is irregularly shaped with those portions of the inner surface closest to the closed end shaped to closely contact the outer surface 122 of the sleeve 120 and the nubs or pips 129 extended therefrom. As further shown in FIG. 4C and in detail A of FIG. 4D, the irregularly shaped wall 132 includes a first section or region 135 characterized by a protruding node and a recess with a curved transition surface or region 137 that connects the first section 135 with an end face 138 of the cap 130.

[0064] FIG. 7 includes rear, top, front, and cross-sectional views of the second sealing element 170 illustrated in FIG. 1B and FIG. 1C. As previously described the second sealing element 170 may be constructed using a compliant or compressible material that is resilient to environments where outgassing volatile compounds may be present. In the illustrated embodiment, the second sealing element 170 is shaped like a torus or doughnut. Consequently, as illustrated in the cross-sectional view, the remaining portion of the second sealing element 170 is characterized by a opposed circles in a plane that intersects a central axis (not shown).

[0065] As illustrated in FIG. 1B, the inner diameter of the second sealing element 170 is such that the surface contacts the outer facing intersecting surface 167 of the channel 165 in the base of the cup 160. In addition, the diameter of the second sealing element 170 is large enough to contact at least a portion of the inward facing surface 128 of the sleeve 120. [0066] FIG. 6 includes top, front, side, bottom, perspective and cross-sectional views of the cup 160 illustrated in FIG. 1B and FIG. 1C. As illustrated the cup 160 has an open end opposed to a base. An annular recess or channel 165 is formed in the outer facing surface near the base of the cup 160. As observed in the bottom plan view, a multiple surfaced seat 610 is provided about the center of the base portion to fixedly receive a head portion 412 of the threaded rod 400. The wall 161 of the cup 160 is characterized by opposed elongate openings that enable the cup 160 to flex outwardly when a product having a diameter slightly larger than the distance between opposed ribs 615 is introduced at the open end and pressed into the cup 160. The elongate ribs 615, which extend along the inner facing surface of the cup 160, provide an evenly distributed axial force in the direction of the longitudinal or central axis of the cup 165 against an appropriately sized cylinder of a product pressed or otherwise introduced in the cup 160.

[0067] As further illustrated in FIG. 6, the annular ring or band 605 adjacent to the base surface forming the seat 610 has a diameter that slidably contacts the inward facing surface 128 of the sleeve. Additionally, at least a portion of the outer surface 162 of the wall of the cup 160 slidably contacts the inward facing surface 128 of the sleeve 120. As described above, the surfaces of the channel 165 when contacted by and compressively deforming the second sealing element 170 increase the surface area of the annular seals provided by the cup 160 in the sleeve 120. Consequently, when assembled as illustrated in the cross-sectional views of FIG. 1B, the dispenser 100 substantially prevents the escape of water vapor and/or volatile compounds that could outgas from a product stick in the cup 160.

[0068] FIG. 9 includes top, front, bottom, perspective, and cross-sectional views as well as a detailed view of an embodiment of the rod 400 illustrated in FIG. 1B and FIG. 1C. In the illustrated embodiment, the rod 400 is an elongate member with a head end 412 and an opposed end with a set of fins 414 located at the opposed end. An annular band or stop 415 is located proximal to the head portion 412 and separates a threaded mid-portion or shaft 410 of the rod 400 from the head portion 412. As described, the head portion 412 is arranged to fit and fixedly connect the rod 400 to the seat 610 in the base end of the cup 160. The annular stop 415 prevents the rod 400 from being advanced beyond

the central member of the hollow body **110** when the dispenser **100** is in a first or delivered condition. An opposed surface of the annular stop **415** provides additional support when advancing the cup **160** along the inner surface **128** of the sleeve **120**.

[0069] As illustrated in the perspective view in FIG. 9, the threaded mid-portion 410 of the rod 400 is arranged with opposed flat surfaces that contact complementary opposed flat surfaces inside the shaft 230 of the manipulator 200.

[0070] Opposed fins 414, which are deflected or biased by the elongate curved edges of the shaft 230 when the rod 400 is advanced into the shaft 230 of the manipulator 200, remain deflected and biased toward one another and the central axis of the dispenser 100 until the rod 400 is rotationally advanced by the manipulator 200 such that the open end of the cup 160 and a product cylinder or stick (not shown) fixed therein nearly reach the tapered end 121 of the sleeve 120. As illustrated in Section B - B of FIG. 1B, such advancement of the rod 400 causes a portion of the opposed fins 414 to exit the open end of the shaft 230 where the fins 414 expand to contact an annular surface of the driver 300 near the threaded opening at the closed end of the driver 300.

[0071] FIG. 10 includes top, front, side, bottom, perspective and cross-sectional views of an embodiment of the driver 300 illustrated in FIG. 1B and FIG. 1C. The driver 300 is a hollow cylinder with a partially closed first end 311 and an opposed open end 312. As illustrated the partially closed end 311 has a circular opening the inner wall of which is threaded to complement the external threads arranged along the shaft of the rod 400.

[0072] The driver 300 is arranged with external structures that enable the driver 300 to be fixed in the hollow body 110. These external structures include opposed guides 314 which are angled with respect to the length of the driver 300 over a first portion and substantially parallel to each other and the longitudinal axis 102 of the dispenser 100 over a second portion. As described the opposed guides 314 are arranged to receive and align the driver 300 with the complementary guide member arranged along the inward facing surface 112 of the hollow body 110 as illustrated in Section B - B of FIG. 3B.

[0073] External structures further include appendages 315 and annular ribs 317 which are in registration with the over the second portion of the opposed guides 314. The appendages 315 and the annular ribs 317 are spaced from each other to form a transverse channel for engaging the complementary transverse member of the hollow body 110. The irregular end surface 313 at the open end 312 provides one border of a channel for alternative embodiments (not shown) that use a spring biased pushbutton to rotate a threaded rod through the driver 300.

[0074] Internal structures of the driver 300 include guides 319 that are evenly distributed along the inward facing surface of the driver 300. The guides 319 extend lengthwise along the inner surface of the driver 300 from the interface with the partially closed or first end 311 and form a channel in which the shaft 230 of the manipulator 200 is located. As described, the manipulator 200 can be rotated clockwise and anticlockwise to advance and/or retract the cup 160 and consequently a product stick or cylinder supported by the cup 160. During such rotation the shaft 230 remains in the channel formed by the guides 319.

30

35

40

50

[0075] FIG. 11 includes top, front, side, bottom, perspective and cross-sectional views of an embodiment of the manipulator 200 illustrated in FIG. 1B and FIG. 1C. As illustrated, the manipulator 200 comprises a base 210 and an extension portion or section 220. The base 210 is a hollow cylinder with a closed end 211 with a chamfered edge along the perimeter of the base 210 and an opposed open end 231. The extension portion 220 shares an inner surface of the manipulator 200 with the base 210 and provides a wall with an external surface that has a shorter diameter than the diameter of the base 210. The outer surface of the extension portion 220 has bands or rings arranged to enable rotation of the manipulator 200 with respect to the hollow body 110 while maintaining permanent engagement of the manipulator 200 to the hollow body 110.

[0076] As further illustrated in the various views of FIG. 11, a centrally located oblong shaft 230 extends from and is supported by the base 210. The shaft 230 extends beyond the extension portion 220 of the manipulator 200. The shaft 230 receives and supports a substantially portion of the length of the rod 400. As shown in FIG. 1B, the head portion 412, stop 415 and a relatively short section of the shaft of the threaded rod 400 extend beyond the oblong shaft 230 of the manipulator 200. As further illustrated, the shaft 230 is arranged such that the wall has opposed flat sides for closely contacting complementary flat sides along the shaft of the rod 400. The opposed flat sides of the shaft 230 are connected by curved portions at opposed ends. An appendage or appendages arranged along the length of the outer facing surface of the wall of the shaft 230 may be arranged to encounter the guides 319 along the inner surface of the driver 300. As the manipulator 200 rotates within the driver 300, contact between the appendages and the guides 319 may provide a desired rotational resistance to such movement.

[0077] FIG. 8 includes a cross-sectional view of an embodiment of a dispenser similar to the dispenser 100 illustrated in FIG. 1A, FIG. 1B, and FIG. 1C. The cross-sectional view further includes detailed views of a first interface and a second interface. A first interface is generally defined by the junction or intersection where the open end of the cap 130 abuts the wall of the hollow body 110. As described, this junction or interface is located in registration with a complementary region or channel 124 of the outer surface of the sleeve 120. As also described the first sealing element 140 is arranged in a cavity to form multiple interference regions or seals 802, 804 within the junction.

[0078] As shown in FIG. 8, the complementary region or channel 124 of the sleeve 120 includes an intersecting surface

125 and is bordered at one end by a substantially orthogonal surface 127. The intersecting surface 125 and the substantially orthogonal surface 127 intersect at junction 126. The surfaces 125, 127 and the junction 126 contact surface 141 and surface 142 of sealing element 140. The complementary region or channel 124 and more particularly intersecting surface 125 deformedly compresses a portion of the rounded end of the stem portion of the sealing element 140. The intersecting surface 125 of the sleeve 120 compresses the sealing element 140 with a force acting along a vector that is substantially orthogonal to the longitudinal axis 102 of the dispenser 100 and directed toward the hollow body 110. [0079] An end portion of the hollow body 110 overlaps a portion of the complementary region or channel 124 defined by the sleeve 120. A sealing surface 116b opposed to the intersecting surface 125 of the sleeve deformedly compresses an opposed portion of the rounded end of the stem portion of the sealing element 140. The sealing surface 116b compresses the sealing element 140 with a force acting along a vector that is substantially orthogonal to the longitudinal axis 102 of the dispenser 100 and directed toward the center of the dispenser 100. As further shown in the detail, the cavity formed by the corresponding surfaces of the sleeve 120 and hollow body 110 extends beyond the rounded portion of the stem of the sealing element 140 to provide relief for deformed material of the sealing element 140.

10

20

30

35

45

50

55

[0080] As previously described and as observed in the detail of the first interface, the complementary region or channel 124 of the sleeve 120 is opposed by an irregular surface 135 of the wall 132 of the cap 130 and further opposed by contoured surfaces 116 of the hollow body 110. The irregular surface 135 of the cap provides a rounded node or protrusion that compresses the sealing element 140 with a force acting along a vector that is substantially parallel to the longitudinal axis 102 of the dispenser 100 and directed toward the hollow body 110 and the manipulator 200. In addition, the irregular surface 135 provides an adjacent recess that corresponds to the chamfered surface 147 of the sealing element. The adjacent recess and the gap between the cap 130 and the sleeve 120 provide relief for the compressed sealing element to deform or encroach into these portions of the cavity at the first interface.

[0081] A curved transition surface 137 between the irregular surface 135 and the end surface 138 of the cap 130 compresses the outermost surface 144 of the sealing element 140 with a force acting along a vector that is substantially orthogonal to the longitudinal axis 102 of the dispenser 100. The curved transition surface 137 provides an additional recess that may receive deformed material of the sealing element 140 and assists the irregular surface 135 and the surface 127 of the sleeve 120 in forming a seal where the surface 146 of the sealing element 140 abuts the sealing surface 116a of the hollow body.

[0082] As further illustrated in the detail of the first interface in FIG. 8, a portion of the length of surface 146 of the base portion of the sealing element 140 is in contact with a portion of sealing surface 116a of the hollow body 110. In addition, a portion of surface 142 of the sealing element 140 is in contact with the surface 127 of the sleeve 120. These opposed surfaces 127, 116b contact and may compress the opposed ends of the base portion of the sealing element 140. When compressed, the surface 127 provides a force acting along a vector that is parallel to the longitudinal axis 102 of the dispenser 100 in a direction toward the hollow body 110. Conversely, when compressed, the surface 116a provides a force acting along a vector that is parallel to the longitudinal axis 102 of the dispenser 100 in a direction toward the cap 130. [0083] The lower most of the two detailed views in FIG. 8 illustrates a second interface proximal to the base of the cup 160 and the inner surface 128 of the sleeve 120. As illustrated in the detail, a channel 165 in the base of the cup 160 is defined by an intersecting surface 167 and adjacent surfaces that extend from outer surface of the cup 160 to the intersecting surface 167. The sealing element 170 is located within and compressed by at least three surfaces at the interface. As shown, the intersecting surface 167 and at least one adjacent surface of the cup 160 compress the sealing element 170 with the inner surface 128 of the sleeve 120 further compressing the sealing element 170. When appropriately sized, the sealing element 170 may further contact and/or be compressed by an adjacent surface of the channel 165 that further defines the channel 165. At each location where interference between the surrounding surfaces and the sealing element 170 occurs and the sealing element 170 is deformed, the contact area between the sealing element 170 and the respective surfaces increases. As a result the effectiveness of the seal(s) so formed is increased. [0084] In the illustrated embodiment, the second interface in the lower-most detail of FIG. 8 is depicted at the delivery or fully retracted position with the cup 160 shown abutting the cross member of the hollow body 110. At this location, engagement member 115 of the hollow body 110 is in engagement with a complementary region 815 arranged in the sleeve 120. However, as shown in FIG. 1B and as previously described, it should be understood that the second interface travels along the inner surface 128 of the sleeve as the cup 160 is controllably advanced and retracted by rotation of the manipulator 200 and corresponding linear translation of the rod 400 along the longitudinal axis 102 of the dispenser 100. As depicted in FIG. 8, the outward facing surface 162 of the cup 160 is not in contact with the opposed inner surface 128 of the sleeve. It should be understood that in preferred embodiments of the dispenser 100 the outer surface 162 of the cup 160 is in close contact with the inner surface 128 of the sleeve at one or more locations. Such contact does not prohibit translation of the cup 160 along the longitudinal axis 102 of the dispenser 100.

[0085] For example, as illustrated in the detail of FIG. 12, an alternative embodiment of a second interface reveals that the annular outer wall of the base of the cup 160 may be in close contact with the sleeve 120 over an interference region 510. In this alternative arrangement, the sealing element 170 is absent from the channel 165. In addition, as shown in the corresponding cross-sectional view, an insert or secondary cap 505 is deployed to further seal the tapered

end of the sleeve **120** under the cap **130**. The insert **505** is removable and may be discarded and/or returned to provide additional seals to prolong the useful life of a product arranged in the cup **160**.

[0086] It should be noted that the term "comprising" does not exclude other elements or features and the article "a" or "an" does not exclude a plurality. Also elements described in association with different embodiments may be combined.

	Reference Symbols in the Drawings				
	100	dispenser		146	surface(s)
	102	longitudinal a	xis	160	cup
	110	body		161	wall
10	111	end		162	surface (outer)
	112	surface (inner	·)	165	channel
	113	base end		167	surface
	115	engagement f	feature	170	sealing element
15	116 sealing surface(s)		ce(s)	172	guide
	117	transition surface		174	guide
	120	sleeve		175	channel
	121	end		176a	guide member
	122	surface (outer)		176b	guide member
20	123	end		177	guide (annular)
	124	complementary region		200	manipulator
	125	surface (annular)		210	base
	126	junction		211	end
25	127	surface (annular)		220	extension portion
	128	surface		230	shaft
	129	nub		231	end
	130	сар		300	driver
	131	end (closed)		311	end
30	132	wall		312	end
	133	end (open)		313	irregular surface
	135	surface (irreg	ular)	314	guide
	137	transition (edge)		315	appendage(s)
35	138	face		317	annular rib(s)
	140	sealing element		319	guide(s)
	141	surface		400	rod
	142	surface		410	threaded portion
	143	chamfer		412	head portion
40	144	surface		414	fin(s)
		445			
		415	stop		
45		505	insert		
		510	interferen	ce regior	1
		605	band		
		610 615	seat		
50		615	rib(s)		(-)
		802	interferen	_	
		804	interferen	_	
		815	compleme	entary re	gion

Claims

55

5

1. A dispenser (100), comprising:

a hollow body (110) having a first end (111) and an opposed base end (113), the hollow body (110) having an inner surface (112) with an engagement feature (115) located between the first end (111) and the opposed base end (113), the hollow body (110) further having sealing surfaces (116a, 116b) proximal to the first end (111); a sleeve (120) fixed to and extending beyond the hollow body (110), the sleeve (120) having a first end (121), an opposed end (123), and an outer surface (122) with a complementary region (124); a cap (130) having a closed end (131) and an opposed open end (133) defined by a wall (132) with an irregular surface (135) proximal to the opposed open end (133); and a sealing element (140) located in a cavity (150) defined by the sealing surfaces (116a, 116b) of the hollow body (110), the complementary region (124) of the sleeve (120) and the irregular surface (135) of the cap (130).

10

5

2. The dispenser (100) of claim 1, wherein the hollow body (110), the sleeve (120), the cap (130) and the sealing element (140) are arranged about a longitudinal axis (102) of the dispenser (100).

3. The dispenser (100) of claim 1, wherein the sealing element (140) is made from a compliant material.

15

4. The dispenser (100) of claim 1, wherein the sealing surfaces (116a, 116b) include a surface (116b) that abuts the wall (132) of the cap (130).

20

5. The dispenser (100) of claim 4, wherein the surface (116b) that abuts the wall (132) of the cap (130) also abuts the sealing element (140).

6. The dispenser (100) of claim 1, wherein at least one of the sealing surfaces (116a, 116b) is annularly arranged and interferes with the sealing element (140).

25

7. The dispenser (100) of claim 1, wherein the irregular surface (135) of the cap (130) interferes with respective surfaces (142, 144) of the sealing element (140); and wherein the sealing element (140) is compressed by opposed surfaces (116b, 125) of the hollow body (110) and the sleeve (120).

30

8. The dispenser (100) of claim 7, wherein the irregular surface (135) of the cap (130) opposes respective surfaces (142, 144) of the sealing element (140).

9. The dispenser (100) of claim 1, wherein the body (110) comprises at least one transition surface (117) located between respective sealing (116a, 116b) surfaces.

35

10. The dispenser (100) of claim 1, wherein the cap (130) comprises a transition surface (137) located between an end face (138) and the irregular surface (135).

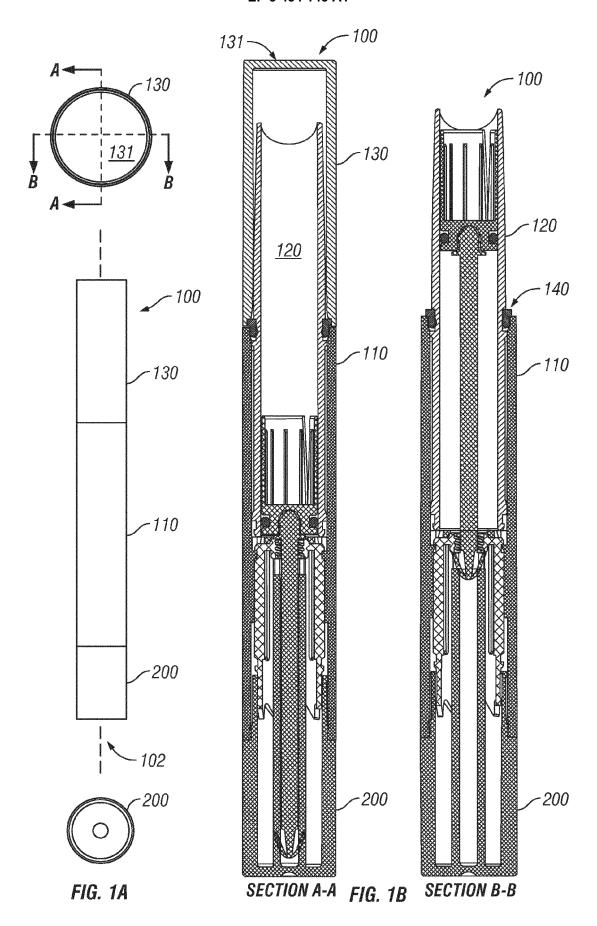
40

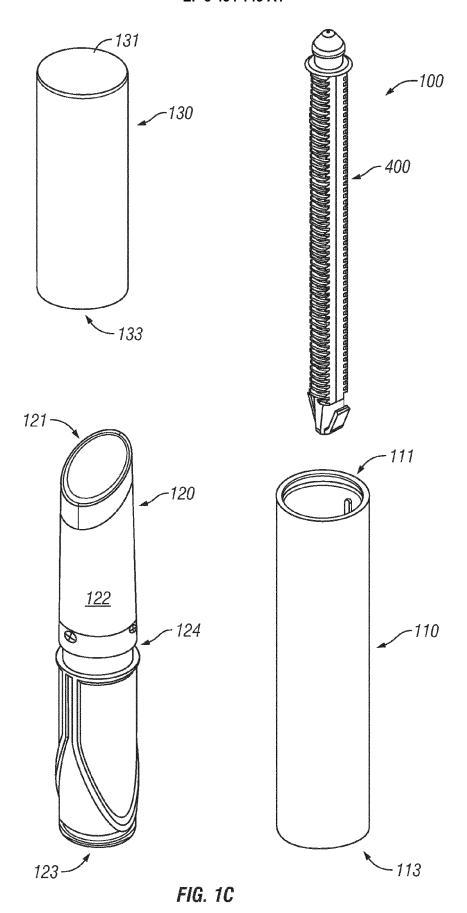
11. The dispenser (100) of claim 1, wherein a portion of the cavity defined by the sealing surfaces (116a, 116b) of the hollow body (110), the complementary region (124) of the sleeve (120) and the irregular surface (135) of the cap (130) remains unfilled.

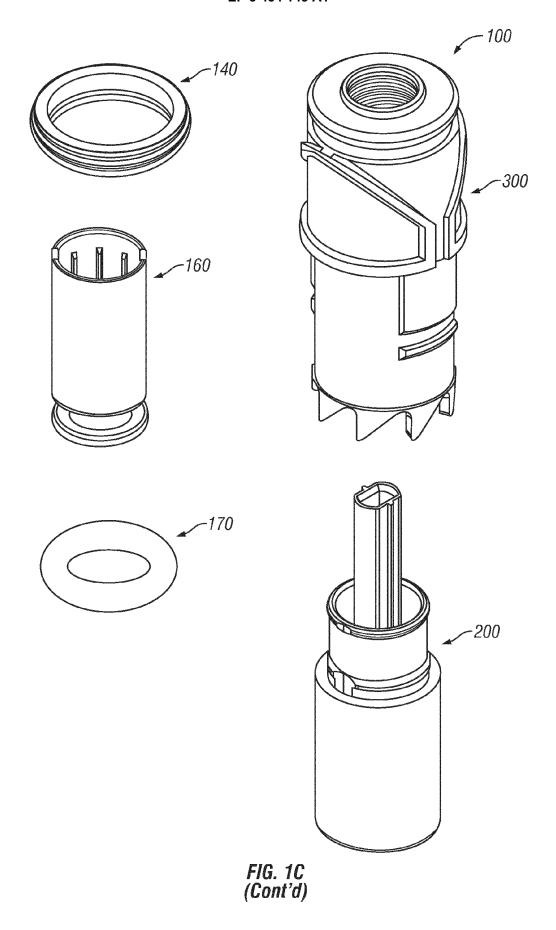
45

12. The dispenser (100) of claim 1, wherein the complementary region (124) of the sleeve (120) includes a surface (125) that interferes with the sealing element (140).

13. The dispenser (100) of claim 12, wherein the sealing element (140) is arranged to abut at least two surfaces (125, 127) of the sleeve (120), wherein the at least two surfaces (125, 127) of the sleeve intersect at a junction (126); and wherein the sealing element (140) has complementary surfaces (141, 142) that abut the at least two surfaces of the sleeve (125, 127) proximal to the junction (126).


50


14. The dispenser (100) of claim 1, wherein the sealing element (140) is compressed along substantially orthogonal surfaces (142, 144) by the cap (130) when the cap (130) is engaged to the sleeve (120).


15. The dispenser (100) of claim 1, further comprising:

- a cup (160) located in the sleeve (120), the cup (160) including an outer surface (162) that defines a channel
- a second sealing element (170) defined by the cup (160), wherein the second sealing element (170) is arranged

to interfere with at least opposed surfaces (128, 167) of the sleeve (120) and the cup (160).

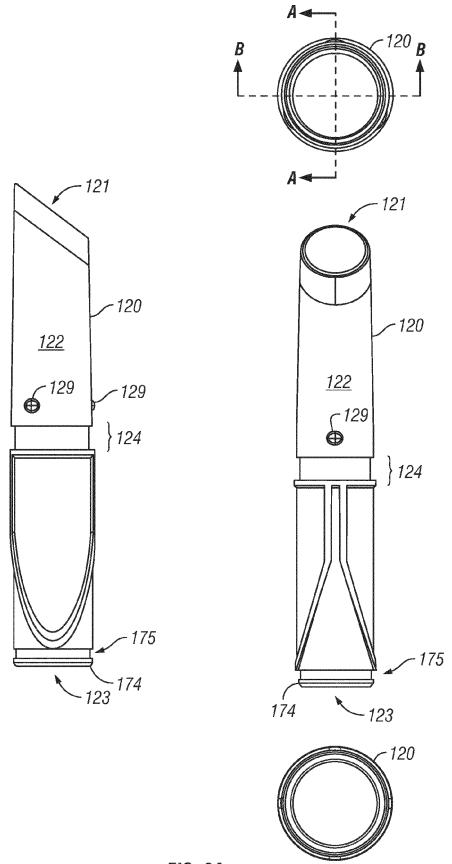
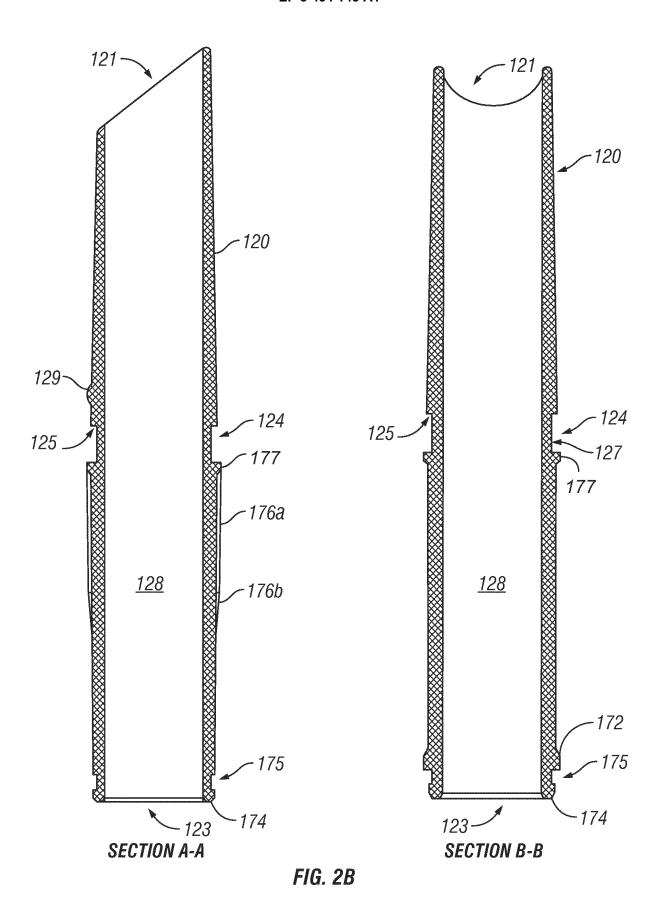



FIG. 2A

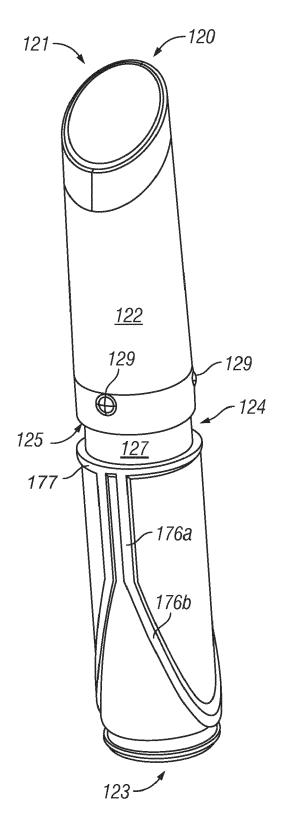
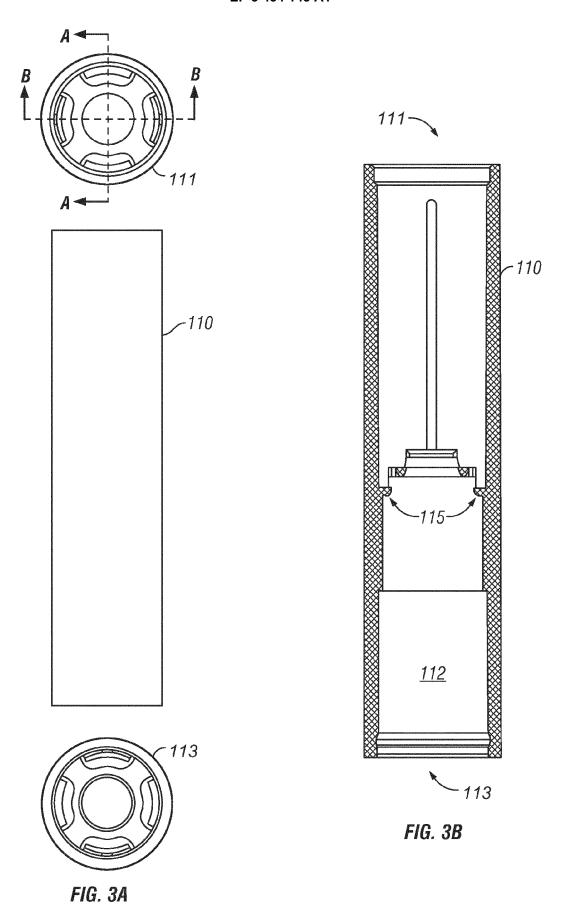



FIG. 2B (Cont'd)

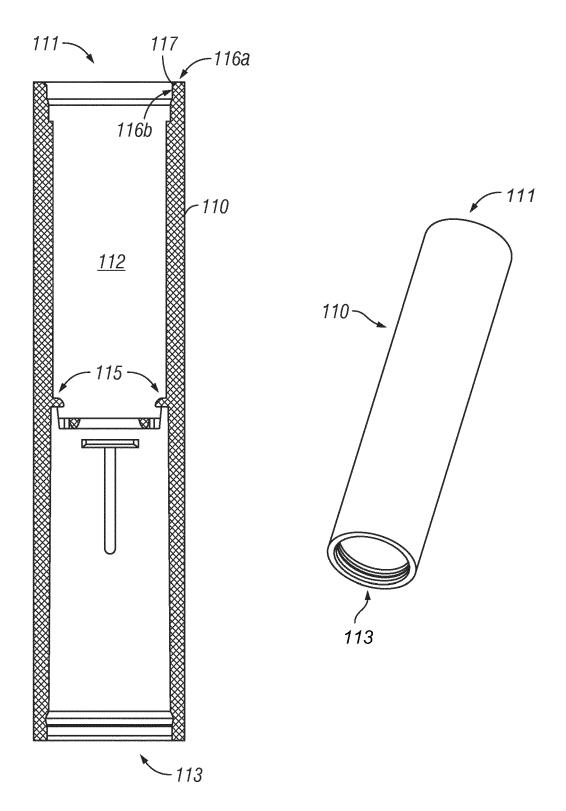
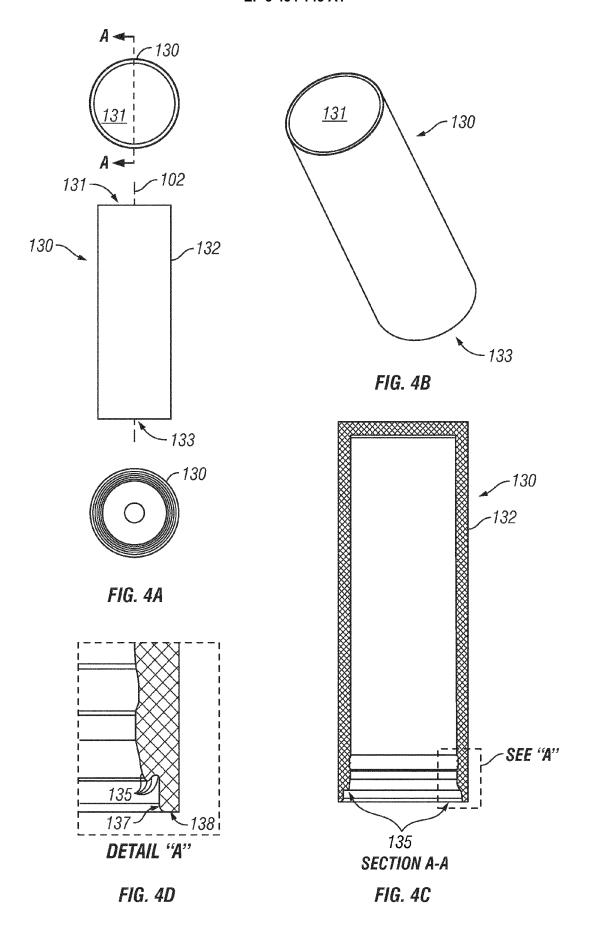



FIG. 3B (Cont'd)

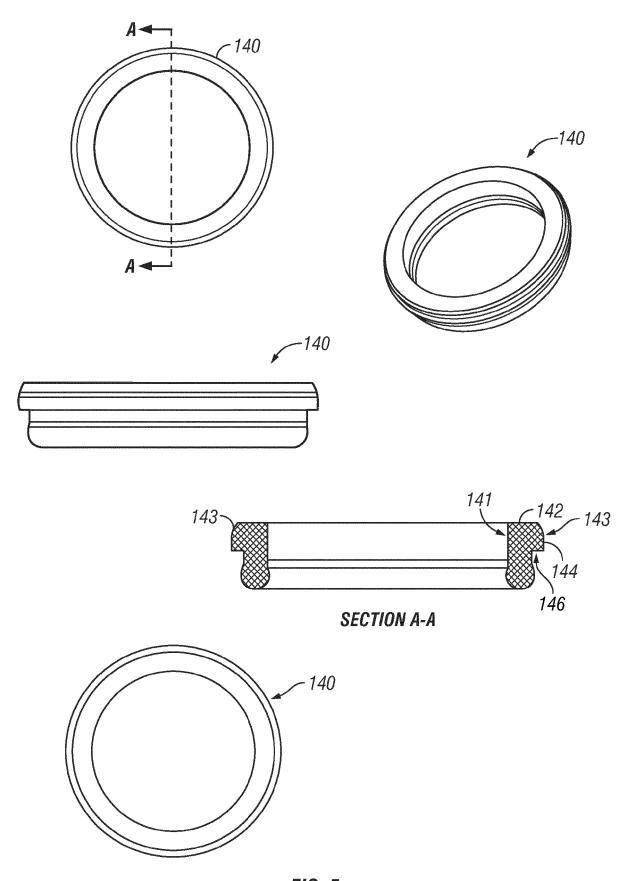


FIG. 5

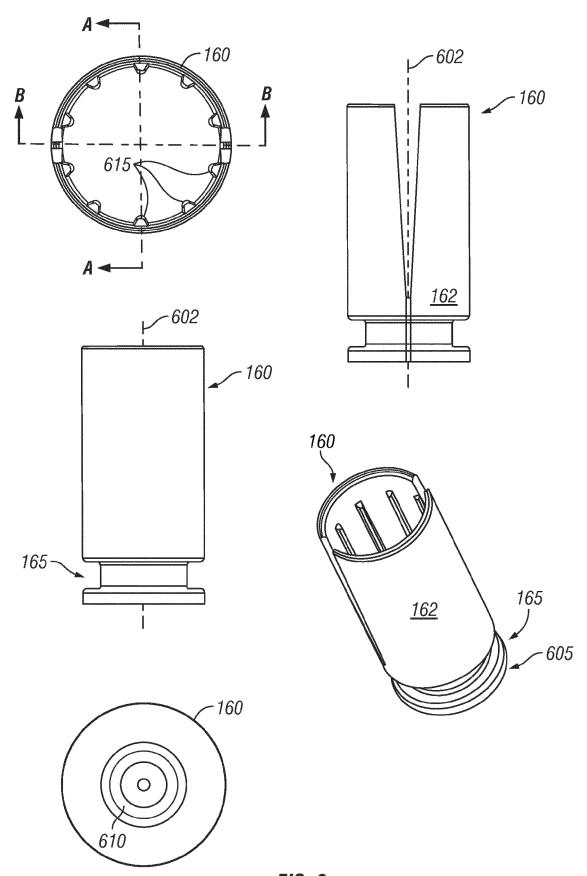
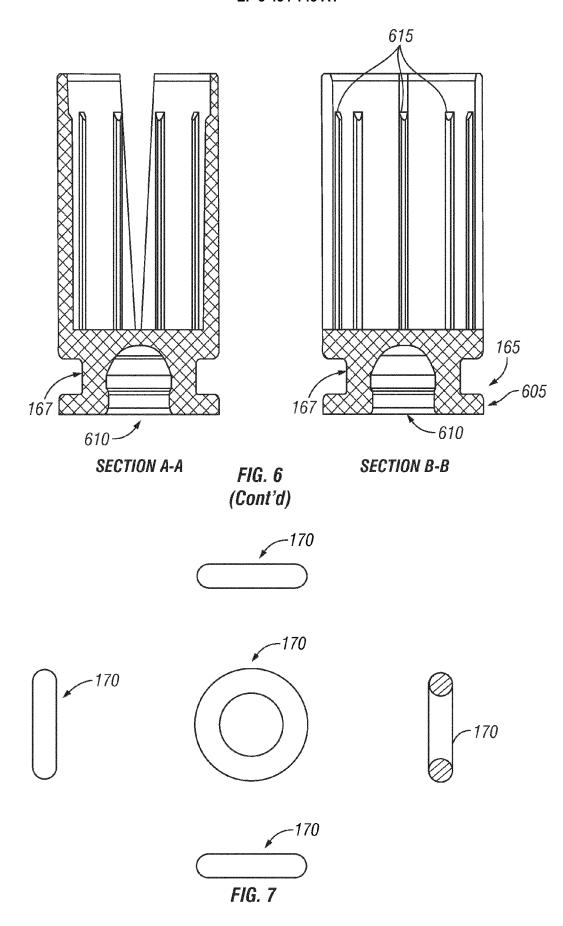



FIG. 6

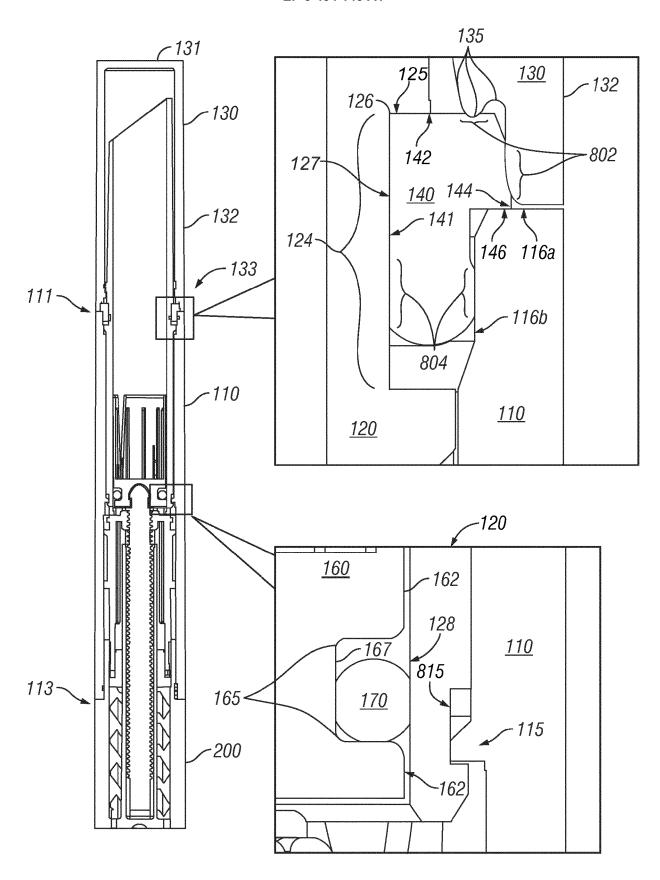
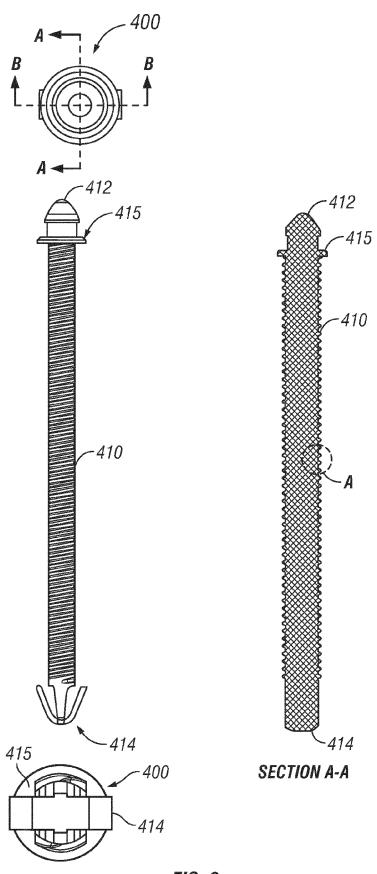
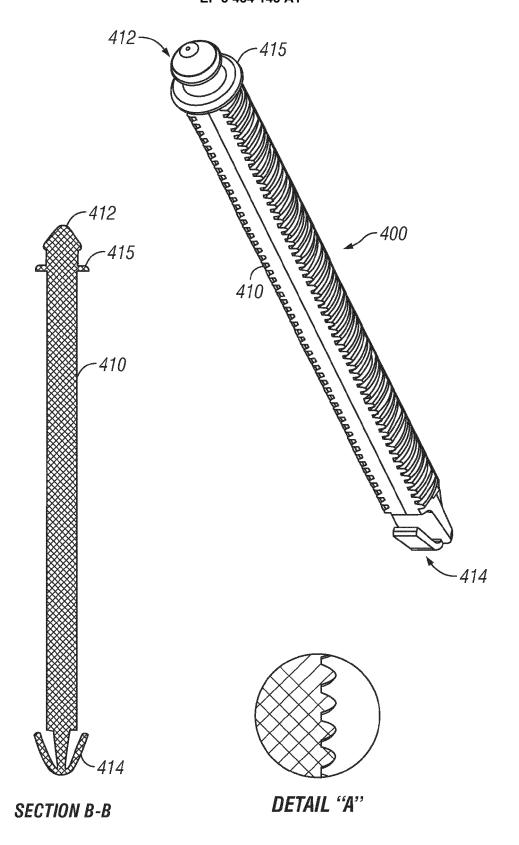
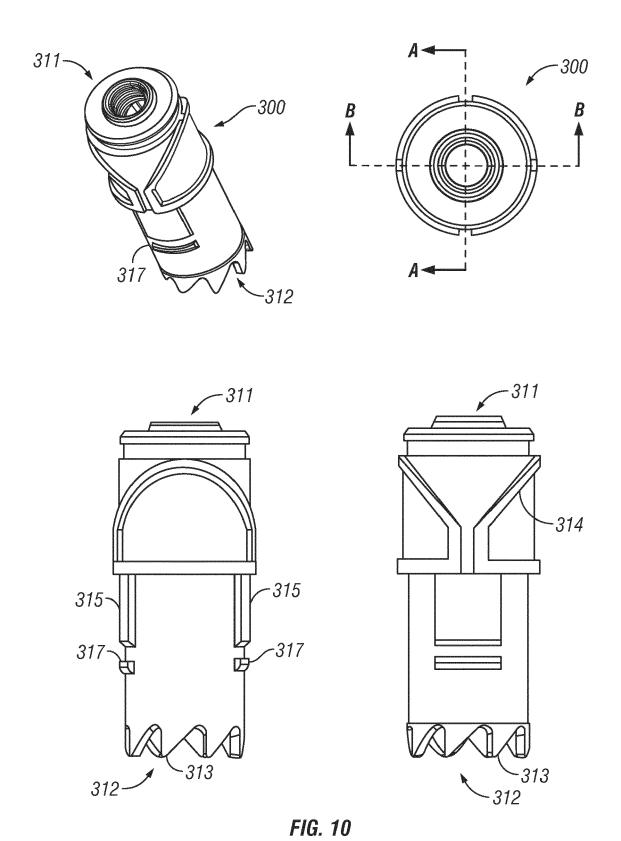
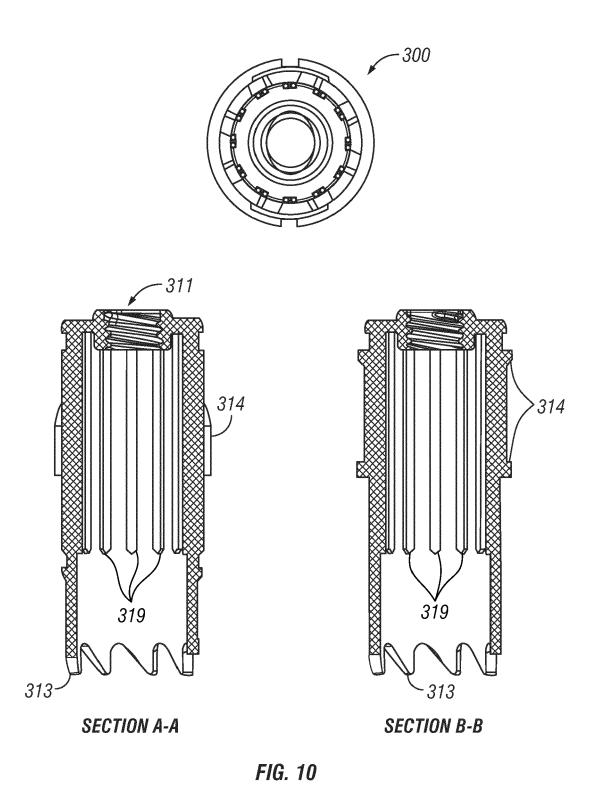
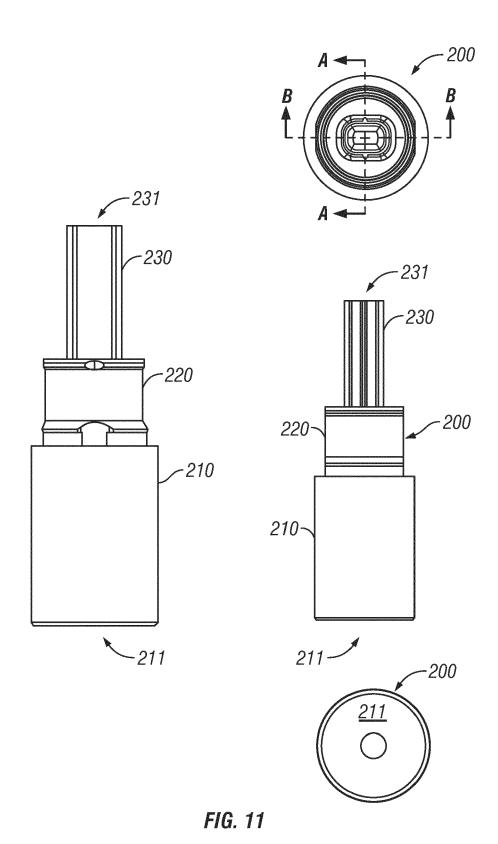
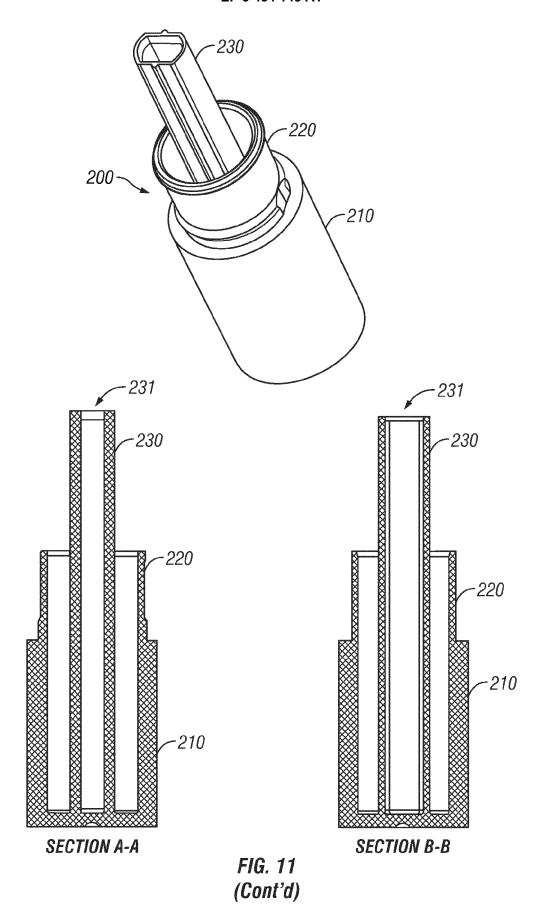



FIG. 8


FIG. 9 (Cont'd)



31

(Cont'd)

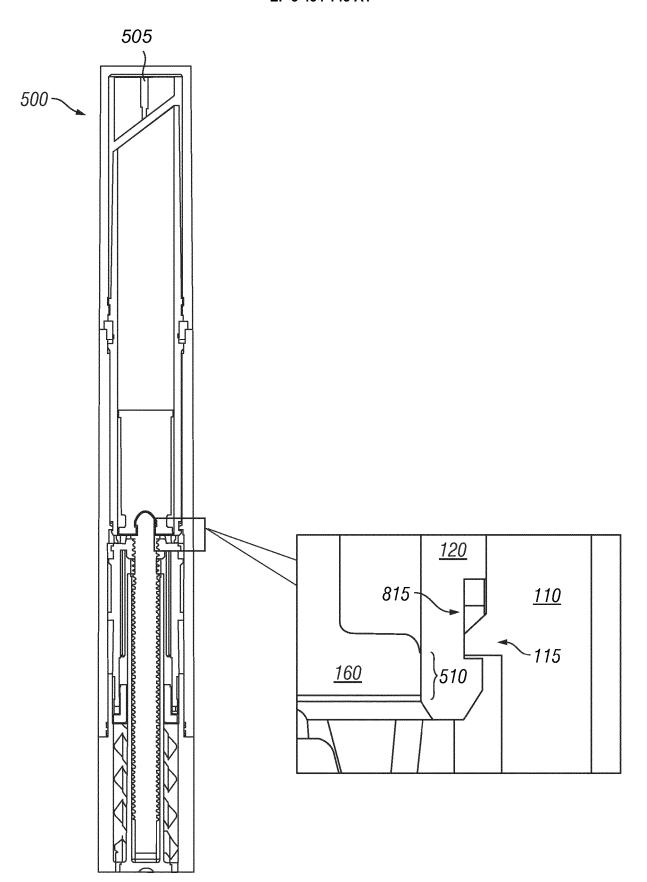


FIG. 12

EUROPEAN SEARCH REPORT

Application Number

EP 18 18 5846

	DOCUMENTS CONSID	ERED TO BE RELEVANT		
Category	Citation of document with ir of relevant passa	ndication, where appropriate, ages	Relevant to claim	CLASSIFICATION OF THE APPLICATION (IPC)
\	US 4 984 920 A (0'N 15 January 1991 (19 * column 2, line 32 figures 1,2 *	EILL R KEVIN [US]) 91-01-15) - column 3, line 8;	1,2,4,5, 7-14	INV. A45D40/00
(FR 2 997 828 A1 (C0 16 May 2014 (2014-0 * page 8, line 1 - figures 2, 3a, 4a,	5-16) page 10, line 35;	1-14	
1	WO 2013/065952 A1 (10 May 2013 (2013-0 * the whole documen	CHOI MIN-CHEOL [KR]) 5-10) t *	1-15	
Ą	W0 2015/091483 A1 (25 June 2015 (2015- * the whole documen	1-15		
A	US 2002/146274 A1 (10 October 2002 (20 * the whole documen	02-10-10)	1-15	TECHNICAL FIELDS SEARCHED (IPC) A45D
	The present search report has I	peen drawn up for all claims		
	Place of search	Date of completion of the search		Examiner
X : part Y : part docu A : tech O : non	The Hague ATEGORY OF CITED DOCUMENTS icularly relevant if taken alone cularly relevant if combined with anothinent of the same category nological background written disclosure inrediate document	E : earlier patent after the filing ner D : document cit L : document cit	Linciple underlying the interest of the content of	shed on, or

ANNEX TO THE EUROPEAN SEARCH REPORT ON EUROPEAN PATENT APPLICATION NO.

EP 18 18 5846

5

This annex lists the patent family members relating to the patent documents cited in the above-mentioned European search report. The members are as contained in the European Patent Office EDP file on The European Patent Office is in no way liable for these particulars which are merely given for the purpose of information.

18-10-2018

10	Patent document cited in search report			Patent family member(s)	Publication date
	US 4984920	Α	15-01-1991	NONE	
15	FR 2997828	A1	16-05-2014	NONE	
	WO 2013065952	A1	10-05-2013	KR 20130049717 A WO 2013065952 A1	14-05-2013 10-05-2013
20	WO 2015091483	A1	25-06-2015	CN 105848788 A EP 3083068 A1 FR 3014650 A1 JP 2017508490 A KR 20160098268 A US 2016310976 A1 WO 2015091483 A1	10-08-2016 26-10-2016 19-06-2015 30-03-2017 18-08-2016 27-10-2016 25-06-2015
23	US 2002146274	A1	10-10-2002	NONE	
30					
35					
40					
45					
50					
55	FORM P0459				

For more details about this annex : see Official Journal of the European Patent Office, No. 12/82